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Bond Relative Value Models and Term Structure of Credit Spreads: 

A Simplified Approach 

 

Abstract 

Bond relative value models to detect mispriced bonds are widely used in the investment community. 

These range from simple yield to maturity comparisons to sophisticated stochastic models. The first 

step for many of these models is the determination of reference yield curves. There are numerous 

publications on these yield curve fitting approaches with related empirical research yet few actually 

document practical implementations for operational purposes. Accordingly, the first part of this 

article describes and then illustrates implementation of a number of these benchmarking models. 

Within such a fitting framework, bonds subject to credit risk can often not be handled since the 

number of bonds of equivalent credit quality is simply too small to derive reliable reference curves. 

Here the article proposes a novel approach to parameterize the term structure of credit spread. Its 

main benefit are intuitive model parameters that relate to the concept of how market practitioners 

like traders and asset manager tend to measure credit risk of fixed income securities. 

Many of the models described herein have been implemented in EXCEL/VBA, some of which are 

generalized versions of models that have been developed for practical bond relative value research. 

The files containing the models can be downloaded from the following website: 

http://www.mngt.waikato.ac.nz/kurt/  

Keywords: Bond Relative Value Models, Interest Rate Models, Credit Spreads, Yield Curve 

Modeling, Excel, VBA 
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Bond Relative Value Models and Term Structure of Credit Spreads: 

A Simplified Approach 

 

1 Introduction 

Relative value model to detect indications of potential excess within a universe of fixed 

income securities are widely used in the investment community. In the bond markets, relative value 

usually refers to the process of comparing returns among fixed income securities but in a wider 

sense this definition can be extended to include comparisons with say related equity instruments. 

There are two fundamental factors that primarily affect the pricing of fixed income securities. These 

are firstly, the prevailing market interest rates and secondly, the specific credit risk of the bond1. This 

paper will deal with models that address these two pricing aspects. 

With regard to the interest rate factor, there are a number of theoretical models, many of 

them versions of seminal work by Vasicek (1977) and Cox, Ingersoll, & Ross (1985) that postulate 

an interest rate process as the driving state variable which in turn determines the shape of the yield 

curve and thus the pricing of bonds2. Unfortunately, their practical application for bond pricing is 

limited. The yield curve shape and dynamics observed can often not be explained with these 

approaches as the true stochastic nature of the interest rate process remains elusive. The usual 

method is to calibrate such models with observed yield curves as for example in the models of Ho & 

Lee (1986) or Heath, Jarrow, & Morton (1992). This in turn requires methods to derive the term 

                                                 

1 Other pricing factors  such as taxation and liquidity premia have also been subject to 

research but these are typically not considered in models used by market participants. See Bliss 

(1997, p.6) or Ioannides (2003, footnote p. 5) for references to some of these studies. 

2 Rebonato (1998) describes most of these popular interest rate models in great detail. 
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structure from traded instruments or contracts such as bonds or interest rate swaps. The first part of 

this article will focus on this class of curve fitting models which — though their parameters do not 

have an actual economic meaning — have a much greater significance for the market practitioner. 

Section 2 characterizes them along the lines proposed by Bliss (1997) and then details how some of 

them have been implemented in EXCEL/VBA. Examples include versions of McCulloch (1971; 

1975) and Nelson & Siegel (1987) as well as an unnamed simple approach that is a generalized 

version of a model tested in a trading environment. While it can be assumed that similar 

implementations are applied in industry, they have not been formally documented in the academic 

literature. Moreover, Excel/VBA is widely used for financial analysis, i.e. it provides a very popular 

platform to present these models. 

In the context of pricing fixed income securities, credit risk is usually measured by the so-

called credit spread which measures the difference in yield offered for a risky bond compared to an 

equivalent riskless government bond. Ever since the seminal work of Merton (1974) that pioneered 

the structural paradigm in credit risk modeling, the nature and dynamics of this term structure of 

credit spreads has been subject to substantial research. One puzzling result is that — even after 

accounting for possible taxation effects — one finds that expected default and recovery rates on 

bonds can explain only a part of the yield premium actually observed3. There is not only an academic 

debate as to how to explain the balance but Collin-Dufresne et al. (2001) illustrate that causes of 

spread changes are hard to pinpoint, too. Although they use a large number of proxies affecting 

credit risk, they fail to explain most of the observed dynamics. They conclude that the dominant 

                                                 

3 See for example Fons (1994). Elton et al.(2001) estimate spread components due to default 

risk, taxation with the balance explained as “risk premium for systemic risk”. Duffie & Lando (2001) 

model the imperfect, discrete nature of information flowing to investors to account for higher than 

expected credit spread observations.  
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component of credit spread changes are “local supply/demand shocks” not picked up by any of 

their proxies.  

In the absence of any conclusive models, investor thus again have to rely on appropriate 

credit spread fitting models, similar to the ones discussed earlier in this section4. These give market 

practitioners like traders, which will generally be aware of such “local supply/demand factors”, a 

first indication of potential mispricing. Unfortunately, the basket of comparable bonds of the same 

credit quality is often limited and this prevents fitting reliable term structures of credit spreads to the 

data. This article thus presents a heuristic fitting method that can be applied in such situations. 

Starting point is a certain target credit spread, i.e. the spread which the investor deems appropriate 

for the particular bond or group of bonds. This is then complemented by a number of shape 

parameters. While the particular target spread is reviewed regularly, e.g. by means of statistical 

analysis, the characteristic of the shape parameters is more static and can also be commonly set for a 

larger segment of the bond market, for instance for all lower investment grade bonds5. It is not the 

ambition of this approach to compete with any of the more advanced fitting methods such as the 

ones derived from equilibrium term structure models6  but  to simply provide the practitioner a tool 

to uncover apparently mispriced bonds in a first instance. The decision process is helped by the 

intuitive nature of target credit spread as the main model parameter. The illustrative Excel/VBA 

                                                 

4 Recent developments are new joint estimation techniques as presented in Houweling, 

Hoek, & Kleibergen (2001).  

5 An investor might decide to define “lower investment grade” bonds as bonds with rating 

BBB- up to BBB+  

6 e.g. see Anderson et al. (1996, chapter 4, p. 67)  
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model implementation presented in section 3 uses data for a sample of Swiss domestic industrial 

bonds. 

2 Bond Relative Value with Yield Curve Fitting Models 

As indicated in the introduction, static yield curve fitting models as a basis to detect 

mispriced bonds are very much applied in the markets. Examples are Merrill Lynch (2004) daily 

Rich/Cheap Reports for countless bond markets and segments. Krippner (2003) p. 2 also lists JP 

Morgan, HSBC Bank and UBS Bank as institutions producing bond relative value research based on 

yield curve fitting models. Evidence from various studies such as Sercu & Wu (1997) or more 

recently Ioannides (2003) indeed suggests that there is justification for applying such models. For 

both the Belgian, respectively UK government bond markets, these studies found significant excess 

returns for trading strategies based on buying (shortselling) bonds that are classified as undervalued 

(overvalued) relative to a particular estimated term structure model. 

The following reviews and classifies these models in general which is then followed by 

subsections documenting the implementation of three of them.  

 

2.1 Review of Static Term Structure of Interest Models 

The term structure of interest, a concept central to economic and financial theory, plays a 

key role not just for the pricing of bonds but also any interest rate contingent claim. This section will 

focus on the work that has been done in the area of non-probabilistic yield curve modeling. It 

follows a framework proposed by Bliss (1997, p. 4) who sees three dimensions to such models or 

rather, there are three decisions required to estimate a term structure of interest as the basis for a 

bond relative value model: the pricing function, the approximation function and, finally, the 

estimation method. 
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2.1.1 Pricing Function 

The most straightforward pricing function is certainly the present value (P) of the bond’s 

promised cash flows (C):  

( )∑
=

−=
M

m

mtmr
meCP

1

)(
 (1) 

where M are the number of remaining cash flows numbered 1 to m; ( )mr  and ( )mt  are the 

spot rates, respectively times  at which these cash flows will occur. This is, however, not the only 

pricing relation used in the markets. The much simpler yield to maturity based bond valuation is still 

very much in use by investors. This because the simple yield measure akin to the well-known 

internal rate of return is typically the first piece of bond analytics listed by financial data providers 

and the media. Some markets like Australia and New Zealand even refrain from quoting fixed 

income securities by price but rather by yield to maturity which in turn is used to calculate the actual 

settlement price by means of a standardized formula7. A simplified version of such a formula, using 

continuously compounded rates and not considering the complexities of time measurement 

conventions8, would look like the pricing formula (1) above with constant rate r, no longer 

dependent on the time t of the mth cash flow.  

Whatever function is chosen, none will in practice exactly price all bonds in a particular 

reference basket. An inexact relation for the price Pj of a particular bond needs to be formulated:  

                                                 

7 See appendix 1 for the example of the New Zealand bond market formula as shown in 

RBNZ (1997, p. 12) 

8 Christie (2003) provides some detailed description of how time measurement conventions 

including factors such as national holiday calendars affect bond yield calculations. 
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( )[ ] jmj mrCfP ε+= ,    (2) 

where the function [ ].f  captures all that we assume what determines the price of the bond 

and ( )mr  is fitted to minimize some function of the random residual term jε . In formulating [ ].f , 

researchers will often add terms (e.g. dummy variables) to the straight present value formula that 

attempt to capture effects of frictions in the markets such as tax effects or liquidity premia9. It is, 

however, the experience of this author that this is hardly done in operational models because such 

factors tend to have less tangible impact on the price of the instrument. 

 

2.1.2 Approximation Function 

As a next step, one must decide on the functional form to approximate either the discount 

rate function ( )mr , or the discount function ( )md . This is necessary as there are limited numbers of 

bonds which requires a way of interpolating the rates, respectively discount function for arbitrary 

time horizons. The usual approach is to select an approximating function and then to estimate the 

parameters. We mention here just two mainstream methods10, a parsimonious representation defined 

by an exponential decay term pioneered by Nelson & Siegel (1987) and Svensson (1994) and cubic 

splines introduced to finance by McCulloch (1971; 1975). The most comprehensive comparative 

studies of these and other functional forms have been undertaken by Bliss (1997) and Ioannides 

(2003). While there are differences between the very many methods, none is disqualified by these 

                                                 

9 See footnote in introduction for references to alternative pricing factors.  

10 Bliss (1997, p.6) and Ioannides (2003, p.3) list references to the major classes of such 

models. 
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researchers11 for their goodness of fit. Weaknesses appear more in other aspects, e.g. difficulty to 

estimate parameters (see below) or unstable, respectively fluctuating forward rates implied. With 

regard to residual based bond relative models there is thus no cause to discount any of them. 

 

2.1.3 Estimation Method 

Lastly, the decision on the appropriate estimation technique is a more technical but 

nevertheless important issue. The aspect of estimation not only includes the choice of numerical 

algorithms for parameter estimation. These are often determined by the type of functions chosen 

before. One must also make decisions on error weighting functions and how to handle bid/ask 

spreads. Related are data integrity issues. One might define data filters to remove apparently 

erroneous data from the set. The tricky aspect remains that in contrast to empirical research with 

historical data, the data constellation in an operational trading application is not known beforehand 

so output plausibility checks are essential. 

 

2.2 Implementations of Reference Curve Models 

Three reference yield curve models are presented in this paper. Firstly, it shows a simple yield to 

maturity based benchmarking tool which is illustrated for a basket of Swiss government bonds. Next 

there is the JP Morgan Discount Factor Model (JPM), a version of McCulloch’s (1971; 1975) cubic 

spline method and, finally, a bond relative value model using an extended Nelson & Siegel (1987) 

approach. The latter two models are illustrated with data of the small universe of New Zealand 

                                                 

11 An exception  is the Fisher, Nychka, & Zervos (1995) cubic spline which was found to be 

“performing poorly” by Bliss (1997, p. 26). 
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government bonds. The files containing the models can be downloaded from the website 

http://www.mngt.waikato.ac.nz/kurt/ . 

In following Table 1, the three models are characterized in line with the framework 

presented in the previous section. All the models are set up so they can easily be linked to a real time 

price data source. Note that some technical complications may arise from the treatment of accrued 

interest which depending on market conventions has to be paid upfront by the bond buyer. The 

models assume that prices quoted are so-called clean prices, excluding accrued interest. These and 

other issues related to bond analytics are discussed in specialized fixed income resources such as 

Fabozzi (1999). 
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Table 1: Model Classification 

 I II III 

Model 
Yield to Maturity 

Benchmarking 

JP Morgan Model 

Discount Factor Model 

Extended  

Nelson & Siegel 

Pricing function 

 

Simplified price as function 

of yield to maturity, i.e. as 

in model II/III but 

constant )(),( jrmjr =   

( )
j

M

m

mjtmjr
mjj eCP ε+= ∑

=

−

1

,),(
,  

see formulas 1,2 for explanation of parameters 

Approximation 

function 

Model yield to maturity 

term structure as 

polynomial 

Model discount function as 

a polynomial. Version of 

(McCulloch, 1971; 1975) 

Spot rate modeled with 

exponential form as described 

in Bliss (1997, p. 11) 

Estimation method OLS of yield to maturity 

errors (equal weighting). 

Corresponding system of 

linear equations solved with 

LU Decomposition 

Press et al. (1992, p. 43) 

OLS of price errors (equal 

weighting) 

Corresponding system of 

linear equations solved 

Excel built-in LINEST 

function. 

Duration weighted least 

square, minimized with 

Generalized Reduced 

Gradient (GRG2) nonlinear 

optimization code as 

implemented in Excel Solver 
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2.2.1 Simple yield to maturity based benchmarking model 

Yield to maturity, also called redemption yield based measures to find relative value in a 

universe of bonds is the traditional method still used by many practitioners. As is commonly known, 

yield to maturity assumes that an investor holds the bond to maturity and all the bond’s cash flows 

are reinvested at the computed yield to maturity. It is found by solving for the interest rate that will 

equate the current price to all cash flows from the bond to maturity. In this sense, it is the same as 

the internal rate of return (IRR) defined in many finance textbooks in e.g. in Reilly & Brown (1997, 

p. 529). 

Needless to say that redemption yield based bond analytics has major shortcomings as was 

documented many years ago by Schaefer (1977) and also discussed in Anderson et al. (1996, p. 22). 

Reinvesting each coupon at the same rate is tantamount to assuming a flat term structure with 

identical spot rates for each maturity. If spot rates increase with maturity, yield to maturity will 

underestimate the spot rate. Conversely, it overestimates a downward sloping spot-rate curve. 

Having noted this, purely for bond relative value purposes, it remains a useful measure with the 

necessary caveats. Coupons should firstly be uniform, particularly within a particular maturity range. 

Similarly, errors are smaller if market yield levels, including coupon rates are low. There are many 

bond market segments that have comparably low liquidity with wide bid/ask spread. Applying an 

easier yield to maturity model in these cases is surely more honest because mispricing will also be 

detected with this more crude approach. 

The implementation of this redemption yield based relative model is stored in the file named 

“ConfBenchmark (Feb04).xls”. It is a generalization of a model that has been used for practical 

relative value research in the Swiss bond market for a number of years. It was applied to a number 

of homogeneous market segments providing information regarding the relative pricing of these 
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issues. The following briefly explains the mathematics of the fitting procedure and then elaborates 

on selected implementation issues. 

 

Figure 1: Generic Time / Yield Chart with Bond Yield Curve 

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%

0 2 4 6 8 10 12

Years to Maturity

Yi
el

d

Yield  Benchmark Bonds
 Benchmark Curve

 

 

Figure 1 illustrates the principal method of fitting a polynomial into the time / yield to 

maturity plot of benchmark bonds. The yield iY  of bond i  (i= 1…n bonds in reference basket) is 

approximated by  01
1

1 ... atatataY i
m
im

m
imi ++++= −

−

∧

  where it is time to maturity of bond i, and 

maaa ,...,, 10 are the constant coefficients of order m+1 polynomial. 

In ordinary least square regression (OLS), minimizing the sum of squared yield errors means 

we have to set partial derivative to zero:  

Min ⇒





 −∑

=

∧n

i
ii YY

1

2

k

n

i
ii

a

YY

∂







 −∂∑

=

∧

1

2

 = 0  for k = 0,1,2..,m  

This then yields m+1 equations for the unknown coefficients maaa ,...,, 10 . 

i

i

Y

Y
∧
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Some algebra shows that maaa ,...,, 10  must be a solution of the following system of linear 

equations using matrix notation: 
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In the illustration model, this system is solved numerically by the well known LU 

decomposition algorithm as described in Press et al. (1992, p. 43). As coefficients like 

∑
n

m
it
2 become an extremely large number for higher dimensions of m, the algorithm will lose 

accuracy. However, this is not an issue in general because meaningful interpolations will not exceed 

3rd to 4th order polynomials.  

Once the approximated yields 
∧

iY  have been calculated, one can then determine the 

corresponding model prices 
∧

iP  using an market convention yield formula (e.g. RBNZ, 1997, p. 12). 

As the model will derive benchmark polynomials for each the bid and ask yield, there will be both a 

bid and ask model prices. A buy (sell) signal is generated, if the bid (ask)  price in the market exceeds 

(is below) the ask (bid) model price found by the model. There is a feature to decrease the sensitivity 

of the model by introducing a filter rule so recommendations are only generated if these prices are a 

set absolute amount apart. These simple rules for generating recommendations are illustrated in 

Figure 2. 
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Figure 2: Buy /Sell Signal Rules Simple Yield to Maturity Benchmarking Model 
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Another reality of operational models is that some data might suddenly be missing and this 

has to be handled. In the solution presented here, missing data are replaced by last known historical 

(e.g previous day) prices. It makes sense to suppress corresponding buy/sell signals in these 

instances.  

The model is also set up to handle callable bonds in a simplified way. For each bond, it 

determines the so-called yield to worst which is the lower of either bond to maturity or the yield to 

the next call. If the call yield is lower, the bond’s maturity will be set to the next call date for 

benchmarking purposes. It does thus not employ more advanced call feature analytics such as the 

often used option adjusted spread analysis12.  

                                                 

12 This methodology is described in Windas (1993) of Bloomberg based on the Black, 

Derman, & Toy (1990) interest model. Under this approach, a callable bond is viewed as a long 

position of an option-free bond plus a short call on the bond (sold to the issuer). 
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To mention a final feature, the model contains some utility macros for illustrative purposes. 

For operational use, it does not suffice to simply link the model to real time trading prices. The 

basket will be subject to continuous change and so one needs utilities to deal with additions to and 

deletions from the reference basket. Such macros would be data source specific but the scripts 

shown in the implementation give a flavor of what would have to be automated.  

 

2.2.2 JP Morgan Discount Factor Model (JPM) 

The JPM model illustrates how to overcome the weakness pure yield to maturity based 

analysis. The model is, respectively was known in the market as the JP Morgan discount factor 

model (JPM) but original documentation could not be uncovered for the purposes of this article. A 

review of the literature revealed that this model is in actual fact a simple version of the McCulloch 

(1971; 1975) spline approach without node points (as discussed in Anderson et al., 1996, p.25). In 

line with McCulloch, the model works with the discount function which means the minimizing 

function can be found using least squares as illustrated below. An advantage of refraining from 

modeling the spot rate curve is that the discount curve “much better behaved” to use a colloquial 

terms. This function has a clear boundary at time zero and is monotonicly declining over time. 

The implementation of this spline model is stored in the file named “Term structure JP 

Morgan Model (Feb04).xls”. It is more generalized than the earlier yield to maturity model in that it 

just fits one benchmark to the mid price which is calculated as the mean of bid and ask price. 

Accordingly, there is no selection of bonds as shown in figure 2 but simply a calculation of the 

residuals. Similarly, no examples of utilities are included. The following explains the mathematics of 

the discount factor fitting in this case and then the main model parameters on a screen shot. 
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In line with present value pricing function (1) the bonds in the reference basket with market 

prices  P = [p1,p2, … , pn]T should all be equal to the present value of future cash flows: 

( )
( )

( ) ntntntntn
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where ci is the fixed coupon rate of bond i = 1…n;  
jit

d
,

is the discount factor at jit , , which 

is the time of the jth coupon of bond i.  

The approximation of 
jit

d
,

 is chosen as the polynomial 0,1
1

,1, ... atatata ji
m

jim
m

jim ++++ −
− . 

To simplify, the further solution is developed just for the three dimensional case of a cubic 

spline. Note, however, that the model implementation can cope with higher order polynomials. 

Rewriting above equations for m=3 in matrix notation, one finds:  
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We are thus looking for the vector of coefficients  [ ]TaaaaA 3210 ,,,= that minimizes the sum 

of the squared difference between the market price vector [ ]TnpppP ..., 21= and model price vector 

T

npppP 



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Setting the partial derivatives to zero: 
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… , yields four equations for the four unknown 3210 ,,, aaaa . 
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…, one must thus solve the system of following system of linear equations to find the coefficient 

vector A:: 

( ) ( )PCCCAPCACC TTTT ××=⇒×=×
−1

 

The model prices are then found by multiplying matrix C with the coefficient vector A: 

∧

=× PAC  

Bonds priced below [above] their corresponding model price are “cheap” [“rich”]. 

The residual vector of (under pricing)/over pricing [ ]TnrrrR ..., 10=  is then: 

PACPPR −×=−=
∧

 

 

2.2.3 Boundary conditions 

Typically constraints are introduced to force the discount factor at time zero to one which is 

obviously a most reasonable assumption. This means coefficient ao is set to 1. Moreover, one often 

chooses the first derivative of the discount function at time zero to fit a short-term rate, e.g. 

overnight bank rate observed in the market. For an assumed short-term rate ro, a1 becomes minus 

the continuously compounded equivalent of the short rate, respectively in terms of the annual 
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equivalent rate a1= - rc = - ln(1 + rann) where rann is the short-term rate expressed as an annual 

equivalent yield and rc is the short-term rate expressed as an continuously compounded yield.  

This result is derived in footnote 13. 

 

Figure 3: JPM model screenshot 

Settlement date
14-Feb-99

Coupon Maturity Bid Ask Mid JPM Fair Price (cheap) / rich
6.50% 15-Feb-00 100.563    100.583    100.57% 101.17% (0.60%) a0 1
8.00% 15-Feb-01 102.786    102.854    102.82% 104.48% (1.66%) a1 -0.04879016

10.00% 15-Mar-02 108.406    108.526    108.47% 111.34% (2.87%) a2 -0.00222866
5.50% 15-Apr-03 96.673     96.827     96.75% 97.27% (0.52%) a3 0.000197076
8.00% 15-Apr-04 105.034    105.234    105.13% 106.56% (1.43%) a4 #N/A
8.00% 15-Nov-06 106.518    106.809    106.66% 106.06% 0.61% a5 #N/A
7.00% 15-Jul-09 100.549    100.903    100.73% 98.91% 1.81% a6 #N/A
6.00% 15-Nov-11 91.666     92.049     91.86% 92.83% (0.97%) a7 #N/A

Model Parameters

deg 3 Degree JP Morgan polynomial
restr 0.05 0: no restrictions, 1:DF(t=0) =1, other values: short rate
frequency 2 Number of coupon payments per year

JPM Coefficients

Discount Function

0

0.2

0.4
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0.8

1

- 2 4 6 8 10 12

Zero Rates

0.0%
1.0%
2.0%
3.0%
4.0%
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7.0%
8.0%
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13 The discount factor at time ( )tt ∆+0  for cr continuously compounded yield with Taylor 

expansion of exponential function 
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The parameters as well prices are set in yellow shaded areas. The major parameters are … 

deg:  Allowing a choice of the degree of the discount function polynomial. 

It is not meaningful to choose a much larger value for the small bond universe in the 

example. 

restr: 0 means no restrictions on discount function, 1 means discount function is forced to 

one for t=0 which means coefficient ao is set to one. Any other value is assumed to be 

the short-term rate (annual effective yield, i.e. non-continuous yield). a1 is calculated 

with the formula given before (ao is forced to one). 

frequency: to set number of coupon payments per year. 

 

                                                                                                                                                             

for 00 =t , 10 =a  and omitting second and higher order terms of t∆  

( )annccc rratrtrtata +−=−=⇒+∆+∆−=+∆+∆+ 1ln...
2
11...1 1

22
21  
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2.2.4 Extended Nelson & Siegel Model 

Nelson and Siegel (1987) proposed a parsimonious model of yield curves that are continuous 

and smooth. Unlike the spline models like JPM, Nelson and Siegel (N&S) model the forward or spot 

interest rate directly without modeling the discount function first. The model presented here is 

structurally similar to the JPM model just shown in that it relies on the same pricing function and 

also uses the same small data sample of New Zealand government bonds. It does however not 

employ its own estimation procedure, using Solver, Excel’s built-in multidimensional optimization 

tool instead. The model is stored in file “NelsonSiegelYieldCurveModel.xls” 

The following first explains the yield curve fitting according to the extended N&S model as 

described in Bliss (1997) and then talks about particular implementation issues.  

 

Under the extended N&S model, the spot rates r as a function of time m are approximated 

by this exponential  function: 
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There are five parameters in parameter vector Θ  which can be interpreted as 

follows. 0β represents the long-run level of interest rates as ∞→m  and for very short times, r will 

converge to 10 ββ + . 2β  could be interpreted as the medium term component as it will tend to zero 

both at the short and long end of the time scale. Finally, the two decay parameters 1τ  and 2τ  

determine how quickly the effect of the short-term, respectively the medium-term component will 
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0 2 4 6 8 10 12

tend to zero. 1τ  and 2τ  should both be positive to ensure convergence. In the basic version of N&S 

(1987) they are set to equal values. Figure 4 visualizes the effect of these three components. 

 

Figure 4: Nelson & Siegel (1987) Spot Rate Components  

Contributions of the three N&S 

equation terms to the total spot rate 

r. 

Example parameter values: 

0β =5%, 1β =2%, 2β =8% 

1τ = 1, 2τ  = 1.2 

 

The parameter vector Θ  must now be chosen to minimize the sum of squared price errors 

ii PP −ˆ  , i.e. ( ) 
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and iii PP −= ˆε  

Note that in this case the squared errors are actually weighted with the inverse of the bond’s 

Macauly duration iD . This means the prices of short-term bonds are fitted much tighter to account 

for a greater variability of short-term bond yields.  

The estimation procedure needs to be constrained to ensure rate r remain positive and the 

implied discount function non-increasing (non-negative forward rates): 

( )min0 mr≤  and ( )∞=≤ mr0  

where minm is a small value just slightly higher than zero. 

(Note that the N&S function is not defined for t=0.) 

( )( ) ( )( ) max11expexp mmmmrmmr kkkkk <∀−≥− ++  
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Finally, similarly to the JPM model, it is often meaningful to prescribe not just positive a sort 

term interest rate, i.e. an overnight lending rate, to fix the curve at the short end. This is tantamount 

to prescribing a constraint for the sum of 0β   and 1β : =+ 10 ββ ( )minmr . 

 

Figure 5: Screenshot of Nelson & Siegel (1987) Bond Relative Value Model 

Fitting Extended Nelson & Siegel Spot Rate with Solver programmed by Kurt Hess May 2004, kurthess@waikato.ac.nz
Time to maturity m 3.0             30

Long-run levels of interest rates β0 8.31% 83.09249

Short-run component β1 -3.81% 61.90751

Medium-term component β2 6.41% 64.05964 determines magnitude and the direction of the hump

Decay parameter 1 τ1 9.284         928.3684 determines decay of short-term component, must be > 0

Decay parameter 2 τ2 0.855         85.45838 determines decay of medium -term component, must be > 0

Spot rate at time t rt,i 6.6331%

Objective Functions see formulas
Non-weighted objective function x103 0.846957    
Inverse duration weighted function x 105 0.135102    

Initial Guess Values:

Bond Data
Short-term rate 4.50%
Settlement date 14-Feb-99

Issuer Coupon Maturity Bid Ask Mid Clean Mid Dirty
Model 
Price Duration Weights (wi) (cheap) / rich

NZ Government 6.50% 15-Feb-00 100.563  100.583    100.57% 103.80% 103.151% 0.956271 0.361346082 0.65%
NZ Government 8.00% 15-Feb-01 102.786  102.854    102.82% 106.05% 106.117% 1.821322 0.189721979 (0.07%)
NZ Government 10.00% 15-Mar-02 108.406  108.526    108.47% 111.70% 113.102% 2.647526 0.130516077 (1.40%)
NZ Government 5.50% 15-Apr-03 96.673    96.827     96.75% 99.98% 97.814% 3.706899 0.093216656 2.17%
NZ Government 8.00% 15-Apr-04 105.034  105.234    105.13% 108.37% 108.876% 4.253648 0.081234908 (0.51%)
NZ Government 8.00% 15-Nov-06 106.518  106.809    106.66% 109.90% 110.671% 5.884208 0.058724089 (0.78%)
NZ Government 7.00% 15-Jul-09 100.549  100.903    100.73% 103.96% 103.283% 7.537708 0.045842151 0.68%
NZ Government 6.00% 15-Nov-11 91.666    92.049     91.86% 95.09% 95.317% 8.770603 0.039398058 (0.23%)

6.63%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

0 2 4 6 8 10

N&S Zero Rate

Minimize

Minimize

Default Values Set Random Values

Before using the minimization macros, you must establish a reference to the 
Solver add-in. With a Visual Basic module active, click References on the Tools menu, 
and then select the Solver.xla check box under Available References. If Solver.xla 
doesn't appear under Available References, click Browse and open Solver.xla in the 
\Office\Library subfolder.

Step through 
optimization

 

 

Figure 5 provides a screenshot of the N&S model implementation. There are some 

prerequisites for the Excel setup in order to use the Solver software that minimizes the objective 

function. One should not be confused by the markedly different shape of the zero yield curve 

compared to the curve found through JPM for the same sample universe of New Zealand 

government bonds. Fitting a model with five parameters to a purely illustrative basket of only eight 

bonds is bound to lead to over fitting problems. Accordingly, the buy/sell signals generated will be 

very different. 
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3 A Heuristic Fitting Method for the Term Structure of Credit Spread 

 

With this section we tackle the second major topic in this paper. There is also the need for 

suitable bond relative valuation when credit risk, the second major bond pricing factor, becomes an 

important determinant of market price. This section will first expand on the discussion in the 

introduction on the nature and dynamics of credit spreads, elaborating first on aspects that affect 

credit spreads beyond factors generally assumed in standard academic models. This is followed by a 

review of the shape of the term structure of credit spreads, both predicted and observed in the 

market. Purpose of this discussion is to provide the rationale and motivation for a heuristic term 

structure of fitting method of detecting mispriced which is presented in the final subsection.  

 

3.1 The nature of credit spreads 

The credit spread is the most popular yardstick for practitioners to assess bonds subject to 

default risk. Measured in basis points, it is typically just derived from redemption yield differentials 

to a reference benchmark, e.g. a government bond curve. Once they have done so, they must make a 

judgment whether this yield premium compensates them adequately for the risk they assume. This in 

turn is much harder and they do not get much help from academic research where there is a healthy 

debate on how to explain credit spreads observed in the market in the first place. We mentioned 

articles of Fons (1994) and Elton et al. (2001) in the introduction who pointed out that pure default 

risk cannot possibly account for absolute yield spreads alone.  

Whatever the components of the credit spread, practitioners are more concerned about the 

relative pricing of the bonds compared to instruments of equivalent credit quality. Quite naturally, 

they turn to credit curves for the same credit rating category but this is by no means the only 
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decision criteria. Research of Collin-Dufresne et al. (2001) drew attention to the fact that only about 

a quarter of spread changes can actually be attributed to factors one would theoretically expect to 

influence them. Failing the identify the true driver of spread changes, they coin the expression “local 

supply/demand shock” that are independent of both changes in credit risk and typical measures of 

liquidity14. One can easily generalize these findings of Collin-Dufresne and state that not just the 

changes but also the absolute level of credit spreads are determined by other factors beyond the risk 

as assessed by official credit ratings. Academic research has focused on taxation and liquidity aspects 

in this respect, probably because these do lend themselves easily to standard empirical analysis15. 

While it would be beyond the scope of this paper to tackle this issue here, it is the professional work 

experience of this author that credit spreads in a particular case are difficult to understand, in many 

instances even lack immediate rational explanation. Here are some examples. 

 

• Household names 

So-called “household names” trade on much narrower spreads than indicated by their credit 

ratings. An extreme example was Porsche’s unrated 10-year bond issued in April 1997 which 

                                                 

14 While Collin-Dufresne et al. (2001)  confirmed that factors important for example in 

Black-Scholes (1973) and Merton (1974) contingent claims framework such as a firm’s leverage, 

equity returns and volatility indeed had a significant correlation to spread changes, non-firm specific 

attributes like the return of the whole share market were a much stronger driving force. Overall their 

principal component analysis reveals that there is a large systematic component that lies outside the 

model framework. 

15 e.g. Van Landschoot (2003) for the Euro corporate bond market 
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has often traded below the German government curve. A research hypothesis could posit 

that such anomalies will occur more frequently in markets with strong retail demand. 

• Some spread levels may also be rooted in informational inefficiencies. 

These are highlighted in Schultz (2001, p. 678) for the US corporate bond market where the 

potential buyer cannot observe all quotes in a central location. Similarly, if a bond of the 

same firm trades in different markets, one often observes differences which cannot possibly 

be explained by currency, taxation or other factors.  

• Spreads are affected by new issue supply 

A lead bank may be pressured to “move a transaction off their books” thus affecting 

secondary market spreads. Conversely, strong demand for a new issue will tighten spreads of 

existing deals. 

• Rating assessment of market diverges from official agency ratings. 

Official ratings are often not accepted by the gross of market participants who, colloquially 

speaking, consider agencies as “behind the curve”.  Such cases have for instance been 

observed during the 1997 Asian crisis, but agencies also tend to be slow to recognize 

improvements in credit quality. Due to the formal internal processes involved, agencies 

frequently find it hard to react promptly. It has also been noted that conflicts of interest and 

the quasi-monopoly of some agencies may create rating distortions16. All in all, an official 

credit rating constitutes just a mostly qualitative assessment of a well informed but not 

                                                 

16 Such concerns are for instance  reflected in a SEC concept release SEC (2003) for the 

oversight of credit rating agencies. 
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infallible party. 

 

All these pricing aspects highlight that the particular decision of assessing a relative value of 

a bond involves a qualitative, respectively “market savvy” component not easily captured by any of 

the standard academic models. 

 

3.2 The shape of the term structure of credit spreads 

We have mentioned in the previous section that practitioners will turn to credit curves of 

comparable credit quality as a starting point for their relative value valuation. In this section, we 

review what is generally predicted and observed regarding the shape of this term structure of credit 

spreads. 

 

Figure 6: 

Term Structure of Interest Risky Discount Bonds in the Longstaff & Schwartz (1995) Model 

Term Structure of Interest Risky Discount Bonds
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Figure 6 illustrates in generic ways the term structure of spot rates of a risky, respectively less 

risky discount bond as predicted by many of the mainstream credit risk models. In this instance, it 

was generated by the Longstaff & Schwartz (1995) model (L&S 95) which, for illustration, is 

explained in more detail in Appendix 2. L&S 95 is from the family of Merton’s (1974) contingent 

claims models but one would find similar hump-shaped, downward-sloping credit yield curves for 

example in Jarrow, Lando & Turnbull’s (1997) reduced form approach. 

This theoretical prediction appears to be backed by empirical studies such as Fons (1994, p. 

30) who estimates a cross-sectional regression of spreads on maturity and finds significantly negative 

coefficients for single B bonds. This result is also supported by Moody’s default data where marginal 

default rates of speculative grade bonds (B rating) exhibit a declining trend with longer time 

horizons. 

The intuition behind this result is that speculative firms, being very risky at issuance, have 

room to improve, i.e. the longer the time to maturity, the more likely the value of the firm will rise 

substantially. Another interpretation would be that speculative bonds obtain the character of an 

equity instrument and are thus traded on a break-up value instead of a yield basis. Conversely, high 

grade credit “can only become worse” through time and thus show an upward sloping term 

structure of credit spread. 

These results are somewhat against the intuition of practitioners who observe that where a 

firm issues in two separate time tranches, it will be asked offer a higher yield premium for the longer 

maturity tranche of the transaction and this applies equally to weaker and stronger credits. Helwege 

& Turner (1999) indeed provide some empirical evidence for this observation. They argue that 

downward sloping credit curves are a result of “safer” speculative grade firms issuing longer-dated 

bonds which in turn leads to a sample selection bias. 
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 What we can conclude is that there are two schools of thought for modeling term structure 

of credit spreads. A useful bond relative value tool for corporate bonds must thus be capable of 

accommodating both of them.  

3.3 Heuristic fitting method for term structure of credit spreads 

This section presents an approach for work tool so market practitioners can firstly, assess 

the relative price of a bond in view of less tangible pricing factors (as shown in section 3.1) and 

secondly, to prescribe a term structure of credit spreads they feel is appropriate for the particular 

instrument and market condition (as explained in section 3.2). The implementation of this model is 

shown in file “Cheap Rich List (Feb04).xls”. The file uses a sample of Swiss corporate industrial 

bonds to generate a list of cheap, respectively rich bonds. It employs a simple redemption yield 

based reference curve of the type that was derived in section 2.2.1 as a basis to calculate credit 

spreads. This yield to maturity based approach could easily be adapted into a spot rate framework 

using curve derived in section 2.2.2 or 2.2.3. Yet given the heuristic nature of the model, this is likely 

to add only limited value. The following describes the model with a simplified numerical example 

also documented in the Excel work book.  

 

3.3.1 Defining the term structure of credit spreads in the model 

The model lets the user choose the desired term structure of credit spreads for each rating 

category by means of shape parameters. This is illustrated through a numerical example in Figure 7 

below. The term structure is basically broken down into two sub-periods. A short- to medium term 

period to T∞ (T_indef) which is followed by the long-term characteristics of the credit spread. 
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Figure 7: Explanation Shape Parameters Term Structure of Credit Spreads 
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As to the first period, a fifth order polynomial is fitted between zero and T∞.  

( ) 4
4

3
3

2
210 tatatataatSpread ++++=   

It must meet the following three boundary conditions:  

• must be zero a time = 0 which means 00 =a  

• must reach S∞(S_indef) at time t=T∞. 

• slope at point S∞/T∞ must equal the slope of the long-term curve beyond T∞. (more details 

on this slope are below) 

 

The user affects the shape of the polynomial with two parameters. 

• The initial slope (in bps per year) at time = zero may be specified  

• The shape of the hump is also affected by parameter a4 which corresponds to the fifth 

order coefficient of the polynomial. Figure 3 shows the term structure for a4= 3, 

respectively minus 3. 

Short-term characteristics 
of credit spreads 

Long-term 
characteristics 

T
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In the long-term horizon, the user can specify a slope for the further development of credit 

spreads. In most cases it will be set to or slightly above zero to obtain constant or moderately 

increasing credit spreads beyond time T∞. There is also the option to specify a lower limit below 

which the credit spread may never decline. This parameter is set as a percentage of S∞. If this lower 

limit is specified as a number greater than one, it actually becomes an upper limit specification. 

With above parameters, a wide range of shape specifications becomes possible. 

Figure 4 lists a range of potential shapes including some comments as the circumstances these could 

be appropriate. We again refer to section 3.2 for a discussion of research on this subject.  

 

Figure 8: Selection of Term Structure Shapes 
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Chart 1: Simple, constant spread Chart 2: No hump, suitable for high quality bonds

Chart 3: Small hump, suitable for medium quality bonds Chart 4: Pronounced hump, suitable for non-investment 
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3.3.2 Detecting cheap/rich bond with heterogeneous credit quality: 

a simplified numerical example 

For illustration, the following tables (Table 2 and 3) and figures (Figure 9) present a 

simplified numerical example of cheap/rich analysis. There are three bonds analyzed. Bond I has an 

AA rating while bonds IIa and IIb are rated BBB. A buy [sell] signal is generated if the model price 

based on the target spread is above [below] the market price.  

 

Table 2: Data Example Bonds 

Bond I IIa IIb 

Rating AA BBB BBB 

Price ($ per $face value)* 102 99 106 

Coupon (paid once annually) 4.00% 4.00% 4.00% 

Time to Maturity 2.79 yrs 5.20 yrs 7.79 yrs 

Yield to Maturity 3.24% 4.22% 3.12% 

Spread to Benchmark 136 bps 208 bps 58 bps 

Target Spread (derived from 

parameters in Table 3) 
50 bps 122 bps 120 bps 

Model Yield 2.37% 3.36% 3.73% 

Model Price (MP) * 104.338 103.016 101.761 

 MP > Price MP > Price MP < Price 

Recommendation 
Cheap Bond: 

Buy 

Cheap Bond: 

Buy 

Rich Bond: 

Sell 

* Price excluding accrued interest 
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Figure 9: Generic Yield to Maturity Based Cheap Rich Analysis 
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Table 3: Term Structure of Credit Spread Shape Parameters 

Rating AA BBB 

S∞ (in bps) 50 125 

T∞ 1 2.5 

Slope (t=0) 200 200 

Slope  (t=T∞) 0 -1 

“Hump parameter” a4 -6 2 

Lower limit (as % of S∞) 0.8 0.8 
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Compared to the main model, the version above is simplified in these aspects. The 

illustrative example does not take bid/ask spreads into consideration when generating buy/sell 

signals. To limit the number of recommendations the user may specify a sensitivity parameter to 

suppress recommendations where the price is very close to the model price. The sensitivity chosen 

could, for instance, take transaction charges into account. This the same filter described in Figure 2 

for the model in section 2.2.1. For shorter bonds typical price changes in less liquid markets may 

lead to very erratic yield moves that do translate into meaningful buy/sell signals. The user may thus 

exclude the analysis for very short-term bonds. Finally, the main model provides statistics on the 

credit spreads observed in the reference baskets. An example is shown in Figure 10 below. 

 

Figure 10: Generic Yield to Maturity Based Cheap Rich Analysis 

 

Analysis credit spreads Swiss industrial bonds 26/02/1999 0:00

Internal Rating AAA AA A BBB BB B Other Grand Total
Number of bonds 1 9 36 31 10 1 10 98
Average spread to Swiss Govt (bps) 4 63 71 125 252 265 74 108
Min of spread (bps) 4 8 20 51 44 265 23 4
Max of spread (bps) 4 175 189 259 915 265 127 915
Years to maturity/ next call (average) 1.8 5.0 4.2 4.5 3.9 6.3 5.9 4.5

Average Credit Spread by Internal Rating

0
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Average 4 63 71 125 252 265 74 108

AAA AA A BBB BB B Other Grand Total
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3.3.3 Some remarks on how to apply the model 

The model description has not addressed the issue of calibration yet. In other words, how 

should one determine the shape parameters for a particular instrument, respectively group of 

instruments? Given that this is not a fitting method for empirical research purposes, the following 

pragmatic method is recommended.  

In a first instance, one would select a value for S∞. If we leave all other parameters zero, this 

is nothing else than a flat credit spread we apply to a reference curve, i.e. parallel upward shift of the 

reference curve. For many users this is the ad-hoc method they will be used to and, reflecting on the 

empirical results of Fons (1994) discussed earlier17, this is not an unreasonable approach at all. To 

automate the selection of S∞, one could derive it from a mean value for rating category as shown in 

the analysis Figure 10. Note that the rating category of a particular bond may be set by the user and 

would not necessarily coincide with an official agency rating.  

With regard to the remaining shape parameters, it is not meaningful to set them for just one 

rating class. One would select, for example, common values for all BBB- to BBB+ rated bonds. As 

per section 3.2, there will be no hump for most rating categories and we would simply set a value for  

T∞ in the range of 1- 2 years, some generic slope at time t=0 (in bps per year) and a4 to zero. The 

parameter of concern would be the slope at time t= T∞.  This could be determined by a Fons (1994, 

p. 30) type regression analysis although it does most probably not make sense to update it as 

regularly as the main spread parameter S∞.  

                                                 

17 Fons (1994) finds rather flat slopes for most rating categories and although t-statistics 

indicates values significantly different from zero, R2 values are quite low.  
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Finally, in respect to speculative grade rating categories, there is obviously the option to set 

prescribe a hump-shaped structure unless the user prefers increasing term structure in line with 

Helwege & Turner (1999). In most bond market supply of these segment is rather sparse and a 

ballpark prescription of parameters without actual calibration of values may well be appropriate. 



 - 37 -  

 

4 Conclusion 

 

This paper illustrated the implementation of some models for yield curve fitting used in 

trading applications, something not yet formally documented in the academic literature. For bonds 

subject to credit risk it presented a heuristic model to obtain information on over-, respectively 

underpriced bonds. Both types of model implementations document the pragmatic nature of such 

solutions. In the absence of conclusive results by academic researchers, these models generate buy 

and sell signals as a result of the main pricing parameter for fixed income instruments which are 

interest rates, respectively credit spreads. The user can then evaluate them in view of his/her 

knowledge of local supply and demand aspects and other qualitative factors such as the ones listed 

in section 3.1. 

There is another more general lesson one could learn from these models, which in terms of 

complexity are much simpler than most of the approaches currently advocated in quantitative 

literature. Even though their approach is static without the ambition of justifying them in a dynamic 

or non-arbitrage consistent theoretical framework, they “can be handled and understood” by the 

practitioners. More advanced approaches usually start from an idealistic premise about how the 

world should look like, respectively how rational investors should act. Researchers then find that 

realty is different and attempt to save the approach with progressively more sophisticated 

amendments and extensions. This could almost be compared to a “mathematical arms race” where 

increasingly complex quantitative theories are applied without markedly improving the predictive 

power of the models. Interest rate modeling is a good example where only models calibrated 

continuously to current market rates do have any meaningful applications in the market. It would 

perhaps be time that academic research in finance made the requirements of market practitioners a 
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starting point for improved models and not a futile chase for the ultimate true model that does not 

exist.  
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Appendix 1:  

Settlement Price Calculation  New Zealand Domestic Bond Market 

According to the Reserve Bank of New Zealand Formula (RBNZ 1997) 
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where 

P:  Market Value of Bond 

FV: Nominal or face value of bond 

i: Annual market yield / 2 (in %)  

c: Annual coupon rate in % 

C: Coupon Payment (= c/2 * FV) – semi-annual coupon 

n: Number of full coupon periods remaining until maturity 

a: Number of days from settlement to next coupon date 

b: Number of days from last to next coupon date 
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Appendix 2:  

Longstaff & Schwartz 1995 Model 

 

In their 1995 Journal of Finance paper, Longstaff and Schwartz (L&S 95) show a simple 

approach to value risky debt subject to both default and interest rate risk. In line with the traditional 

Black-Scholes (1973) and Merton (1974) contingent claims-based framework, default risk is modeled 

using option pricing theory. This means default occurs if the level of asset of a firm (V) falls below a 

bankruptcy threshold (K). V is assumed the follow the following stochastic process 

1VdZVdtdV σµ +=  

where σ  is the instantaneous standard deviation of the asset process (constant) and 1dZ is a 

standard Wiener process. 

 

Similarly, interest rates are assumed to follow a standard Vasicek process (Vasicek 1997) as 

follows: 

( ) 2dZdtrdr ηβζ +−=  

where 

ζ  is the long-term equilibrium of mean reverting process (constant) 

β  is the "pull-back" factor - speed of adjustment (constant) 

η  is the spot rate volatility (constant) 

2dZ is a standard Wiener process. 

The instantaneous correlation between 1dZ and 2dZ is dtρ  

 

L&S 95 then derive the value of a risky discount bond as  
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( ) ( )TrXQTrwDTrDTrXP ,,,),(),,( −=  

Thus the price of this bond is a function of X, which corresponds to the ratio of V/K, the 

interest rate r, and the time to maturity T. The terms to be calculated are explained below. 

 

( ) ))(),( rTBTAeTrD −=  is the value of riskfree (no credit risk) discount bond according to Vasicek 

(1977) with 
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Here α represents the sum of the parameter ζ plus a constant representing the market price 

of risk, β  is defined above 

 

The Q(X,r,T) term can be interpreted as probability  - under risk neutral measure - that 

default occurs. It is the limit of ),,,( nTrXQ  as ∞→n . 
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where N(.) denotes the cumulative standard normal distribution and 
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Expressions ),( TtM  and )(TS  are defined as follows: 
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As a reminder, ρ is the instantaneous correlation between the asset and interest rate 

processes. 

Finally, the constant parameter w is the write-down in case of a default in percent of the face 

value. In other words, it is one minus the recovery rate in case of a default. 

Once the value of a pure discount bond is found, the value of a coupon bond is simply 

valued as series of discount bonds consisting of coupons and principal repayment. Note that L&S 

95 also derive a closed form solution for perpetual floating rate debt in a similar fashion.  

 

The authors conclude their work with an empirical model validation. They conduct a 

regression analysis of how historically observed spreads (sourced from Moody’s) have correlated 

with the return of share indices as a proxy for the asset process, respectively change in interest rates. 

They indeed find significant negative correlations in most cases with both interest rate changes and 

development of asset prices. Just for high grade bonds (AAA and AA bond) they determined less 

significance for the asset correlation coefficient. This may be expected though because the “well 

cushioned” high grade credits will be less affected by downturns in the share market.  
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As an illustration of the L&S 95 model outputs, the charts belwo show the value and yield of 

a discount bond as a function of time to maturity T for the parameters in Table A2.1. 

Figure A2.1: Risky discount bond prices as a function of bond tenor (time to maturity) 
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Figure A2.2: Term Structure of Interest Risky Discount Bonds 
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Table A2.1: Parameters L&S 95 Model Example 

Parameter description Symbol Value 

Rate r0 at t=0 r 7.0% 

"Pullback" factor interest rate β 1.00  

Instantaneous standard deviation of short rate η 3.162% 

 η2 0.0010  

α in L&S = ζ + constant α 0.060  

V0/K =X (measure of initial credit quality) X 1.30  

Writedown = 1 - Recovery Rate w 0.50  

Volatility of asset value process σ 20.00% 

 σ2 0.0400  

Instantaneous correlation asset/interest rate ρ - 0.25  

Iterations for Q n 100 

 

 

 

 


