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Abstract

This paper discusses the use of parametric models for the term structure of interest rates
and their uses. The paper focuses initially on a potential problem which arises out of
the use of certain models. In most cases the process of parameter estimation involves
the minimization or maximization of a function (for example, least squares or maximum
likelihood). In some cases this function can have a global minimum/maximum plus one
or more local minima/maxima. As we progress through time this leads to a process under
which parameter estimates and the fitted term structure can jump about in a way which is
inconsistent with bond-price changes.

Here a number of models are identified as susceptible to this sort of problem. However,
under one of the descriptive models (the restricted-exponential model) it is proved that the
likelihood and Bayesian posterior functions have unique maxima: both in a zero-coupon
bond market and in a low-coupon bond market. A counterexample shows that this result
can break down for larger-coupon bond markets. An alternative Bayesian estimator in
combination with the restricted-exponential model is shown to be free from the problem
of catastrophic jumps in all coupon-bond markets.

This model has previously been applied to UK data (Cairns, 1998). Here, we consider
its wider application in European bond markets. In particular, German market data from
1996 and 1997 is analysed using the restricted-exponential model. We find that the model
gives a good description of the German market during this period.
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1 Introduction

1.1 Descriptive models

A descriptive model takes a snapshot of the bond market as it is today. Generally, there is
no reference to price data from other dates. The sole aim is to get a good description of
today’s prices: that is, of the rates of interest which are implicit in today’s prices.

A descriptive model, on its own, gives us no indication of how the term structure might
change in the future. We know that there is randomness in the future but this sort of model
does not describe this feature. The description of the dynamics of the term structure falls
into the domain of arbitrage-free equilibrium and evolutionary models (for example, see
Baxter and Rennie, 1996, Rebonato, 1996, or Jarrow, 1996) or more general actuarial and
econometric models which are not necessarily arbitrage free but which pay more attention
to past history (for example, see Wilkie, 1995, or Mills, 1993).

Descriptive models have a number of uses:

• They give us a broad picture of market rates of interest which are implied by market
prices (and, in particular, if there is only a coupon-bond market) (for example, see
Nelson & Siegel, 1987, Svensson, 1994, and Dalquist & Svensson, 1996).

• They can be used to price forward bond contracts.

• They can assist in the analysis of monetary policy (Dalquist & Svensson, 1996).

• A forward-rate curve can be used as part of the input to a model based on the Heath,
Jarrow & Morton (1992) framework or the more recent positive interest framework
of Flesaker & Hughston (1996). Of course, here, it is also necessary to specify a
volatility structure (for example, see Jarrow, 1996). Once this has been added to the
descriptive model we have a full model which describes the dynamics of the term
structure. The input forward-rate curve is often recalibrated each day.

• They can be used in the construction of yield indices (Feldmanet al.,1998).

• Finally descriptive models provide sufficient information for us to get a precise
market value of a non-profit insurance portfolio or to price, for example, annuity
contracts.

1.2 Parametric models

This paper will concentrate on the use of parametric models.

The alternative to such models is spline graduation (for example, see McCulloch, 1971,
1975, Vasicek & Fong, 1982, Mastronikola, 1991, Deacon & Derry, 1994, Fisheret
al., 1995, or Waggoner, 1997). Parametric curves aim to give a parsimonious descrip-
tion of the term structure (Svensson, 1994) providing a broad picture which shows the
main features of the term structure. Spline graduations aim to give a detailed and highly-
parametrized picture of the market: warts and all. It is questionable, however, if all this
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detail is accurate. For example, splines can overcompensate for small but genuine dif-
ferences between observed prices and underlying theoretical prices (for example, due to
liquidity problems, small variations in taxation or, simply, the bid/offer spread). Further-
more, the results of a spline graduation seem to be sensitive to the number and the location
of the knots (Dalquist & Svensson, 1996, and, for example, see Deacon & Derry, 1994,
Figures 3.2 to 3.5). In terms of confidence intervals for rates of interest this is likely to
result in a relatively wide band at all maturities (that is, a relatively wide margin of error).
Parametric models, on the other hand, display a relatively wide margin of error only at
the very short and the very long end of the maturity spectrum (Cairns, 1998). At all other
maturities estimates of par yields, spot rates and forward rates are all relatively robust.
Lorimier (1995) considered spline graduation which aimed to find the best curve in the
sense of fitting prices perfectly while at the same time being as smooth as possible.

With parametric curves, the aim is to get a parsimonious description of the term structure:
that is, we wish to use a model which captures as much of the detail of the market as
possible with as few parameters as possible. These two requirements clearly conflict: it
is always possible to improve the fit of the model by increasing the number of parame-
ters. For an additional parameter to be worthwhile the improvement in fit must exceed
a specified amount (for example, according to the Schwarz-Bayes Criterion discussed in
Wei, 1990, and Cairns, 1995, 1998). Such curves avoid the lumpiness of spline models.
However, they can still be biased at certain maturities if there are small heterogeneities
in the market not accounted for in the model and if bonds with certain characteristics are
clustered. For example, in the UK there is a cluster of strippable gilts at the long end of
the market.

1.3 Existing parametric models

1.3.1 Gross redemption yields

Dobbie & Wilkie (1978) proposed the model which is currently used in the construction of
the UK yield indices published in the Financial Times. It is a model for gross redemption
yields: that is,

y(t, t +s) = b0 +b1e−c1s+b2e−c2s

is the gross-redemption-yield curve at timet for a coupon bond maturing at timet + s.
This curve is fitted to low, medium, and high-coupon bands separately to take account
of the old, UK coupon effect. Since 1996, however, income and capital gains on UK
gilts have been taxed on the same basis making this yield curve approach obsolete and
forward-rate curves more relevant.

1.3.2 Forward-rate curves

Suppose thatf (t, t + s) is the instantaneous forward rate at timet for payments at time
t +s.
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Nelson & Siegel (1987) proposed the following curve:

f (t, t +s) = b0 +(b10+b11s)e−c1s.

The curve is of the form of a constantplusa polynomial-times-exponential term. It allows
for a single hump or dip in the curve.

Svensson (1994) generalised this by adding a further polynomial-times-exponential term:

f (t, t +s) = b0 +(b10+b11s)e−c1s+b21se−c2s.

This curve can have up to two turning points.

Wiseman (1994) proposed another model of exponential type:

f (t, t +s) = b0 +b1e−c1s+ . . .+bne−cns.

The order of the modeln varies from one country to the next. The curve can have up to
n−1 turning points.

Bjørk & Christensen (1997) generalised all of the previous forms of forward-rate curves
by describing theexponential-polynomialclass of curves:

f (t, t +s) = L0(s) +
n

∑
i=1

Li(s)e−cis

where each ofL0(s), . . . ,Ln(s) is a polynomial ins:

Li(s) = bi0 +bi1s+ . . .+biki s
ki .

In theunrestrictedcase all parameters (thebi j and theci) are estimated. This is the case,
for example, in Nelson & Siegel (1987), Svensson (1994) and Wiseman (1994).

1.4 Estimation

The parameters in a descriptive model are fitted by taking, first, a snapshot of the data.
For example, this may give us a set of price data,P. For a given model, letφ be the set
of parameters. For a given model and value forφ we have, for eachi, a theoretical price
Pi(φ) in addition to the observed pricePi . φ can be estimated by a number of means: for
example, weighted least squares (Dobbie & Wilkie, 1978, Wiseman, 1994); maximum
likelihood (Cairns, 1998); or Bayesian methods (Cairns, 1998). Least squares methods
can be demonstrated to have a sound statistical basis (Cairns, 1998) but only the likelihood
and Bayesian approaches can give a complete picture of the results. In particular, they give
not only parameter estimates but also an indication of the level of parameter uncertainty
and of the level of uncertainty in the estimates of various interest rates.

Let us take a specific example. Suppose that we are considering a zero-coupon bond mar-
ket and that we wish to fit the Nelson & Siegel (1987) model using maximum likelihood.
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For maximum likelihood we must specify a full statistical model. Here we assume for
simplicity that the logarithm of the price of a zero-coupon bond has a Normal distribution
with mean logP̂i and with a variance which depends upon the term to maturity:

logPi ∼ N
(
logP̂i(φ), σ2(ti)

)
where ti = term of stocki.

It is not necessary for us to specify the form ofσ2(t) at this point. For possible definitions
see Svensson (1994), Wiseman (1994) or Cairns (1998) or later in this paper (Section 4).

Now the form of the forward-rate curve in the Nelson & Siegel (1987) model means that
− logP̂i(φ) has the following simple form:

− logP̂i(c1,b) = b0.ti +b10.
(1−e−c1ti )

c1
+b11.

1

c2
1

(
1− (1+c1ti)e−c1ti

)
There are three components to this formula. Each component is of the form of a linear
b-coefficient times a non-linear term involvingti andc1.

Because of this linearity inb it is easy to estimateb = (b0,b10,b11) for this statistical
model given a specific value ofc1.

We call theb’s linear parameters andc1 a non-linear parameter.

If we go back to the log-likelihood function this is a function ofc1 andb givenP

l(c1,b;P) =−1
2

n

∑
i=1

{
log[2πσ2(ti)] +

(logPi− logP̂i(c1,b))2

σ2(ti)

}
and we have to maximise this overc1 andb. This function is quadratic inb so that, for
a given value ofc1, the estimatêb(c1) is unique. For simplicity we writêl(c1) when the
function has been maximised overb. l̂(c1) is the profile log likelihood.

We then have to maximise this overc1. This function has to be maximised numerically.
Sometimes we have a problem with this becausel̂ occasionally can have more than one
maximum: say one global maximum and another local maximum.

The same problem arises within a coupon-bond market. However, the so-called linear
parameters,̂b(c1), are no longer simple to estimate. Generally,b̂(c1) is uniquely defined,
while l̂(c1) can still have more than one maximum.

In Figure 1 we give an example of this from the close of business on 31 May, 1995, in the
UK coupon-bond market. The function̂l has a global maximum at aboutc1 = 0.6 but it
also has a local maximum at aboutc1 = 2.7. The difference in likelihoods is not too large
implying that the local maximum gives almost as good a fit as the global maximum.

1.5 Instability of parameter estimates

Let us think now about the consequences of having more than one maximum as we move
through time.
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Figure 1: 31 May, 1995. UK coupon bond market. Profile log-likelihood functionl̂(c1)
for the Nelson & Siegel model.
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Figure 2: Possible development of the profile log-likelihood function through time.
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Figure 2 gives a simple scenario of what might happen. As we go from one day to the
next, the likelihood curve will gradually evolve. In particular, the two maxima will go up
and down. From time to time one of them might disappear totally and from time to time
the global maximum might jump from one location to the other as we see here. We start on
day 1 with a unique maximum at A. Suppose also that the maximisation algorithm starts
at yesterdays maximum and finds the local maximum. From days 2 to 5 there is a second
maximum at B and indeed on days 3 and 5 this is the global maximum. The algorithm will
continue until day 5, however, at maximum A. It is not until day 6 when the maximum at
A disappears totally that the algorithm moves across to B. Other algorithms might jump
more frequently, in particular if they are designed to find the global maximum.

What are the consequences of this problem?

We have identified that as we move from one day to the next the location of the maximum
might jump. This is sometimes referred to as acatastrophicjump. When such a jump
occurs, the size of the jump will typically be much larger than would be consistent with
the corresponding changes in prices. For example, if prices follow a diffusion process then
the parameter estimates should also follow a diffusion process and in particular should be
a continuous process: this continuity will clearly be violated if there is a catastrophic
jump.

If parameter estimates jump then a published yield index will also jump in an equally
obvious way and the indices will start to lack credibility and fall into disuse. Equally if
the curve is used as input to a Heath-Jarrow-Morton model with frequent recalibration
it is essential that the recalibrated curves evolve in a way which is consistent with price
changes. This is not the case if catastrophic jumps occur which will cause unexpected
jumps, for example, in derivative prices.

The existence of more than one maximum can also lead to potential mispricing of such
things as bonds, interest-rate derivatives or the pricing of annuities or other life insurance
contracts.

All of the Dobbie & Wilkie (1978), Svensson (1994) and Wiseman (1994) models exhibit
the same problem with multiple maxima (for example, see Cairns, 1998). In particular,
this problem can arise in a zero-coupon bond market as well as in a coupon-bond market.
In each case estimates for the linear, polynomial coefficients are unique and simple to
derive while the multiple maxima show up in their profile log-likelihood functions. The
problem arises on different dates, however, for different models and with varying degrees
of magnitude.

In Figure 3 we return to the previous example. Here we have plotted forward-rate, spot-
rate and par-yield curves for each of the two maxima in Figure 1. The largest differences
occur between the two forward-rate curves. This is because these rates are the furthest
from what we actually observe: which is coupon-bond prices. Par yields are closest to
what we see on the market so the errors are smallest. The maximum difference here is
about only 0.03% which does not sound very much. But if we take the issue of a long-
dated stock with a duration, say, of 10 years, then this leads to an error of £3 million per
£1 billion issued, which is not trivial. On other dates and for other models these errors
can be bigger.
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Figure 3: Forward rates, spot rates and par yields for the global maximum (solid line) and
for the local maximum (dotted line).

9



2 The restricted-exponential family

Given the shortcomings of the models described in the previous section, an alternative
model is therefore appropriate. Here we describe the the restricted-exponential family
proposed by Cairns (1998) (see also Bj¨ork & Christensen, 1997). This is a simple family
of forward-rate curves:

f (t, t +s) = b0 +b1e−c1s+ . . .+bme−cms

φ = (b,c)

The curve is a sum of a constant plusm constant-times-exponential terms and is super-
ficially the same as the Wiseman (1994) model. The parameter setφ is divided up into
subsets of linear termsb = (b0, . . . ,bm) and non-linear termsc = (c1, . . . ,cm). This sug-
gests that there is likely to be the same problem as before. However, the approach taken
here is a bit different.

In the previous models we estimated all of the parameters: linear and non-linear. In
contrast, here we only estimate a subset of the parameter set. Thus, we fix the exponential
parametersc at the outset and at no future point do we estimate their values. At any point
in time we only estimate the linear parametersb.

For consistency with the nomenclature in Section 1.3.2 we call this family of curves the
restricted-exponentialclass.

2.1 Maximum-likelihood estimation

Proposition 2.1

Under the statistical model proposed in Section 1.4:

(a) In a zero-coupon bond market the resulting maximum-likelihood estimateb̂ is unique.

(b) In a low-coupon bond market the log-likelihood function is concave within the re-
quired region containing all possible maxima. Hence, the maximum-likelihood
estimatêb is unique.

Proof: See Appendix A. In particular, we define what we mean by a low-coupon bond
market.

(Lorimier (1995, Theorem 4.2) proved a similar result. The differences when compared
with Proposition 2.1 are:

• the form of the forward-rate curve. Here it is a sum of exponentials, whereas Lorim-
ier uses splines.

• the form of the objective function. Here the aim is to get as good a fit as possible
with relatively few parameters. Lorimier aims to get as smooth a set of prices as
possible given a perfect fit with enough knots.
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These differences require a different style of proof but the flavour of the result is the same:
that uniqueness holds for small coupons but it is not guaranteed for larger coupons.)

2.1.1 A counterexample for larger coupons

The likelihood and Bayesian posterior-density functions have been shown to have a unique
maximum in a low-coupon bond market. Unfortunately, the result does not extend, at
least theoretically, to markets with higher coupons as the following simple counterexam-
ple shows.

Suppose that we take a very simple case wherem= 1: that is,f (t, t +s) = b0+b1exp(−c1s).
Our market consists of two stocks:

Stock 1: annual coupon, rateg, termt1 to maturity.

Stock 2: zero-coupon, termt2 to maturity.

Stock 1 has an actual price ofP1 and a theoretical price givenb0,b1 of P̂1(b0,b1). Let L1

be the set{(b0,b1) : P̂1(b0,b1) = P1}. This is a downward sloping andconvexcurve (see
Appendix A).

Stock 2 has an actual price ofP2 and a theoretical price of̂P2(b0,b1). Let L2 be the set
{(b0,b1) : P̂2(b0,b1) = P2}. L2 is a straight line with a negative gradient.

Given the details of stock 1 it is possible to chooseP2 andt2 such thatL1 andL2 intersect
in two points within the feasible regionB = {b : f (t, t + s) ≥ 0 for all s≥ 0}. (With
m= 2, B = {b : b0 ≥ 0, b0 + b1 ≥ 0}.) Let the points of intersection be(b10,bb11) and
(b20,bb21). At each point the theoretical prices equal the observed prices so clearly the
likelihood function will be maximised at both points of intersection. These maxima will
also, of course, be of the same height.

Numerical example:

Suppose thatc1 = 0.2. For stock 1 we haveP1 = 1, t1 = 20 andg = 0.08, and for stock 2
we haveP2 = 0.352478,t2 = 13.3562.

There are two solutions inb = (b0,b1): b = (0.03,0.137958) andb = (0.11,−0.091620).

2.1.2 Actual experience

The experience of the UK gilts market suggests, however, that there is no problem with
multiple maxima. The counterexample above just shows that we cannot rule out the pos-
sibility altogether. One reason for this is that the problem diminishes as the number of
stocks increases due to the large sample properties of the likelihood function (for exam-
ple, see Silvey, 1970). Thus, even if secondary maxima persist as the number of stocks
increases, the global maximum will tend to the true parameter set (if the underlying model
is the same as the one being considered here). If there were significant differences be-
tween the true forward-rate curve and the best-fitting restricted-exponential curve then
secondary maxima could, in theory, persist. However, this is not what we see in practice.
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2.2 Bayesian estimation

2.2.1 Maximum-posterior-density estimation

Suppose instead we wish to use Bayesian methods with a prior distributiong(b) for b and
a 0-1 loss function. Then the log-posterior density function isg(b|P) = g(b) + l(b;P) +
constant, and the Bayesian estimator is the mode of the posterior distribution. (The 0-1
loss function thus gives an estimator which gives the best fit consistent with the prior
distribution.)

There are two principal reasons for using Bayesian methods:

• We have introduced a constraint that the forward-rate curve should be positive at all
maturities, on the basis that the risk-free rate of interest,r(t), will be non-negative at
all times,t. If f (t, t +s) is equal to zero for any value ofs then this means thatr(t +
s) = 0 with probability 1. If we wish to exclude this possibility then we must require
that f (t, t +s) is strictly positive for alls. It is unreasonable to require thatf (t, t +s)
has a minimum value higher than 0. However, if we use maximum likelihood and
this finds that the maximum is at someb for which the forward-rate curve is negative
at some maturities then the introduction of a constraint will mean that the forward-
rate curve is still equal to 0 for somes. This problem can be avoided if we use
Bayesian methods. In particular, if the prior density function,g(b), tends to zero
on the boundary of the feasible region (in whichf (t, t + s) remains positive) then
the maximum of the posterior will give a strictly positive forward-rate curve at all
maturities.

• Bayesian methods provide a coherent framework within which we can analyse pa-
rameter risk and construct confidence intervals for specified interest rates and so
on.

Corollary 2.2

If the log-prior distribution function is concave then:

(a) In a zero-coupon bond market the resulting Bayesian estimateb̂ is unique.

(b) In a low-coupon bond market the log-posterior density function is concave within
required region containing all possible maxima. Hence, the Bayesian estimateb̂ is
unique.

2.2.2 Squared-error loss functions

Suppose instead that the loss function is of the form

L(b, b̃) =
Z ∞

0
ν(s){ f (t, t +s;b)− f (t, t +s; b̃)}2ds,

where b is random with density equal to the posterior density function,ν(s) defines
the weight attached to durations,

R ∞
0 ν(s)ds< ∞, f (t, t + s;b) = bTd′(s), andd′(s)T =
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(1, exp(−c1s), . . . , exp(−cms) ). The best estimator iŝb which maximizes the posterior
expectation of the loss function. Thus:

E[L(b, b̂)|P] = inf
b̃

E[L(b, b̃)|P].

Now

e(b̃) = E[L(b, b̃)|P] = E

[Z ∞

0
ν(s)

(
bTd′(s)− b̃Td′(s)

)2
ds |P

]
= E

[Z ∞

0
ν(s)(b− b̃)Td′(s)d′(s)T(b− b̃)ds|P

]
⇒ ∂e

∂b̃
(b̃) = E

[
2
Z ∞

0
ν(s)d′(s)d′(s)T(b− b̃)ds|P

]
= 2

Z ∞

0
ν(s)d′(s)d′(s)Tds E[b− b̃ |P].

Thuse(b̃) is minimized at̂b = E[b|P]. This estimator is well defined relative to the prob-
lem of maximizing a function with more than one maximum. The estimator will also
evolve without the risk of catastrophic jumps, since the form of the posterior distribution
evolves in a way which is consistent with price changes. Interestingly, this estimate does
not depend upon the form ofν(s).
If, on the other hand, we are considering one of the models in the unrestricted exponential-
polynomial class we have the same problems of non-linearity in the exponential parame-
ters. This arises from the fact that the minimization problem here is essentially the same
as the maximization problem described in Sections 1.4 and 1.5 for a zero-coupon bond
market.

Clearly any loss function which is quadratic inb andb̃ will also have the same properties:
for example, if we replace the forward-rate curve by the spot-rate curve.

3 Further remarks

3.1 Choice ofm

To get a consistently good fit in the UK gilts market we requirem= 4: that is, 4 expo-
nential terms. Inevitably we require more terms than if we estimate both the linear and
non-linear parameters. The new approach with 4 exponential terms is roughly equivalent
to estimatingb andc in a model with only 2 exponential terms (but in each case we are
still only estimating 5 parameter values). However, the restricted-exponential model has
the advantage that it will fit much better on dates where more than one turning point in
the forward-rate curve is apparent.

With m = 4 we can have a very rich or wide range of yield curves with up to 3 turning
points.
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3.2 A more general family of curves

Bjørk and Christensen (1997) consider what families of curve are consistent with the
evolution of certain models for the term structure. They describe a more general class
of model: the restricted-exponential-polynomial family. Any curve in this family in
which the polynomials are all of degree 0 is in the restricted-exponential family. A sim-
ple example is the Vasicek (1977) model. This is a one-factor model under which the
forward-rate curve evolves within the family of curves{ f (t, t +s) = b0 +b1exp(−c1s)+
b2exp(−c2s)}b0,b1,b2 wherec1 andc2 = 2c1 are fixed. There are further restrictions on
the parametersb0, b1 andb2 (since we are working with a one-factor, Markov model) but
the curve does evolve within this higher-dimensional family.

4 Analysis of German bond-price data

In this section we will consider the application of the restricted-exponential model to the
German bond market. The data relate to the period 4 January 1996 to 12 April 1997
with daily prices and between 85 and 90 stocks quoted on each date. An analysis cov-
ering a longer period would be desirable. However, the present analysis was severely
hampered by the lack of high quality, raw price data covering longer periods. Despite
this, the present analysis comes to a number of qualitative statements which will hold
for other time periods. However, the more general use of the model (for example, in the
construction of yield indices) would benefit from analysis of a longer series of data.

We fit the following model for the forward rate curve:

f (t, t +s) = b0 +b1e−c1s+b2e−c2s+b3e−c3s+b4e−c4s

as in Cairns (1998). For the vectorc = (c1,c2,c3,c4) we assume the central set of values
(0.1,0.2,0.4,0.8) (one of those considered in the previous paper). Later in this section
we will consider other choices forc.

Recall also that we will use the following statistical model for coupon bond prices:

logPi ∼ N
(
logP̂i(φ),σ2(Pi,di)

)
wheredi is the duration of stocki and price errors givenφ are assumed to be independent.
P̂i(φ) is the discounted value of the coupon and principal payments calculated with refer-
ence to the forward-rate curve when the parameter set is equal toφ. The error structure is
the same as that in Cairns (1998): that is:

σ2(p,d) =
σ2

0(p)
(
σ2

∞d2b(p) +1
)

σ2
0(p)d2b(p) +1

(1)

whereσ2
0(p) = (100p)−2

b(p) =
σ2

d

σ2
0(p)

(
σ2

∞−σ2
0(p)

)
σd = 0.0004

σ∞ = 0.001
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This means that:
lim
d→0

√
VarPi ≈ Pi/100Pi = 0.01

(which arises from rounding errors in prices)

lim
d→0

∂σ2(p,d)
∂(d2)

= σ2
d

(that is, for smalld, the standard deviation of gross redemption yields is approximately 4
basis points)

lim
d→∞

σ2(p,d) = σ2
∞

(that is, the standard deviation of long-dated stock prices is limited to about 0.1 per
100DM nominal).

4.1 Removal of unusual stocks

Group 1: (outliers)

The first stage of the analysis involved the removal of those stocks which had prices
significantly out of line with neighbouring bonds. Such stocks were identified by features
such as:

• relatively high volatility;

• long periods of significant cheapness or dearness;

• significant step jumps in prices out of line with the rest of the market.

Such features can arise because of the relatively small size of an issue, special tax status,
or implicit option characteristics amongst other reasons.

Some of these stocks are illustrated in Figure 4. For example, take the bond 61
2% 2/1997:

• initially this stock is well in line with the market as a whole withy-values or price
errors (actual minus fitted price per 100DM nominal) close to zero;

• later on though, the stock becomes, relatively, very expensive.

Figure 4 also shows up an interesting comparison between two very similar stocks 63
8% 8/1998

and 63
4% 8/1998. The former is in line (price errors close to zero) while the former is

clearly very cheap. We therefore chose to exclude 63
4% 8/1998. From the graph we can

also see that 434% 11/2001 became very expensive shortly after its introduction.

Two further groups of stocks required more careful thought.

Group 2

First we considered a group of stocks all maturing during 1999. (61
2% 1/1999, 63

4% 1/1999,
7% 2/1999, 7% 4/1999, 63

4% 6/1999, 7% 9/1999, 7% 10/1999 and 718% 12/1999).
During the first half of 1996 these stocks exhibited significantly higher volatility and were
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Figure 4: Price errors (actual price minus fitted price per 100DM nominal) for selected
stocks.
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Figure 5: Development of the Root Mean Squared Error (RMSE) over time. A (dashed
line): all stocks. B (dotted line): excluding outliers and Group 3. C (solid line): excluding
Groups 1, 2 and 3.

significantly cheaper than the remaining (eleven) 1999 stocks (with no obvious coupon
effect). Figure 4 illustrates this point (7% 9/1999 versus 634% 9/1999).

Group 3

Second, five stocks (518% 11/2000, 51
4% 2/2001, 5% 5/2001, 5% 8/2001 and 6% 9/2003)

exhibited stable but very expensive prices relative to the rest of the market. For the bulk
of this analysis these stocks were excluded. However, they do lend support to the sugges-
tion of a small coupon effect similar to that which existed in the UK for many years. In
particular, other stocks with similar maturities and with gross redemption yields more in
line with other market yields had higher coupon rates.

Figure 5 shows the effect of removing various stocks on the quality of fit. If the Root
Mean Squared Error (RMSE) is close to 1, the error structure, as a whole, in equation (1)
is reasonable (though the dependence upon duration may or may not be quite right). If
the RMSE is too high then the quality of fit is less good. In Figure 5 we show three sets
of results:

A: all stocks are included;

B: Groups 1 and 3 are excluded;
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C: Groups 1, 2 and 3 are excluded.

We can see from Figure 5 that removal of the outliers makes a very significant improve-
ment. Further removal of the volatile and cheap stocks in Group 2 also makes a significant
difference in the first 4 months of 1996 but not after.

In Figure 6 we compare results where:

A: Groups 1, 2 and 3 are excluded;

B: Groups 1 and 2 are excluded.

We can see from the top graph that the quality of fit improves significantly. In Figure 6
(bottom) we plot observed gross redemption yields for the stocks against term to maturity
(black dots). The four crosses represent those stocks in Group 3. Superimposed on these
points are the two par yield curves implied by the parametric models fitted to sets A and
B respectively. We can see that the removal of Group 3 stocks makes very little difference
to the fitted curve (in fact the two curves, which differ by at most 2 basis points, lie almost
on top of each other). This, of course, is a consequence of these stocks lying in the middle
of the range of terms to maturity.

The remainder of this analysis assumes that Groups 1, 2 and 3 of stocks are excluded. In
Figures 7 and 8 we show the development of price errors for selected stocks. In Figure 7
the first two rows give results for typical short-dated stocks. These all have errors of small
magnitude and low volatility reflecting the short duration of these stocks. The third and
fourth rows allow comparison of pairs of stocks with similar maturity dates but different
coupons. This again suggests a small coupon effect.

In Figure 8 we give price errors for longer-dated stocks. In each graph the four ver-
tical lines correspond to the introduction of four new stocks (6% 1/2006, 6% 2/2006,
61

4% 4/2006 and 6% 1/2007).

The German bond market is really divided up into two parts:

• 6% 2016 and 614% 2024 (now supplemented by 43
4% 2028);

• stocks with a term to maturity of strictly less than 10 years.

Thus we have a very sparse market in long-dated bonds (greater than 10 years) and a
relatively dense market in bonds with a term of less than 10 years.

In the UK the range of maturity dates is more uniformly spread out with a premium
attached to the longest-dated stock (6% 2028). In the German market the sparseness of
the long-dated market makes this difficult to identify. However, Figure 8 demonstrates that
there is a clear premium attached to the two or three longest-dated bonds in the under-ten-
year class. For example, we can observe in Figure 8 that 6% 1/2006 is as much as 1DM
overpriced relative to the market early in 1996 when it is the longest-dated stock under
10 years. This price premium gradually declines as longer-dated stocks (6% 2/2006,
61

4% 4/2006 and 6% 1/2007) are first anticipated and then introduced. The same pattern
can be seen with other stocks.
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Figure 6: The effect of removing expensive low-coupon stocks. A (dotted line): Groups
1, 2 and 3 excluded. B (solid line): Groups 1 and 2 excluded. Lower graph: observed
gross redemption yields on 24 January 1997 (dots) (crosses for Group 3 stocks) and fitted
par-yield curves A and B.
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Figure 7: Price errors for selected stocks.
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Figure 8: Price errors for selected stocks.
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This view is backed up by Figure 10 (top) where the gross redemption yields for the
longest stocks just under 10 years appear to be low when we consider yields on the
6% 2016 and 614% 2024 stocks. Without these two stocks we might postulate that the
par yield curve would level off at about 6% at 10 years or even drop (for example, see
Figure 4, top, curve E).

It can be seen that there is some problem in fitting well both of the 2016 and 2024 stocks.
If we exclude, for example, 6% 2016 then we find that the model is able to get price
errors on the 2024 stock down almost to zero. Alternatively, we could increase the weight
attached to the 2016 and 2024 to force a closer fit. This additional weight would have to
be very substantial to counterbalance the large numbers of stocks with less than 10 years
to maturity.

In Figure 9 we consider how different values assigned to the vectorc affect the fit. In the
upper graph we have:

A: c = (0.2,0.4,0.8,1.6); and

B: c = (0.05,0.1,0.2,0.4);

preserving the power sequence in theci proposed by Cairns (1998). The corresponding
lines A and B have plotted the ratio of the RMSE to the RMSE estimated usingc =
(0.1,0.2,0.4,0.8). (Plotting the ratio of RMSE’s makes comparison much easier.) We
can see that, of the two,c = (0.2,0.4,0.8,1.6) is better, but this is not as good as the
centralc = (0.1,0.2,0.4,0.8).
In the lower graph in Figure 9 we have:

A: c = (0.2,0.4,0.6,0.8); and

B: c = (0.1,0.2,0.3,0.4);

using an arithmetic sequence as suggested by Chaplin (1998). We can observe thatc =
(0.1,0.2,0.3,0.4) gives relatively poor results whilec = (0.2,0.4,0.6,0.8) does perform
well and only marginally worse thanc = (0.1,0.2,0.4,0.8). We can also note here that
over the period being analysedc = (0.2,0.4,0.6,0.8) was able to reduce significantly
the price errors on the 2016 and 2024 stocks observed in Figure 8. As a consequence
it was felt that no firm conclusion could be made preferringc = (0.1,0.2,0.4,0.8) over
c = (0.2,0.4,0.6,0.8) or vice versa.

In Figure 10 we investigate the effects of changing the way in which we estimate the long
end of the forward-rate curve.

A: As before, with Groups 1, 2 and 3 excluded andc = (0.1,0.2,0.4,0.8).

B: As A but with 6% 2016 excluded in addition.

C: As A but 6% 2016 and 614% 2024 excluded; estimatingb1 to b4; b0 = 0.06 fixed.

D: As C butb0 = 0.03 fixed.
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Figure 9: Variation ofc from the central case of 0.1,0.2,0.4,0.8. The lines plotted
give the ratio of the RMSE under the alternative proposal forc to the RMSE under
the central case.Upper graph: A (dotted line): c = (0.2,0.4,0.8,1.6). B (solid line):
c = (0.05,0.1,0.2,0.4). Lower graph: A (solid line): c = (0.2,0.4,0.6,0.8). B (dotted
line): c = (0.1,0.2,0.3,0.4).
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Figure 10: Observed gross redemption yields on 4 January 1996 (dots) and fitted par-
yield curves A to E. A, B (dotted and solid line) Groups 1, 2 and 3 excluded and (B only)
6% 2016 excluded. C, D, E (long, medium and short dashed curves) 61

4% 1/2024 also
excluded. C:b0 = 0.06. D:b0 = 0.03. E:b0 estimated. Lower graph is a close up of the
upper graph.
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E: As A but 6% 2016 and 614% 2024 excluded and estimatingb0 to b4.

Both graphs in Figure 10 give observed gross-redemption yields and fitted par-yield
curves on 4 January 1996 with the lower graph being a close up on terms up to three
years.

Curve E clearly fits the data best, but the lack of a long-dated stock or a constraint on
b0 meant that the curve fitting process was ‘fooled’ by the price premium on the longest
stocks under 10 years. (Indeed the estimate forb0 is much more volatile than that under
cases A abd B and it is very often negative.) On the other hand we see that the quality of
fit for curves A to D is very similar with the only differences occurring beyond the range
of the data at 10 years (curves C and D). In the lower graph the differences between the 5
curves is at most about 3 basis points.

In Figure 11 we look at the effect of the removal of 6% 2016 and of changingc on the
long and the short end of the par-yield curve.

A: As before, with Groups 1, 2 and 3 excluded andc = (0.1,0.2,0.4,0.8).

B: As A but with 6% 2016 excluded in addition.

C: As A butc = (0.2,0.4,0.6,0.8).

At the long end (upper graph) we can see that the removal of 6% 2016 has the effect
of lowering the par yield curve slightly between terms 10 and 28 years (although the
61

4% 2024 price error is reduced). Curve C indicates thatc = (0.2,0.4,0.6,0.8) allows us
to get a better fit at the long end. This is confirmed by a plot of the price errors over time
for the 2016 and 2024 stocks.

At the short end (lower graph) the differences between A, B and C are very small. These
differences can be larger as illustrated in Figure 12.

In Figure 12 we plot differences in par yields over time for terms 1, 5, 10 and 28 years to
maturity. In each graph two lines are plotted (with A, B and C as defined above):

1. par yield for A minus par yield for B;

2. par yield for A minus par yield for C.

We can note the following points:

• Differences are smallest at term 5 where we are in the middle of the bulk of the
data. Differences become larger towards the extremities of the data (terms 1 and
10).

• The jump in the term 1 curves in the first half of 1996 appears to correspond to the
removal of the shortest-dated stock at that time: 8.5% 9/1996. Clearly A reacted in
a different way to this removal than B and C.

• At term 10 we see that the removal of 6% 2016 has a relatively significant effect,
while a change fromc = (0.1,0.2,0.4,0.8) to c = (0.2,0.4,0.6,0.8) has very little
effect.
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Figure 11: Observed gross redemption yields on 4 January 1996 (dots) and fitted par-yield
curves A to C. A (dotted curve): central case. B (solid curve): with 2016 removed. C
(dashed curve): withc = (0.2,0.4,0.6,0.8). Lower graph is a close up of the upper graph.
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Figure 12: Differences in par yields (in basis points) for: 1 (solid curve): case A minus
case B and 2 (dotted curve): case A minus case C.
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Figure 13: Sensitivity of fitted par yield curves to changes in prices of single stocks.
Difference in yield before and after the price change is plotted in basis points. A: change
in 83

8% 1/1997. B: change in 5% 1/1999. C: change in 612% 10/2005. D: 61
4% 1/2024.

• At term 28 we can match the shape of the curve number 1 with the shape of the
price errors curve for 614% 2024 in Figure 8. This is because after the removal of
6% 2016 price errors for the 2024 stock a reduced almost to zero.

• For terms between 10 and 20 differences in fitted par yield curves are generally
larger because of the sparsity of data in this region.

• For terms less than 1 year or above 28 years differences also become more marked
as we begin to extrapolate beyond the range of the data.

Finally we considered the effects on the fitted par yield curve of changes in the price
of individual stocks. Results of this analysis are plotted in Figure 13. We took data on
4 January 1996 and for each stock price varied we plot the difference (in basis points)
between the fitted par yield curves before and after the change. Here we give the results
for 4 different stocks with different terms to maturity:

A: Add 0.20 to the price of 838% 1/1997 (1 year to maturity);

B: Add 0.50 to the price of 5% 1/1999 (3 years);

C: Add 1.00 to the price of 612% 10/2005 (10 years);
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D: Add 1.20 to the price of 614% 1/2024 (28 years).

This represents a reduction in the gross redemption yield of each stock of around 15 to 20
basis points.

We note the following points:

• The price change which has the smallest effect overall is for the 3-year stock. This
is because it falls in the middle of the data and the effect of any individual price
change is dampened by the existence of many surrounding stocks.

• Case D is the only one where the par yield at the term of the altered stock changes
by a similar amount to the change in the gross redemption yield of the stock itself.
For the other stocks, the effect of price changes are dampened by neighbouring
stocks to a greater or lesser degree.

• The biggest effect in each of the four cases is close to the term of maturity of the
bond being altered: that is, 0.5 years for A, 3 years for B, 14 years for C and 28
years for D.

• However, the effect of a price change does not diminish uniformly the further we
get from the term of the altered stock. Instead there is something of a wave effect.
For example, in D the par yield curve actuallyrisesby nearly 2 basis points at term
12. In addition, the par yield curve also falls by over two basis points at term 0.5
with smaller effects in between.

Anderson & Sleath (1999) report that such wave effects arise in other models (Nel-
son & Siegel, 1987, and Svensson, 1994). On they other hand, Anderson & Sleath
(1999) argue that spline-based curve estimation methods are more stable: restrict-
ing the effect of a single price change to the locality of that change. However, it
is clear that no method gives reliable estimates outside the range of the data or, in-
deed close to its edges. If we restrict our attention to terms of 1 up to 10 years (for
this German data) then the longer-range effects of individual price changes is very
limited.

We conjecture here that the magnitude of the wave effect under the restricted expo-
nential model should be less than that under the Svensson model. This is because we
have the fixed parametersc1, . . . ,c4 should help to localise sensitivity. In contrast
estimation ofc1 andc2 under the Svensson model may lead to greater sensitivity
overall in addition to the instabilities discussed earlier in this paper.

4.2 Conclusions

The original intention in 1997 of this part of the research was to investigate the suitability
of the restricted-exponential model to European bond markets. The need to analyse data
from many countries has now been removed by the introduction in 1999 of the single
European currency. As a consequence all countries participating in the Euro must have
similar yield curves to avoid arbitrage opportunities (subject to local variations in the
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structure of bonds and in taxation). Thus the need to analyse each country is no longer
there.

This analysis suggests that the restricted exponential model should apply just as well to
German and other European bond markets as it does in the UK (Cairns, 1998, Feldmanet
al., 1998). However, the existence of different structures in each country is likely to cause
difficulty with the construction of a single bond-yield index for the Euro zone.

The best choice for the vectorc still remains an open question requiring longer runs of
data to provide an adequate solution.
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Appendix A

A.1 Zero-coupon bond market

DefineZ(b; t) = exp[−bTd(t)] wherebT = (b0, . . . ,bm), d(t)T = (d0(t), . . .,dm(t)), d0(t) =
t anddk(t) = (1−exp(−ckt))/ck for k = 1, . . . ,m.

For a bond maturing atti write di = d(ti) anddik = dk(ti).
Suppose that the observed prices areP1, P2, ...,PN. The likelihood function is

l(b;P) = −1
2

N

∑
i=1

{
log2πσ2(ti) +(logPi− logZ(b; ti))

2/σ2(ti)
}

= −1
2

N

∑
i=1

λi(logPi +dT
i b)2 +constant

where λi = 1/σ2(ti).

Maximising the likelihood is thus equivalent to minimising the function

g(P|b) =
1
2

N

∑
i=1

λi(logPi +dT
i b)2

⇒ d2g
db

= ∑
i

λidid
T
i .

The matrix of second derivatives is constant and positive definite.

Proposition 2.1(a)

Hence g(P|b) is convex and has a unique minimum in b.

If we wish instead to use Bayesian methods it is necessary for us to specify also a prior
density function. Suppose that the log-prior density function is denoted byp(b). The
log-posterior density function is then

p(b|P) = p(b)−g(P|b) +constant.

Corollary 2.2(a)

If p(b) is convex then−∂2p(b)/∂b2 is positive semi-definite. Thus the matrix of second
derivatives of minus the log-posterior density function−∂2p(b|P)/∂b2 is positive definite
and there is a unique value of b for which∂p(b|P)/∂b = 0.

A.2 Coupon-bond market

Suppose that there areN bonds each with a nominal value of 1. Bondi has cashflows
ci1, . . . ,cini at times 0< ti1< .. . < tini respectively. Givenb, the theoretical price of each
bond is then:
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P̂i(b) =
ni

∑
j=1

ci j Z(b; ti j )

=
ni

∑
j=1

ci j exp(−bTd(ti j ))

Write di j = d(ti j )
di jk = dk(ti j )

g(b) =
1
2

N

∑
i=1

λi[logPi− log
ni

∑
j=1

ci j Z(b; ti j )]2

(Recall that the log-likelihood isl(b;P) =−g(b) +constant.)

Now

Z(b; t) = exp(−bTd(t))

⇒ dZ(b; t)
db

= −Z(b; t)d(t)

d2Z(b; t)
db2 = Z(b; t)d(t)d(t)T.

Thus g′(b) = −∑
i

λi[logPi− log∑
j

ci j Z(b; ti j )]
∑ j ci j

dZ(b;ti j )
db

∑ j ci j Z(b; ti j )

= −∑
i

λi[logPi− log∑
j

ci j Z(b; ti j )]∑
j

fi j (b)di j

= −∑
i

λi[logPi− log∑
j

ci j Z(b; ti j )]d̄i(b)

where d̄i(b) = ∑
j

fi j (b)di j

and fi j (b) =
ci j Z(b; ti j )

∑ j ci j Z(b; ti j )

g′′(b) = ∑
i

λi

(
∑ j ci j

dZ(b;ti j )
db

∑ j ci j Z(b; ti j )

)(
∑ j ci j

dZ(b;ti j )
db

∑ j ci j Z(b; ti j )

)T

−∑
i

λi[logPi− log∑
j

ci j Z(b; ti j )]Vi(b)

= ∑
i

λi d̄i(b)d̄i(b)T−∑
i

λi[logPi− log∑
j

ci j Z(b; ti j )]Vi(b)

where Vi(b) =
d
db

(
∑ j ci j

dZ(b;ti j )
db

∑ j ci j Z(b; ti j )

)

=
(∑ j ci j Z(b; ti j )di j dT

i j )(∑ j ci j Z(b; ti j ))− (∑ j ci j Z(b; ti j )di j )(∑ j ci j Z(b; ti j )dT
i j )

(∑ j ci j Z(b; ti j ))2

= ∑
j

fi j (b)di j d
T
i j − (∑

j
fi j (b)di j )(∑

j
fi j (b)di j )T
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= ∑
j

fi j (b)(di j − d̄i(b))(di j − d̄i(b))T

≥ 0

Now writeXi(b) = logPi− log∑ j ci j Z(b; ti j ) = log[Pi/P̂i(b)].

g′(b) = ∑
i

λiXi(b)d̄i(b)

g′′(b) = ∑
i

λi
(
d̄i(b)d̄i(b)T−Xi(b)Vi(b)

)
Now in a zero-coupon bond marketVi(b)≡ 0 and thed̄i(b) are constant and do not depend
onb. Thusg′′(b) is constant and positive definite confirming the simpler derivation above.

A.3 Assumptions

We make the following assumptions:

The range of acceptable values forb is denoted byB. Eachb∈ B must satisfy the fol-
lowing criterion: for all 0< t < s, 1> Z(b; t) > Z(b;s). This criterion is equivalent to
the assumption that the forward-rate curvef (t, t + s) is non-negative for allt and for all
s> 0: that is,

B = {b : bTd′(t)≥ 0 for all t}
where d′(t)T = (1, exp(−c1t), . . . , exp(−cmt) ) .

Suppose thatu> 0 and thatb∈ B. For any 0< t < s we note that 1> Z(b; t)> Z(b;s)
and therefore 0< bTd(t)< bTd(s). Thus

0< u.bTd(t) < u.bTd(s)
⇒ 1> exp(−ubTd(t)) > exp(−ubTd(s))

⇒ 1> Z(bu; t) > Z(bu;s)

Thusb∈ B if and only if bu∈ B for all u> 0. That is,B is a cone.

Furthermore, suppose thatbA andbB are inB. Then for anyλ such that 0< λ < 1, and
for any 0< t < s:

0< bT
Ad(t) < bAd(s)

and 0< bT
Bd(t) < bBd(s)

⇒ 0< (1−λ)bT
Ad(t) +λbT

Bd(t) < (1−λ)bT
Ad(s) +λbT

Bd(s)
⇒ 0< [(1−λ)bA+λbB]Td(t) < [(1−λ)bA+λbB]Td(s)

⇒ [(1−λ)bA+λbB] ∈ B

ThusB is a convex cone.
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A.4 Locality of possible minima

We define the following sets:

B0 = {b∈ B : Pi < P̂i(b) for all i}
B1 = {b∈ B : Pi > P̂i(b) for all i}
B2 = B\B1.

Clearly for allb∈ B0, P̂i(bs)> Pi for all 0< s≤ 1. That is,b∈ B0 implies thatbs∈ B0

for all 0< s≤ 1.

Similarly, b∈ B1 implies thatbs∈ B1 for all 1≤ s<∞.

Lemma A.1

There does not existb∈ B0 or b∈ B1 such thatg′(b) = 0 is positive definite.

Proof Suppose that there exists such ab∈ B1.

Let s0 = inf{s : bs∈ B1}. ThusP̂i(bs)< Pi for all s> s0 andP̂i(bs) is decreasing withs
for s> s0. Henceg(bs) is an increasing function of s fors> s0 which indicates that there
cannot be a minimum atb.

Similarly there does not exist such ab∈ B0.

Lemma A.2

B1 is convex.

Proof

Note thatP̂i(b) is convex inb for all i.

SupposebA andbB are members ofB1.

ThenP̂i(bA)< Pi andP̂i(bB)< Pi .

For 0< λ< 1: sinceP̂i(b) is convex,

P̂i((1−λ)bA+λbB)< (1−λ)P̂i(bA) +λP̂i(bB)< Pi

ThusbA,bB ∈ B1⇒ (1−λ)bA +λbB ∈ B1.

GivenbA,bB ∈ B1 this is true for alli. ThusB1 is convex.

Proposition 2.1(b)

For small coupon rates there is a unique maximum.

Proof

We proceed as follows:

(a) Establish a means of moving continuously and smoothly from zero-coupon bonds, via
a new parameter,γ (γ = 0 giving a zero-coupon bond market andγ = 1 giving us the true
coupon-bond market).

(b) Establish thatB2 = B\B1 is finite, and letB3 be some finite expansion ofB2 and which
containsB2 for all values ofγ : 0≤ γ≤ 1.
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(c) Within B3, the shape of the log-likelihood functiong(b) can only deform slightly as
we increaseγ from 0. In particular, for smallγ there will still only be one maximum.

(a) We start with a coupon-bond market withN stocks. For stocki we have an observed
pricePi. Theni future cashflows under this stock areci1, . . . ,cini at timesti1, . . . , tini . The
final payment is made up of nominal capital of 1 and a final coupon payment ofcini −1.

Now specify an arbitrary forward-rate curvẽf (t, t + s): for example, the curve fitted to
yesterday’s prices. This has a corresponding set of zero-coupon bond pricesZ̃(s) for
maturity ins years.

The actual coupon bond prices arePi which we can write as

Pi =

(
ni

∑
j=1

ci j Z̃(ti j )

)
eεi

whereε1, . . . ,εN are defined by this identity.

We define theγ-coupon bond market as follows. For each stock we multiply the original
coupon payments for each stock byγ but retain the full redemption payment. Thus the
cashflows for stocki areci1(γ), . . . ,cini (γ) where

ci j (γ) =
{

γci j , 1≤ j ≤ ni−1
1+ γ(cini −1), j = ni

The price of stocki in the hypotheticalγ-coupon bond market is defined as

Qi(γ) =

(
ni

∑
j=1

ci j (γ)Z̃(ti j )

)
eεi

Clearlyγ = 0 represents a zero-coupon bond market whileγ = 1 returns us to the original
coupon-bond market.

Proof of (b):

Let R(t, t +s;b) = bTd(s)/sbe the spot rate at timet for maturity at timet +s.

Let t0 be the shortest dated time to a coupon or a redemption payment.

Let rm = inf{R(t, t + t0;b) : |b|= 1,b∈ B} and letBm = {b : R(t, t + t0;b) = rm}.
Let E(λ) = {b : b∈ B, |b|= λ}, Ẽ(λ) = {b : b∈ B, |b| ≤ λ}.
E(1) is a closed set so thatrm is attainable: that is,Bm is non-empty.

rm > 0. Otherwise there existsb such thatR(t, t + t0;b) = 0. This implies thatf (t, t +
s;b) = 0 for 0< s< t0. This can only be true ifb≡ 0.

Let λ̃(γ) = supi
1

rmt0
log Fi(γ)

Qi(γ) whereQi(γ) is the price of stocki in the γ-coupon bond

market andFi(γ) = ∑ni
i=1ci j (γ) is the total amount of the future payments under that stock.

Consider theγ-coupon bond market. For allb∈ B, |b| ≥ λ̃, for all i, the theoretical price
of stocki is:
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Q̂i(γ)(b) =
ni

∑
j=1

ci j (γ)exp(−R(t, t + ti j ;b)ti j )

=
ni

∑
j=1

ci j (γ)exp(−R(t, t + ti j ;b/b|)ti j |b|)

≤
ni

∑
j=1

ci j (γ)exp(−rmt0|b|)

≤ Fi(γ)exp(−rmt0λ̃)
≤ Qi(γ)

ThusB2(γ) = B\B1(γ)⊂ B ∩ Ẽ
(

λ̃(γ)
)

.

Choose someλ′ such that sup0≤γ≤1 λ̃(γ)< λ< ∞.

Let B3 = B
T

Ẽ(λ′).

Write g(b,γ) for the log-likelihood function for theγ-coupon bond market.

Clearlyg(b,γ) is infinitely differentiable.

For anyγ (0≤ γ≤ 1), for anyi and for anyb∈ B \B3, Q̂i(γ)(b)<Qi(γ).
Thus, by Lemma A.1, there can be nob∈ B outsideẼ(λ′) such that∂g/∂b(b,γ) = 0 atb.
Hence no local maxima can come sliding in from infinity as soon asγ> 0.

Let b̂∈ B3 be the unique value ofb such that

∂g
∂b

(b̂,0) = 0.

Note that−∂2g/∂b2(b,0) is constant and strictly positive definite. (This leads to the
unique maximum̂b mentioned above for the zero-coupon bond market.)

Hence there existsγ1 > 0 such that−∂2g/∂b2(b,γ) is strictly positive definite for all
0< γ< γ1 and for allb∈ B3 (sinceg isC∞ andB3 is finite).

Thus for eachγ (0< γ < γ1) there is a uniquêb(γ) ∈ B3 (and henceB) which maximises
g(b,γ).
Corollary 2.2(b)

Furthermore, if a prior distribution for b is such that -1 times the log-prior density func-
tion is positive semi-definite then -1 times the log-posterior density function is also posi-
tive definite within B3.
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