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Chapter 1

Discount bonds and interest rates. Libor and swap rates. Forward prices and
forward rates. Short rate and forward short rate. Positive interest conditions.
Interest rate derivative structures.

1.1 Discount bonds and interest rates

The formulae involved with interest rate modelling can get complicated. It is important
to use an unambiguous scheme of notation that can be carried across a range of different
models and at the same time is useful for calculations.

Time 0 denotes the present. Times a, b, c, etc., denote various future times, as do s, t,
u, and so on. Alphabetical order will often be used to suggest chronological order. Occa-
sionally, we use an upper case T to draw attention to a particular date (e.g. a termination
date).

We use the notation Pab to denote the value at time a of a discount bond maturing at
time b. At time b, the bond pays one unit of “currency”. We fix a currency throughout here.

In fact, for any class of financial assets we have a corresponding system of discount bonds.
Thus, for dollars, Pab denotes the price at time a, in dollars, of a bond that pays one dollar
at the maturity b.

Equally, we can speak of a “sterling” discount bond, or even a “gold” discount bond. In the
latter case, Pab could denote the price at time a, in ounces of gold, of a contract delivering
one ounce of gold at time b.

Occasionally, a comma will be inserted for clarity. Thus Pt,x+t denotes the value of a discount
bond at time t that matures at time x + t.

For any fixed value of t, the system of discount bond prices PtT for T ∈ [t,∞) is called
the discount-function at that time. The present discount function is P0T .
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Associated with any discount bond Pab there are various rates that can be quoted.

For example, the simple interest rate Lab is defined by:

Pab =
1

1 + (b − a)Lab

. (1.1)

The continuously compounded rate Rab is defined by:

Pab = e−(b−a)Rab . (1.2)

The unit of time is one calendar year, and these rates are quoted in an “annualised” basis.

Inverting these relations we find that the simple rate is given by

Lab =
1

b − a

(
1

Pab

− 1

)
(1.3)

The corresponding expression for the continuously compounded rate is

Rab = − 1

b − a
log Pab. (1.4)

1.2 Libor and Swap rates

The Libor rate for a given period is usually quoted on a simple annualised basis, so some-
times we call Lab the Libor rate associated with Pab.

Note that although rates can be quoted in various ways, the discount bond price is unique (it
is a price!). That is a good reason for focusing on discount bonds. These are the fundamental
“assets” of interest rate theory, and it is their behaviour we are trying to model.

Another very important type of rate frequently quoted in the over-the-counter interest rate
markets is the swap rate.

There are various types of swap rates, and various conventions dealing with day counts,
and so on. It is best therefore to give a mathematically concise definition that can be
adapted easily to various situations.

The swap rates defined in this way are “pure” in the sense that they are based on the
basic discount function, and do not take into account credit, liquidity, and other market
factors that may affect “real” swap rates.
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Let 0 denote the present, t some date in the future, and T1, T2, . . . , Tn a series of future
dates beyond t.

For each such series (T1, T2, . . . , Tn) there is a unique swap rate st.

This rate is determined by the condition that if the rate of interest st is paid on a unit
principal on each of the dates T1, T2, . . . , Tn and if the unit principal is paid at time Tn, then
the present value at time t of this cash flow is unity.

More specifically, we have the condition

st(PtT1 + PtT2 + · · · + PtTn) + PtTn = 1. (1.5)

Solving for st we have

st =
1 − PtTn

PtT1 + PtT2 + · · · + PtTn

(1.6)

The sum

VtT1...Tn =
n∑

i=1

PtTi
(1.7)

is sometimes called the ‘basis point value’ (bpv) at time t associated with the date system
T1, T2, . . ., Tn.

We note that because st can always be expressed as a combination of various discount
bond values, it makes sense to speak of derivative payoffs based on st.

A derivative whose payoff depends on st can thus be viewed as a kind of exotic option
based on the discount bonds.

There are elements of convention involved in how real swap rates are quoted. For exam-
ple, if st is paid semi-annually (i.e. T1, T2, etc., are spaced at half-yearly intervals), then 2st

is the quoted swap rate. This is an artifact of market convention and need not concern us
here, but of course it should be born in mind.
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1.3 Forward prices and forward rates

The forward price of a discount bond will be denoted by Ptab.

This is the price contracted at time t for purchase of a discount bond at time a that matures
at time b.

A standard arbitrage argument shows that

Ptab =
Ptb

Pta

. (1.8)

The argument runs as follows.

Suppose at time t a ‘careless’ market maker is willing to sell me a b-maturity bond on a
forward basis at time a for a price Qtab that is less than Ptab.

I would then purchase Qtab/Pta a-maturity bonds at time t, and simultaneously short Qtab/Ptb

b-maturity bonds.

At the same time I purchase 1/Pta b-maturity bonds on a forward basis from the dealer.

At time a, the a-maturity bonds mature, leaving me with Qtab/Pta in cash, which I uses
to purchase 1/Pta b-maturity bonds (taking advantage of the forward agreement).

Then at time b, the long investment pays off 1/Pta, whereas I owe Qtab/Ptb on the ma-
turing short position.

Since 1/Pta > Qtab/Ptb, I have made a risk free profit.

A similar argument allows me to arbitrage the dealer if a forward price greater than Ptab is
made.

Thus we see that Ptab = Ptb/Pta is the correct forward price for a discount bond.

The associated forward rates are given by

Ptab =
1

1 + (b − a)Ltab

(1.9)

and

Ptab = e−(b−a)Rtab . (1.10)
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Here Ltab and Rtab are the forward rates, quoted at time t, for the period [a, b], on a simple
and on a continuously compounded basis, respectively.

We call Ltab the forward Libor rate made at time t for the period [a, b].

It also makes sense to speak of a forward swap rate.

This is the swap rate sta contracted at time t for a swap entered into at time a with the
payment dates b1, b2, . . . , bn. Then we have

sta =
1 − Ptabn

Ptab1 + Ptab2 + · · · + Ptabn

. (1.11)

Clearly we have stt = st.

1.4 Short rates and forward short rates.

The rate rb = lima→b Lab is called the short rate.

This is the rate of interest, at time a, on a very short period loan (e.g., “overnight”),
expressed on an annualised basis.

If we assume, as seems reasonable, that Pab is differentiable in the maturity date, then
a short computation shows that

ra = − ∂Pab

∂b

∣∣∣∣
a=b

. (1.12)

Over the short term, “compounding” is irrelevant, and thus

lim
a→b

Lab = lim
a→b

Rab. (1.13)

The forward short rate fta is the rate of interest contracted at time t for a very short period
loan at some later time a.

For example, I might agree today to loan you $1,000,000 for one day, one year from now, at
a rate of interest of 6% annualised. Then we would have f01 = 0.06 (a = 0, b = 1).

The forward short rate is also called the “instantaneous forward rate” (for example, in
Heath, Jarrow & Morton 1992).

We note that the forward short rate is by definition given by the limit

fta = lim
b→a

Ltba. (1.14)
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Thus we have

fta = − ∂Ptab

∂b

∣∣∣∣
a=b

= −∂ ln Pta

∂a
. (1.15)

The latter relation is often effectively adopted as a definition for fta in the literature, but it
is important to see that it is not really a definition: it derives from an underlying economic
relation.

The significance of the relation

fta = −∂ ln Pta

∂a
(1.16)

is that it is invertible:

PtT = exp

(
−

∫ T

t

ftu du

)
. (1.17)

Thus, at any fixed time t, knowledge of the discount function PtT at that time, for maturity
T , is equivalent to knowledge of the system of forward short rates ftu determined (i.e. con-
tractable) at that time over the interval u ∈ [0, T ].

Note, incidentally, that (1.17) incorporates the maturity condition PTT = 1.

1.5 Positive interest conditions

For many applications we want to build in an interest rate positivity condition.

This is not automatic in the HJM framework, but later when we examine the Flesaker-
Hughston framework and its extensions we will see how this feature can be incorporated.

For positive interest we require the following two conditions valid for all 0 ≤ a ≤ b < ∞:

0 < Pab ≤ 1, (1.18)

∂Pab

∂b
< 0. (1.19)

There are various ways of ensuring these conditions are satisfied. For many models they are
not. Whether or not this is a material issue depends on the circumstances.

From a fundamental point of view, however, we require nominal interest rates to be strictly
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positive. This is because if someone offers to loan you money at a negative rate of interest,
then you can immediately take advantage of them and effect an arbitrage.

The positive interest conditions are sufficient to ensure that all the commonly encountered
rates are positive: Libor rates, swap rates, forward Libor and swap rates, short rate, and
forward short rate.

1.6 Interest rate derivative structures

Let us now turn to the consideration of interest-rate related contingent claims.

First, we need to ask what is meant by an “interest rate derivative”.

One general mathematical way of defining a European-style interest rate derivative is to
say that the payout at time T is any random variable HT that is FT -measurable, where (Ft)
is the natural filtration of the multi-dimensional Brownian motion driving the discount-bond
system.

In practice, the payout of an interest rate derivative is specified in terms of one or more
well-defined rates associated with the given contract period.

Equivalently, we let HT be specified as a function of the values of one or more discount
bonds during the interval [0, T ]. The maturities of these discount bonds may or may not lie
in that interval.

For example, the payout

(a) HT = max (PTb − K, 0) (1.20)

defines a call option on a discount bond (b > T ).

The payout

(b) HT = X max (LTb − R, 0) (1.21)

defines a simple caplet on the Libor rate LTb, where R is the cap rate, and X is the notional
paid per interest rate point (e.g., $1,000,000 per interest rate point above R).

Normally, a caplet is paid “in arrears”, meaning the rate is set at some earlier time a,
and paid at T , so in that case, the payout is

(c) HT = X max (LaT − R, 0) , (1.22)
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for the rate LaT set earlier at time a.

However, since LaT is known at time a, we can regard the normal caplet as a derivative
that pays the discounted value Ha = PaT HT at the earlier time a, where HT is the payout
defined in (c).

By definition, we have

PaT =
1

1 + (T − a)LaT

. (1.23)

It follows, as we noted earlier, that

LaT =
1

T − a

(
1

PaT

− 1

)
. (1.24)

Therefore, the effective payout Ha at time a is given by the following calculation:

Ha = PaT HT

= XPaT max (LaT − R, 0)

= XPaT max

(
1

T − a

(
1

PaT

− 1

)
− R, 0

)

= X max

(
1

T − a
(1 − PaT ) − RPaT , 0

)

=
X

T − a
max (1 − PaT − (T − a)RPaT , 0)

=
X

T − a
[1 + R(T − a)] max

(
1

1 + R(T − a)
− PaT , 0

)
= N max (K − PaT , 0) . (1.25)

Here the strike K is given by

K =
1

1 + R(T − a)
(1.26)

and the notional N is

N =
X[1 + R(T − a)]

T − a
. (1.27)

Thus we see that a position in standard caplet is equivalent to a position in N puts on the
discount bond, where the strike price K on the put is the value of a discount bond with
simple yield R.
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There are many subtle ways of transforming one type of interest rate derivative structure
into another with the same effective payoff.

This is important both in the marketing and the risk management of such products.

As another example, suppose we consider the case of a swaption, the option to enter into a
swap at time t for the dates (T1, T2, · · · , Tn) at a fixed “strike” swap-rate R.

Assuming that the option is to pay the fixed rate R, then the payoff Ht at time t is

Ht = VtT1...TnMax(st − R, 0). (1.28)

Here VtT1...Tn =
∑n

i=1 PtTi
is the bpv at time t for the coupon dates (T1, T2, · · · , Tn).

Clearly, the option is exercised iff the “actual” swap rate st observed at time t is greater
than R.

Thus an alternative way of writing the swaption payout Ht is:

Ht =

[
1 − PtTn − R

n∑
i=1

PtTn

]+

. (1.29)

It should be evident that an alternative interpretation of a swaption is to regard it as an
option at time t to acquire (A) a portfolio consisting of a unit of cash and a short position
in a Tn-maturity bond, in exchange for (B) a portfolio consisting of R units each of the
Ti-maturity bonds for i = 1, 2, . . . , n.

This is the economic interpretation of a swaption in terms of the exchange of actual as-
sets.

The swaption considered above is an option to pay the fixed leg of a swap, and is thus
called a payer swaption. There is an analogous structure which is an option to receive the
fixed leg of a swap, called a receiver swaption.
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Chapter 2

Dynamical equations for a non-dividend-paying asset. Money market account
and risk premium process. Martingales, supermartingales and submartin-
gales. Martingale relations for a single asset. Transformation to the risk
neutral measure. No-arbitrage relation for derivatives. Derivative pricing.
Girsanov transformation.

2.1 Dynamical equations for a non-dividend-paying as-

set

For a single asset with limited liability and price process St, the stochastic equation for the
dynamics of St is:

dSt

St

= µt dt + σt dWt. (2.1)

This equation is defined on a probability space Π = (Ω,F , P ) with filtration (Ft), with
respect to which Wt is a standard Brownian motion.

We assume that µt (drift) and σt (volatility) are adapted to the filtration (Ft).

Initially, we consider the simple situation where (Ft) is generated by Wt. Later, when
other basic assets are brought into play, we let the filtration (Ft) be larger.

We can think of Π as representing the economy, and (Ft) as representing the market in-
formation flow up to time t.

For many purposes we can, without serious loss of generality, assume that µt and σt are
bounded .

This will be a sufficient technical condition to ensure that the relevant stochastic integrals
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exist, and the relevant martingale condition is satisfied when this is needed. In practice this
condition can often be relaxed in various ways.

If µ and σ are constant the solution of St is:

St = S0 exp
(
µt + σWt − 1

2
σ2t

)
. (2.2)

This is called the geometric Brownian motion model for St.

The geometric Brownian motion model was introduced by Paul Samuelson, and was used
by Fisher Black and Myron Scholes as an assumption in the derivation of their celebrated
option pricing formula.

More generally, for path dependent µt and σt, which for simplicity we may here assume
to be adapted and bounded, we have the following solution for the asset price in terms of µt

and σt:

St = S0 exp

(∫ t

0

µs ds +

∫ t

0

σs dWs − 1
2

∫ t

0

σ2
s ds

)
. (2.3)

We regard µt and σt as being specified exogenously .

We can use Ito’s lemma to verify that the stochastic equation is satisfied. First, we note
that

d log St =
dSt

St

− 1

2

(dSt)
2

S2
t

. (2.4)

Thus squaring each side we have:

(d log St)
2 =

(dSt)
2

S2
t

. (2.5)

So putting these two equations together we get:

dSt

St

= d log St + 1
2
(d log St)

2 (2.6)

But taking the logarithm of (2.3) we have:

log St = log S0 +

∫ t

0

µs ds +

∫ t

0

σs dWs − 1
2

∫ t

0

σ2
s ds. (2.7)

So by taking the stochastic differential we obtain

d log St = µt dt + σt dWt − 1
2
σ2

t dt. (2.8)
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Thus by squaring and only keeping the (dWt)
2 = dt term we also have:

(d log St)
2 = σ2

t dt. (2.9)

It follows immediately that

dSt

St

= µt dt + σt dWt. (2.10)

2.2 Money market account and risk premium process

To proceed further, we introduce a ‘risk-free’ asset, the money-market account, with price
process Bt, satisfying

dBt

Bt

= rt dt, (2.11)

Here rt is the short-term interest rate, which we also assume to be adapted to the market
filtration (Ft).

The solution for the money market account process Bt is

Bt = B0 exp

(∫ t

0

rs ds

)
. (2.12)

Now we introduce the market risk premium process λt, defined for a non-dividend paying
asset by

µt = rt + λtσt. (2.13)

The process λt measures, instantaneously, the extra rate of return offered by the asset, above
the risk-free rate rt, per unit of volatility σt.

Note that in the case of a non-dividend paying asset, and in the absence of risk, the rate of
return would be rt.

In the case of a dividend paying asset, the process for µt is given by

µt = rt − δt + λtσt, (2.14)

where δt is the dividend rate.

In the case of a single asset the drift condition (2.13) merely defines λt.

In the case of multiple assets the relation gets generalised and is equivalent to the condition
of no arbitrage.
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2.3 Martingales, supermartingales and submartingales

Now we derive an important relation that ties together the values of an asset at two different
times.

One of the central concepts in the modern theory of finance is the idea of a martingale.

The point of the martingale concept is that it gives a mathematical embodiment to the
notion of a fair game of chance.

It also helps to clarify in mathematical terms what we mean by a forecast .

In what follows we also need to know about the related concepts of supermartingale, and
submartingale.

The concept of supermartingale, in particular, plays a special role in interest rate theory.

A stochastic process M is an (Ft)-martingale if

(a) E [|Mt|] < ∞, for all t ≥ 0, (2.15)

(b) Ms = E [Mt | Fs] , for all s < t. (2.16)

Part (b) of this definition expresses the idea that the expected value of the process at time
t, given information up to time s, is equal to the value of the process at time s.

When there is no ambiguity we sometimes write Et[X] = E[X|Ft] for conditional expec-
tation with respect to the sigma-algebra Ft.

We can modify the definition above to account for martingales defined only for t ∈ [0, T ∗],
where T ∗ > 0 is a fixed time horizon.

A standard Brownian motion Wt is a martingale. So are, for example, the processes given
by

Mt =
1

2
(W 2

t − t), (2.17)

Mt =
1

6
(W 3

t − 3tWt) (2.18)

Mt =
1

24
(W 4

t − 6tW 2
t + 3t2). (2.19)
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Another example is given by

Mt = exp
(
σWt − 1

2
σ2t

)
, (2.20)

where σ is a constant.

To see that the process 1
2
(W 2

t − t) is a martingale, we observe that

Es[W
2
t − t] = Es[(Ws + (Wt − Ws))

2 − t]

= Es[W
2
s ] + Es[(Wt − Ws)

2] − t

= W 2
s − s. (2.21)

More generally, let us define the polynomial Hn(x, y) by the generating function

exp
(
ξx − 1

2
ξ2y

)
=

∞∑
n=0

ξnHn(x, y). (2.22)

Then for each value of n, the process Hn(Wt, t) is a martingale, and the polynomial examples
mentioned above arise as the first few values of n.

The polynomials Hn(x, y) are given by

Hn(x, y) =
(

1
2
y
)n/2

hn(x/
√

2y), (2.23)

where hn(u) are the standard Hermite polynomials.

Martingales also arise as certain classes of stochastic integrals.

For example, if σt is Ft-adapted and bounded, then

Mt = M0 +

∫ t

0

σsdWs (2.24)

is a martingale.

So is:

Mt = M0 exp

(∫ t

0

σsdWs − 1
2

∫ t

0

σ2
sds

)
. (2.25)

A process Xt is an (Ft)-supermartingale if

(c) E
[|Xt|

]
< ∞, for all t ≥ 0, (2.26)

(d) Xs ≥ E [Xt | Fs] , for all s < t. (2.27)
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Similarly, a process Xt is an (Ft)-submartingale if

(e) E
[|Xt|

]
< ∞, for all t ≥ 0, (2.28)

(f) Xs ≤ E [Xt | Fs] , for all s < t. (2.29)

A process is a martingale iff it is both a supermartingale and a submartingale. If Xt is a
supermartingale, then −Xt is a submartingale.

Another important way of generating martingales is by taking conditional expectations.
Thus if Z is a random variable such that E[|Z|] < ∞, then

Mt = Et[Z] (2.30)

defines a martingale by virtue of the “tower property” of conditional expectation EsEt = Es

for s < t.

2.4 Martingale relations for a single asset

Returning to the case of a single asset, let us introduce the relationship µt = rt + λtσt into
the formula for St. We then have

dSt

St

= rt dt + σt (dWt + λt dt) . (2.31)

Equivalently, St is given by

St = S0 exp

(∫ t

0

rs ds

)
exp

(∫ t

0

σs (dWs + λs ds) − 1
2

∫ t

0

σ2 ds

)
. (2.32)

It follows that

St

Bt

= S0 exp

(∫ t

0

σs (dWs + λs ds) − 1
2

∫ t

0

σ2 ds

)
. (2.33)

Now suppose that we define the process Λt by

Λt = exp

(
−

∫ t

0

λs dWs − 1
2

∫ t

0

λ2
s ds

)
. (2.34)

We call Λt the risk adjustment density or risk premium density martingale. It follows from
Itô’s lemma that

dΛt = −Λtλt dWt. (2.35)
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Equivalently, by integration of this relation, incorporating the initial condition, we have:

Λt = 1 −
∫ t

0

Λsλs dWs. (2.36)

Thus, assuming λt is bounded, we have the martingale relation

Λs = EsΛt, for all s ≤ t, where EsΛt := E [Λt | Fs] . (2.37)

Now we show the following important result:

ΛtSt

Bt

is a martingale. (2.38)

Indeed, a simple computation shows by completing the squares that:

ΛtSt

Bt

= exp

(∫ t

0

(σs − λs) dWs − 1
2

∫ t

0

(σs − λs)
2ds

)
, (2.39)

and the desired property follows since σt is bounded. The martingale property for ΛtSt/Bt

can be written

Λs
Ss

Bs

= Es

[
Λt

St

Bt

]
, s < t. (2.40)

This is the formula that links past and future values of St, and thus can be thought of as a
forecasting relation.

2.5 Transformation to the risk neutral measure

For any random variable Xt measurable with respect to the sigma-algebra Ft, we define a
new probability measure P λ with expectation

E
λ
s [Xt] =

Es [ΛtXt]

Λs

. (2.41)

This formula explains why we call Λt a “density”.

The new probability measure (i.e. new rule for taking expectations) obtained in this way is
called the risk-neutral measure.

This terminology is reserved for the measure obtained by use of the density Λt associated
with the risk premium process λt.
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Under the risk-neutral measure, we have

Ss

Bs

= E
λ
s

[
St

Bt

]
, s < t. (2.42)

That is, the discounted asset price is a martingale (where the discounting is taken with re-
spect to the money market account).

Another way of putting this is that in the risk neutral measure the value of the asset is
a martingale when expressed in units of Bt, i.e., when we use Bt as a numeraire.

As we shall see, there are other measures associated with other choices of numeraire.

2.6 No-arbitrage relation for derivatives

Suppose that there is a derivative associated with St and its price process is Ht.

We assume that Ht is adapted to the filtration (Ft) like St, and in particular that Ht is
fully characterised by an FT -measurable terminal value HT , i.e. its payoff.

This means intuitively that HT can depend in a very general way on the behaviour of
Wt (and hence St) over the interval [0, T ].

Of course, HT might be relatively simple, like a call option HT = max (ST − K, 0) or a
short position in a forward contract HT = K − ST .

But it might be path-dependent, like a knock-out option, or an Asian option, or an American
option (exercisable at some random time τ ≤ T , with the proceeds future valued and paid
at time T ).

For the price dynamics of Ht let us write

dHt

Ht

= µH
t dt + σH

t dWt. (2.43)

Then a well-known hedging argument can be used to establish that

µH
t − rt

σH
t

=
µt − rt

σt

. (2.44)

The hedging argument is as follows. Suppose we have a long position in the derivative, and
we wish to hedge that position with a short position in the underlying asset.
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We form at time t the portfolio with value Ht − ∆tSt where ∆t is the number of asset
units shorted.

We examine the dynamics of the portfolio over the next small interval of time. The change
in the value of the portfolio is given by dHt − ∆t dSt.

Then if

∆t =
Htσ

H
t

Stσt

, (2.45)

the “risks” (i.e. the coefficients of dWt) cancel, and the portfolio offers an instantaneously
definite rate of return given by

Htµ
H
t − ∆tStµt

Ht − ∆tSt

. (2.46)

We equate this “hedged” rate of return to rt and insert the correct hedge ratio ∆t. Then
the desired no-arbitrage relation

µH
t − rt

σH
t

=
µt − rt

σt

. (2.47)

immediately pops out.

This relation is general, and is applicable in a fully path-dependent context.

2.7 Derivative pricing

We have assumed that (a) both the derivative and the asset price are adapted to the same
Brownian motion filtration, (b) there are no dividends, (c) there are no transaction costs,
(d) there are no constraints (e.g. limits) on the hedge position, and (e) the hedge portfolio
can be adjusted continuously.

Note that if we further assume Ht = H(St, t) for some function H(S, t) of two variables,
then the relation above becomes a PDE (the Black-Scholes equation) if µt, σt, rt and λt are
all likewise expressible as such functions.

This leads us down the “classical” path of derivative pricing, which can be highly effec-
tive when the assumptions indicated apply.

Generally, these assumptions break down if either (a) the derivative is path dependent or
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(b) the asset price dynamics are path dependent.

The implication of the no-arbitrage condition (i.e. the general hedging argument) is that the
derivative price and the underlying asset both have the same risk premium λt.

As a consequence, defining Λt as before, it follows that ΛtHt/Bt is a martingale:

ΛsHs

Bs

= Es

[
ΛtHt

Bt

]
. (2.48)

Equivalently, we have

Hs

Bs

= E
λ
s

[
Ht

Bt

]
, (2.49)

where E
λ denotes expectation in the risk neutral measure. In particular, we have

H0 = E

[
ΛT HT

BT

]
. (2.50)

Equivalently:

H0 = E
λ

[
HT

BT

]
. (2.51)

This is the risk-neutral valuation formula which says in words that the present value of a
derivative is equal to the risk-neutral expectation of its terminal payoff.

For example, if µ, r and σ are constant, and if HT is a simple call option payoff on ST ,
then this reduces to the Black-Scholes formula:

H0 = S0 N

[
ln

(
S0e

rT /K
)

+ 1
2
σ2T

σ
√

T

]
− e−rT K N

[
ln

(
S0e

rT /K
) − 1

2
σ2T

σ
√

T

]
(2.52)

where

N(x) =
1√
2π

∫ x

−∞
e−

1
2

ξ2

dξ (2.53)

is the standard normal distribution function.

2.8 Girsanov transformation∗

These results can be tied together nicely by the use of the Girsanov transformation.
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We note that in the case of both the asset and the derivative, as a consequence of the
no-arbitrage condition, the term dWt + λt dt is common to the dynamics:

dSt

St

= rt dt + σt (dWt + λt dt) (2.54)

dHt

Ht

= rt dt + σH
t (dWt + λt dt) (2.55)

Now we define a new process W λ
t according to the formula

W λ
t = Wt +

∫ t

0

λs ds. (2.56)

It follows that dW λ
t = dWt + λt dt.

The essence of the theorem of Girsanov is that if Wt is a Brownian motion with respect
to P , then W λ

t is a Brownian motion with respect to P λ. Then we say that W λ
t is a P λ-

Brownian motion. The dynamics of St and Ht can be written

dSt

St

= rt dt + σtdW λ
t , (2.57)

dHt

Ht

= rt dt + σH
t dW λ

t . (2.58)

In the risk neutral measure, W λ
t is a Brownian motion.

Thus we see that, as a consequence of the Girsanov transformation, the risk premium effec-
tively drops out of the dynamics for both the underlying asset as well as the derivative.

With respect to the risk neutral measure both St and Ht have a rate of return given by
rt, the rate of return offered on the locally risk-free money-market asset Bt.

A more precise account of Girsanov’s theorem is as follows.

Let (Ω,F , P ) be a probability space equipped with a filtration (Ft). Suppose that Wt is
a n-dimensional (Ft)-Brownian motion defined on this probability space.

Let λα
t be a n-dimensional, (Ft)-measurable process satisfying

P

(∫ t

0

|λs|2 ds < ∞
)

= 1. (2.59)
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Under these assumptions, the process Λt given by

Λt = exp

(
−1

2

∫ t

0

|λs|2 ds −
∫ t

0

λs · dWs

)
(2.60)

is well defined for all t. We can verify that

Λt = 1 −
∫ t

0

Λsλs · dWs, (2.61)

A sufficient condition for Λt to be a martingale is the Novikov condition:

E

[
exp

(
1

2

∫ t

0

|λs|2 ds

)]
< ∞, (2.62)

in which case E
[
ΛT

]
= 1. This condition is satisfied, in particular, if λt is bounded.

If Λt is a martingale, then, given any fixed time T > 0, we can define a probability measure
QT on (Ω,FT ) by

QT (A) = E [ΛT 1A] , for all A ∈ FT . (2.63)

The Girsanov theorem states that, given any fixed time T > 0, the process W ∗
t defined by

W ∗
t = Wt +

∫ t

0

λs ds, t ∈ [0, T ] (2.64)

is a n-dimensional Brownian motion on (Ω,FT , QT ).

We can, for example, verify that W ∗
t is normally distributed with respect to the measure QT

by use of the method of characteristic functions.

Given any t ∈ [0, T ], we calculate the characteristic function of the random variable W̃t.

E
QT

[
eizW ∗

t
]

= E
P

[
ΛT eizW ∗

t
]

= E
P

[
Λte

izW ∗
t
]

= E
P

[
exp

(
−

∫ t

0

λs dWs − 1
2

∫ t

0

λ2
s ds + izWt + iz

∫ t

0

λs ds

)]

= E
P

[
exp

(
−

∫ t

0

(λs − iz) dWs − 1
2

∫ t

0

(λs − iz)2 ds − 1
2
z2t

)]

= E
P

[
exp

(
−

∫ t

0

(λs − iz) dWs − 1
2

∫ t

0

(λs − iz)2 ds

)]
exp

(−1
2
z2t

)
= exp

(−1
2
z2t

)
. (2.65)

This shows that the random variable W ∗
t is normally distributed, with mean 0 and variance t.

An elaboration of this argument leads to the result that W ∗
t is a QT -Brownian motion.
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Chapter 3

Dynamical equations for multiple assets. Market completeness. Valuation
of derivatives in complete multi-asset market. Hedgeable and unhedgeable
claims in incomplete markets.

3.1 Dynamical equations for multiple assets

We model the economy by a probability space (Ω,F , P ) equipped with standard augmented
filtration {Ft} generated by a standard n-dimensional Brownian motion W α

t , α = 1, 2, · · · , n,
over the time interval 0 ≤ t ≤ T ∗, for some terminal date T ∗. For some applications we may
wish to take T ∗ = ∞.

According to the Ito calculus, we have dW α
t dW β

t = δαβdt, where δαβ is the identity ma-
trix. Note that the different components of W α

t are taken to be uncorrelated.

Let us assume we have a system of m non-dividend-paying risky assets with price processes

dSi
t

Si
t

= µi
tdt +

n∑
α=1

σiα
t dW α

t . (3.1)

Here, Si
t (i = 1, 2, · · · , n) represents the price process for asset number i.

The drift process µi
t and the volatility process σiα

t are assumed to be bounded and pro-
gressively measurable with respect to the filtration {Ft}.

Intuitively speaking, the latter condition means that these processes depend on the path
of the Brownian motion from 0 up to time t, but otherwise, there is no source of ‘extraneous’
randomness.

This is essentially a causality condition.
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For the moment, we shall not fix the relation between the number of assets m and the
number of Brownian motions n.

In the case of a complete market, we normally require that m should be greater than or
equal to n.

In other words, for a complete market, there should be at least as many genuinely ‘in-
dependent’ assets as there are ‘sources of randomness’.

Otherwise, there may be more sources of randomness than there are independent means
of hedging away this randomness! That would mean an ‘incomplete’ market.

At time t, the relative magnitude of the price fluctuation of asset i due to Brownian motion
number α is given by σiα

t , which we call the volatility matrix.

The exogenous specification of µi
t and σiα

t determines the asset price processes Si
t , once

initial prices have been given, according to the formula

Si
t = Si

0 exp

(∫ t

0

(
µi

s − 1
2
σi2

s

)
ds +

∫ t

0

σi
sdWs

)
. (3.2)

Here we use the compact notation

σi
sdWs =

n∑
α=1

σiα
s dW α

s (3.3)

and

σi2
s =

∑
α

σiα
s σiα

s . (3.4)

For each fixed value of i, we think of σi
s as a vector volatility process with n components,

one for each of the n independent Brownian motion.

3.2 Market completeness

For some considerations we impose a condition of market completeness. For market com-
pleteness we require first that the m × n rectangular matrix σiα

t should be of rank n.

The interpretation of this condition is that any fluctuation in the Brownian motion is neces-
sarily realised by at least one of the assets in the form of a corresponding price fluctuation.
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More precisely, σiα
t is of maximal rank n at time t if, for any nonzero vector ηα = (η1, η2, · · · , ηn)

we have

n∑
α=1

ηασiα
t �= 0. (3.5)

If this holds for all ηα �= 0, then any fluctuation dW α
t in the Brownian motion results

in a nontrivial asset price fluctuation dSi
t .

This is evident from the basic dynamical equations.

Additionally, we will sometimes require to impose a condition on the volatility structure,
sufficient to keep it from getting to ‘close’ to degeneracy.

This can be imposed by requiring that the symmetric matrix

ραβ
t =

m∑
i=1

σiα
t σiβ

t (3.6)

satisfies the condition that there exists a number ε such that

ραβ
t > εδαβ. (3.7)

In other words ∑
α,β

(
ραβ

t − εδαβ
)

ηαηβ > 0 (3.8)

for any nonvanishing vector ηα. This ensures that the eigenvalues of ραβ
t are bounded from

below by ε.

3.3 Absence of arbitrage in a multi-asset context

Now let us consider the principle of no arbitrage.

This principle implies in the case of an asset that pays no dividend that the drift is of
the form

µi
t = rt +

n∑
α=1

λα
t σiα

t , (3.9)
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for some progressively measurable vector process λt, independent of the value of i.

This is the market risk premium vector, which has the interpretation of being the extra
rate of return, above the interest rate, per unit of volatility in the factor α.

Hence, the no-arbitrage condition tells us that the given family of assets shares a com-
mon risk premium process λα

t .

Once we deduce the existence of a market risk premium process, we obtain the following
stochastic equation for the asset dynamics:

dSi
t

Si
t

= rtdt +
n∑

α=1

σiα
t (dW α

t + λα
t dt). (3.10)

We note the important fact that, in a complete market, the risk premium vector is uniquely
determined by the given stochastic system.

This follows from the observation that, if (3.9) were satisfied for any other choice of risk
premium vector, say, λα

t + ηα
t , then the market completeness would imply ηα

t = 0.

In an incomplete market we can then ask whether it is appropriate to regard λα
t as be-

ing exogenously specified.

3.4 Valuation of derivatives in complete multi-asset

markets

Consider now the valuation of derivatives in a complete market.

Many aspects of the present analysis have analogues in the case of a single asset, but there
are some new twists as well that carry over to interest rate theory.

First, we need to introduce the unit initialised money market account process:

Bt = exp

(∫ t

0

rsds

)
(3.11)

In a complete market with risk premium vector λt, the asset price processes are

Si
t = Si

0 exp

(∫ t

0

rsds +

∫ t

0

σi
s(dWs + λsds) − 1

2

∫ t

0

(σi
s)

2ds

)
. (3.12)
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As a consequence, we see that the ratios of Si
t to Bt (discounted asset prices) are given by

Si
t

Bt

= Si
0 exp

(∫ t

0

σi
s(dWs + λsds) − 1

2

∫ t

0

(σi
s)

2ds

)
. (3.13)

The combination dWt + λtdt appearing here suggests that, with a change of measure, the
discounted asset prices will be martingales.

To see this, we form the density martingale

Λt = exp

(
−

∫ t

0

λsdWs − 1
2

∫ t

0

λ2
sds

)
. (3.14)

A short calculation shows that the ratio

ΛtS
i
t

Bt

= Si
0 exp

(
−

∫ t

0

(σi
s − λs)dWs − 1

2

∫ t

0

(σi
s − λs)

2ds

)
(3.15)

is a martingale:

ΛsS
i
s

Bs

= Es

[
ΛtS

i
t

Bt

]
. (3.16)

This relation has to hold among all the given assets subject to a no arbitrage condition.

We may therefore consider the situation where one or more of these assets is a deriva-
tive.

Let HT denote the payoff of such a derivative, and let Ht denote the price process for
the derivative at earlier times.

It follows that the value of the derivative is given by:

Ht =
Bt

Λt

Et

[
ΛT

BT

HT

]
. (3.17)

For the present value we then obtain the risk neutral valuation formula:

H0 = E
λ

[
HT

BT

]
. (3.18)

If dividends are paid, then we need to modify these formulae slightly.
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In the dynamics for Si
t we replace rt with rt − δi

t where δi
t is the dividend rate, and we

find that

M i
t =

ΛtS
i
t

Bt

+

∫ t

0

Λuδ
i
uS

i
u

Bu

du (3.19)

is a martingale.

Then we can develop pricing formulae where both the assets and the derivatives pay contin-
uous dividend.

3.5 Natural numeraire and state-price density

There is an interesting economic interpretation of the basic derivatives pricing formula (3.17).

We note that the process Λt is “dimensionless”, whereas Bt is an asset price. Thus, the
ratio Bt/Λt is also an asset price.

Writing ξt = Bt/Λt we deduce that the dynamical equation for ξt is

dξt

ξt

= (rt + λ2
t )dt + λtdWt. (3.20)

We think of the process ξt as the value process for a special portfolio in the money market
account and the basic risky assets with the value process ξt.

Sometimes the value process ξt is referred to as the “natural numeraire portfolio”.

The present value of any other asset, when valued in units of the numeraire portfolio, acts
as an unbiased forecast for the future value of that asset, when expressed in units of the
numeraire portfolio at that time. In other words,

Si
s

ξs

= Es

[
Si

t

ξt

]
. (3.21)

Another useful way of thinking about ξt is to define the related process

Vt =
1

ξt

. (3.22)

This is called the state-price density.

The state price is the value of one unit of cash in units of the natural numeraire.

28



For any non-dividend-paying asset St we have

St = Et

[
VT

Vt

ST

]
. (3.23)

Now suppose that St is a ‘derivative’ that pays one unit of cash at time T .

Then St is the price process PtT of a discount bond with maturity T . Thus:

PtT = Et

[
VT

Vt

]
. (3.24)

3.6 Incomplete markets

We now consider more generally the case where the market is not complete.

In practice, it is common to encounter derivatives that cannot be completely hedged.

Nevertheless, we may consider a ‘decomposition’ of a given product into a ‘hedgeable’ and
‘unhedgeable’ parts.

If the market in incomplete, then typically then volatility matrix σiα
t is degenerate (i.e.

it has one or more zero eigenvalues).

This implies that the risk premium vector λα
t that satisfies the no arbitrage condition (3.9)

is not uniquely determined by the specification of the asset price processes.

Nevertheless, we may consider the subspace of R
n spanned by the nondegenerate components

of the volatility matrix σiα
t , and construct a decomposition of the form

λα
t = ψα

t + ϕα
t (3.25)

Here, ψα
t is the vector λα

t with minimum length that satisfies the condition

µi
t = rt +

n∑
α=1

λα
t σiα

t , (3.26)

whereas ϕα
t satisfies

n∑
α=1

ϕα
t σıα

t = 0. (3.27)
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We now define the process ξt by the dynamics

dξt

ξt

=
(
rt + ψ2

t

)
dt + ψt · dWt (3.28)

This is the unique natural numeraire process corresponding to the hedgeable part of the
portfolio.

In other words, ξt is the unique attainable numeraire process.

In a complete market, the derivative price process is given by

Gt = Et

[
HT

ξT

]
. (3.29)

However, in an incomplete market, the derivative payout HT contains unhedgeable compo-
nents.

Therefore, we consider the decomposition

HT = JT + KT . (3.30)

Here, JT corresponds to the hedgeable part of the derivative.

This is obtained by taking the conditional expectation Et[HT /ξT ], and projecting the re-
sulting martingale into the subspace spanned by the volatility vectors σiα

t .

Then we let t → T and multiply by ξT to obtain JT .

For the remaining unhedgeable part KT , its expectation is given by

Et

[
KT

ξT

]
= 0. (3.31)

Σ

αλ

σ ασ αj k

Space spanned by σi α
Projection

Λα

Figure 3.1: The decomposition of the risk premium vector.
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Hence the hedgeable part of the product can be priced in essentially the conventional manner,
while the unhedgeable part can, say, be transferred to a specialist desk to deal with the
residual risk.
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Chapter 4

Discount bond dynamics. Interest rate volatility and correlation. Short
rate and instantaneous forward rate processes. Heath-Jarrow-Morton (HJM)
framework. Valuation and hedging of interest rate derivatives.

4.1 Price processes for discount bonds

Now we turn to the modelling of interest rate dynamics.

The key idea here is to keep the discount bonds in the centre of the stage.

The short rate, forward short rates, Libor rates, forward Libor rates, and swap rates are
all subsidiary processes.

If one focuses on discount bonds , then the theory of interest rates assumes a unified, co-
herent shape, and also fits in nicely with the consideration of other asset classes, e.g., foreign
currencies, credit-risky bonds, inflation-linked bonds, equities and so on.

As indicated earlier, we write Pab for the value at time a of a discount bond that ma-
tures at time b to deliver one unit of currency. The initial discount function is given by P0b,
and we have the maturity condition Paa = 1 for all a.

For any given value of b we regard Pab as a stochastic process in the a variable over the
interval 0 ≤ a ≤ b. Thus we have a one-parameter family of assets for which the price
processes are given by Pab.

We call a the “process index” and b the “maturity index”.

We can infer from context whether Pab refers to “the value at time a of a bond that matures
at b”, or “the whole process for fixed b”, or “the values at a fixed time a for a range of
maturity dates b”, or “the whole system of processes”.
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We shall assume here that the market is driven by a multi-dimensional family of independent
Brownian motions W α

t .

The “factor index” α can be understood (as before) as labelling the basis for a finite di-
mensional vector space, or as an “abstract” index representing a Hilbert space element in
the infinite dimensional case.

The discount bond dynamics are then given by the stochastic equation

dPab

Pab

= µab da + Ωab dWa (4.1)

Here µab is the drift process for the b-maturity bond. Ωab is the corresponding vector volatil-
ity process. Both are assumed to be adapted to the filtration (Ft) generated by W α

t .

We require that Ωaa = 0, corresponding to the fact that a maturing bond has zero volatility .

We also make the technically useful assumption that the process Ωab is differentiable in
the maturity index.

More specifically, we assume that there exists a process σas such that

Ωab = −
∫ b

a

σas ds, (4.2)

where the minus sign appears as a matter of convention.

This relation enforces the constraint Ωaa = 0.

Note that in the term Ωab dWa there is, as indicated earlier, an implied summation over
the suppressed vector indices.

Now we impose the no-arbitrage condition. By the same line of argument as in the multi-
asset case this ensures the existence of a risk premium vector λα

a such that the drift µab is
given by

µab = ra +
n∑

α=1

λα
aΩα

ab. (4.3)

Suppressing vector indices, we write this as µab = ra + λaΩab.

Here ra is the short rate, i.e. the rate of return on an instantaneously maturing discount bond.
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In the discussion on multi-asset dynamics, we regarded ra as an exogenously specified process.
However, in the present consideration, the short rate is given by

ra = − ∂Pab

∂b

∣∣∣∣
a=b

. (4.4)

In fact, we shall show that ra can be effectively eliminated as a fundamental variable, and
an expression for the discount bonds can be derived entirely in terms of λα

a and Ωα
ab.

Alternatively, we can eliminate Ωα
ab, and an expression for the discount bond can be de-

rived in terms of the martingale Λt (which incorporates λα
a ) and the short rate process rt

(which can be specified arbitrarily). This will be shown later.

These diverse but ultimately equivalent ways of characterising interest rate dynamics are at
the root of the various apparently diverse approaches to modelling that have been developed.

Inserting the expression for the drift (4.3) into the dynamics (4.1) of the bond prices, we get

dPab

Pab

= ra da + Ωab (dWa + λa da) . (4.5)

Basic interest rate models usually assume the interest rate market is complete.

This means, in particular, that the process Ωα
ab has to satisfy a nondegeneracy sufficient to

ensure that there does not exist at any time a vector ηα such that
∑

α Ωα
abη

α = 0 for all b > a.

In essence, this is equivalent to assuming that any interest rate derivative can be hedged with
a suitable self-financing portfolio of discount bonds, together with the money market account.

Because the system of discount bonds is infinite, but each individual bond has a finite
life, there are various ways in which the completeness condition can be met.

It is important to recognise that completeness is a rather strong assumption, and there-
fore may not be realised in practice.

Even if the discount bond market is not complete, there are circumstances in which it
is appropriate to regard a definite choice of λa as being specified exogenously.

Note that the risk premium vector in the discount bond dynamics (4.5) combines sugges-
tively with the Brownian motion so as to indicate a change of measure. We shall return to
this point when we consider the valuation of interest rate derivatives.
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4.2 Discount bond volatility and correlation

Let us now consider some “local” properties of the discount bond dynamics.

The dynamical equations under the assumption of no arbitrage are

dPab

Pab

= ra da + Ωab · (dWa + λa da) . (4.6)

It follows on account of the Ito relations

dW α
t dW β

t = δαβ dt, dWα
t dt = 0, (dt)2 = 0, (4.7)

that (
dPab

Pab

)2

= |Ωab|2 da. (4.8)

Here |Ωab|2 =
∑n

α=1 Ωα
abΩ

α
ab is the squared magnitude of the volatility vector for the bond

with maturity b.

We refer to |Ωab| as the local volatility of the b-maturity discount bond.

If we consider bonds of two different maturities, say b and c, then the instantaneous or
local correlation for their price dynamics is given by the process

ρtbc =
Ωtb · Ωtc

|Ωtb| |Ωtc| . (4.9)

Clearly we have −1 ≤ ρtbc ≤ 1.

To work out the dynamics of Pab, we need to know the vector processes Ωα
tb and λα

t .

However, to work out the probability laws for Pab, we only require the scalar combinations
|Ωab|, ρtbc, |λt|, and λt · Ωtb.

4.3 Solution for the discount bond processes

The dynamical equation for the bond price involves the bond volatility, the relative risk, and
the short rate.

However, we shall show now that the short rate can be eliminated, to give a representa-
tion of the bond price process in which the exogenous variables are the volatility process and
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the relative risk process.

The solution of the bond dynamics can be expressed in the form

Pab = P0bBa exp

(∫ a

0

Ωsb (dWs + λs ds) − 1
2

∫ a

0

|Ωsb|2 ds

)
. (4.10)

Here Ba is the unit-initialised money market account process, given as usual by

Ba = exp

(∫ a

0

rs ds

)
. (4.11)

We observe, on the other hand, that the maturity condition Paa = 1 allows us to solve for
Ba in (4.10).

In particular, if we set a = b, we get:

Ba = (P0a)
−1 exp

(
−

∫ a

0

Ωsa (dWs + λs ds) + 1
2

∫ a

0

|Ωsa|2 ds

)
. (4.12)

This shows how the short rate can be expressed in terms of the risk premium vector and the
discount bond volatility.

More explicitly, by taking logarithms in (4.12), differentiating with respect to a, and us-
ing the relation Ωaa = 0, we get the following formula for ra:

ra = −∂a ln P0a +

∫ a

0

Ωsa∂aΩsa ds −
∫ a

0

∂aΩsa (dWs + λs ds) . (4.13)

Here ∂a denotes differentiation with respect to a. Thus we have solved for ra in terms of λα
a

and Ωα
ab.

In obtaining these expressions, suitable technical conditions are required to be satisfied
by the discount bond drift and volatility. We shall return later to address this issue more
explicitly.

Inserting formula (4.12) for the money market account into (4.10) for the discount bonds,
we then obtain the following general quotient formula for the discount bonds:

Pab = P0ab

exp
(∫ a

0
Ωsb (dWs + λs ds) − 1

2

∫ a

0
|Ωsb|2 ds

)
exp

(∫ a

0
Ωsa (dWs + λs ds) − 1

2

∫ a

0
|Ωsa|2 ds

) . (4.14)

Here P0ab = P0b/P0a denotes the forward value of a b-maturity bond, i.e., the value negoti-
ated today for purchase at time a of a b-maturity discount bond.
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In the quotient formula (4.14) note that the numerator and the denominator are essentially
similar in structure, except the b in the numerator gets replaced by an a is the denominator.

The quotient formula is the desired explicit expression for the bond prices in terms of the two
exogenous variables, the volatility vector and the relative risk vector, with the elimination
of the short rate.

4.4 HJM dynamics for the forward short rate

The forward short rate process is given by

fab = −∂b ln Pab. (4.15)

From the quotient formula it follows by differentiation that these rates can be expressed as
follows:

fab = −∂b ln P0b +

∫ a

0

Ωsb∂bΩsb ds +

∫ a

0

∂bΩsb (dWs + λs ds) . (4.16)

Heath, Jarrow & Morton (1992) take a general Itô process for the forward short rates as the
starting point, and impose appropriate no-arbitrage and market completeness conditions to
obtain an expression of the form (4.16).

We write σab = −∂bΩab for the forward short rate (i.e. instantaneous forward rate) volatility.

It follows that

Ωab = −
∫ b

a

σau du. (4.17)

This builds in the constraint Ωaa = 0, as we noted earlier.

Then for the forward short rate processes in terms of σab we obtain:

fab = f0b +

∫ a

0

σsb

(∫ b

s

σsu du

)
ds +

∫ a

0

σsb (dWs + λs ds) . (4.18)

Taking the stochastic differential of this expression on the process index we get

dfab = σab

(∫ b

a

σau du

)
da + σab · (dWa + λa da) . (4.19)
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These are the dynamics of the forward short rate, sometimes called the HJM dynamics .

It should be clear that the arbitrage-free dynamics of the discount bond system and the
HJM forward short rate dynamics are for most practical purposes entirely equivalent .

Given the solution of the stochastic equation for fab, we can use the relation

Pab = exp

(
−

∫ b

a

fau du

)
(4.20)

to find the bond price.

The forward short rate processes are important from a conceptual point of view, but it
should be noted that practical applications invariably refer back to the bond price process
Pab and the short rate process ra.

4.5 Risk neutral valuation of interest rate derivatives

For the value of Ht at time t of a hedgeable interest rate derivative that pays HT at time T ,
we have the forecasting relation

ΛtHt

Bt

= Et

[
ΛT HT

BT

]
. (4.21)

Equivalently, we can write this in the form

Ht = BtE
λ
t

[
HT

BT

]
. (4.22)

Here E
λ
t denotes conditional expectation in the risk-neutral measure induced by Λt which is

defined by the exponential martingale

Λt = exp

(
−

∫ t

0

λs · dWs − 1
2

∫ t

0

|λs|2 ds

)
. (4.23)

One of the important features of interest rate theory is that the discount bonds themselves
can be viewed as a species of “derivative”.

The bond that matures at time T has a payoff of unity at that time.
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As a consequence, if we set HT = 1 in (4.21), we have the following risk-neutral valua-
tion formula for the discount bond price process:

PtT =
Bt

Λt

Et

[
ΛT

BT

]
. (4.24)

An expression of this form was derived by Vasicek (1977).

In the risk neutral measure this can be written as follows:

PtT = BtE
λ
t

[
1

BT

]

= E
λ
t

[
exp

(
−

∫ T

t

rs ds

)]
. (4.25)

These formulae are often used as a starting point for interest rate modelling.

This is because it is possible to specify λt and rt exogenously , without any a priori re-
lation holding between them.

In particular, it follows from the risk-neutral valuation formula that Ptt = 1, and that
for any choice of the process rt and risk premium density Λt, the ratio

ΛtPtT

Bt

(4.26)

is a martingale.

This implies that the bond-price system PtT satisfies the no-arbitrage condition, and thus
qualifies as a bona-fide interest-rate model.

Thus summing up, we see that there are two apparently distinct but nevertheless entirely
equivalent ways of “covering” the entire category of interest rate models:

(a) by specifying the relative risk process and vector volatility processes,

(b) by specifying the relative risk density together with the short rate process.

We shall return later to investigate in more detail the problem of how to characterise a
general interest rate model, but let us first consider some specific interest rate models.

4.6 Market Models∗

A good example of an important spin-off of the HJM approach, which has enjoyed consider-
able popularity as a basis for applications, is the so-called ”market model” methodology.
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There are a number of different variations on this approach–too many to attempt to survey
here–according to which the forward Libor rates and/or swap rates associated the discount
bond system are regarded as the “fundamental” dynamical entities.

In its simplest form, the idea of the market model is as follows. The forward Libor rates Ltab

are defined in a standard way by the relation

Ptab =
1

1 + (b − a)Ltab

, (4.27)

where Ptab = Ptb/Pta denotes the forward price made at time t for purchase of a b-maturity
discount bond at time a.

For convenience we introduce a “tenor” parameter δ = b − a, and write Lδ
ta = Ltab.

It is then a straightforward exercise in Ito calculus to work out the dynamics of Lδ
ta, starting

from the bond price dynamics given by

dPtT

PtT

= rtdt + ΩtT (dWt + λtdt). (4.28)

The result is a relation of the following form:

dLδ
ta

Lδ
ta

=
1 + δLδ

ta

δLδ
ta

(Ωt,a − Ωt,a+δ)(dWt + λtdt − Ωt,a+δ). (4.29)

The key observation that follows is that if ωt,a is a prescribed deterministic volatility process
for a given fixed tenor then we can solve the equation

1 + δLδ
ta

δLδ
ta

(Ωt,a − Ωt,a+δ) = ωt,a (4.30)

for the bond volatility in terms of the forward Libor rates and ωt,a.

This shows that there exists an HJM model with the prescribed deterministic volatility
for the given forward Libor rate.

The next step is to change measure so as to eliminate the drift, which can clearly be carried
out since now we know the bond volatility process.

As a consequence, we are left with a log-normal process for the forward Libor rate in the
new measure.
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It is generally recognised that the market model framework has probably been the single
most influential development in interest rate theory in the post-1992 years following the
advent of the HJM approach.

Many authors have contributed, in one way or another, and to varying degrees, to its orig-
ination and promulgation, and it would be impossible here to attempt with any success an
objective account of the development of the market models and their various extensions,
with all the relevant attributions.
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Chapter 5

General theory of short rate diffusion models. Diffusion processes. The
Feynman-Kac formula. Derivation of the discount bond pricing equation.

5.1 General theory of short rate diffusion models

An interesting and important class of interest rate models can be obtained by assuming:

(a) the short rate is a diffusion process,

(b) the discount bonds depend on rt as a state variable.

Such models are often called “short rate” models.

Many of the most well-known interest rate models fall into this category, including for exam-
ple the Vasicek model, the CIR model, the Black-Karazinski model, the Black-Derman-Toy
model, the Hull-White model, and the rational lognormal model.

More specifically, we consider a family of discount bond price processes PtT such that

PtT = P (t, rt, T ). (5.1)

Here P (t, r, T ) is a function of three variables. Thus the short rate acts as a “state variable”
for this family of models.

The short rate process rt (t ≥ 0) is assumed to satisfy a stochastic differential equation
of the form

drt = µ(t, rt) dt + σ(t, rt) dWt. (5.2)

Each of µ(t, r) and σ(t, r) is a function of two variables.
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The process Wt is a standard one-dimensional Brownian motion with respect to the nat-
ural probability measure.

Our goal is to derive a partial differential equation satisfied by the function P (t, r, T ) that
arises as a consequence of the dynamical equations for PtT .

This is called the ‘bond pricing equation’.

5.2 Diffusion processes

Before embarking on a derivation of the bond-pricing equation, we digress briefly to say a
few words about diffusions.

This is a topic of great interest in its own right, with many applications.

A process Xt satisfying a stochastic differential equation of the form

dXt = a(t,Xt) dt + b(t,Xt) dWt (5.3)

where a(t, x) and b(t, x) are deterministic functions is called a time inhomogeneous diffusion.

If a(t, x) and b(t, x) do not depend explicitly on t, then Xt is a time homogeneous diffu-
sion.

Generalisations of (5.3) can also be considered for which Xt and Wt are both multi-dimensional.

Early interest rate models (e.g., the Vasicek and CIR models) were based on homogeneous
diffusions, but later it was recognised that inhomogeneous diffusions added flexibility to the
models for fitting initial data, in particular initial yield curve and implied volatility data.

Homogeneous diffusions are more appropriate to equilibrium models, but these are not so
useful in a banking context.

If f(t, x) is a smooth function of two variables, then by Ito’s formula we have

df(t,Xt) =

(
∂f

∂t
+

1

2
b2 ∂2f

∂x2
+ a

∂f

∂x

)
dt + b

∂f

∂x
dWt. (5.4)

Here, of course, the derivatives ∂f/∂t, ∂f/∂x and ∂2f/∂x2 are valued at x = Xt.

The second order differential operator

L =
1

2
b2 ∂2

∂x2
+ a

∂

∂x
(5.5)
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is called the generator of the diffusion.

The generators of diffusions arise naturally in connection with elliptic and parabolic par-
tial differential equations, and in certain cases there are natural probabilistic interpretations
of the solutions of these equations.

These results form the basis of the importance of PDE methods in finance, and have numer-
ous practical applications. We give a few examples.

(a) Consider the parabolic equation

∂ψ

∂t
= Lψ, (5.6)

subject to the initial condition ψ(0, x) = f(x), for some prescribed continuous function f .

Now let E
x denote the expectation operator. Here, the superscript x indicates that we

assume that initially X0 = x.

Under appropriate technical assumptions, the solution of (5.6) is given by

ψ(t, x) = E
x[f(Xt)]. (5.7)

(b) A more general result is the following. Consider the partial differential equation

∂ψ

∂t
= Lψ − gψ + h, (5.8)

subject to the initial condition ψ(0, x) = f(x).

Here, g(x) ≥ 0, h(t, x) and f(x) are prescribed continuous functions.

Then, under suitable technical assumptions, the solution of (5.8) can be expressed in the
form

ψ(t, x) = E
x

[∫ t

0

exp

(
−

∫ u

0

g(Xs) ds

)
h(u,Xu) du + exp

(
−

∫ t

0

g(Xs) ds

)
f(Xt)

]
. (5.9)

This result is known as the Feynman-Kac formula.

(c) We now turn to a different kind of result, involving stopping times. Let f(x) be a
smooth function, and let τ be a stopping time such that E

x[τ ] < ∞.

We recall that τ is a stopping time relative to the filtration {Ft} if for every t the event
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{τ ≤ t} is Ft-measurable.

Intuitively, this means that once we reach any given time t, we can determine whether
the even has occurred or not.

Then Dynkin’s formula says that

E
x[f(Xτ )] = f(x) + E

x

[∫ τ

0

Lf(Xs) ds

]
. (5.10)

(d) Another very useful result is the so-called Kolmogorov forward equation, also known as
the Fokker-Planck equation.

This is a partial differential equation for the probability density function ρ(t, x) of Xt:

∂ρ

∂t
=

1

2

∂2

∂x2
(b2ρ) − ∂

∂x
(aρ). (5.11)

Given an initial distribution ρ(0, x) for X0, we can work out the distribution of Xt at later
times t by solving this equation.

We see, for example, that if a = 0 and b = 1 is a constant, then the diffusion is a Brownian
motion and the Fokker-Planck equation reduces to the heat equation.

These results have various multi-dimensional generalisations.

5.3 Derivation of the bond-pricing equation

Let us return to the bond-price process PtT = P (t, rt, T ), t ∈ [0, T ].

For each fixed value of T , we can use Itô’s lemma to obtain

dP (t, rt, T ) =

(
∂P

∂t
+ µ

∂P

∂r
+ 1

2
σ2 ∂2P

∂r2

)
dt +

(
σ

∂P

∂r

)
dWt. (5.12)

The bracketed expressions are valued at (t, rt).

In the case of an interest rate system driven by a single Brownian motion, the no-arbitrage
dynamics of PtT are given by

dPtT = (rt + λtΩtT )PtT dt + ΩtT PtT dWt. (5.13)
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Equating these two relations we see that the volatility process is given by

ΩtT = σ(t, rt)
1

P (t, rt, T )

∂P (t, rt, T )

∂r
. (5.14)

Comparison of the drift terms appearing in (5.12) and (5.13) then allows us to deduce that
the risk premium process λt must be of the form

λt = λ(t, rt), (5.15)

for some function λ(t, r) of two variables.

In the light of these observations, we can equate the drifts in (5.12) and (5.13) to obtain the
following PDE:

∂P

∂t
+ µ

∂P

∂r
+ 1

2
σ2 ∂2P

∂r2
= rP + λσ

∂P

∂r
. (5.16)

This is the bond-pricing equation for the short-rate state variable models.

We require a solution of this PDE subject to the terminal condition PTT = 1, or equiv-
alently, P (T, r, T ) = 1 for all r.

5.4 Solution and calibration of the bond pricing equa-

tion

To obtain an interest rate model by this technique, we first need to specify the functions
µ(t, r), σ(t, r) and λ(t, r).

Then we solve the stochastic differential equation (5.2) for the process rt, t ≥ 0.

Ideally, we want diffusions such that rt > 0, for all t ≥ 0, but some models, particularly
older models such as the Vasicek model, do not necessarily have this property.

We then solve the partial differential equation (5.16) for P (t, r, T ) subject to the termi-
nal maturity condition P (T, r, T ) = 1, which must hold for all values of the variable r.

Finally, we may also wish to impose an initial condition P (0, r0, T ) = P0T , where

r0 = − (∂T P0T )|T=0 . (5.17)

This condition incorporates the initial discount function P0T into the dynamics.
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The “terminal” condition P (T, r, T ) = 1 is typical of the sort of information one needs
to obtain a unique solution of a parabolic equation such as (5.16), if we are told the func-
tions µ, σ and λ.

This is related to the fact that, subject to some technical considerations, the ordinary heat
equation

∂φ

∂t
=

1

2

∂2φ

∂x2
(5.18)

has a unique solution φ(t, x) if we supply the initial condition φ(0, x) = f(x).

It will thus not always be possible to impose an initial condition such as (5.17) as well.

This point is illustrated, for example, in the so-called “equilibrium” or “stationary” models,
for which µ, σ and λ do not depend on the variable t, and are functions of r alone.

In this case rt, t ≥ 0, is a stationary diffusion process.

Some well-known examples of models of this type are:

(a) the Vasicek model, for which µ(r) = k(θ− r), σ(r) = σ, and λ(r) = λ where k, θ, σ and
λ are constants;

(b) the CIR model, for which µ(r) = k(θ − r), σ(r) = σ
√

r and λ(r) = ξ
√

r/σ, where k, θ,
σ and ξ are constants.

In both cases, k and θ are taken to be positive.

In the CIR model we also require kθ > 1
2
σ2, which ensures that rt > 0, for all t ≥ 0, if

we assume that r0 > 0.

It should be noted that the CIR volatility parameter has different “dimensions” from the
Vasicek volatility parameter.

In these examples, the specification of the parameters k, θ, σ, λ, ξ and r0 is sufficient
to completely determine the initial discount function.

In other words, in a stationary short rate model we cannot expect to be able to incorpo-
rate an arbitrary initial yield curve.

Historically, this is one of the reasons why the “extended” models were developed. Origi-
nally, the goal of interest rate modelling was to determine, by equilibrium conditions, a finite
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dimensional ‘class’ of yield curves to which the actual yield curve would have to belong.

Thus, one way to incorporate initial conditions is to regard the functions µ, σ, λ as only
partially specified. For example, if we set

µ(t, r) = k(t)(θ(t) − r) and σ(t, r) = σ(t), (5.19)

then we obtain the so-called extended Vasicek model , due to Hull and White, and to Jamshid-
ian.

In this case, the disposable functions k(t), θ(t) and σ(t) are chosen so that the initial condi-
tion is satisfied for the discount function.

That only “uses up” one of the three functions (θ as it happens), so it is possible (in princi-
ple) to fix some other initial conditions as well, e.g. implied volatility data for certain classes
of interest rate options.

If sufficient initial “market” data is specified to fix all three functions, then we say that
the model has been calibrated .

There is no known general a priori principle that dictates which initial data should be
incorporated into an interest rate model.

The banking industry is still experimenting with this issue.

A more useful point of view, perhaps, is based on the idea of conditioning.

That is to say, the interest rate model is always conditioned on the data available, and
likewise the pricing of derivatives is always conditional on the information supplied regard-
ing the prices of other derivatives.

Of course, we might try to calibrate an equilibrium model to the initial yield curve, e.g.
by choosing the parameters k, θ, σ, λ and r0 in the case of Vasicek or CIR to fit the initial
term structure.

In practice, one expects this to be difficult since the initial (i.e. current) yield curve can
exhibit a good measure of highly tuned microstructure (e.g. with some rates specified down
to a basis point).

Also, due to spreads and variations between deals there is necessarily some ‘fuzziness’ in
the specification.
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It should be clear that a short-rate model is a fortiori a discount bond model, and is there-
fore an HJM model.

Thus, mathematically speaking, short rate models constitute a subset of the HJM class,
not a distinct class.

Sometimes it is said that ‘all’ HJM models are short rate models. This is true, but only if
one gives a rather different interpretation to the meaning of ‘short rate’ model. Usually it is
clear from context.
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Chapter 6

Theory of affine term structure models, including the Vasicek model and the
Cox-Ingersoll-Ross (CIR) model.

6.1 The Vasicek model

Let us consider in more detail the model of Vasicek (1977).

The short rate is assumed to follow a dynamical relation of the form

drt = k(θ − rt) dt + σ dWt. (6.1)

The constants k, θ and σ are taken to be positive, and have the following interpretation:

σ is the absolute volatility of the rate rt,

θ is the mean reversion level ,

k is the mean reversion rate.

Clearly, rt is a diffusion process.

The dynamics of rt are exactly solvable in the case of the Vasicek model. The result is
called an Ornstein-Uhlenbeck process, and the solution for rt is as follows:

rt = θ + (r0 − θ)e−kt + σ

∫ t

0

ek(s−t) dWs. (6.2)

One easily checks that (6.2) satisfies (6.1), subject to the initial condition r0.

The technique we use to solve (6.1) is to multiply each side of the equation by the inte-
grating factor ekt, and the result drops out quickly.
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The theory of this process is described in a well-known article by Doob.

From the formula for rt we can read off a number of qualitative features of the process.

For example, since E

[∫ t

0
eks dWs

]
= 0, we see that

E [rt] = θ + (r0 − θ)e−kt. (6.3)

This result shows that the mean of rt starts at r0, and then over time reverts to θ.

The ‘speed’ of this movement is governed by the constant k.

Also, we have

var [rt] =
σ2

2k

(
1 − e−2kt

)
. (6.4)

Thus the variance of rt is initially zero, and it increases to a maximum level given by 1
2
σ2/k.

The calculation of the variance involves a simple application of the Ito isometry.

In particular, if f(s, t) is deterministic, then

E

[(∫ t

0

f(s, t)dWs

)2
]

=

∫ t

0

f 2(s, t)ds. (6.5)

There is a characteristic time-scale 1/k associated with the mean-reversion rate. This de-
termines the time scale over which rt moves from r0 towards θ.

The bond pricing equation is exactly solvable in the Vasicek model if we assume the rel-
ative risk λ is a constant.

The solution can be written as follows:

P (t, rt, T ) = exp

(
1

k

(
1 − e−k(T−t)

)
(R∞ − rt) − (T − t)R∞ − σ2

4k3

(
1 − e−k(T−t)

)2
)

. (6.6)

The constant R∞ here is defined by

R∞ = θ − λσ

k
− σ2

2k2
. (6.7)

The significance of R∞ is that it represents the continuously compounded rate of interest
(yield) on a bond of very long maturity. This is seen as follows.
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We recall that, given the bond price PtT , the continuously compounded yield RtT is

PtT = exp (−(T − t)RtT ) . (6.8)

Inverting this relation we have

RtT = − 1

T − t
ln PtT . (6.9)

Hence in the present example we have

RtT = R + (rt − R)
1

k(T − t)

(
1 − e−k(T−t)

)
+

σ2

4k3(T − t)

(
1 − e−k(T−t)

)2
. (6.10)

Thus for fixed t, we have RtT → R as T → ∞.

On the other hand, we can also check that Rtt = rt. In other words, the yield on a very
short maturity bond is the short rate.

6.2 Affine models

The expression for the bond price in the Vasicek model can be simplified if we introduce the
variable u = T − t for the time to maturity , and set

Btu = Pt,t+u = P (t, rt, t + u). (6.11)

Here Btu represents the price at time t of a bond with u years until maturity.

We call u the tenor of the bond.

For convenience, let us define the function

f(u) =
1

k

(
1 − e−ku

)
. (6.12)

Then for the Vasicek bond price we have

Btu = exp

(
−f(u)rt + (f(u) − u)R − σ2

2k
f 2(u)

)
. (6.13)

We note that the exponent is a linear function of rt, and the coefficients are functions of u.

The class of interest rate models for which Btu = Pt,t+u can be put into the form

Btu = e−f(u)rt−g(u) (6.14)
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is of special interest. These are called the stationary affine models.

A short rate model generates a stationary discount bond system if rt is stationary and
Btu can be expressed in the form Btu = B(rt, u), where B(r, u) is a function of two variables.

If the bond price takes the more general form

PtT = e−F (t,T )rt−G(t,T ) (6.15)

for deterministic functions F (t, T ) and G(t, T ), then we have an extended affine model.

For example, it is an interesting exercise to show that in the case of an extended Vasicek
model , for which rt follows a process of the form

drt = k(t)(θ(t) − rt) dt + σ(t) dWt, (6.16)

where k(t), θ(t) and σ(t) are positive, deterministic functions, then the bond price system is
of the extended affine type.

In the extended Vasicek model (also sometimes known as the Hull-White model), it is a
straightforward exercise to show that

rt = r0e
−β(t) + e−β(t)

∫ t

0

eβ(s)θ(s) ds + e−β(t)

∫ t

0

eβ(s)σ(s) dWs, (6.17)

where

β(t) :=

∫ t

0

k(s) ds (6.18)

The relevant calculations follow the arguments given earlier.

In particular, for constant parameters, this reduces to the previous expression given for
the short rate process rt.

6.3 The CIR model

In this important and rather more complicated model (Cox, Ingersoll & Ross 1985), the
short rate is assumed to be a mean reverting square-root process, for which the dynamics are
given by:

drt = k(θ − rt) dt + σ
√

rt dWt. (6.19)
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The solution of this equation is not as easy as in the Vasicek model.

Nevertheless, its essential features can be revealed by writing the dynamics in integral form

rt = θ + (r0 − θ)e−kt + σ

∫ t

0

e−k(t−s)√rs dWs. (6.20)

The mean reverting property of rt is apparent.

We immediately infer the mean of rt:

E [rt] = θ + (r0 − θ)e−kt. (6.21)

By use of the Itô isometry we then obtain

var [rt] = E
[
(rt − E [rt])

2]
= σ2e−2kt

E

[∫ t

0

e2ksrsds

]
(6.22)

Substituting the expression for E [rs] into this and integrating, we get:

var [rt] =
σ2θ

2k

(
1 − e−kt

)2
+

σ2

k
r0e

−kt
(
1 − e−kt

)
. (6.23)

Thus for small t we have var [rt] 	 σ2tr0.

Whereas, for large t we have var [rt] → σ2θ/2k.

It is a subtle result due to Feller that:

(a) if r0 > 0, then rt ≥ 0, and

(b) if r0 > 0 and kθ > 1
2
σ2, then rt > 0 (strictly positive interest rates).

Now so far we have not yet considered the market price of risk.

To obtain a solution for the bond pricing equation it turns out that we need to assume
that the relative risk process is of the special form

λt =
ξ
√

rt

σ
(6.24)

where ξ is a constant.
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Then we can solve for PtT as a function P (t, rt, T ).

If we write PtT in the affine form

PtT = e−F (t,T )rt−G(t,T ) (6.25)

then the solution for F (t, T ) and G(t, T ) can be found in terms of k, θ, σ and ξ.

In particular, writing

P (t, r, T ) = e−F (t,T )r−G(t,T ), (6.26)

we see that the bond-pricing equation reduces to two conditions, namely

1 +
∂F

∂t
= (k + ξ)F + 1

2
σ2F 2 (6.27)

and

∂G

∂t
= −kθF. (6.28)

We need to solve these subject to the boundary conditions

F (T, T ) = 0, G(T, T ) = 0, and
∂F

∂t

∣∣∣∣
t=T

= 1. (6.29)

For convenience, we define the constants

ν := k + ξ, γ :=
√

ν2 + 2σ2 (6.30)

Then the solution is given by

F (t, T ) =
2(eγx − 1)

(γ + ν)(eγx − 1) + 2γ
(6.31)

e−G(t,T ) =

[
2γe(γ+ν)x

(γ + ν)(eγx − 1) + 2γ

] 2kθ
σ2

(6.32)

where x = T − t.
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Chapter 7

Overview of term structure frameworks. Admissible term structures and
term structure comparison. Dynamics of the term structure density. Positive
interest HJM volatility structure.

7.1 Overview of term structure frameworks

Dynamical models for interest rates suffer from the fact that it is difficult to isolate the
independent degrees of freedom in the evolution of the term structure.

The question is, which ingredients in the determination of an interest rate model can and
should be specified independently and exogenously?

We shall consider briefly two examples of this can be done for general interest rate models,
indicating as well the associated drawbacks.

Example 1. Dynamic models for the short rate. The independent degrees of freedom are
given by:

(a) the specification of the short rate rt as an essentially arbitrary Ito process, and

(b) a market risk premium λα
t (α = 1, 2, · · · , n).

The model for the discount bonds is

PtT =
1

Λt

Et

[
ΛT exp

(
−

∫ T

t

rsds

)]
. (7.1)

Here Et denotes conditional expectation with respect to the filtration Ft. The density mar-
tingale Λt is defined by

Λt = exp

(
−

∫ t

0

λsdWs − 1
2

∫ t

0

λ2
sds

)
. (7.2)
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where

λsdWs =
n∑

α=1

λα
s dW α

s (7.3)

An advantage of this general model is that rt and λα
t can be specified exogenously, and for

interest rate positivity it suffices to let the process rt be positive.

There are two disadvantages to this approach.

Firstly, the model is specified implicitly: the conditional expectation is generally difficult
to calculate. Secondly, the initial term structure is not fed in directly.

A further simplification can be achieved by introducing the state price density:

Vt = Λt exp

(
−

∫ t

0

rsds

)
. (7.4)

It follows that

PtT =
Et[VT ]

Vt

. (7.5)

Then it is sufficient to specify the state price density Vt alone, and we recover rt and λα
t

from the relation

dVt

Vt

= −rtdt − λtdWt. (7.6)

Example 2. The Heath-Jarrow-Morton framework. In this case the independent dynam-
ical degrees of freedom consist of:

(a) the initial term structure P0T ,

(b) the market risk premium process λα
t , and

(c) the forward short rate volatility process σα
tT for each maturity T .

The model for the discount bonds is

PtT = exp

(∫ T

t

ftsds

)
. (7.7)
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The forward short rates are

ftT = − ∂

∂T
ln P0T −

∫ t

s=0

σsT ΩsT ds +

∫ t

s=0

σsT (dWs + λsds), (7.8)

where

Ωα
tT = −

∫ T

u=t

σα
tudu. (7.9)

The advantage of the HJM framework is that it allows a direct input of the initial term
structure, as well as control over the volatility structure of the discount bonds.

A disadvantage of the HJM approach is that there is no guarantee of interest rate posi-
tivity, and it is not easy to impose a condition on σα

tT to achieve this.

Now we consider an alternative framework for isolating the independent degrees of free-
dom in interest rate dynamics that has the virtue of retaining the desirable features of both
examples cited above, while eliminating the undesirable features.

The key idea is the introduction of a term structure density process ρt(x) defined by

ρt(x) = − ∂

∂x
Btx. (7.10)

Here Btx denotes the system of bond prices at time t when we parameterise the bonds by
the tenor variable x = T − t (Musiela parameterisation), so

Btx = Pt,t+x. (7.11)

We make the assumption that Btx → 0 for large x.

It is then a straightforward exercise to verify that the interest rate positivity conditions

0 < Btx ≤ 1, and
∂

∂x
Btx < 0 (7.12)

are equivalent to the following relations on ρt(x):

ρt(x) > 0, and

∫ ∞

0

ρt(x)dx = 1. (7.13)

We therefore conclude that any positive interest rate model can be regarded as a random
process on the space of density functions on the positive real line.

58



The idea is that we treat the yield curve as a mathematical object in its own right, identified
as a “point” ρ lying in the space M of all possible yield curves.

With the specification of an initial yield curve ρ0 we model the resulting dynamics as a
random trajectory ρt in M. By bringing the structure of M into play it is possible both to
clarify the status of existing interest models, and also to devise new interest rate models.

7.2 Admissible term structures and term structure com-

parison.

There is a natural ‘information geometry’ associated with the space of yield curves.

Let t = 0 denote the present, and P0x a family of discount bond prices satisfying P00 = 1,
where x is the tenor (0 ≤ x < ∞).

We impose the condition that interest rates should always be positive with the following
criterion:

Definition. A term structure is said to be admissible if the discount function P0x is of
class C∞ and satisfies 0 < P0x ≤ 1, ∂xP0x < 0, and limx→∞ P0x = 0.

An admissible discount function can be viewed as a complementary probability distribution.
In other words, we can think of the tenor date as an abstract random variable X, and for
its distribution write

Pr[X < x] = 1 − P0x. (7.14)

The associated density function ρ(x) = −∂xP0x satisfies ρ(x) > 0 for all x, and∫ ∞

x

ρ(u)du = P0x.

We say that a density function is smooth if it is of class C∞ on the positive half-line
R

1
+ = [0,∞).

Proposition 1. The system of admissible term structures is isomorphic to the convex
space D(R1

+) of everywhere positive smooth density functions on the positive real line.

The requirement that P0x should be of class C∞ can be weakened, but in practice any term
structure can be approximated arbitrarily closely by a ‘nearby’ term structure with a smooth
density.

It is reasonable to insist that the forward short rate curve f0x = −∂x ln P0x is piecewise
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continuous and nonvanishing for all x < ∞.

Given a pair of term structure densities ρ1(x) and ρ2(x) we can define a distance function
φ12 on M by

φ12 = cos−1

∫ ∞

0

ξ1(x)ξ2(x)dx, (7.15)

where ξi(x) =
√

ρi(x). We call this angle the Bhattacharyya distance between the given
yield curves.

The geometrical interpretation of φ12 arises from the fact that the map ρ(x) → ξ(x) as-
sociates to each point of M a point in the positive orthant S+ of the unit sphere in the
Hilbert space L2(R1

+), and φ12 is the resulting spherical angle on S+.

Note that 0 ≤ φ < 1
2
π and that orthogonality can never be achieved if forward rates are

nonvanishing.

As a simple illustration we consider the family of discount bonds given by

P0x =

(
1 +

Rx

κ

)−κ

, (7.16)

where R and κ are constants.

In this case we have a flat term structure, with a constant annualised rate of interest R
assuming compounding at the frequency κ over the life of each bond.

For κ = 1 this reduces to the case of a flat rate on the basis of a simple yield, and in
the limit κ → ∞ we recover the case of a flat rate on the basis of continuous compounding.

For the density function ρ(x) = −∂xP0x associated with (7.16) we obtain

ρ(x) = R

(
1 +

Rx

κ

)−(κ+1)

. (7.17)

Let us write ρi(x) for the density corresponding to R = Ri (i = 1, 2) for a fixed value of κ.
A direct calculation of the integral (7.15) for κ = 1 gives

φ12 = cos−1

( √
R1R2

R1 − R2

log
R1

R2

)
. (7.18)

In the limit κ → ∞ (continuous compounding) we find that

φ12 = cos−1

(
2
√

R1R2

R1 + R2

)
. (7.19)
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Note that the bracketed term in (7.19) is the ratio of the geometric and arithmetic means of
the two rates. In this limit we have ρ(x) → Re−Rx.

7.3 Dynamics of the term structure density

Now let us consider the evolution of the term structure density.

We write PtT for the random value at time t of a discount bond that matures at time
T , where T ∈ R

1
+ and 0 ≤ t ≤ T , and assume, for each T , that PtT is an Ito process on the

interval t ∈ [0, T ]:

dPtT = mtT dt + ΣtT dWt. (7.20)

The absolute drift mtT and the absolute volatility process ΣtT are assumed to satisfy regu-
larity conditions sufficient to ensure that ∂T PtT is also an Ito process.

For interest rate positivity we require 0 < PtT ≤ 1 and ∂T PtT < 0.

Additionally we impose the asymptotic conditions limT→∞ PtT = 0, and limT→∞ ∂T PtT = 0.

Because PtT is positive, the forward short rate process ftT is an Ito process iff −∂T PtT

is an Ito process.

For no arbitrage we require the existence of an exogenous market risk premium process
λt such that

mtT = rtPtT + λtΣtT . (7.21)

We do not assume the bond market is complete. If the bond market is complete, however,
then λt is determined endogenously by the bond price system.

We introduce the Musiela parameterisation x = T − t, and write Btx = Pt,t+x for the
price at time t of a bond for which the time to maturity is x.

We have the following dynamics for Btx:

dBtx = (rt − ft,t+x)Btxdt + Σt,t+x(dWt + λtdt). (7.22)

Now consider the time dependent term structure density ρt(x) defined by (7.10), for which
we have the normalisation condition∫ ∞

x=0

ρt(x)dx = 1, (7.23)
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or equivalently ∫ ∞

u=t

ρt(u − t)du = 1. (7.24)

The relation

ρt(T − t) = ftT PtT (7.25)

allows us to deduce an interpretation of the normalisation condition. In particular, the
formula ∫ ∞

t

Ptuftudu = 1 (7.26)

says that the value at time t of a continuous cash flow in perpetuity that pays the small
amount ftudu at time u is always unity.

Thus we can think of ftu as defining the ‘convenience yield’ associated with a position in cash.

An analogous calculation shows that∫ ∞

t

P κ
tuftudu =

1

κ
(7.27)

for any positive value of the exponent κ.

This relation can be interpreted by saying that if we ‘fix’ the convenience yield (e.g., by
swapping the unit of cash for the corresponding future cash flow), and then rescale all the
interest rates Rtu by the same factor κ, so Rtu → κRtu for all u ≥ t, then the value of the
promised cash flow scales inversely with respect to κ.

Returning now to the evolutionary equation we write

ωtx = −∂xΣt,t+x. (7.28)

Then we obtain the following dynamics for ρt(x):

dρt(x) = (rtρt(x) + ∂xρt(x))dt + ωtx(dWt + λtdt). (7.29)

The process ωtx is subject to the constraint
∫ ∞

0
ωtxdx = 0, which implies that ωtx is of the

form

ωtx = ρt(x)(νt(x) − ν̄t), (7.30)

where νt(x) is unconstrained, and

ν̄t =

∫ ∞

0

ρt(u)νt(u)du. (7.31)
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It follows from equation (7.28) that the absolute discount bond volatility ΣtT is given in the
Musiela parameterisation by

Σt,t+x =

∫ ∞

u=x

ωtudu

=

∫ ∞

u=x

ρt(u)νt(u)du − ν̄tBtx. (7.32)

This relation has an interesting probabilistic interpretation. Suppose, in particular, we write
Ix(u) for the indicator function

Ix(u) = χ(u ≥ x), (7.33)

where χ(A) is unity if A is true and vanishes otherwise.

Then the bond price Btx can be written in the form of an abstract ‘expectation’:

Btx =

∫ ∞

u=0

ρt(u)Ix(u)du = Mt [Ix] , (7.34)

where

Mt[g] =

∫ ∞

u=0

ρt(u)g(u)du (7.35)

for any function g(x).

The absolute discount bond volatility can then be expressed as an abstract covariance of
the form

Σt,t+x = Mt [Ixνt] − Mt [Ix] Mt[νt]. (7.36)

We see that the bond volatility structure Σt,t+x is invariant under the transformation νt(x) →
νt(x) + αt, where αt is independent of x.

This ‘gauge’ freedom can be used to set λt = −ν̄t. Then λt and Σtx are both determined by
νt(x).

Proposition 2. The general admissible term structure evolution based on the filtration
generated by a Brownian motion Wt on H is a measure valued process ρt(x) on D(R1

+) that
satisfies

dρt(x) = (rtρt(x) + ∂xρt(x)) dt + ρt(x) (νt(x) − ν̄t) (dWt − ν̄tdt) , (7.37)
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where ν̄t =
∫ ∞

0
ρt(u)νt(u)du. The volatility structure νt(x) can be specified exogenously along

with the initial term structure density ρ0(x). The associated short rate process rt = ρt(0)
satisfies

drt =
(
r2
t + ∂xρt(x)|x=0

)
dt + rt(νt(0) − ν̄t)(dWt − ν̄tdt). (7.38)

The dynamical equation for the term structure density can be solved exactly as follows:

Proposition 3. The solution of the dynamical equation for ρt(x) in terms of the volatility
structure νt(x) and the initial term structure density ρ0(x) is

ρt(T − t) = ρ0(T )
exp

(∫ t

s=0
VsT dWs − 1

2

∫ t

s=0
V 2

sT ds
)

∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
, (7.39)

where

Vtu = νt(u − t). (7.40)

Proof∗. The second term in the drift on the right of (7.37) can be eliminated by setting
x = T − t, which gives us

dρt(T − t) = rtρt(T − t)dt + ρt(T − t) (νt(T − t) − ν̄t) (dWt − ν̄tdt) . (7.41)

Integrating this relation and separating out the terms involving ν̄t we obtain

ρt(T − t) = ρ0(T )
exp

(∫ t

s=0
rsds +

∫ t

s=0
νs(T − s)dWs − 1

2

∫ t

s=0
ν2

s (T − s)ds
)

exp
(∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2

sds
) . (7.42)

It follows by use of the definition (7.40) that

ρt(T − t) = ρ0(T )
exp

(∫ t

s=0
rsds +

∫ t

s=0
VsT dWs − 1

2

∫ t

s=0
V 2

sT ds
)

exp
(∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2

sds
) . (7.43)

Then with an application of the normalisation condition (7.24) we deduce as a consequence
of (7.43) that

exp

(
−

∫ t

s=0

rsds +

∫ t

s=0

ν̄sdWs − 1
2

∫ t

s=0

ν̄2
sds

)

=

∫ ∞

u=t

ρ0(u) exp

(∫ t

s=0

VsudWs − 1
2

∫ t

s=0

V 2
suds

)
du. (7.44)

When this relation is inserted in the denominator of (7.43), we immediately obtain (7.39).
♦
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7.4 Positive interest HJM volatility structure.

It is interesting in this connection to note, by setting T = t in (7.39), that the short rate
process is given by

rt = ρ0(t)
exp

(∫ t

s=0
VstdWs − 1

2

∫ t

s=0
V 2

stds
)

∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (7.45)

We observe, in particular, that in a deterministic model, with Vst = 0, this formula reduces
to rt = ρ0(t)/

∫ ∞
t

ρ0(u)du, or, in other words, rt = f0t.

For the market risk premium process it follows from (7.31) together with the relation λt = −ν̄t

that

λα
t = −

∫ ∞
u=t

ρ0(u)V α
tu exp

(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (7.46)

These formulae show that, given the initial term structure density ρ0(x) and the volatility
structure νt(x), we can reconstruct the short rate process and the market risk premium pro-
cesses.

We deduce from (7.39) that the corresponding formula for the bond price process is

PtT =

∫ ∞
u=T

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (7.47)

For the unit-initialised money market account Bt, satisfying dBt = rtBtdt and B0 = 1, we
have

Bt =
exp

(∫ t

s=0
ν̄sdWs − 1

2

∫ t

s=0
ν̄2

sds
)

∫ ∞
u=t

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
, (7.48)

which follows directly from (7.44).

The density martingale Λt is given by

Λt = exp

(∫ t

s=0

ν̄sdWs − 1
2

∫ t

s=0

ν̄2
sds

)
, (7.49)
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For the state price density we have

Zt =

∫ ∞

u=t

ρ0(u) exp

(∫ t

s=0

VsudWs − 1
2

∫ t

s=0

V 2
suds

)
du. (7.50)

As a consequence we can then check that Zt = Λt/Bt.

If we divide (7.39) by (7.47) we are led to a recipe for constructing the general positive
interest HJM forward short rate system ftT in terms of freely specified data:

ftT = ρ0(T )
exp

(∫ t

s=0
VsT dWs − 1

2

∫ t

s=0
V 2

sT ds
)

∫ ∞
u=T

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (7.51)

Note that when T = t this expression reduces to formula (7.45). A short calculation then
allows us to deduce the following result:

Proposition 4. The general positive interest HJM forward short rate volatility structure
is

σtT = ftT (VtT − UtT ) (7.52)

where ftT is given by (7.51), and

UtT =

∫ ∞
u=T

ρ0(u)Vtu exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du∫ ∞
u=T

ρ0(u) exp
(∫ t

s=0
VsudWs − 1

2

∫ t

s=0
V 2

suds
)

du
. (7.53)

The initial term structure density ρ0(x) and the volatility structure Vtu (u ≥ t) are freely
specifiable.

In other words, in the HJM theory the forward short rate volatility is not freely specifiable
if the interest rates are to be positive.

Instead it must be of the form (7.52) where VtT is freely specifiable, along with the ini-
tial term structure.

This result establishes a connection between the present approach and Example 2, and
resolves the outstanding difficulty associated with that example.
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Figure 7.1: The system of admissible term structures. A smooth positive interest term
structure can be regarded as a point in D(R1

+), the convex space of smooth and everywhere
positive density functions on the positive half-line R

1
+. Associated with each point ρ ∈ D(R1

+)
there is a ray ξ lying in the positive orthant S+ of the unit sphere S in the Hilbert space
H = L2(R1

+). A dynamical trajectory on D(R1
+) can then be mapped to a corresponding

trajectory in S+.
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Chapter 8

Construction of admissible models. Moment analysis and the role of per-
petual annuity. The information content of the term structure. Entropic
calibration. Canonical term structures.

8.1 Construction of admissible models

As a consequence of Proposition 3 we see that the general term structure density can also
be expressed in the form

ρt(x) =
ρ0(t + x)Mt,t+x∫ ∞

u=0
ρ0(t + u)Mt,t+udu

, (8.1)

or equivalently

ρt(T − t) =
ρ0(T )MtT∫ ∞

u=t
ρ0(u)Mtudu

, (8.2)

where for each T the process MtT is a martingale (0 ≤ t ≤ T < ∞) such that MtT > 0 and
M0T = 1.

The process MtT is the exponential martingale associated with VtT .

This expression for ρt(T − t) arises also in the Flesaker and Hughston framework, in which
the discount bond system has the representation

PtT =

∫ ∞
u=T

ρ0(u)Mtudu∫ ∞
u=t

ρ0(u)Mtudu
. (8.3)

Quasi-lognormal models. An interesting class of specific models is obtained if we restrict
the Brownian motion to be one-dimensional and let the volatility structure Vtu = νt(u − t)
appearing in (7.39) be deterministic.
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Then Vtu is a function of two variables defined on the region 0 ≤ t ≤ u < ∞. The result-
ing term structure model has a good deal of tractability and exhibits some desirable features.

In particular, the function Vtu has the right structure for allowing a calibration of the model
to a family of implied caplet volatilities for a fixed strike (e.g., at-the-money).

If the dimensionality of the Brownian motion is increased then other strikes can be in-
corporated as well.

Semi-linear models∗. Another interesting special case can be obtained if we write

ρ0(u) =

∫ ∞

0

e−uRφ(R)dR, (8.4)

for the initial term structure density, where φ(R) is the inverse Laplace transform of ρ0(u).

Then for certain choices of the martingale family Mtu the integration in (8.3) can be carried
out explicitly.

An example can be obtained as follows. Let Mt be a martingale (0 ≤ t < ∞) and Qt

the associated quadratic variation satisfying (dMt)
2 = dQt, and set

MtT = exp
(
(α + βT )Mt − 1

2
(α + βT )2Qt

)
. (8.5)

This model arises if we put

νt(T − t) = (α + βT )σt (8.6)

in Proposition 2, where the process σt is defined by dMt = σtdWt. Then the u-integration
can be carried out explicitly in the expressions for ρt(x) and PtT , and the results can be
expressed in closed form:

PtT =

∫ ∞
R=0

φ(R)
(∫ ∞

u=T
e−uRMtudu

)
dR∫ ∞

R=0
φ(R)

(∫ ∞
u=t

e−uRMtudu
)
dR

. (8.7)

Here the bracketed expression in the integrand in the numerator is given by:∫ ∞

u=T

e−uRMtudu =
1

|β|√Qt

exp

(
(Mt − R/β)2

2Qt

+ αR/β

)

×N
(
±Mt − R/β√

Qt

∓ (α + βT )
√

Qt

)
, (8.8)
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where

N (x) =
1√
2π

∫ x

−∞
exp

(−1
2
ξ2

)
dξ (8.9)

is the normal distribution function, and the ± sign is chosen in accordance with the sign of β.

For example, in the case of an initial term structure with a constant continuously com-
pounding rate r, corresponding to the choice φ(R) = δ(R − r), we obtain

PtT =
N

(
±Mt−r/β√

Qt
∓ (α + βT )

√
Qt

)
N

(
±Mt−r/β√

Qt
∓ (α + βt)

√
Qt

) . (8.10)

8.2 Moment analysis and the role of the perpetual an-

nuity

Some interesting aspects of the term structure dynamics are captured in the properties of
the moments of ρt(x), defined by

x̄t =

∫ ∞

0

xρt(x)dx, x̄
(n)
t =

∫ ∞

0

(x − x̄t)
nρt(x)dx (8.11)

where n ≥ 2.

For example, in the case of a continuously compounded flat yield curve given at t = 0
by the density function ρ0(x) = Re−Rx, we have x̄0 = R−1, x̄

(2)
0 = R−2, x̄

(3)
0 = 3R−3 and

x̄
(4)
0 = 9R−4.

The first four moments, if they exist, are the mean, variance, skewness and kurtosis of
the distribution of the ‘abstract’ random variable X characterising the term structure.

The mean x̄t is a characteristic time-scale associated with the yield curve, and its inverse
1/x̄t is an associated characteristic yield. The financial significance of x̄t will be discussed
shortly.

For simplicity we introduce the following notation for the variance process:

vt =

∫ ∞

0

x2ρt(x)dx − (x̄t)
2. (8.12)

We assume that ρt(x) and the discount bond volatility Σt,t+x fall off sufficiently rapidly to
ensure that limx→∞ xnρt(x) = 0 and limx→∞ xnΣt,t+x = 0 for n = 1, 2, and that the integrals∫ ∞

0
xnρt(x)dx and

∫ ∞
0

xn−1Σt,t+xdx exist for n = 1, 2.
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Proposition 5. The mean x̄t of an admissible arbitrage-free term structure satisfies

dx̄t = (rtx̄t − 1)dt + Σ̄t(dWt + λtdt), (8.13)

where Σ̄t =
∫ ∞

0
Σt,t+xdx.

There is a critical value x̄∗
t for the first moment given by

x̄∗
t =

1

rt

(1 − λtΣ̄t), (8.14)

such that when x̄t > x̄∗
t the drift of x̄t is positive, and the drift increases as x̄ increases.

When x̄t < x̄∗
t , the drift of x̄t is negative, and the drift decreases further as x̄t decreases.

The first moment x̄t has the natural financial interpretation of being the value at time t
of a perpetual annuity paid on a continuous basis.

In particular, an integration by parts shows that

x̄t =

∫ ∞

0

Btxdx, (8.15)

corresponding to an annuity of one unit of cash per year paid continuously in perpetuity.

Higher moments of the term structure density can then be interpreted in terms of the du-
ration, convexity, etc., of the annuity—in other words, as a measure of the sensitivity of the
value of the annuity to an overall change in interest rate levels.

For example, let us write

Btx = e−xrt(x), (8.16)

where rt(x) is the continuously compounded rate at time t for tenor x, then under a small
parallel shift ∆r in the yield curve given by

rt(x) −→ rt(x) + ∆r, (8.17)

we have, to first order,

Btx −→ (1 − x∆r)Btx. (8.18)

Therefore, to first order the value of the annuity changes by the amount

x̄t −→ x̄t − 1
2
∆r

∫ ∞

0

x2ρt(x)dx, (8.19)
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where in obtaining the second term we use an integration by parts.
Proposition 6. Under a parallel shift in the yield curve the change ∆x̄t in the value of

the perpetual is

∆x̄t = −Dtx̄t∆r, (8.20)

where the duration Dt of the perpetual annuity is given by

Dt =
1
2

∫ ∞
0

x2ρt(x)dx∫ ∞
0

xρt(x)dx
. (8.21)

8.3 The information content of the term structure

Now we introduce another important example of a functional of the term structure, the
Shannon entropy of the density function ρt(x). This is defined by

St[ρ] = −
∫ ∞

0

ρt(x) ln ρt(x)dx. (8.22)

Because ρt(x) has dimensions of inverse time, St[ρ] is defined only up to an overall addi-
tive constant. The difference of the entropies associated with two yield curves therefore has
an invariant significance.

One can think of St[ρ] as being a measure of the ‘information content’ of the term structure
at time t. In particular, the higher the value of St[ρ], the lower the information content.

Since ρt(x) is subject to a dynamical law, we can infer a corresponding dynamics for the
entropy.

Proposition 7. The entropy associated with an admissible arbitrage-free term structure
dynamics obeys the evolutionary law

dSt =
(
rt(St + ln rt − 1) + 1

2
Γt

)
dt +

(∫ ∞

0

νt(x)st(x)dx − ν̄tSt

)
dW ∗

t (8.23)

where dW ∗ = dWt + λtdt, st(x) = −ρt(x) ln ρt(x) is the entropy density, and the process Γt

is defined by

Γt =

∫ ∞

0

(νt(x) − ν̄t)
2ρt(x)dx. (8.24)
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8.4 Entropic calibration

The principle of entropy maximisation can be used as the basis for a new yield curve cali-
bration methodology.

In particular, given a set of data points on a yield curve, the ‘least biased’ term structure
can be determined by maximising the Shannon entropy subject to the given data constraints.

The general idea behind the maximisation of entropy under constraints can be sketched
as follows.

Suppose that, given a function H(X) of a random variable X, we are told that the ex-
pectation of H(X) with respect to an unknown distribution with density ρ(x) is U , i.e.,∫ ∞

0

H(x)ρ(x)dx = U. (8.25)

The aim then is to find the density ρ(x) that is least biased and yet consistent with the
information (8.25).

In other words, we wish to eliminate any superfluous information in ρ(x).

We also have the normalisation condition∫ ∞

0

ρ(x)dx = 1. (8.26)

Subject to the constraints (8.25) and (8.26) we then determine the density ρ(x) that max-
imises the entropy.

This is carried out by introducing Lagrange multipliers, and considering the variational
relation

δ

δρ
(−ρ ln ρ − λρH − νρ) = 0. (8.27)

The solution is

ρ(x) = exp (−λH(x) − ν − 1) , (8.28)

where λ and ν are determined implicitly.

Let us illustrate the idea by considering the situation in which we are given a set of data
points on the yield curve together with the value of a perpetual annuity.
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The problem is to calibrate the initial term structure to the given data.

This example is interesting because if we are given only the value x̄0 of the perpetual annuity,
then the maximum entropy term structure is

ρ0(x) = Re−Rx, (8.29)

where R = 1/x̄0, and thus P0x = e−Rx for the discount function.

Therefore, we see that it is the annuity constraint that leads to the desired exponential
‘die-off’ of the discount function.

This feature is preserved in the more elaborate examples we discuss below, where bond
data-points are introduced as well.

In the more general situation, the bond prices with a given set of tenors xi (i = 1, 2, · · · , r)
are observed to be B0xi

= ηi.

In addition, we have the initial value x̄0 = ξ of the perpetual annuity.

Subject to these constraints, the maximum entropy term structure is determined by the
variational principle

δ

δρ

(
−ρ(x) ln ρ(x) − λρ(x)x −

r∑
i=1

µiρ(x)Ixi
(x) − νρ(x)

)
= 0, (8.30)

where Ixi
(x) = 1 for x ≥ xi and vanishes otherwise.

The parameters λ, µi and ν are determined by the normalisation condition and data con-
straints ∫ ∞

x=0

xρ(x)dx = ξ, and

∫ ∞

x=0

Ixi
(x)ρ(x)dx = ηi. (8.31)

The solution is

ρ(x) =
1

Z(λ, µ)
exp

(
−λx −

r∑
i=1

µiIxi
(x)

)
, (8.32)

where

Z(λ, µ) =

∫ ∞

0

exp

(
−λx −

r∑
i=1

µiIxi
(x)

)
dx. (8.33)
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The Lagrange multipliers are then determined implicitly by

−∂ ln Z

∂λ
= ξ and − ∂ ln Z

∂µi
= ηi. (8.34)

As a consequence of (8.32) we see that pointwise calibration to the discount bond prices,
along with the information of the price of the annuity, gives a piecewise exponential term
structure density function.

If there is further information at our disposal, then that can also be included in the system
of constraints so that all available information is used efficiently in the calibration procedure.

We now consider in more detail the simple case where the observed data consist of two pieces
of information—the bond price P0T1 for a fixed maturity date T1, and the value ξ = x̄0 of
the perpetual annuity.

This is a rather artificial example; nevertheless it serves to illuminate the main points of
the procedure.

The variational problem implies the existence of three rates r0, r1, and R such that the
term structure density is

ρ(x) =

{
r0e

−Rx for 0 ≤ x < T1

r1e
−Rx for T1 ≤ x < ∞.

(8.35)

The constraints are given by: ∫ T1

0

ρ(x)dx = 1 − P0T1 (8.36)

for the bond price; ∫ ∞

0

ρ(x)dx = 1 (8.37)

for the normalisation; and ∫ ∞

0

xρ(x)dx = ξ (8.38)

for the perpetual annuity.

A short calculation shows that these relations reduce to:

1 − r0

R

(
1 − e−RT1

)
= P0T1 , (8.39)
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r1 − r0

R
e−RT1 +

r0

R
= 1, (8.40)

r1 − r0

R
e−RT1

(
T1 +

1

R

)
+

r0

R2
= ξ. (8.41)

Clearly, given P0T1 and ξ, we can proceed to infer values of r0, r1, and R.

In particular, equation (8.39) allows us to deduce the bond price P0T1 if we are given r0

and R, whereas we can use (8.40) to eliminate r1 in (8.41) to obtain

1

R
+ T1

(
1 − r0

R

)
= ξ (8.42)

for the value of the perpetual in terms of r0 and R.

Alternatively, given the initial short rate r0 and the value of the perpetual ξ we have

R =
1 − r0T1

ξ − T1

. (8.43)

This value of R can then be inserted in (8.39) to determine the bond price.

The scale factor r1 is given by

r1 = RP0T1e
RT1 . (8.44)

Thus we obtain

ρ(x) =

{
r0e

−Rx (0 ≤ x < T1)
RP0T1e

−R(x−T1) (T1 ≤ x < ∞),
(8.45)

for the term structure density, and

P0x =

{
1 − r0

R

(
1 − e−Rx

)
(0 ≤ x < T1)

P0T1e
−R(x−T1) (T1 ≤ x < ∞),

(8.46)

for the discount function, from which yield curve R0x can be constructed via the standard
prescription

R0x = − ln P0x

x
, (8.47)

and it should be evident by inspection that R0x is continuous in x.

In this example we can alternatively regard the short rate r0 and the bond price P0T1 as
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the actual ‘independent’ data. Then (8.39) can be used to deduce R, which allows us to
infer the annuity price ξ by use of (8.42).

This illustrates the point that, although we assume from the outset the existence of a per-
petual, we can infer an implied value of that instrument by the use of other market data
(e.g., the short rate).

The same idea carries forward in the case where we have multiple data points for the bond
prices, for a given set of n maturity dates Tj (j = 1, 2, · · · , n), and we are led to a simple
iterative algorithm for determining the term structure in terms of the short rate and the
specified bond data points.

Proposition 8. Given a set of bond prices P0Tj
(j = 1, 2, · · · , n) and the existence of

the value of the perpetual annuity, the maximum entropy term structure density function is

ρ(x) =
n∑

k=0

ITkTk+1
(x)rke

−Rx. (8.48)

Here T0 = 0, Tn+1 = ∞, ITkTk+1
(x) = 1 if x ∈ [Tk, Tk+1) and vanishes otherwise, r0 is the

short rate, and

rk = R
P0Tk

− P0Tk+1

e−RTk − e−RTk+1
. (8.49)

The value of R is determined from equation (8.39).

The corresponding discount function P0x is given by

P0x = P0Tk
− rk

R
(e−RTk − e−Rx) (8.50)

for x ∈ [Tk, Tk+1).

Proof. To see this, we insert the piecewise exponential density function (8.48) into a
series of constraints of the form (8.36) for the bond prices, together with the normalisation
constraint (8.37) and the perpetual constraint (8.38).

Then the bond price constraints give rise to a set of relations of the form

rk

R
(e−RTk − e−RTk+1) = P0Tk

− P0Tk+1
, (8.51)

for k = 0, 1, · · · , n − 1.

In particular, for k = 0, we recover (8.39), which can be used to solve for R in terms of
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the short rate r0 and the bond price P0T1 .

Then, by substitution of this in (8.51) for general k, and the use of further bond price
data, we obtain the other rates rk (k �= n).

As for rn, we note that if we divide the integration range in (8.36) into two regions [0, Tn]
and [Tn,∞], then the normalisation condition becomes

rn

R
e−RTn = P0Tn , (8.52)

which determines rn in terms of R and P0Tn .

Substitution of these results in the perpetual constraint

1

R

n∑
k=1

(rk − rk−1)e
−RTk

(
Tk +

1

R

)
+

r0

R2
= ξ (8.53)

allows the implied value ξ of the perpetual annuity to be determined from the short rate r0

and the bond price data P0Tj
.

The discount function can be determined by use of the fact that

1 − P0x =

∫ x

0

ρ(u)du

=

∫ Tk

0

ρ(u)du + rk

∫ x

Tk

e−Rudu (8.54)

= 1 − P0Tk
+ rk

∫ x

Tk

e−Rudu,

when x ∈ [Tk, Tk+1). ♦

Next, we turn to the problem: Given an existing term structure ρ2(x) and a set of new
data points, how does one determine the new term structure that is ‘closest’ to the previous
one?

This can be addressed by use of the statistical J-divergence:

J(ρ1, ρ2) = S
(

1
2
(ρ1 + ρ2)

) − 1
2
(S(ρ1) + S(ρ2)) . (8.55)

Here, as before, the entropy is defined by

S(ρ) = −
∫ ∞

0

ρ(x) ln ρ(x)dx. (8.56)
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Statistical J-divergence defines the ‘separation’ between ρ1 and ρ2.

The solution to the problem here is given by the ρ1 that minimises the J-divergence, subject
to the constraints: ∫ ∞

0

ρ1(x) = 1 (8.57)

and ∫ ∞

Ti

ρ1(x)dx = P0Ti
. (8.58)

Introducing Lagrange multipliers µi, we must solve for

δ

δρ1

(
J(ρ1, ρ2) −

n∑
i=0

µi

∫ ∞

0

ITi
(x)ρ1(x)dx

)
= 0. (8.59)

The solution can be written as:

ρ1(x) =
n∑

k=0

ITkTk+1
(x)

1

2 exp(δk) − 1
ρ2(x). (8.60)

Here, T0 = 0, Tn+1 = ∞, and

δk = −2
k∑

i=0

µi (8.61)

Let us write ∫ ∞

Ti

ρ2(x)dx = Q0Ti
, (8.62)

This is just the bond prices in the ‘old’ term structure.

To eliminate Lagrange multipliers, we note that∫ Ti

0

ρ1(x)dx = 1 − P0Ti
, (8.63)

which implies

1 − P0Ti
=

i−1∑
j=0

∫ Tj+1

Tj

ρ1(x)dx

=
i−1∑
j=0

1

2 exp(δj) − 1

∫ Tj+1

Tj

ρ2(x)dx. (8.64)
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If we also recall that ∫ Tj+1

Tj

ρ2(x)dx = Q0Tj
− Q0Tj+1

(8.65)

then the solution for this calibration problem can be summarised in the following form.

Proposition 9. Given a set of bond prices P0Tj
(j = 1, 2, · · · , n) and an existing term

structure density ρ̂(x), the minimum J-divergence term structure density function is

ρ(x) =

(
n∑

k=0

ITkTk+1
(x)∆k

)
ρ̂(x) (8.66)

Here T0 = 0, Tn+1 = ∞, ITkTk+1
(x) = 1 if x ∈ [Tk, Tk+1) and 0 otherwise, and

∆k =
P0Tk

− P0Tk+1

Q0Tk
− Q0Tk+1

(8.67)

The corresponding discount function P0x is

P0x = P0Tk
− P0Tk

− P0Tk+1

Q0Tk
− Q0Tk+1

(Q0Tk
− Q0x) (8.68)

for x ∈ [Tk, Tk+1).

8.5 Canonical term structures∗

As an interesting example of a class of models that arises as a consequence of the maximisa-
tion of an entropy functional under constraints, we let the term structure density be of the
form

ρt(T − t) =
exp (−gtT − θthtT )∫ ∞

u=t
exp (−gtu − θthtu) du

, (8.69)

where θt is a one-dimensional Ito process, and the functions gtT and htT are deterministic,
defined over the range 0 ≤ t ≤ T < ∞.

At each time t the term structure density thus defined belongs to an exponential family
parameterised by the value of θt. If we set

Z(θ) =

∫ ∞

u=t

exp (−gtu − θthtu) du, (8.70)

then we find that all the moments of the function htT can be determined from the generating
function Z(θ) by formal differentiation.
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For example, for the first moment of htT we have∫ ∞

u=t

htuρt(u − t)du = −∂ ln Z(θ)

∂θ
. (8.71)

The corresponding bond price system can then be written in the Flesaker-Hughston form

PtT =

∫ ∞
u=T

Ntudu∫ ∞
u=t

Ntudu
, (8.72)

where NtT = exp(−gtT − θthtT ). By Ito’s lemma, it follows that NtT satisfies

dNtT

NtT

= −
(
ġtT + θtḣtT

)
dt − htT dθt + 1

2
h2

tT (dθt)
2, (8.73)

where the dot indicates partial differentiation with respect to t, so ġtT = ∂tgtT and ḣtT =
∂thtT .

We assume that the trajectory θt of the canonical parameter satisfies a stochastic equa-
tion of the form

dθt = αtdt + βtdWt. (8.74)

The no-arbitrage condition implies that NtT is a positive martingale. Therefore, the drift of
NtT vanishes for all T :

ġtT + ḣtT θt + αthtT = 1
2
β2

t h
2
tT . (8.75)

This relation implies that the processes αt and βt determining the dynamics of θt are of the
form

αt = Atθt + Bt, and 1
2
β2

t = Ctθt + Dt (8.76)

where the functions At, Bt, Ct and Dt are deterministic.

It follows that θt is a square-root process. Substitution of these equations into (8.75) gives
a set of Bernoulli equations of the form

ḣtT + AthtT − Cth
2
tT = 0 (8.77)

for htT and

ġtT + BthtT − Dth
2
tT = 0 (8.78)
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for gtT .

The general solution of (8.77) is

1

htT

= − exp

(∫ t

0

Audu

)(∫ t

0

Cu

exp(
∫ u

0
Avdv)

du + ET

)
, (8.79)

where ET is an function of T , determined by the initial term structure.

To proceed further, let us consider the special case where Dt = 0 and θt is positive and
mean-reverting. Then Bt and Ct are both positive and At is negative, and for gtT we have

gtT = −
∫ t

0

BuhuT du + FT , (8.80)

where FT is another arbitrary function. In the elementary case where At, Bt and Ct are
constants, the functions htT and gtT are given by

htT =
A

C − GT eAt
(8.81)

and

gtT =
B

C
ln

(
GT − Ce−At

GT − C

)
− FT , (8.82)

where GT = AET + C. The condition that htT should be positive ensures that GT is of the
form GT = CHT e−AT where the function HT satisfies HT > 1 but is otherwise arbitrary.

For NtT we then obtain:

NtT =

(
HT − eAT

HT − eA(T−t)

)B
C

exp

(
Aθt

C(HT e−A(T−t) − 1)
− FT

)
. (8.83)

The function FT is then determined by the specification of the initial term structure for t = 0.

In particular, because N0T = ρ0(T ), we obtain

NtT = ρ0(T )

(
HT − eAT

HT − eA(T−t)

)B
C

exp

(
Aθt

C(HT e−A(T−t) − 1)
− Aθ0

C(HT e−AT − 1)

)
. (8.84)
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Chapter 9

Review of the Flesaker-Hughston framework. Integral formulae for discount
bonds. Supermartingales and potentials. Rational log-normal model.

9.1 Risk-adjusted discount bond volatility

We return now to the general theory of interest rate dynamics, and establish another ex-
pression for the discount bonds, which we call the integral representation.

This representation has the advantage of bringing out the positive interest condition.

Recall that for the general arbitrage-free dynamics of a discount bond system we have the
following dynamics:

dPab

Pab

= ra da + Ωab (dWa + λa da). (9.1)

Here Pab is the value of a discount bond at time a that matures at time b, ra is the short
rate, Ωab is the bond volatility vector, and λa is the relative risk vector.

The economy is modelled by a probability space (Ω,F , P ) with filtration (Ft). We as-
sume that (Ft) is generated in a standard way by a multi-dimensional Brownian motion.

We recall the fact that under suitable technical conditions the solution to the dynamical
equation is

Pab = P0bBa exp

(∫ a

0

Ωsb (dWs + λs ds) − 1
2

∫ a

0

Ω2
sb ds

)
(9.2)

Here Ba is the unit-initialised money market account process.

The solution for Ba, obtained by setting Paa = 1, is

Ba = (P0a)
−1 exp

(
−

∫ a

0

Ωsa (dWs + λs ds) + 1
2

∫ a

0

Ω2
sa ds

)
. (9.3)

83



For the short-term interest rate ra, we have

ra = −∂a ln P0a +

∫ a

0

Ωsa∂aΩsa ds −
∫ a

0

∂aΩsa (dWs + λsds). (9.4)

Putting these ingredients together (inserting (9.3) into (9.2)) we have the formula

Pab = P0ab

exp
(∫ a

0
Ωsb (dWs + λs ds) − 1

2

∫ a

0
Ω2

sb ds
)

exp
(∫ a

0
Ωsa (dWs + λs ds) − 1

2

∫ a

0
Ω2

sads
) . (9.5)

Here, P0ab = P0b/P0a denotes the forward value of a b-maturity bond.

Recall that P0ab is the value negotiated today for purchase at time a of a b-maturity bond.

It will be useful to build an analogy with the single asset situation.

In that case we recall that for the dynamics of a non-dividend paying asset St we have

St = S0Bt exp

(∫ t

0

σs (dWs + λs ds) − 1
2

∫ t

0

σ2
s ds

)
. (9.6)

Then, introducing the density martingale, we deduce, under suitable technical conditions,
that the following ratio is a martingale:

ΛtSt

Bt

= exp

(∫ t

0

(σs − λs) dWs − 1
2

∫ t

0

(σs − λs)
2 ds

)
. (9.7)

In the case of interest rate dynamics, σs gets replaced by Ωsb, and a result similar to (9.7)
holds for each discount bond.

More specifically, we have

ΛaPab

Ba

= P0b exp

(∫ a

0

Vsb dWs − 1
2

∫ a

0

V 2
sb ds

)
(9.8)

where

Vab := Ωab − λa. (9.9)

The quantity Vab, which we call “risk-adjusted volatility”, plays a useful role in the theory
of interest rates.
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Note that Vab contains the information of both the discount bond volatility and the in-
terest rate market price of risk.

This is because of the constraint Ωaa = 0 (a maturing bond has zero volatility), which
implies that λa = −Vaa and that Ωab = Vab − Vaa.

Note that “risk premium” and “volatility” have the same units (inverse square-root time),
so it makes sense to combine them additively.

Now, setting Paa = 1, we obtain a formula for Λa/Ba, and for the discount bonds we get

Pab =
P0b exp

(∫ a

0
Vsb dWs − 1

2

∫ a

0
V 2

sb ds
)

P0a exp
(∫ a

0
Vsa dWs − 1

2

∫ a

0
V 2

sa ds
) . (9.10)

In this expression we note that, for each fixed value of b, the numerator is an exponential
martingale.

9.2 Integral representation for discount bonds

We have thus represented Pab as a quotient of the form

Pab =
∆ab

∆aa

, (9.11)

where ∆ab is a one-parameter family of positive martingales.

Here the martingale property holds with respect to the “natural” probability measure P .

We make technical assumptions sufficient to ensure that the bond price goes to zero for
large values of the maturity, and that the martingale property of ∆ab is preserved under
differentiation with respect to the maturity parameter.

We find then that ∆ab can be expressed in the form

∆ab =

∫ ∞

b

(−∂sP0s)Mas ds. (9.12)

Here Mas is a one-parameter family of martingales, initialised to unity at time zero (M0s = 1)
to ensure satisfaction of the initial condition ∆0b = P0b.

The argument that establishes the integral representation is as follows.
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Since limb→∞ Pab = 0 by assumption, we have limb→∞ ∆ab = 0, and thus

∆ab = −
∫ ∞

b

∂s∆as ds. (9.13)

By assumption, ∂s∆as is a martingale.

Since ∆0b = P0b, it follows that

Mab =
∂s∆as

∂sP0s

(9.14)

is a unit-initialised martingale, and thus we obtain (9.12).

In particular, for a positive interest rate model it is necessary and sufficient that initial
interest rates are positive, and that the martingale family Mas should be positive.

With these ingredients in place, we see that the discount bond process can be written in the
form:

Pab =

∫ ∞
b

(−∂sP0s)Mas ds∫ ∞
a

(−∂sP0s)Mas ds
. (9.15)

This is the “positive interest” integral representation for the general interest rate model.

By a “Flesaker-Hughston” model we usually mean any representation of the discount bonds
in the form (9.15) for some choice of the martingale family Mas.

One can verify by inspection that if initial interest rates satisfy the positivity conditions

0 < P0b ≤ 1 and ∂bP0b < 0. (9.16)

If the martingale family Mas is positive, then the positive interest conditions

0 < Pab ≤ 1 and ∂bPab < 0 (9.17)

are satisfied for future valuation dates, and for bonds of all maturities.

9.3 Integral representations in the risk-neutral mea-

sure

A representation of the form (9.15) exists for any measure equivalent to the natural measure.
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That is to say, in the absence of arbitrage, and with some technical conditions, given a
probability measure P̂ equivalent to the natural economic measure P , there exists a martin-
gale family Mas such that the discount bonds Pab are given by an integral representation of
the form (9.15).

In the case of a complete market the representation thus obtained is unique.

We note that if Mas represents the martingale family with respect to the natural proba-
bility measure P , then

M̂as =
Mas

Λa

(9.18)

is the appropriate new martingale family, with respect to a new measure P̂ , where Λa is the
change-of-measure density martingale.

This is because if Mt is any martingale with respect to P , then Mt/Λt is a martingale
with respect to P̂ , where P̂ is defined in terms of conditional expectation by

Êa[Xb] =
Ea[ΛbXb]

Λa

(9.19)

for any random variable which is measurable with respect to Fb.

Now by use of the risk neutral measure we have the bond valuation formula

Pab = BaÊa

[
1

Bb

]
. (9.20)

Here Ba = exp
(∫ a

0
rs ds

)
is the money market account.

By inspection we evidently have

∆ab = Êa

[
1

Bb

]
. (9.21)

Therefore we deduce that the martingale family for the risk-neutral measure is

M̂as = Êa

[
rs

(−∂sP0s) Bs

]
. (9.22)

As a consequence, we see that for the natural measure we have

Mas = ΛaM̂as

= ΛaÊa

[
rs

(−∂sP0s) Bs

]

= Ea

[
Λsrs

(−∂sP0s) Bs

]
(9.23)
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This gives us a construction for the martingale family Mas, given rs and Λs together with
initial bond data.

9.4 Potentials and positive supermartingales

Let us return now to the representation of the discount bonds given by

Pab =
∆ab

∆aa

. (9.24)

For ∆ab here, we have

∆ab = P0b exp

(∫ a

0

Vsb dWs − 1
2

∫ a

0

V 2
sb ds

)
, (9.25)

where

Vsb = Ωsb − λs. (9.26)

For ∆aa we have

∆aa =
Λa

Ba

. (9.27)

We note that ∆ab = Ea[∆bb].

The quantity Vt = ∆tt is the state-price density .

The state-price density satisfies the following differential equation:

dVt

Vt

= −rt dt − λtdWt (9.28)

Thus we see that if rt is positive, then Vt is a positive supermartingale.

Now as a consequence of (9.24) we have

P0t =
E[Vt]

V0

. (9.29)

Thus to ensure that the initial discount function vanishes asymptotically, we require

lim
t→∞

E[Vt] = 0. (9.30)
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A positive supermartingale Vt that satisfies (9.30) is called a potential.

We see therefore that the concept of a potential is mathematically very natural as a ba-
sis for interest rate theory.

In the potential method we represent the bond price by a formula of the following form:

Pab =
Ea[Vb]

Va

. (9.31)

The potential method can be used to generate a number of new and potentially interesting
interest rate models.

There are several ways of representing potentials.

One method is to introduce strictly increasing adapted process At defined for all time
0 ≤ t ≤ ∞, and write

Vt = Et[A∞] − At (9.32)

If we write At in the form

At =

∫ t

0

ηsds (9.33)

where ηs is positive, then clearly

Vt = Et

[∫ ∞

0

ηsds

]
−

∫ t

0

ηsds

= Et

[∫ ∞

t

ηsds

]

=

∫ ∞

t

Et[ηs]ds. (9.34)

Now, if we define P0t according to (9.29), clearly we have

P0t =

∫ ∞
t

E[ηs]ds∫ ∞
0

E[ηs]ds
, (9.35)

Therefore, for the derivative of P0t we obtain

−∂tP0t =
E[ηt]∫ ∞

0
E[ηs]ds

. (9.36)
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If we define

Mts =
Et[ηs]

(−∂tP0t)
. (9.37)

we obtain

Vt =

∫ ∞

t

(−∂sP0s)Mtsds (9.38)

where Mts is a unit-initialised positive martingale family, and we are back to the Flesaker-
Hughston representation.

Another useful way to represent potentials is by the introduction of a square-integrable
random variable X∞ satisfying

E
[
X2

∞
]

< ∞. (9.39)

Then we define the martingale

Xt = Et [X∞] (9.40)

and write

Vt = Et

[
(X∞ − Xt)

2
]

(9.41)

In other words, Vt is defined to be the conditional variance of X∞, given information up
to t.

We recall that for any random variable X, the conditional variance of X with respect to Ft

is defined by

Vart[X] = Et[(X − Et[X])2]. (9.42)

One can check that Vt is a supermartingale, and that E[Vt] → 0 as t → ∞.

In this approach the entire interest rate framework is captured in the specification of a
single random variable X∞. We shall have more to say about such conditional variance
framework shortly.
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9.5 Rational Models

Now suppose we let the positive martingale family Mab be of the form

Mab = αb + βbMa (9.43)

where αb and βb are positive deterministic functions satisfying αb + βb = 1, and Ma is any
positive martingale, normalised so that initially we have M0 = 1.

Then a short calculation shows that

Pab =
Fb + GbMa

Fa + GaMa

, (9.44)

where Fb and Gb are positive decreasing functions, satisfying

Fb + Gb = P0b (9.45)

where P0b is the initial discount function.

Inspection shows that Pbb = 1, 0 < Pab ≤ 1, and ∂bPab < 0, the positive interest condi-
tions.

This is the so-called rational model (Flesaker & Hughston 1996).

If Ma is chosen, for example, to be a geometric Brownian motion, then we obtain the rational
log-normal model.

In the extended rational log-normal model we have

Ma = exp

(∫ a

0

σ(s) dWs − 1
2

∫ a

0

σ2(s) ds

)
(9.46)

where σ(s) is deterministic.

This model is one of the simplest of all interest rate models.

It admits completely analytic formulae for the valuation of caps, floors and swaptions of
all maturities.

A short calculation shows that the short rate, in the case of a general rational model, is
given by

rt = −F ′(t) + G′(t)Mt

F (t) + G(t)Mt

. (9.47)
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It is not difficult to show then, in the case of the extended rational log-normal model , that
rt is a diffusion.

In other words, in the RLN model rt satisfies a stochastic equation of the form

drt = δ(t, rt) dt + γ(t, rt) dWt (9.48)

where δ(t, r) and γ(t, r) are each deterministic functions of two variables.

It is an interesting exercise to show in this case that γ(t, r) is a quadratic polynomial in
the short rate.

The two positive roots to this equation correspond to (time dependent) upper and lower
bounds on the interest rate process.

The RLN model is an important example of a completely tractable system of interest rate
dynamics exhibiting many desirable qualitative features.

A relatively complete analysis of the valuation of caps and swaptions in the rational log-
normal model has been given by Musiela & Rutkowski (1997).
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Chapter 10

Multi-currency interest rate dynamics. Compatible exchange rate systems.
Geometric analysis of foreign exchange volatility and correlation. Quanto
effects. International models for interest rates and foreign exchange.

10.1 Interest rate and foreign exchange dynamics

Let us consider the problem of constructing an extension of the basic HJM framework suit-
able for the valuation of interest rate and foreign exchange derivatives.

We consider an international economy consisting of a set of n currencies, and for each
currency a family of discount bonds denominated in that currency.

For such an economy it is possible to deduce a set of formulae for the price processes of
these discount bonds and the associated exchange rates, subject to the conditions of no ar-
bitrage.

In the multi-currency situation we do not wish to single out any preferred currency.

So we work with the natural measure P , and transform to the risk neutral measure as-
sociated with a choice of currency only for special applications.

In the multi-currency situation there is a numeraire process associated with each currency,
and these are all related to one another via the exchange rate process.

If Sij
t denotes the price of one unit of currency i in units of currency j (e.g., the price

of one pound sterling in dollars), then the relation is given more specifically by

ξi
tS

ij
t = ξj

t , (10.1)

where ξi
t denotes the price process for the numeraire asset, expressed in units of currency i.
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The effect of the no arbitrage condition on the international interest rate and foreign ex-
change markets is to ensure the existence of a “global” numeraire asset, the value of which
can be expressed in any currency.

If the market is complete, then the global numeraire is completely determined by the given
asset processes. More generally, we simply assume the existence of a global pricing kernel.

The global numeraire has the property that the ratio of the value (in a given currency)
of any nondividend-paying tradable asset to the value (in the same currency) of the global
numeraire is a martingale with respect to natural measure.

An arbitrage-free complete system of interest rates and foreign exchange is called an “Amin-
Jarrow” economy.

Let us write P i
ab for the value (in units of currency i) at time a (time 0 is the present)

of a default-free discount bond that matures at time b to deliver one unit of currency i.

We shall write Bi
a for the value at time a (in units of currency i) of a money market account

for currency i, initialised to one unit of currency at time 0.

The money market account for currency i can be expressed in terms of the short rate ri
s

for the currency by the formula

Bi
a = exp

(∫ a

0

ri
s ds

)
. (10.2)

We shall write λi
a for the risk premium vector for currency i.

Thus λi
a determines the excess rate of return (above the short rate in currency i), per unit

of volatility, for assets denominated in that particular currency.

For the discount bonds we have the following dynamics:

dP i
ab

P i
ab

= ri
a da + Ωi

ab (dWa + λi
a da). (10.3)

Here Ωi
ab is the discount bond volatility vector for currency i.

For any given value of i, the dynamics (10.3) look much like the bond dynamics we have
already considered.

However, in the present context, the multi-dimensional Brownian motion W α
t drives the
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whole economy , and λiα
t is the risk premium vector for any asset denominated in that cur-

rency.

Now let us consider the process Sij
a for the exchange rate. This must of course be of the

form

dSij
a

Sij
a

= µij
a da + νij

a dWa, (10.4)

where µij
a is the drift and νij

a is the volatility vector.

In a complete market with no arbitrage, the drift and volatility take the following remarkable
form:

µij
a = ri

a − rj
a + (λj

a − λi
a) · λj

a (10.5)

and

νij
a = λj

a − λi
a. (10.6)

10.2 Compatible exchange rate systems∗

Suppose we have an n-by-n matrix Sij
a of positive Itô processes based on a multi-dimensional

Brownian motion W α
a .

We assume that Sij
a satisfies the compatibility conditions

Sij
a Sjk

a = Sik
a , (10.7)

and that Sii
a = 1.

It follows that Sij
a = 1/Sji

a , and that Sii
a = 1.

We call such a set of processes a “compatible exchange rate system”.

What constraints does the form (10.7) place on the resulting exchange rate dynamics?

For any compatible exchange rate system there exists a set of positive processes ξi
a such

that

Sij
a = ξj

a/ξ
i
a. (10.8)

The proof of this follows if we write (10.7) in the form in the form Sij
a = Skj

a /Ski
a . Fixing a

value k, we define ξi
a = Ski

a for all i.
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This is well-defined procedure since Sij
a is always positive, and shows that Sij

a splits into
a quotient.

The split (10.8) is not unique, since it is invariant under the transformation ξi
a → πaξ

i
a

for any positive process πa.

We shall investigate the consequences of this freedom later.

Suppose we therefore write

dξi
a

ξi
a

= Ri
a da + λi

a dWa (10.9)

for the stochastic equation satisfied by ξi
a, for some given choice of ξi

a.

Without loss of generality we define the process ri
a by setting Ri

a = ri
a + λi

x
2
. Then we

have

dξi
a

ξi
a

= ri
a da + λi

a(dW + λi
a da). (10.10)

A short calculation making use of the Itô quotient relation shows that

dSij
a

Sij
a

= (rj
a − ri

a) da + νij
a (dWa + λj

a da). (10.11)

The exchange rate volatility νij
a is thus given as indicated earlier by

νij
a = λj

a − λi
a. (10.12)

Clearly we have νij
a = −νji

a . Thus we see that the splitting of νij
a to a difference of two vector

processes arises from the compatibility condition.

Recall that Sij
a is the price of one unit of currency i in units of currency j.

Thus the volatility vector for the price of sterling in dollars is minus the volatility vec-
tor for the price of one dollar in sterling.

Now a currency is not a non-dividend paying asset.

The “dividend” earned by currency i is the interest it continuously accumulates in a money
market account.
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Thus in (10.11) the overall drift in the value of currency i is of the form

µij
a = rj

a − ri
a + νij

a · λj
a. (10.13)

This is given by the risk-free rate on the valuation currency j, less the “dividend yield” ri
a,

plus the excess rate of return.

The excess rate of return is given by the inner product of the volatility vector for cur-
rency i (when priced in units of currency j) times the relative risk vector for the valuation
currency.

10.3 Geometric analysis of FX volatility

The volatility vectors for a compatible foreign exchange rate system have to fit together to
form a polytope in the multidimensional Euclidean space in which the Wiener process takes
its values.

This is on account of the relation νij + νjk + νki = 0.

Thus for three currencies we have a triangle, four give a tetrahedron, and so on.

In that picture the vertices of the figure correspond to currencies, and the length of the
edge joining two given vertices is the magnitude of the instantaneous volatility of the asso-
ciated exchange rate.

The cosine of the angle between two edges (whether they intersect or not a common vertex)
measures the instantaneous correlation between the movements in the given exchange rates.

The relation νij
t = λj

t − λi
t allows one to take this set of ideas a step further, incorpo-

rating the relative risk into the picture.

In particular, if we fix an origin, then the relation νij
t = λj

t − λi
t shows us that the sys-

tem of risk premium vectors for the various currencies, viewed as emanating from the origin,
determines the location and structure of the volatility ‘polytope’.

10.4 Scale transformations∗

Now suppose that we are just given the process Sij
a . To what extent does this process deter-

mine ri
a and λi

a in a complete market free of arbitrage?
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Figure 10.1: Four currency tetrahedron. The six edge-length correspond to the volatilities of
the six exchange rates for the four given currencies. The angles between edges determine the
corresponding correlations.

The exchange rate volatility νij
a given by (10.12) is invariant under the transformation

ξi
a → πaξ

i
a, (10.14)

since the exchange rate Sij
a itself is left unchanged.

Under the scale transformation (10.14) we find, after a short calculation, that the risk pre-
mium and short rate transform as follows:

λi
a → λi

a + Ψa (10.15)

ri
a → ri

a + Φa − Ψ2
a − λi

aΨa. (10.16)

Here the vector process Ψa and the scalar process Φa are defined by

dπa

πa

= Φa da + Ψa dWa. (10.17)

The process λi
a is thus determined by the exchange rate system up to a transformation of

the form (10.15) for an arbitrary vector process Ψa.

Geometrically, this can be pictured as a translation of the entire volatility polytope in the
direction given by Ψa.

One can think of such transformations as representing “global” change in the international
economy. For example, one might have an overall drop in interest rates coupled with a
general change in risk aversion as regards some particular source of risk.

Once λi
a is fixed, then the interest rates are determined up to an overall change of level

Φa.
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10.5 “Quanto” effects∗

It is worth noting the effect that a transformation to the risk neutral measure associated
with a given “domestic” currency j has on the bond price process for a “foreign” currency.

The process for the domestic bond price, when we transform to the risk neutral measure,
becomes

dP j
ab

P j
ab

= rj
a da + Ωj

ab dW j
a , (10.18)

where dW j
a = dWa + λj

a da.

The bond process for the “foreign” currency i, which in the original measure is given by

dP i
ab

P i
ab

= ri
a da + Ωi

ab (dWa + λi
a da), (10.19)

transforms to

dP i
ab

P i
ab

= ri
a da + Ωi

ab (dW j
a − νij

a da), (10.20)

when expressed in terms of W j
a , which is a Brownian motion in the risk neutral measure

associated with currency j.

Note the appearance of νij
a = λj

a − λi
a, the foreign exchange volatility vector, in this for-

mula.

The “quanto” correction term appearing here involves the inner product of the foreign dis-
count bond volatility vector and the exchange rate volatility vector.

This can be re-expressed in more familiar terms as a product of the bond volatility level, the
foreign exchange volatility level, and a correlation factor.

10.6 Martingale representation for FX and interest rate

systems∗

An Amin-Jarrow economy is completely characterised by a set of n one-parameter families
of unit-initialised martingales denoted M i

as, along with a set of initial term structure data
P i

0s for each currency, and a set of initial exchange rates Sij
0 .
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We require that the initial exchange rates are compatible in the sense that Sij
0 Sjk

0 = Sik
0

(e.g. the price of sterling in dollars times the price of one dollar in yen gives the price of
sterling in yen).

For positive interest rates we require, in addition to the above, that the martingales M i
as are

strictly positive, and that the initial discount functions P i
0s exhibit positive interest in the

sense that

0 < P i
0b ≤ 1 and ∂bP

i
0b < 0 (10.21)

for all maturities. Here ∂b denotes differentiation with respect to b.

For the discount bonds in currency i we have an integral representation of the form

P i
ab =

∫ ∞
b

(−∂sP
i
0s)M

i
as ds∫ ∞

a
(−∂sP i

0s)M
i
as ds

. (10.22)

Here again P i
ab denotes the value (in units of currency i) at time a (time 0 is the present) of

a discount bond that matures at time b to deliver one unit of currency i.

Note that each discount bond is valued in its “own currency”.

The system of exchange rates is then given by

Sij
a = Sij

0

∫ ∞
a

(−∂sP
i
0s)M

i
as ds∫ ∞

a
(−∂sP

j
0s)M

j
as ds

. (10.23)

Taking into account the given initial conditions, it follows that the compatibility conditions

Sij
a Sjk

a = Sik
a (10.24)

are satisfied.

The numeraire process, which in currency i has the value ξi
a, is given by

ξi
a =

ξi
0∫ ∞

a
(−∂sP i

0s)M
i
as ds

, (10.25)

where initial values ξi
0 are such that

Sij
0 = ξj

0/ξ
i
0. (10.26)

The existence of such a system of initial values is ensured by the initial compatibility condi-
tions on the exchange rates.
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The basic martingales M i
as are defined for all s ≥ a ≥ 0 (up to some time horizon), and

satisfy

EaM
i
bs = M i

as. (10.27)

There is an explicit formula for the risk premium vector for each currency, given by

λi
a = −

∫ ∞
a

(−∂sP
i
0s)M

i
asσ

i
as ds∫ ∞

a
(−∂sP i

0s)M
i
as ds

. (10.28)

Here the vector process σi
as is defined by

dM i
as = M i

asσ
i
asdWa, (10.29)

The discount bond volatilities are given in terms of the basic martingales according to the
scheme

Ωi
ab = V i

ab − V i
aa, (10.30)

where the “risk adjusted” volatility V i
ab is given by

V i
ab =

∫ ∞
b

∂sP0sM
i
asσ

i
as ds∫ ∞

b
∂sP0sM i

as ds
. (10.31)

Thus λi
a = −V i

aa, consistent with equation (10.28).

The short rate is given by

ri
a =

∂aP
i
0aM

i
aa∫ ∞

a
(−∂sP i

0s)M
i
as ds

. (10.32)

With this information at hand we can verify again that the cross-currency process Sij
t satisfies

dSij
a

Sij
a

= (rj
a − ri

a) da + (λj
a − λi

a) (dWa + λj
a da). (10.33)

We shall return to the matter of international interest rate and foreign exchange systems in
greater depth in due course.
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Chapter 11

Axiomatic framework for continuous asset price dynamics. Perpetual floating
rate notes. Price processes for discount bonds. Dynamics of the state price
density.

11.1 Axiomatic framework for continuous asset price

dynamics

The idea now is to develop an axiomatic scheme that will ensure the existence of an arbitrage-
free system of discount bonds over all time horizons, but that is general enough also to allow
a place for other systems of assets.

The methodology that we propose, which in effect unifies a number of important features
of the theory of interest rate modelling and the theory of volatility modelling, is based on a
conditional variance representation for the state price density, and makes use of the Wiener
chaos expansion technique in a novel way.

We model the unfolding of random market events in the usual way with the specification of
a fixed probability space (Ω,F , P ) which we denote as Π.

We assume that the economy Π is equipped with the standard augmented filtration Φ =
(Ft)0≤t≤T ∗ generated by a system of one or more independent Wiener processes (W α

t )0≤t≤T ∗

(α = 1, · · · , k).

Here T ∗ represents a fixed time horizon, which for the moment we leave unspecified but
eventually will be assumed to be infinite.

The probability measure P is to be interpreted as the “natural” measure, and filtration-
dependent concepts (such as adaptedness or the martingale property) are defined relative to
Φ.
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We assume in this investigation that the random processes on Π followed by asset prices
are continuous semimartingales adapted to Φ.

The absence of arbitrage in the economy will be characterised according to the following
scheme.

We assume the existence of a continuous semimartingale ξt, adapted to Φ, which we call
the “natural numeraire” process, satisfying ξt > 0 for all t ∈ [0, T ∗], such that the following
three axioms hold:

(A1) There exists a strictly increasing (and hence “risk-free”) asset with price process Bt

(the money-market account).

(A2) If St is the price-process of any asset, and Dt is the adapted dividend rate for that asset,
so that Dtdt represents the small random dividend paid at time t, then the process Mt

defined by

Mt =
St

ξt

+

∫ t

0

Ds

ξs

ds

ia a martingale.

(A3) There exists an asset (a floating rate note) that offers a dividend rate sufficient to
ensure that the value of the asset remains constant.

Now let us examine some of the consequences of these axioms.

Existence of risk adjustment density

Since the process Bt introduced in (A1) is by assumption continuous and strictly increasing,
there exists an adapted process rt > 0 such that

Bt = B0 exp

(∫ t

0

rsds

)
. (11.1)

Because the money market account is a non-dividend paying asset, it follows as a consequence
of (A1) and (A2) that there exists a positive martingale Λt such that

Bt

ξt

= Λt. (11.2)

Since Λt is positive, there exists an adapted vector-valued process λt such that

dΛt = −ΛtλtdWt, (11.3)
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where here, and similarly elsewhere, we use the shorthand

λtdWt =
k∑

α=1

λα
t dW α

t . (11.4)

As a consequence of (11.3), we then have

Λt = ρ0 exp

(
−

∫ t

0

λsdWs − 1
2

∫ t

0

λ2
sds

)
. (11.5)

Uniqueness of the money market account

At most one process Bt can exist satisfying axioms (A1) and (A2). For if B∗
t were another

such increasing price process, then we would have

Λt

Bt

=
ρ∗

t

B∗
t

(11.6)

for some positive martingale ρ∗
t . But this relation implies that

dΛt

Λt

= (rt − r∗t )dt +
dρ∗

t

ρ∗
t

(11.7)

which shows that for Λt and ρ∗
t both to be martingales we have rt = r∗t .

Dynamic equations for risky-assets

Axiom (A2) implies, in the case of a non-dividend-paying asset, that St can be written in
the form

St =
BtMt

Λt

(11.8)

where Mt is a martingale.

Thus, if we write dMt = θtdWt it is a straightforward exercise to verify that

dSt = (rtSt + λtψt)dt + ψtdWt, (11.9)

where the vector-valued process ψt is defined by

ψt =
Btθt

Λt

+ λtSt. (11.10)

In particular, if the asset price St is positive, then Mt is positive, and we can write θt =
(σt − λt)Mt for some vector-valued process σt, from which it follows that ψt = σtSt.
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In that case the dynamical equation satisfied by St can be written in the form

dSt

St

= (rt + λtσt)dt + σtdWt, (11.11)

where σt is the adapted vector-valued volatility process for the given asset, and λt has the
interpretation of the market risk premium.

We recognise (11.11) as the dynamics of a risky asset with limited liability in a market
with no arbitrage.

However the dynamical equation

dSt = (rtSt + λtψt)dt + ψtdWt, (11.12)

has the advantage of holding in the more general situation for assets such as portfolio po-
sitions including borrowing, short sales, or derivatives, where the value of the position may
swing into the red as well as the black.

Risky assets with dividend

In the case of a dividend paying asset these formulae need to be modified slightly, and in
place of (11.12) we obtain

dSt = (rtSt − Dt + λtψt)dt + ψtdWt (11.13)

as a consequence of (A2), with ψt defined as before according to ψt = Btθt/Λt + λtSt.

Then if St is positive we can introduce a proportional dividend rate δt by the relation
Dt = δtSt, and we obtain the simplified expression

dSt

St

= (rt − δt + λtσt)dt + σtdWt, (11.14)

where σt is defined as before by ψt = σtSt.

Clearly, (11.14) conforms to the familiar dynamics of a dividend or interest paying asset
with limited liability.

For example, if St is the price of a foreign currency, then δt corresponds to the overnight rate
for that currency. We consider the case of a foreign currency in greater detail later.
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Assets of constant value

Now let us examine axiom (A3) more closely. Such a “cash” asset that maintains a constant
value has the interpretation of being a floating rate note.

Equation (11.14) shows that if we set St = 1 for all t ∈ [0, T ∗] then the “dividend” rate
offered for such an instrument must be rt. It follows that

1

ξt

+

∫ t

0

rs

ξs

ds is a martingale. (11.15)

In particular since rt and ξt are positive we deduce that

E

[
1

ξt

]
< ∞ (11.16)

and

E

[∫ t

0

rs

ξs

ds

]
< ∞ (11.17)

for all t ∈ [0, T ∗].

11.2 Price processes for discount bonds

To proceed further we introduce a system of discount bonds on the economy Π.

More precisely, this will be the discount bond system associated with the base currency
in terms of which the other assets on Π are priced and with respect to which the money
market process Bt is defined.

The discount bond price processes will be denoted PtT , where 0 ≤ t ≤ T ≤ T ∗ ≤ ∞.

We shall as usual regard the zero-coupon bond for a given value of T as a default-free
contract that pays one unit of the base currency at time T .

Then PtT denotes the price of the bond at time t, and by the definition of the contract
we require that PTT = 1 for all T ∈ [0, T ∗].

For the moment we make no other assumptions concerning the discount bond processes
other than those properties applicable to all assets implicit in axioms (A1), (A2), and (A3),
though later we add a further important assumption concerning the asymptotic behaviour
of the bond prices in the case of an infinite time horizon.
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Since PtT represents the price process of a non-dividend-paying asset for each value of
T ∈ [0, T ∗], it follows from axiom (A2) that PtT /ξt is a martingale, and hence that there
exists a family of positive martingales MtT such that

PtT =
BtMtT

Λt

. (11.18)

Because MtT is a positive martingale for each bond maturity date T ∈ [0, T ∗], there exists a
vector-valued process ΩtT such that

dMtT

MtT

= (ΩtT − λt)dWt. (11.19)

We thus that the dynamics of the discount bond system are given by

dPtT

PtT

= (rt + λtΩtT )dt + ΩtT dWt. (11.20)

We recognise ΩtT as being the T -maturity discount bond vector relative volatility process.

It then follows, by integrating (11.20), if we make use of the relation Ptt = 1, that the
discount bond price processes can be represented in the form

PtT = P0tT

exp
(∫ t

0
λsΩsT ds +

∫ t

0
ΩsT dWs − 1

2

∫ t

0
Ω2

sT ds
)

exp
(∫ t

0
λsΩstds +

∫ t

0
ΩstdWs − 1

2

∫ t

0
Ω2

stds
) , (11.21)

and that the money market account process is given by a corresponding expression of the
form

Bt =
B0

P0t exp
(∫ t

0
λsΩstds +

∫ t

0
ΩstdWs − 1

2

∫ t

0
Ω2

stds
) . (11.22)

Here we have used the notation P0tT = P0T /P0t for the t-forward price made at time 0 for a
T -maturity discount bond.

The volatility structure approach

An interesting feature of the expressions (11.21) and (11.22) is that the discount bond sys-
tem and the money market account can be represented directly in terms of the market risk
premium process λt and the bond volatility process ΩtT , together with the initial discount
function P0t, without direct reference to the short rate rt.
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It is therefore legitimate to regard λt and ΩtT as being subject to an exogenous specifi-
cation.

Indeed, historically this observation is of considerable significance since it forms the ba-
sis of the approach to interest rate derivatives pricing frequently used in practice according
to which one “models the volatility structure”.

In such an approach one typically assumes market completeness, then transforms to the risk
neutral measure to eliminate the market risk premium, and then models the bond volatility
process exogenously, calibrating it to a suitable given set of market interest rate option data.

It has been a problematic feature of the volatility approach, however, that if λt and ΩtT

are specified exogenously, then there is no guarantee that axiom (A1) is satisfied—that is to
say, the resulting interest rates need not be positive.

Additionally, there is no reason to suppose, a priori, that the bond volatilities will take
on a given form in the risk neutral measure.

Let us therefore put to one side the “volatility structure” approach, and return to the
consideration of the assumptions (A1), (A2), and (A3) in the context of a term structure
model.

Martingale relations

Because the discount bonds are non-dividend-paying assets, it follows as a consequence of
(A2) that the martingale relations

E

[
PtT

ξt

]
< ∞ (11.23)

and

PtT

ξt

= Et

[
PuT

ξu

]
(11.24)

hold for all 0 ≤ t ≤ u ≤ T ≤ T ∗.

Here Et[−] denotes as usual the conditional expectation with respect to the σ-algebra Ft.

It follows from (11.23) by setting t = T that the existence of the discount bond system
implies that the inequality

E

[
1

ξt

]
< ∞ (11.25)

108



holds for all t ∈ [0, T ∗].

It is interesting to note, as was shown by Baxter (1997), that the inequality (11.17) is
the additional assumption required to ensure the differentiability of the bond price system
with respect to the maturity date.

Instantaneous forward rates

In other words, as a consequence of (11.17) there exists a family of continuous semimartin-
gales ftu, adapted to Φ, for all 0 ≤ t ≤ u ≤ T ∗, such that

PtT = exp

(
−

∫ T

t

ftudu

)
. (11.26)

It then follows that

−∂T ln PtT = ftT , (11.27)

where ∂T denotes differentiation with respect to T , and also that

lim
t→T

ftT = rT (11.28)

and

lim
t→T

ΩtT = 0. (11.29)

The importance of the existence of the instantaneous forward rates is that the class of
interest rate models under consideration here is equivalent to the family of all positive in-
terest HJM models (Heath, Jarrow and Morton 1992) defined over the relevant time horizon.

We take the view here nevertheless that the instantaneous forward rates are in some sense
secondary, and that primary significance should be attached to modelling the natural nu-
meraire process ξt.

Risk neutral valuation formula

In particular, setting u = T in (11.24) we obtain the pricing formula

PtT = ξtEt

[
1

ξT

]
. (11.30)

Thus, once axioms (A1), (A2), and (A3) have been specified, the associated discount bond
system is also determined.

We note that PtT is unchanged if we multiply ξt by a positive constant.
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11.3 Dynamics of the state price density

It is be useful now to introduce the related process Vt = 1/ξt which has the interpretation
of being the state price density.

It follows from equation (11.1) that Vt = Λt/Bt, and from (11.16) we have E[Vt] < ∞
for all t ∈ [0, T ∗].

In particular, since Bt is Ft-measurable and increasing we deduce that

Et [VT ] = Et

[
ΛT

BT

]
< Et

[
ΛT

Bt

]
=

Et [ΛT ]

Bt

=
Λt

Bt

= Vt, (11.31)

for t < T .

In other words, we have Et[VT ] < Vt, and thus we see that Vt is a supermartingale.

Now writing the risk neutral valuation formula in the form

PtT = Et

[
VT

Vt

]
, (11.32)

we see that PtT < 1 for all t < T .

Pricing kernel

The quotient KtT = VT /Vt can be regarded as a “pricing kernel” for derivatives (Constan-
tinides 1992).

In particular, suppose that Ht is for t ∈ [0, T ] the price process of a derivative asset on
Π with a European-style payoff HT at time T .

Then by (A2) we have

Ht = Et [KtT HT ] , (11.33)

a relation that remains valid independently of any hedgeability considerations.

Note that no assumption of market completeness is made in our axiomatic scheme.

Properties of the state price density

It follows from the dynamical equations for Bt and Λt that the dynamics of Vt are given by

dVt = −rtVtdt − λtVtdWt. (11.34)
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Therefore, given Vt we can recover the short rate rt and the market risk premium process λt.

Integrating (11.34) from t to T we get

VT = Vt −
∫ T

t

rsVsds −
∫ T

t

λsVsdWs. (11.35)

Taking the conditional expectation of each side of (11.35) we obtain

Et [VT ] = Vt − Et

[∫ T

t

rsVsds

]
. (11.36)

Dividing by Vt we then arrive at the formula

PtT = 1 − Et

[∫ T

t

Ktsrsds

]
, (11.37)

which has a natural economic interpretation from which a number of interesting consequences
can be deduced.

It follows for example as a corollary of (11.37) that for any two maturity dates T1 and
T2 we have

PtT1 − PtT2 = Et

[∫ T2

T1

Ktsrsds

]
. (11.38)

Therefore if T2 > T1, we deduce that PtT2 < PtT1 , and hence that the random forward price

PtT1T2 =
PtT2

PtT1

, (11.39)

made at time t for purchase at time T1 of a T2-maturity discount bond satisfies

0 < PtT1T2 ≤ 1 (11.40)

for all 0 ≤ t ≤ T1 ≤ T2 < ∞.

This in turn implies the positivity of all forward rates.

Interpretation of the instantaneous forward rates

Another interesting corollary of (11.37) follows if we differentiate each side of this equation
with respect to T , from which we deduce that

ftT PtT = Et [KtT rT ] . (11.41)
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This relation shows that the instantaneous forward rates can be interpreted as the value, at
time t, future-valued to time T , of the contingent claim that pays the short rate rT at time
T on a unit principal.

It follows that the term structure density ρt(x) for tenor x = T − t is the value at time
t of an instrument that pays the rate rT at time T on a unit principal.

Equation (11.37) says that ownership of a T -maturity discount bond is equivalent to own-
ership of one unit of the cash asset, but without the right to the dividend flow of the cash
asset from time t to time T .

To put the matter in another way, a money-lender will be willing at time t to part with
one unit of cash in exchange for a discount bond maturing at time T together with a con-
tinuous flow of interest from time t to time T .

Equivalently, to hold a T -maturity floating-rate note is the same as holding a T -maturity
discount bond together with the right to a continuous stream of interest from time t to T .
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Chapter 12

The conditional variance representation for the state price density. Interest
rate models as elements of L2(Ω,F , P ). Elements of Wiener chaos. First
chaos models.

12.1 The conditional variance representation

Now suppose we consider the case of an interest rate system with an infinite time horizon
T ∗ = ∞. It follows from (11.37) that

P0T = 1 − E

[∫ T

0

K0srsds

]
. (12.1)

This relation can be interpreted as saying that the value of a T -maturity discount bond at
time 0 is one unit of cash less the present value of the interest stream from time 0 to time
T .

The idea is that by holding the discount bond one forgoes the dividends associated with
the cash until the maturity date of the bond—at which point one acquires the cash.

On the role of potential

The ownership of a discount bond that never matures (i.e. matures at T = ∞) is equivalent
to ownership of a unit of floating rate note stripped of its interest stream for all time—in
other words, the ownership of nothing.

As a consequence we conclude that

lim
T→∞

P0T = 0, (12.2)

or equivalently

V0 = E

[∫ ∞

0

rsVsds

]
. (12.3)
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Indeed, we shall now take it as part of the definition of a discount bond system that T ∗ = ∞
and that the natural numeraire ξt and the interest rate rt are such that (12.2) holds, or
equivalently

ξ0E

[∫ ∞

0

rs

ξs

ds

]
= 1. (12.4)

Alternatively, it follows from (11.32) that the asymptotic condition (12.2) holds if and only
if

lim
T→∞

E [VT ] = 0. (12.5)

This is the condition that the process Vt is a “potential”, i.e. a positive supermartingale
with the property that its expectation vanishes in the limit.

Thus, as was pointed out by Rogers (1997), it should be regarded as an essential element of
interest rate theory that the state price density should have this property.

Recursive relation of the state price density

We see therefore that once an appropriate asymptotic condition has been placed on the
discount bond system we have the key relation

Vt = Et

[∫ ∞

t

rsVsds

]
. (12.6)

This formula has the economic interpretation that a floating rate note that promises to pay
the rate rt on a unit principal in perpetuity necessarily has the value unity.

An alternative expression for Vt can be deduced from (12.6) if we define the increasing
process

At =

∫ t

0

rsVsds. (12.7)

Then we obtain the relation Vt = Et [A∞] − At as discussed earlier.

This forms the basis of the Flesaker-Hughston framework and its extensions (see, e.g., Fle-
saker and Hughston 1996, 1997, 1998, Rutkowski 1997, Musiela and Rutkowski 1997, Rogers
1997, James and Webber 2000, Hunt and Kennedy 2000, Jin and Glasserman 2001).

In the present investigation, we take an alternative point of view and emphasize a rather
different feature of the state price density that emerges in this context: namely, that Vt can

114



be interpreted as a conditional variance.

This makes use of an idea appearing in Meyer (1966). More precisely, let σt be a vector
process satisfying

σ2
t = rtVt. (12.8)

Then we can define a random variable X∞ by the formula

X∞ =

∫ ∞

0

σsdWs. (12.9)

The existence of X∞ is guaranteed by virtue of axiom (A3) which implies that

E

[∫ ∞

0

rsVsds

]
< ∞. (12.10)

It follows immediately then by virtue of the Ito isometry that

Vt = Et

[∫ ∞

t

σ2
sds

]

= Et

[(∫ ∞

t

σsdWs

)2
]

= Et

[(∫ ∞

0

σsdWs −
∫ t

0

σsdWs

)2
]

. (12.11)

However, because

Et [X∞] =

∫ t

0

σsdWs, (12.12)

we deduce that

Vt = Et

[
(X∞ − Et [X∞])2] , (12.13)

which we recognise as the conditional variance of X∞ with respect to the σ-algebra Ft.

In particular we note that X∞ ∈ L2(Ω,F , P ).

We shall take the view that the random variable X∞ should in some sense be regarded
as the “primitive” in the construction of the associated interest rate system.
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12.2 Interest rate models as elements of L2(Ω,F , P )

Let us now recapitulate what we have learned so far.

The market is characterised by a probability space Π = (Ω,F , P ) which we can assume
to be the classical Wiener space associated with a system of n independent Brownian mo-
tions.

If we assume the existence of an arbitrage-free system of discount bonds on Π then it fol-
lows from the considerations of the previous sections that there exists a random variable
X∞ ∈ L2(Π) with zero mean such that the state price density Vt is given by the conditional
variance

Vt = Et

[
(X∞ − Et [X∞])2] (12.14)

and the discount bond system is given by

PtT =
Et [VT ]

Vt

. (12.15)

The state-price density is fully determined by the random variable X∞.

Conversely, given the state-price density process, we can determine the short rate process
and then use the relation σ2

t = rtVt to construct the integrand in the expression for the
corresponding asymptotic random variable X∞.

We therefore have a correspondence between arbitrage-free positive interest rate models
and square-integrable zero-mean random variables on the Wiener space Π.

Interestingly, this space has a very rich natural structure that can be exploited in the anal-
ysis of the associated interest rate systems.

The key point is that we can represent X∞, and therefore characterise the corresponding
interest rate system, by use of a Wiener chaos expansion.

In particular, the integrand σs in the defining equation (12.9) can be expanded in a unique
way in a series of the form

σs = φs +

∫ s

0

φss1dWs1 +

∫ s

0

∫ s1

0

φss1s2dWs2dWs1 + · · · . (12.16)

Inserting this expression into (12.9) we then obtain the following representation for the
random variable X∞:

X∞ =

∫ ∞

0

φsdWs +

∫ ∞

0

∫ s

0

φss1dWs1dWs + · · · . (12.17)
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The integrands φs = φα(s), φss1 = φαα1(s, s1), φss1s2 = φαα1α2(s, s1, s2), and so on, appearing
here are deterministic tensor-valued functions, where s ≥ s1 ≥ s2 ≥ · · · .

Then for the expectation of the square of the random variable X∞ we have

E
[
X2

∞
]

=

∫ ∞

0

φ2
sds +

∫ ∞

0

∫ s

s1=0

φ2
ss1

ds1ds + · · · . (12.18)

It should be evident by consideration of formula (12.13) that for each choice of X∞ we obtain
a specific interest rate model.

Nesting of interest rate models

In addition, the different models thus arising are nested in a natural way.

To be precise, by an interest rate model we mean the filtered probability space Π together
with the pair (Vt, PtT ).

We shall call an interest rate model that only contains terms up to order n in the ex-
pansion of X∞ an nth-order chaos model.

If X∞ contains only the nth order term we shall call the resulting interest rate model a
“pure” chaos model of order n. It should be evident that the nth-order chaos models are
contained as a subset of the mth-order chaos models, for all n < m.

Despite the relatively high level of abstraction in the overall framework, the inputs of such
models are simply the deterministic functions φs, φs,s1 , φs.s1,s2 and so on.

It follows that interest rate models can be classified according to their chaos structure, and
indeed all positive interest HJM models based on a Brownian filtration can be systematically
built up in this way.

12.3 Elements of Wiener chaos

Before we embark upon the analysis of specific interest rate models it will be helpful first if
we review briefly in a little more detail the basics of the Wiener chaos technique.

This will also give us the opportunity to develop the notation further. The material discussed
in this section is for the most part well established, and we refer the reader for example to
Nualart (1995), Øksendal (1997) or Teichmann (2002) for further details. The foundations
of the chaos technique can be found in Wiener (1938) and Ito (1951).
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The applications of Wiener chaos to problems in finance were pioneered by Lacoste (1996).

Let H be a real Hilbert space with scalar product 〈·, ·〉.

Given an element h ∈ H, its norm will be denoted ‖h‖. We introduce a field of ran-
dom variables W = {Wh, h ∈ H}.

We say that W is a Gaussian field if W is a Gaussian family of random variables with
zero mean such that E[WgWh] = 〈g, h〉 for all g, h ∈ H.

Under this definition the map h → Wh is a linear isometry of the space H onto a closed
subspace of L2(Ω,F , P ), which we denote by H1.

It follows immediately that W(ag+bh) = aWg + bWh for any a, b ∈ R and g, h ∈ H.

The elements of H1 are zero-mean Gaussian random variables.

Next we introduce the Hermite polynomials Hn(x), defined by the formula

Hn(x) =
1

n!
(−1)ne

1
2
x2 dn

dxn
(e−

1
2
x2

), n ≥ 1, (12.19)

and H0(x) = 1.

These polynomials play a fundamental role in the Wiener chaos expansion.

The Hermite polynomials of degree one, two, three and four are H1(x) = x, H2(x) = 1
2
(x2−1),

H3(x) = 1
6
(x3 − 3x), and H4(x) = 1

24
(x4 − 6x2 + 3) respectively.

Let X and Y be random variables with a jointly Gaussian distribution such that E[X] =
E[Y ] = 0, and E[X2] = E[Y 2] = 1.

Then for all n,m ≥ 0 we have

E[Hn(X)Hm(Y )] =
1

n!
δnm (E [XY ])n . (12.20)

For each n ≥ 1 we denote by Hn the linear subspace of L2(Ω,F , P ) generated by the random
variables {Hn(Wh), h ∈ H, ‖h‖ = 1}, with the convention that H0 denotes the constants.

For n = 1, we recover the space H1 of zero mean Gaussian random variables.
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It should be evident from (12.20) that Hn and Hm are orthogonal for n �= m.

The subspace Hn is called the Wiener chaos of order n.

If we denote by G the σ-field generated by the random variables {Wh, h ∈ H}, then the
space L2(Ω,G, P ) can be decomposed into the following infinite orthogonal sum of the sub-
spaces Hn :

L2(Ω,G, P ) = ⊕∞
n=0Hn. (12.21)

This fundamental decomposition of L2(Ω,G, P ) leads to the representation of any element
of this space by series of terms resulting from the orthogonal projection of the given element
on to the various chaos subspaces.

Now let us reduce the generality of the underlying Hilbert space and consider the case
H = L2(R+,B, µ), where B denotes the Borel σ-algebra on R+ and µ is the Lebesgue mea-
sure.

In this case any element of the nth-order Wiener chaos can be represented as an Ito in-
tegral of a square integrable function.

More precisely, let us consider the subspace ∆n of Rn
+ defined by

∆n = {(s, s1, · · · , sn−1) ∈ Rn
+; 0 ≤ sn−1 ≤ · · · ≤ s1 ≤ s ≤ ∞}. (12.22)

Also, let the function φn : Rn
+ → R, be square integrable in the sense that∫ ∞

0

∫ s

0

· · ·
∫ sn−1

0

φ2
n(s, s1, · · · , sn−1)dsn−1 · · · ds1ds < ∞. (12.23)

Then if we let Wt denote a one-dimensional Brownian motion, we can verify that the random
variable In(φn) defined by the multiple Ito integral

In(φn) =

∫ ∞

0

∫ s

0

· · ·
∫ sn−1

0

φn(s, s1, · · · , sn−1)dWsn−1 · · · dWs1dWs (12.24)

is an element of the nth Wiener chaos subspace Hn.

Indeed, the integral on the right hand side of the equation above is an Ito integral on
∆n since the integrand is adapted and square integrable.

Now let us write FW
∞ for the σ-field generated by Wt over the totality of the infinite time

horizon.
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By combining expression (12.24) with the decomposition (12.21), one is led to the result
that any square integrable random variable X ∈ L2(Ω,FW

∞ , P ) can be expressed as a chaos
expansion according to the scheme

X =
∞∑

n=0

In(φn), (12.25)

where the deterministic functions φn ∈ L2(Rn
+) are uniquely determined by the random

variable X (see, e.g., Revuz and Yor 2001).

Inner product formulae for L2(Π)

It is a straightforward exercise to verify explicitly by use of the Ito isometry and the stochas-
tic Fubini theorem (interchange of integration and expectation) that elements of distinct
chaos spaces are orthogonal.

For example, if X ∈ H1, and Y ∈ H2 we have

X =

∫ ∞

0

φ(s)dWs, and Y =

∫ ∞

0

∫ s

0

φ(s, s1)dWs1dWs, (12.26)

for some choice of φ(s) ∈ L2(R1
+) and φ(s, s1) ∈ L2(R2

+), and thus

E [XY ] = E

[∫ ∞

0

φ(s)dWs

∫ ∞

0

∫ s

0

φ(s, s1)dWs1dWs

]

= E

[∫ ∞

0

∫ s

0

φ(s)φ(s, s1)dWs1ds

]

=

∫ ∞

0

E

[∫ s

0

φ(s)φ(s, s1)dWs1

]
ds

= 0. (12.27)

On the other hand, if A,B ∈ H2 are two elements of the same chaos, e.g.,

A =

∫ ∞

0

∫ s

0

α(s, s1)dWs1dWs, B =

∫ ∞

0

∫ s

0

β(s, s1)dWs1dWs, (12.28)
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then their inner product is given by

E [AB] = E

[∫ ∞

0

∫ s

0

α(s, s1)dWs1dWs

∫ ∞

0

∫ s

0

β(s, s1)dWs1dWs

]

= E

[∫ ∞

0

(∫ s

0

α(s, s1)dWs1

∫ s

0

β(s, s1)dWs1

)
ds

]

=

∫ ∞

0

E

[∫ s

0

α(s, s1)dWs1

∫ s

0

β(s, s1)dWs1

]
ds

=

∫ ∞

0

∫ s

0

α(s, s1)β(s, s1)ds1ds. (12.29)

Thus the random variables A and B are orthogonal in H2 if and only if the corresponding
elements of L2(R2

+) are orthogonal.

Factorisable chaos elements

Another useful result arises in the case for which φn(t1, t2, · · · , tn) is “factorisable” in the
special form

φn(s, s1, · · · , sn−1) = h(s)h(s1) · · ·h(sn−1), (12.30)

for some element h(t) ∈ L2(R1
+) with unit norm.

Then for this choice of φn we have the relation In(φn) = Hn(Wh), where Hn(Wh) is the
nth Hermite polynomial formed from the unit-norm Gaussian random variable Wh defined
by

Wh =

∫ ∞

0

h(s)dWs,

∫ ∞

0

h2(s)ds = 1. (12.31)

We note, in particular, that

exp

[
αWh − 1

2
α2

]
=

∞∑
n=0

αnHn(Wh). (12.32)

The formulae presented in this section apply in the case of the Wiener chaos based on a
standard one-dimensional Brownian motion.

The extension to the general case of a multidimensional Brownian motion is straightforward,
and consists of replacing the deterministic coefficients φs, φss1 , φss1s2 , etc., with tensorial ex-
pressions of the form φα(s), φαα1(s, s1), φαα1α2(s, s1, s2), and so on.
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12.4 First chaos models

Now we proceed to consider in more detail the structure and classification of interest rate
models according to the scheme outlined in the previous sections.

The first Wiener chaos offers the simplest application of the method and gives rise to a
deterministic interest rate model.

One should remember that the majority of the applications of interest rate theory start
from the deterministic case, so this case should not be regarded as trivial.

Indeed, the chaos framework offers new insights into the relation between deterministic
models and their stochastic generalisations.

It is interesting to note in this connection that even in the case of a deterministic inter-
est rate model there is still a random variable underpinning the dynamics.

For simplicity we shall assume that the dimension of the Brownian motion is one.

In the case of a first chaos model we then write

X∞ =

∫ ∞

0

φsdWs, (12.33)

where φs is a deterministic function of one variable.

A straightforward calculation by use of the Ito isometry confirms that the corresponding
expression for the potential is given by

Vt =

∫ ∞

t

φ2
sds. (12.34)

This is clearly a positive supermartingale that tends to zero in expectation, and it is evident
that the interest rate model that arises is deterministic.

The corresponding expression for the discount bonds is

PtT =

∫ ∞
T

φ2
sds∫ ∞

t
φ2

sds
. (12.35)

Thus, the first chaos is sufficient to characterise a deterministic interest rate structure.

In other words, we can identify the space of positive interest yield curves with the first chaos.
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As a simple example, suppose we take

φs =
√

Re−
1
2
Rs (12.36)

for the first chaos expansion.

Then the associated discount bond becomes

PtT = e−R(T−t). (12.37)

We remark that there is a direct link between the chaos structure presented here and the
applications of information geometry considered earlier in our discussion of the space of
admissible yield curves.
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Chapter 13

Second chaos models. Factorisable second chaos models. Foreign exchange
systems.

13.1 Second chaos models

The second chaos models are the simplest models that introduce stochasticity.

In a single-factor second chaos model the random variable X∞ can be represented in the
form

X∞ =

∫ ∞

0

σsdWs, (13.1)

with the adapted process σs given by

σs = φs +

∫ s

0

φss1dWs1 . (13.2)

Here φs = φ(s) is a deterministic function of one variable, and φss1 = φ(s, s1) is a determin-
istic function of two variables.

The second chaos representation for X∞ is then given by

X∞ =

∫ ∞

0

φsdWs +

∫ ∞

0

∫ s

0

φss1dWs1dWs. (13.3)

In the case of a second chaos model we can think of the deterministic coefficients φ(s) and
φ(s, s1) as supplying just enough freedom to allow for calibration to the initial yield curve
and a complete set of caplet prices for all tenors and maturities.

It is a straightforward exercise to show as a consequence of equation

Vt = Et

[
(X∞ − Et [X∞])2] , (13.4)
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that we are then led to the following expression for the state price density:

Vt =

∫ ∞

t

(
φs +

∫ t

0

φss1dWs1

)2

ds +

∫ ∞

t

∫ s

t

φ2
ss1

ds1ds. (13.5)

The derivation of formula (13.5) can be established most directly if we write

Vt =

∫ ∞

t

Mtsds, (13.6)

where the positive martingale family Mts is defined for 0 ≤ t ≤ s ≤ ∞ by the relation

Mts = Et

[
σ2

s

]
. (13.7)

The fact that Vt can be represented in this way follows as a consequence of

Vt = Et

[∫ ∞

t

σ2
sds

]
. (13.8)

Then a short calculation making use of the relation (13.2) and the conditional Ito isometry
gives

Mts =

(
φs +

∫ t

0

φss1dWs1

)2

+

∫ s

t

φ2
ss1

ds1. (13.9)

To check that the expression appearing on the right hand side of (13.9) is indeed a martingale
we note that

Mts = R2
ts − Qts + Qss, (13.10)

where, for each value of s, Rts is the martingale

Rts = φs +

∫ t

0

φss1dWs1 (13.11)

and Qts is the associated quadratic variation:

Qts =

∫ t

0

φ2
ss1

ds1. (13.12)

If Rts is a martingale and Qts is its quadratic variation, then R2
ts −Qts is also a martingale,

and hence so is Mts since Qss is deterministic and independent of t.

On the other hand Qss is just the extra term required to ensure Mts is positive for all
0 ≤ t ≤ s ≤ ∞, as is clear from expression (13.9).
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The discount bond system can then be put into the Flesaker-Hughston form

PtT =

∫ ∞
T

Mtsds∫ ∞
t

Mtsds
, (13.13)

and the initial term structure that corresponds to this system is given by

P0T =

∫ ∞
T

M0sds∫ ∞
0

M0sds
. (13.14)

More explicitly, we have M0s = φ2
s +

∫ s

0
φ2

ss1
ds1 and hence:

P0T =

∫ ∞
T

(
φ2

s +
∫ s

0
φ2

ss1
ds1

)
ds∫ ∞

0

(
φ2

s +
∫ s

0
φ2

ss1
ds1

)
ds

. (13.15)

Clearly, by an overall adjustment of the scale of X∞ we can set the denominator in (13.15)
to unity.

With this choice of normalisation the corresponding term structure density is given by
ρ(T ) = M0T .

Expressions for the discount bond volatility and the market price
of risk arising in the case of a general second chaos model

Making use of the Ito quotient identity

d (At/Bt)

(At/Bt)
=

dAt

At

− dBt

Bt

+
(dBt)

2

B2
t

− dAtdBt

AtBt

, (13.16)

we deduce that the discount bond volatility is given by

ΩtT =

∫ ∞
T

Utsds∫ ∞
T

Mtsds
−

∫ ∞
t

Utsds∫ ∞
t

Mtsds
, (13.17)

and that the market risk premium vector is given by

λt = −
∫ ∞

t
Utsds∫ ∞

t
Mtsds

. (13.18)

Here for convenience we have introduced the vector-valued process Uts defined by Uts =
2Rtsφst. We note that the constraint ΩTT = 0 is automatically satisfied.
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The instantaneous forward rate process ftT can be calculated by use of the formula ftT =
−∂T ln PtT and we find

ftT =
MtT∫ ∞

T
Mtsds

. (13.19)

The short rate process is given analogously by the formula

rt =
Mtt∫ ∞

t
Mtsds

, (13.20)

which is equivalent to the relation σ2
t = rtVt.

At first glance, the expressions related to the second chaos might look complicated.

However the only exogenously specified ingredients are the deterministic functions φs and
φss1 .

In fact, all the formulae above can be expressed in terms of the underlying Gaussian random
variables Rts.

Option pricing in a second chaos model

We observe that for fixed values of t and s the random variable Mts defined by (13.9) is given
by the square of a Gaussian random variable, plus a constant.

Therefore, for fixed t and T the random variable

ZtT =

∫ ∞

T

Mtsds, (13.21)

can be understood as the integral of a parametric family of squared Gaussian random vari-
ables, plus a constant.

The next step is to define the joint distribution function of the random variables ZtT1 , and
ZtT2 by

FtT1T2(x, y) = Prob [ZtT1 ≤ x and ZtT2 ≤ y] . (13.22)

We denote the corresponding joint density function by ftT1T2(x, y).

Now the payoff for a call option that expires at time t and is written on a T -maturity
discount bond is

Ht = (PtT − K)+, (13.23)
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for some strike K.

Therefore, according to (11.33) the price of this instrument is

H0 = E
[
Vt (PtT − K)+]

. (13.24)

By virtue of (13.13) this is evidently equivalent to

H0 = E
[
(ZtT − KZtt)

+]
, (13.25)

which can be written in terms of the density function f(x, y) in the form

H0 =

∫ ∞

0

∫ ∞

0

f(x, y) (x − Ky)+ dxdy. (13.26)

Analogous formulae can be derived for other types of options.

13.2 Factorisable second chaos models

A considerable simplification can be achieved when the second chaos coefficient φss1 sepa-
rates, that is to say, when φss1 can be written as a finite sum of products of functions of one
variable.

In this situation we obtain a model characterised by a finite set of state variables.

We shall examine in some detail the case where there is a single such term, and set

φs = αs (13.27)

and

φss1 = βsγs1 , (13.28)

where αs, βs and γs1 are deterministic functions of one variable.

The resulting “factorisable” second chaos model then depends on a single state variable.
This model is completely tractable in the sense that it leads to closed-form expressions both
for bond prices and various types of options on bond prices, which we discuss at greater
length below.

First we observe that in the factorisable case we have

φs +

∫ t

0

φss1dWs1 = αs + βsRt, (13.29)
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where the Gaussian martingale Rt is defined by

Rt =

∫ t

0

γs1dWs1 . (13.30)

At any given time t, the random variable Rt is the sole state variable that characterises the
interest rate system in this model.

If we define the corresponding quadratic variation process Qt by

Qt =

∫ t

0

γ2
sds, (13.31)

then it follows that the process R2
t − Qt is also a martingale, and the positive martingale

family Mts defined by (13.9) reduces to expression

Mts = α2
s + β2

sQs + 2αsβsRt + β2
s

(
R2

t − Qt

)
. (13.32)

Clearly, Qs ≥ Qt for all s ≥ t, so Mts > 0 for all values of Rt.

For the integral of Mts we can write∫ ∞

T

Mtsds = AT + BT Rt + CT

(
R2

t − Qt

)
, (13.33)

where for convenience in what follows we define the following processes:

At =

∫ ∞

t

(
α2

s + β2
sQs

)
ds,

Bt = 2

∫ ∞

t

αsβsds,

Ct =

∫ ∞

t

β2
sds. (13.34)

Setting T = t in (13.33) we see that the state price density is given by

Vt = At + BtRt + Ct

(
R2

t − Qt

)
, (13.35)

and thus that the discount bond price can be written as the ratio of a pair of quadratic
polynomials in the state variable Rt :

PtT =
AT + BT Rt + CT (R2

t − Qt)

At + BtRt + Ct (R2
t − Qt)

. (13.36)

Given these expressions, it is then a straightforward exercise to work out formulae for the
bond volatility, the market price of risk, the short rate, and the instantaneous forward rates,
all of which depend upon Rt.

Because Rt is a Gaussian martingale, it is in principle straightforward to simulate the dy-
namical trajectories of these quantities.
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Valuation of options in second chaos models

The present value H0 of a European-style call option with strike K exercisable at time t on
a discount bond with maturity T is given by

H0 = E
[
Vt (PtT − K)+]

. (13.37)

Now clearly, according to

Vt = At + BtRt + Ct

(
R2

t − Qt

)
, (13.38)

and

PtT =
AT + BT Rt + CT (R2

t − Qt)

At + BtRt + Ct (R2
t − Qt)

, (13.39)

we have

Vt (PtT − K) = (AT − KAt) − (CT − KCt) Qt

+ (BT − KBt) Rt + (CT − KCt) R2
t . (13.40)

To proceed let us therefore now fix t, T and K, and introduce the standard normally dis-
tributed random variable Z = Rt/

√
Qt.

Then (13.40) above can be written in the form

Vt(PtT − K) = A + BZ + CZ2. (13.41)

Here the quantities A, B and C are defined by:

A = (AT − KAt) − (CT − KCt)Qt,

B = (BT − KBt)Q
1/2
t ,

C = (CT − KCt)Qt. (13.42)

Therefore if we construct the polynomial P(z) = A+Bz +Cz2, we see that the value of the
call option is given by

H0 =
1√
2π

∫
P(z)≥0

P(z)e−
1
2
z2

dz, (13.43)

which by an analysis of the roots of P(z) can be reduced to a simple explicit expression
involving the normal distribution function and its density.

Analogous formulae can then be deduced for various other types of options, as we shall
indicate shortly.
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Explicit formulae for options on discount bonds

Let us proceed then case by case to examine the behaviour of the polynomial P(z) more
closely.

First we distinguish the cases C = 0 and C �= 0. If C = 0 then P(z) is linear, and for
the value of the call option we obtain

H0 = AN(−z0) + Bρ(z0) (13.44)

when B > 0, and

H0 = AN(z0) − Bρ(z0) (13.45)

when B < 0. Here z0 = −A/B is the single root of P(z), N(z) is the standard normal
distribution function, and ρ(z) is the standard normal density function.

If C �= 0, then we need to consider the sign of the discriminant ∆ = B2 − 4AC.

If ∆ ≤ 0 then for C > 0 the option is guaranteed to expire in the money, and we have
H0 = P0T − KP0t.

If C < 0 then the option will expire out of the money and H0 = 0.

If ∆ > 0 then, again, we have to consider the cases C > 0 and C < 0.

Let us write

z1 =
−B −√

∆

2C
, z2 =

−B +
√

∆

2C
(13.46)

for the roots of P(z). Then if C > 0 we obtain

H0 = (P0T − KP0t) (N (z1) + N (−z2))

− 1

2

(
B −

√
∆

)
ρ(z1) +

1

2

(
B +

√
∆

)
ρ(z2), (13.47)

and if C < 0 we obtain

H0 = (P0T − KP0t) (N(z1) − N(z2))

− 1

2

(
B −

√
∆

)
ρ(z1) +

1

2

(
B +

√
∆

)
ρ(z2). (13.48)

Thus we see that in the factorisable second-chaos framework the pricing of options on dis-
count bonds is completely tractable.
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More generally, the value of an option on any predesignated set of deterministic cash-flows
is also tractable, for example an option on a coupon bond.

To obtain the above formulae, we have set A0 = 1. This can be achieved without loss
of generality by changing the scale of X∞.

Valuation of swaptions

Now we shall demonstrate that in the factorisable second-chaos framework we can also derive
explicit results for a swaption that pays (Stn − K)+ at a series of future dates Ti, for some
strike K, where i = 1, · · · , n, and Stn is the swap rate

Stn =
1 − PtTn∑n

i=1 PtTi

. (13.49)

The effective payoff at expiry t is therefore equal to

Ht =

(
1 − PtTn − K

n∑
i=1

PtTi

)+

, (13.50)

and the price for this instrument at present is

H0 = E

[
Vt

(
1 − PtTn − K

n∑
i=1

PtTi

)+]
. (13.51)

The analysis turns out to be quite similar to the bond option case.

In the case of a swaption we define the quantities

A∗ =

(
At − ATn − K

n∑
i=1

ATi

)
−

(
Ct − CT − K

n∑
i=1

CTi

)
Qt

B∗ =

(
Bt − BTn − K

n∑
i=1

BTi

)
Q

1/2
t

C∗ =

(
Ct − CTn − K

n∑
i=1

CTi

)
Qt. (13.52)

for fixed t and Ti.

The value of the swaption is then given by

H0 =
1√
2π

∫
P(z)≥0

P(z)e−
1
2
z2

dz, (13.53)
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where in the present case the polynomial P(z) is given by P(z) = A∗ + B∗z + C∗z2.

When C∗ = 0 we have

H∗
0 = A∗N(−z∗0) + B∗ρ(z∗0) (13.54)

for B∗ > 0, and

H∗
0 = A∗N(z∗0) − B∗ρ(z∗0) (13.55)

for B∗ < 0. Here z∗0 = −A∗/B∗.

When C∗ �= 0 then we have to consider the discriminant ∆∗ = B∗2 − 4A∗C∗.

For ∆∗ ≤ 0 we have that, for C∗ > 0 the contract is guaranteed to pay off and the value at
present is H∗

0 = P0t − P0Tn − K
∑n

i=1 P0Ti
.

On the other hand in the case that C∗ < 0 the contract will expire worthless and H∗
0 = 0.

Finally, when ∆∗ > 0 we define the two roots of P(z) by

z∗1 =
−B∗ −√

∆∗

2C∗ , z∗2 =
−B∗ +

√
∆

2C∗ . (13.56)

The value of the swaption contract is then given by

H∗
0 =

(
P0t − P0Tn − K

n∑
i=1

P0Ti

)
(N(z∗1) + N(−z∗2))

− 1

2

(
B∗ −

√
∆∗

)
ρ(z∗1) +

1

2

(
B∗ +

√
∆∗

)
ρ(z∗2), (13.57)

when C∗ > 0; whereas if C∗ < 0 we get

H∗
0 =

(
P0t − P0Tn − K

n∑
i=1

P0Ti

)
(N(z∗1) − N(z∗2))

− 1

2

(
B∗ −

√
∆∗

)
ρ(z∗1) +

1

2

(
B∗ +

√
∆∗

)
ρ(z∗2). (13.58)

It is a remarkable feature of the factorisable second chaos models that they admit tractable
closed-form expressions for both options and swaptions.
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13.3 Foreign exchange systems

In conclusion we consider how the framework presented here generalises to the situation
where there is a foreign exchange system, with a family of discount bonds associated to each
currency.

It will be demonstrated that a chaotic representation exists for the entirety of such an
international system of interest rates and foreign exchange.

As a byproduct of this result, we are also led to a simple class of stochastic volatility models
for general asset pricing dynamics.

For convenience we shall write Sij
t for the price of one unit of currency i in units of currency j.

Here i, j = 0, 1, · · · , N , and we may think of the case i = 0 as referring to the particu-
lar base currency with respect to which the axioms (A1), (A2), and (A3) are framed.

In fact, there is ultimately no special significance to the choice of base currency: the entire
system is symmetrical in the ensemble of currencies.

We shall assume in the present investigation, as before, that the foreign exchange market is
“frictionless” in the sense that

Sij
t Sjk

t = Sik
t (13.59)

for all i, j, k.

Let us write Bi
t for the value in units of currency i of a money-market account in that

currency, initialised to one unit of currency i.

We assume that for each currency there exists a strictly increasing money-market asset,
with a corresponding strictly positive short rate process ri

t such that

Bi
t = Bi

0 exp

(∫ t

0

ri
sds

)
. (13.60)

Constant value assets

We also assume the existence of a floating rate note in each currency.

That is to say, for each i we assume the existence of an asset of constant value in units
of currency i, paying a dividend at the rate ri

t.
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Derivative of the exchange rate process as a ratio system

Writing Si0
t for the value of one unit of currency i in units of the base currency, we see that

the product Si0
t Bi

t represents the base-currency price of a non-dividend paying asset.

Therefore by axiom (A2) we deduce for each value of i that

M i
t =

Si0
t Bi

t

ξt

(13.61)

is a martingale, from which it follows that the process V i
t defined by

V i
t =

Si0
t

ξt

, (13.62)

is a supermartingale.

Since Sij
t Sj0

t = Si0
t for all i, j, we thus deduce that

Sij
t =

V i
t

V j
t

. (13.63)

This gives us a general expression for the exchange-rate process as a ratio of supermartingales.

As a consequence we deduce that the dynamics of Sij
t are given by

dSij
t

Sij
t

=
[
rj
t − ri

t + λj
t

(
λj

t − λi
t

)]
dt +

(
λj

t − λi
t

)
dWt, (13.64)

where λi
t is the market price of risk process associated with assets that are denominated in

currency i.

The derivation of (13.64) follows directly from the relation

dV i
t = −ri

tV
i
t dt − λi

tV
i
t dWt (13.65)

together with the Ito quotient rule.

It is interesting to note that in the general arbitrage-free exchange rate dynamics the FX
volatility is completely determined by the associated market price of risk processes.

Foreign discount bonds

Let us consider the discount bond system for foreign currency number i. We denote by P i
tT

the value at time t of a bond that pays one unit of currency i at time T .
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In this case Si0
t P i

tT is the base-currency price of a non-dividend paying asset, and there-
fore Si0

t P i
tT /ξt is a martingale by (A2).

It follows that Si0
t P i

tT /ξt = Et [Si0
T P i

TT /ξT ].

Thus, from Si0
t /ξt = V i

t and P i
TT = 1, we deduce from this line of argument that

P i
tT =

Et [V i
T ]

V i
t

. (13.66)

Asymptotic behaviour

Now we make the additional assumption that limT→∞ P i
0T = 0 for all i.

It follows that a conditional variance representation exists for the state-price density as-
sociated with each currency.

In other words, there exists a set of random variables X i
∞ ∈ L2(Ω,F , P ) for i = 0, 1, · · · , N

such that

V i
t = Et

[(
X i

∞ − Et

[
X i

∞
])2

]
. (13.67)

These random variables then each admit a chaos representation in terms of the vector Wiener
process W α

t (α = 1, · · · , k).

We see that once the random variables X i
∞ have been specified for i = 0, 1, · · · , N then

the international system of interest and foreign exchange is completely determined by the
relations

Sij
t =

V i
t

V j
t

, (13.68)

P i
tT =

Et [V i
T ]

V i
t

(13.69)

and

V i
t = Et

[(
X i

∞ − Et

[
X i

∞
])2

]
. (13.70)

We can refer to the random variables X i
∞ as the generators of the corresponding interest

rate and foreign exchange system.
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It should be evident that although we have consistently used the language of foreign ex-
change in the discussion above, the matrix process Sij

t can be used to characterise the price
of any asset in terms of another, providing that these prices are always positive and that we
interpret the associated short-rate systems as continuous dividend streams.

As a consequence we see that the generic model for such a “basic” asset price is a pro-
cess of the form

St =
Et

[
(Y∞ − Et [Y∞])2]

Et

[
(X∞ − Et [X∞])2] , (13.71)

that is, a ratio of conditional variances, where X∞ and Y∞ are elements of L2(Ω,F , P ).

For example, if we think of St as a dollar-valued share price (and we approximate the
dividend flow as continuous–an equity index might work better for that!) then X∞ carries
the information of the dollar risk premium, and the dollar interest rate, whereas Y∞ carries
the information that is more specific to the particular stock.

The simplest models leading to a nontrivial asset price stochasticity are those for which
at least one of X∞ or Y∞ is an element of the second chaos.
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Chapter 14

Real and nominal interest rates. Models for inflation. Valuation of index-
linked bonds and other inflation related products. General principles for the
design of inflation-linked products.

14.1 Inflation linked bonds∗

Now we consider a general model of inflation and inflation-linked derivatives.

The idea is to formulate an approach to the valuation of inflation derivatives that is as
close as possible to the methodologies for valuing foreign exchange and interest rate deriva-
tives.

The theory of inflation has aspects that relate to both interest rates and foreign exchange.
In particular, a useful way of thinking about inflation is to treat the consumer price index
(CPI) as if it were the price of a foreign currency.

We begin by considering an economy consisting of discount bonds and index-linked dis-
count bonds.

The indexing of the index-linked discount bonds is with respect to the consumer price index
which at time a has the value Ca.

We think of Ca as representing the value, in units of the domestic currency (henceforth,
dollars) of a typical basket of goods and services at that time.

An increase in Ca over an interval of time then indicates that there has been inflation
over that period.

We shall define an inflation linked discount bond to be a bond which pays out Cb at the
maturity date b. In other words, the inflation linked bond pays out enough in dollars to buy
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a unit of goods and services at that time.

Our problem is to formulate a general theory for the price processes of the consumer price
index and index-linked bonds, and tie this in with the HJM theory of interest rate derivatives.

Indexation is debt is not a new idea. An early example occurs in 1742 when Massachusetts
issued bills linked to the price of silver on the London Exchange. The risks in indexation to
a single commodity became apparent a few years later when the price of silver rose in excess
over general prices.

As a consequence, a law was passed in Massachusetts requiring a wider base of commodities
for indexation.

In 1780 notes were issued again, indexed this time with the intention of preserving the
value of notes issued as wages to soldiers in the American Revolution.

In this case, both the principal and the interest of the notes were indexed to the com-
bined market value of five bushels of corn, sixty-eight and four-sevenths pounds of beef, ten
pounds of sheep wool, and sixteen pounds of sole leather.

14.2 Payout structures for inflation-linked products∗

We denote by PN
ab the value of a nominal discount bond at time a with maturity at time b.

At maturity the nominal discount bond pays one dollar.

Then a typical inflation-linked derivative has a payout or payouts given by functions of
nominal discount bonds (at various times and of various maturities) and the consumer price
index (at various times). Some examples are as follows.

(a) Inflation cap. This pays out if inflation (as measured by percentage appreciation in
the CPI) exceeds a certain threshold K over a given period.

Thus if the period in question is the interval (a, b), then the payout Hb at time b is given by:

Hb = X max

[(
Cb

Ca

− 1

)
− K, 0

]
, (14.1)

where X is some dollar notional.
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In practice the payout would have to be delayed to some still later date c (to allow for
official publication of the relevant CPI figure), so the effective payout is

Hb = XPN
bc max

[(
Cb

Ca

− 1

)
− K, 0

]
. (14.2)

(b) Inflation swap. For a succession of intervals (ai, bi) (i = 1, . . . , n) we receive the inflation
rate

Iab =
Cb

Ca

− 1 (14.3)

for that interval (with payment delayed to some slightly later time ci), and pay a fixed rate,
all on a fixed notional.

(c) Zero strike floors on inflation. Here the idea is to protect the receiver of the infla-
tion leg in an inflation swap against a deflation scenario.

Thus instead of simply receiving Iab, which can go negative (deflation), one receives max[Iab, 0].

(d) Inflation swaption. This confers the right to enter into an inflation swap (e.g., as a
payer of the fixed rate) at some specified future time, with a given “strike” fixed rate.

(e) Inflation protected annuity . This pays a fixed “real” annuity on the future dates ai:

Hai
=

fNCai

C0

. (14.4)

Here f is the nominal annuity rate (e.g., 5%), N is the notional.

The effect of the CPI is to inflate the actual payment appropriately.

(f) Knockout option. A typical structure, for example, might pay if the total inflation
exceeds a certain threshold K at time T .

Knockout would occur if the total inflation drops below a certain specified critical level
K ′ between time t and T .

HT = N max

[(
CT

Ca

− 1

)
− K, 0

]
unless

(
CT

Ca

− 1

)
− K ′ ≤ 0 at some time a

in the interval t ≤ a ≤ T, in which case HT = 0. (14.5)

There are many variations on this kind of structure.
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The basic idea is to make the option premium cheaper by having the contract specify a
cancelling of the structure in the event of certain circumstances.

(g) Cap on “real” interest rates. This might, for example, pay off

Hb = X max[LR
ab − K, 0]. (14.6)

Real rates are not necessarily available as a basis for contract specification. Instead we can
use a proxy.

(h) Proxy cap on “real” interest rates. This instead would pay

Hb = X max[LN
ab − Iab − K, 0], (14.7)

where Lab is the relevant per-period Libor rate.

Then if the Libor rate exceeds the inflation rate over the given interval by more than a
specified amount, there is a payoff.

Here we have used the difference between the Libor rate and the inflation rate as a con-
venient proxy for the “real” interest rate over the given interval.

Clearly, more “exotic” structures can also easily be represented. Analogues both from the
FX world (treating Ca as a foreign exchange rate), and the interest rate world (treating Iab

as a kind of “rate”) can be formulated.

14.3 General theory of inflation∗

There are three ingredients: the “nominal” discount bonds PN
ab , the “real” discount bonds

PR
ab, and the consumer price index Ca.

The real discount bonds are defined as follows.

By PR
ab we mean intuitively the price at time a, in units of goods and services, for one

unit of goods and services to be delivered at time b.

Thus PR
ab is the discount function that characterises “real” interest rates. If we lived in

a pure barter economy, with no money, then PR
ab would define the term structure of interest

rates.

For example, if the price of bread happened to be a good proxy for goods and services
in general, then one “unit” of goods and services could be represented by 100 loaves of bread.
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The real term structure of interest rates would then supply information like how many
loaves of bread you should in principle be willing to part with today in exchange for a sure
delivery of 100 loaves one year from now.

The answer might be, say, 97 loaves, and that enables us to define the one-year real in-
terest rate.

Associated with the system of real discount bonds we have a corresponding system of real
interest rates. We denote a typical real rate with the notation LR

ab.

The index-linked discount bonds are related to the real discount bonds by the consumer
price index, which acts as a kind of exchange rate.

In other words, if we multiply the PR
ab by Ca, that gives us the dollar value of the b-maturity

real discount bond at time a.

In the foreign exchange analogy, we think of the nominal (dollar) discount bonds as the
“domestic” bonds. We think of the real discount bonds as “foreign” discount bonds, and the
CPI plays the role of the exchange rate.

Note that the actual inflation rate Iab for the period (a, b) is not strictly analogous to an
interest rate in the usual sense – it is only known at time b (or later!).

It is thus best thought of as an appreciation in an asset price.

But in that case what is the relation between “real” rates, “nominal” rates, and “infla-
tion” rates?

Clearly care is required, and we must not confuse categories just because these are all loosely
referred to as “rates”.

Part of the goal is to gain some insight into the relation between these various “rates”.

14.4 Price processes for nominal discount bonds∗

As usual in an HJM type framework, we assume an economy where uncertainty in the future
is modelled by a multi-dimensional Brownian motion defined with respect to the natural
probability measure.
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Assuming no arbitrage, and thus the existence of a risk premium vector, we can write the
dynamics for the price processes of the nominal discount bonds in the form

dPN
ab

PN
ab

= (rN
a + λN

a ΩN
ab) da + ΩN

ab dWa. (14.8)

Here rN
a is the nominal short rate, λN

a is the nominal risk premium vector, ΩN
ab is the nominal

vector volatility, and Wa is the Brownian motion vector.

By analogy, for the real discount bonds we have

dPR
ab

PR
ab

= (rR
a + λR

a ΩR
ab) da + ΩR

ab dWa. (14.9)

It then follows by virtue of the foreign exchange analogy that the price dynamics for the
consumer price index are

dCa

Ca

= [rN
a − rR

a + λN
a (λN

a − λR
a )] da + (λN

a − λR
a ) dWa. (14.10)

We note that the CPI volatility vector can be expressed as the difference between the nom-
inal and real risk premium vectors.

Thus we can write

dCa

Ca

= (rN
a − rR

a + λN
a νa)] da + νa dWa, (14.11)

where νa = λN
a − λR

a is the CPI volatility.

In the absence of a risk premium, we see that the drift of the CPI is given by the dif-
ference between the nominal short rate and the real short rate.

In reality, the drift of the CPI contains another term, given by the product of the nomi-
nal risk premium vector and the CPI volatility vector.

Thus if by the instantaneous rate of inflation Ia we mean the drift process for the consumer
price index, we have:

Ia = rN
a − rR

a + λN
a νa. (14.12)

This is an expression of the so-called “Fisher equation”, which relates the inflation rate to
the nominal interest rate minus the real interest rate plus a risk premium term.
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14.5 Transfer to the nominal risk neutral measure∗

For the valuation of derivatives we want to introduce a change of measure such that the ratio
of any of the nominal bonds PN

ab to the nominal dollar money market account is a martingale.

Suppose we write BN
a for the nominal money market account, which satisfies

dBN
a = rN

a BN
a da. (14.13)

Then we introduce a new probability measure PN as usual according to the scheme

E
N
a [Xb] =

Ea[ΛbXb]

Ea[Λb]
, (14.14)

where E
N
a denotes conditional expectation with respect to the measure PN given the filtra-

tion up to time a, and where Xb is any random variable adapted to time b.

We call PN the nominal (or dollar) risk neutral measure.

Here the change of measure density process Λa is defined by

Λa = exp

(
−

∫ a

0

λN
s dWs − 1

2

∫ a

0

(
λN

s

)2
ds

)
. (14.15)

With respect to PN the process WN
a defined by

dWN
a = dWa + λN

a da (14.16)

is a Brownian motion.

Then for the processes PN
ab and PR

ab we can write

dPN
ab

PN
ab

= rN
a da + ΩN

ab dWN
a (14.17)

and

dPR
ab

PR
ab

= (rN
a − νaΩ

R
ab) da + ΩR

ab dWN
a . (14.18)

We note that the process (14.18) for the real discount bonds picks up a “quanto” term in
the drift in the nominal risk neutral measure.

This is appropriate since the real discount bonds are not denominated in dollars.
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The process for the consumer price index in the risk neutral measure is:

dCa

Ca

= (rN
a − rR

a ) da + νa dWN
a . (14.19)

Thus in the risk neutral measure the nominal risk premium term disappears, and we see that
the drift on the CPI is given by the difference between the nominal and real interest rates.

The process is like that of a foreign currency, and we can think of the real interest rate
as playing the role of the “foreign” interest rate.

Normally we expect rN
a and rR

a both to be positive.

There are good economic arguments to support the idea that both nominal and real in-
terest rates should be positive.

We note that by construction the ratio process PN
ab/Ba is a martingale in the nominal risk

neutral measure.

So is CaP
R
ab/Ba, where CaP

R
ab is the (dollar) value of an index linked discount bond.

14.6 Valuation of inflation linked derivatives∗

Now let HT be a random variable corresponding to the payout of an inflation linked deriva-
tive.

We can think of HT as depending in a general way of the values of nominal discount bonds,
and the consumer price index at times between the present and the maturity date T .

There are many examples of inflation linked derivatives for which the payout depends in
a direct way only on the nominal discount bonds and the consumer price index, but not on
the real discount bonds.

These we shall call “index linked” derivatives, and it should be noted that these structures
are in principle more straightforward to value and hedge than inflation linked derivatives,
that also involve real interest rates.

The basic derivatives valuation formula is given in the risk neutral valuation scheme by

H0 = E
N

[
HN

BT

]
. (14.20)
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In particular, we can consider the case where HT is the payout CT of an index linked discount
bond, normalised by the value of today’s CPI. Then we have

PR
0T = E

N

[
CT /C0

BT

]
(14.21)

which shows that today’s market for index linked bonds tells us the initial real discount
function.

In reality, we have to work a bit harder, on account of the lagging effect, and the fact
that we generally have to work with coupon bonds.

Finally, by use of the foreign exchange analogy let us consider a simple Black-Scholes type
model for the valuation of index derivatives.

Let us assume deterministic interest rates (nominal and real), and a deterministic CPI
volatility, with a prescribed local volatility function νt. Then for the CPI process we can
write:

Ct =
C0P

R
0t

PN
0t

exp

(∫ t

0

νs dWs − 1

2

∫ t

0

ν2
s ds

)
, (14.22)

where the expression C0P
R
0t/P

N
0t is the forward value for the CPI.

In this case the situation is entirely analogous to the corresponding problem for foreign
exchange, and by use of the Black-Scholes formula we can get a crude valuation for some
products in this way, though of course care is required in the case of longer dated structures.
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