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Abstract

This dissertation investigates the development of interest rate modeling. The early models are based
within a mathematical model of the underlying economy. These models focus on describing and
explaining the general structure and shape of the interest rate term structure. More recent models
focus on incorporating market observed values and reproducing market prices of vanilla instruments
such as caps. The aim is to allow pricing of more exotic claims in a manner consistent with the
actively traded vanilla instruments. While most models assume that the entire term structure is
driven by the instantaneous short rate, a new approach has been to model instantaneous forward
rates, thereby specifying the entire term structure at any point in time.

The sparse nature of South African interest rate data makes implementation of more sophisticated
models unsuitable. Even for simpler models, calibration results are rather unstable.
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Introduction

Growth in the derivatives markets has brought with it an ever-increasing volume and range of
interest rate dependent derivative products. To allow profitable, efficient trading in these products,
accurate and mathematically sound valuation techniques are required to make pricing, hedging and
risk management of the resulting positions possible.

1. Introduction

The value of vanilla European contingent claims such as caps, floors and swaptions depends only
on the level of the yield curve. These types of instruments are priced correctly using the simple
model developed by Black [4]. This model makes several simplifying assumptions which allow closed
form valuation formulae to be derived. This class of vanilla contingent claims has become known as
‘first-generation’ products.

These instruments expose the investor to the level of the underlying yield curve at one point in time.
They reflect the investor’s view of the future changes in the level of the yield curve, not their view of
changes in the slope of the curve. ‘Second-’ and ‘third-generation’ derivatives, such as path depen-
dent and barrier options, provide exposure to the relative levels and correlated movement of various
portions of the yield curve. Rather than hedging these exotic options with the basic underlying
instrument, i.e. the bond, the ‘first generation’ instruments are used. Therefore, the Black model
prices of these ‘first generation’ instruments are taken as given. This does not necessarily imply
a belief in the intrinsic correctness of the Black model. Distributional assumptions which are not
included in the Black model, such as mean reversion and skewness, are incorporated by adjusting
the implied volatility input.

The more sophisticated models developed allow the pricing of instruments dependent on the chang-
ing level and slope of the yield curve. A crucial factor is that these models must price the exotic
derivatives in a manner that is consistent with the pricing of vanilla instruments. When assessing
the correctness of any more sophisticated model, its ability to reproduce the Black prices of vanilla
instruments is vital. It is not a model’s a priori assumptions, but rather the correctness of its
hedging performance that plays a pivotal role in its market acceptance.

The calibration of the model is an integral part of its specification and so the usefulness of a model
cannot be assessed without considering the reliability and robustness of parameter estimation.

2. General framework

The pricing of interest rate contingent claims has two parts. Firstly, a finite number of pertinent
economic fundamentals are used to price all zero coupon (default free) bonds of varying maturities.
This gives rise to a term structure model, which attempts to explain the relative pricing of default

i



3. APPROACHES TO TERM STRUCTURE MODELLING ii

free bonds of various maturities. Secondly, taking these zero coupon bond prices as given, all interest
rate derivatives may be priced.

As with asset prices, the movement of interest rates is assumed to be determined by a finite number
of random shocks, which feed into the model through stochastic processes. Assuming continuous
time and hence also continuous interest rates, these sources of randomness are modelled by Brownian
motions (Wiener processes).

When modelling interest rates we do not have a finite set of assets, but rather a one parameter
family of assets: the discount bonds, with the maturity date as the parameter. The risk free rate of
interest (short term interest rate) is not specified exogenously (as in stock price models), but is the
rate of return on a discount bond with instantaneous maturity. Also, unlike in asset pricing theory,
the fundamental assets - the discount bonds, may themselves be viewed as derivatives. Hence the
modelling of the interest rate term structure may be viewed as tantamount to interest rate derivative
pricing.

The theory of interest rate dynamics relies on a degree of abstraction in that the fundamental
assets (the discount bonds) are assumed to be perfect assets, that is default free and available in a
continuum of maturities.

3. Approaches to term structure modelling

The modelling of the term structure of interest rates in continuous time lends itself to various
approaches. The most widely used approach has been to assume the short term interest rate
follows a diffusion process'. Bond prices are then determined as solutions to a partial differential
equation which places restrictions on the relationship of risk premia of bonds of varying maturities.
Unfortunately it is particularly difficult and cumbersome to fit the observed term structure of interest
rates and volatilities within this simple diffusion model.

3.1. One factor models. One of the first models to make a significant impact on interest rate
modelling was by Vasicek [46]. Although his paper is entitled “An Equilibrium Characterisation
of the term structure” he does not make any assumptions about equilibrium within an underlying
economy, nor does he make use of an equilibrium argument in the derivation. Instead his derivation
relies on an arbitrage argument, much like the one used by Black and Scholes in the derivation of
their option pricing model. Vasicek makes assumptions about the stochastic evolution of interest
rates by exogenously specifying the process describing the short term interest rate.

A later approach utilised by Cox, Ingersoll and Ross [16] begins with a rigorous specification of an
equilibrium economy which becomes the foundation for the model specifications. Assumptions are
made about the stochastic evolution of exogenous state variables and about investor preferences.
The form of the short term interest rate process and hence the prices of contingent claims are
endogenously derived from within the equilibrium economy. The CIR model is a complete equilib-
rium model, since bond prices are derived from exogenous specifications of the economy, that is:
production opportunities, investors’ tastes and beliefs about future states of the world.

Most models, including the Vasicek model, are partial equilibrium theories, since they take as input,
beliefs about future realisations of the short term interest rate (depicted within the functional form

LA diffusion process is a Markov process for which all realisations or sample functions {X¢,t € [0,00)} are
continuous. A Markov process has the characteristic that given the value of X, the values of X, s >t do not depend
on the values of X,,u < t. Brownian motion is a diffusion process. [31]
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of the short term interest rate process) and make assumptions about investors’ preferences (specified
by the market prices of risk). The resulting discount bond yields are based on these assumptions.
The equilibrium approach has the advantage that the term structure, its dynamics and the func-
tional form of the market prices of risk are endogenously determined by means of the imposed
equilibrium. CIR [16] criticise the partial equilibrium approach, since it applies an arbitrage argu-
ment to exogenously specified interest rate dynamics and allows an arbitrary choice of the form of
the market prices of risk which may lead to internal inconsistencies.

The assumption implicit within one factor models is that all information about future interest rates
is contained in the current instantaneous short term interest rate and hence the prices of all default
free bonds may be represented as functions of this instantaneous rate and time only. Also, within a
one factor framework the instantaneous returns on bonds of all maturities are perfectly correlated.
These characteristics are inconsistent with reality and motivate the development of multi factor
models.

3.2. Multi factor models. Brennan and Schwartz (BS)[9] propose an interest rate model

based on the assumption that the whole term structure can be expressed as a function of the yields
of the longest and shortest maturity default free bonds. Longstaff and Schwartz [34] develop a two
factor model of the term structure based on the framework of Cox, Ingersoll and Ross [16]. The two
factors are the short term interest rate and the instantaneous variance of changes in this short term
interest rate (volatility of the short term interest rate). Therefore the prices of contingent claims
reflect the current levels of the interest rate and its volatility. Langetieg [33] develops a general
framework where the short term interest rate is expressed as the sum of a number of underlying
stochastic factors. The model is essentially an extension of Vasicek’s approach where the evolution
of the short term interest rate is subject to multiple sources of uncertainty.
The use of two or more factors improves the explanatory power of the models, but increases the
degree of numerical complexity. Identifying additional factors is quite difficult and cumbersome
numerical procedures need to be used. Although not always explicitly stated, the multi factor
models rely on the assumption of market completeness. This means there must be at least as many
tradable assets as there are sources of uncertainty. If this is not the case, the market is incomplete
and there are stochastic fluctuations in the Brownian motions which are not picked up as price
changes in some asset, and hence cannot be hedged.

3.3. An attempt at preference free pricing. In the above models the underlying stochastic

state variables are interest rates or other non-tradable securities. This means that the resulting val-
uation formulae for contingent claims depend on investor preferences, and empirical approximations
must be used to estimate the investor specific variables.
In an attempt to avoid this problem, Ball and Torous [3] propose a model where the underlying
state variable is the bond directly. The price of a risk free zero coupon bond is assumed to follow
a Brownian bridge process. The specification of this process ensures that the price of the bond
converges to its face value at maturity. Also, since this underlying state variable is a tradable
security, a preference free, closed form valuation formula for European options may be derived.
However, this model has shortcomings which make it unsuitable.

3.4. Fitting the initial term structure. The above models attempt to model interest rates
so as to produce a realistic future yield curve. No explicit attempts are made to match the current
observed term structure. CIR [16] mention a possible extension to their model that allows a time
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dependent drift term and point out that information contained within the initial term structure
could be used to determine the drift without placing any restrictions on its functional form. This
point was taken up much later by Hull and White [26] in their extension of the Vasicek and CIR
models. Hull and White propose an extension to these models allowing time dependent drift and
volatility parameters. The extended Vasicek model allows analytical solutions for bonds and bond
options. Model parameters, including those involving the market price of risk, are determined in
terms of the initial term structure. This approach allows an exact fit to the initial term structure
of interest rates and possibly also interest rate volatilities.

Black, Derman and Toy [5] developed a one factor discrete time model of the term structure. A
binary tree of one period interest rates is constructed in such a way that the rate and transition
probabilities at each node match an initial observed term structure of interest rates and volatilities.
Here the one period rate is the analogue of the short term interest rate within a continuous time
setting. This model is in fact a time-discretisation of a diffusion model where the short term interest
rate is lognormal.

3.5. Modelling the forward rate. Ho and Lee [24] introduced a new approach to term
structure modelling. Instead of modelling the short term interest rate, they developed a discrete
time model of the evolution of the whole yield curve. The short term interest rate is a single point
on the yield curve, which, in one factor models, is assumed to be the only factor determining the
entire yield curve. The Ho and Lee model admits an arbitrary specification of the initial yield curve
and so it may be calibrated to the observed initial yield curve.

Heath, Jarrow and Morton [23] developed a general framework of interest rate dynamics allowing an
arbitrary specification of the initial term structure. They approached the problem by exogenously
specifying the dynamics of instantaneous, continuously compounded forward rates. Rather than a
traditional no arbitrage argument (as used, for example, in the derivation of the Vasicek model)
they use a change of probability measure technique initially formulated by Harrison and Kreps
[21] and Harrison and Pliska [22]. This involves transforming to the risk neutral measure under
which all asset prices have the same drift, that is the risk free rate of interest. Within a complete
market, without profitable arbitrage opportunities, this risk neutral measure is unique and allows all
discounted? asset prices to be martingales. Default free zero coupon bonds and derivative securities
may now be valued by taking the expectation, under the risk neutral measure, of the discounted
terminal (maturity) value.

The Ho and Lee model is a special case of the HIJM framework and may be viewed as its discrete
time predecessor.

4. Outline of the thesis

In the chapters following this introduction I examine, in some detail, the various models mentioned
above. I point out the assumptions on which each model is based, and examine the derivation of
the model and where analytical solutions exist, the derivation of the pricing formulae for contingent
claims. Where possible I compare and contrast the various models drawing on any analogies that
help to explain the significance of the various approaches. I then perform a calibration of the
HW-extended Vasicek and BDT models to South African interest rate data.

2Here, ‘discounted’ implies that the asset prices are expressed as a ratio of the money market account.



CHAPTER 1

The Vasicek Model

The initial formulation of Vasicek’s model is very general, with the short term interest rate being
described by a diffusion process. An arbitrage argument, similar to that used to derive the Black
Scholes option pricing formula [7], is applied within this broad framework to determine the partial
differential equation satisfied by any contingent claim. A stochastic representation of the bond
price results from the solution to this equation. Vasicek then allows more restrictive assumptions
to formulate the specific model with which his name is associated.

The consistency of the model specifications with an underlying economic equilibrium is not proved.
Rather, it is implicitly assumed. The special case of the general model formulation, which Vasicek
uses for illustrative purposes, was suggested by Merton [36] in a study of price dynamics in a
continuous time, equilibrium economy. Equilibrium conditions imply that interest rates are such
that the demand and supply of capital are equally matched.

1. Preliminaries

First, define the following variables:

P(t,T) — time ¢ price of a discount (zero coupon) bond maturing at time 7', ¢ < T'.
This bond has unit maturity value, P(T,T) = 1.

R(t,7) — time ¢ rate of interest applicable for period 7. In terms of the return on a bond,
this rate is defined as the internal rate of return, at time ¢, on a bond with maturity
date T =t + .
r(t) — instantaneous rate of interest (spot rate) at time .
F(t,T) — instantaneous forward interest rate i.e. time ¢ assessment of the instantaneous rate

of interest applicable at time T'.

The following relationships apply:

1
(1.1) R(t,7) = ——logP(t,t+71), 7>0
T
1 t+T1
R(t,7) = -— F(t,7)dr
T Jt

or explicitly for the forward rate:

(1.2) F(1,T) = o (T = OR(,T ~ 1)

The spot rate is defined as the instantaneous rate of interest at time ¢:
(1.3) lim R(t,7) = R(t,0) = r(¢)
T—0

1
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Vasicek makes the following three assumptions:

Assumption 1. The current spot interest rate is known with certainty. However, subsequent
values of the spot rate are not known. The assumption is made that r(t) follows a stochastic
process. Also assume that r(¢):

e is a continuous function of time,
e follows a Markov process. That is, given its current value, future developments of the spot
rate are independent of past movements.

This implies that the spot rate process is fully characterised by a single state variable, i.e. its current
value, and the probability distribution of r(¢*),¢* >t is fully determined by r(t). A continuous
Markov process is called a diffusion process, which is described by the stochastic differential equation:

(1.4) dr = f(r,t)dt + s(r,t)dW

where f(r,t) is the instantaneous drift and s*(r,t) the instantaneous variance of r(t). W(t) is a
Wiener process.

Assumption 2. The time ¢ price of a discount bond with maturity 7', P(¢,T), is fully determined
by the time ¢ assessment of {r(t*),t < t* < T'}, the segment of the spot rate over the remaining
term of the bond. Moreover, the development of the spot rate over (¢,T') is fully determined by its
current value r(t) and so the bond price may be written as a function of the current spot rate:

(1.5) P(t,T) = P(r(t),t,T)

Hence, the entire term structure is determined by the spot rate.
Assumption 8. The market is assumed to be efficient. This implies:

e there are no transaction costs;

e information is simultaneously distributed to all investors;
e investors are rational with homogeneous expectations;

e profitable, riskless arbitrage is not possible.

2. Term structure equation

Equation (1.5) implies that the bond price P = P(r(t),¢,T) is a function of the spot rate. Apply
Ito’s Lemma to the bond price and using (1.4) we derive the stochastic differential equation for the
bond price:

0 0 0? 0
(2.1) dP = <f(r, t) 8_1: + 8_]753 + %.92(7“, t)8—7°];> dt + s(r, t)a—]:dW
Set,
o 0 02
(2.2) w(t,T) = m <f(r, t) o + n + %SQ(T, t) W) P(r(t),t,T)
0
(2.3) o(t,T) = —m 5(r,1) 5-P(r(0),1,T)
and hence
(2.4) dP = pu(t,T)P dt — o(t, T)P dW

where p(t,T) and o%(t, T) are the, time ¢, mean and variance of the instantaneous rate of return of
a T- maturity zero coupon bond.
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Since a single state variable is used to determine all bond prices, the instantaneous returns on bonds
of varying maturities are perfectly correlated. Hence, a portfolio of positions in two bonds with
different maturity dates can be made instantaneously risk free. This means that the instantaneous
return on the portfolio will be the risk free rate of interest. Consider a, time ¢, portfolio of a short
position in V; bonds with maturity 77 and a long position in V5 bonds with maturity 7>. The
change over time, in the value V' = V5 — V], of the portfolio, is obtained from (2.4):

(2.5) dV = (Vap(t, To) = Vip(t, Th)) dt — (Vao (8, T2) = Vio (£, T)) dW

Choosing V7 and V5 such that the coefficient of the Wiener process in (2.5) reduces to zero will
result in a portfolio with a strictly deterministic instantaneous return. Hence, we require:

VQO’(t,TQ) — ‘/iU(t,Tl)
(V + Vl)O'(t,TQ) — ‘/iU(t,Tl)

Vla(t,Tl) —Vio’(t,T2) = VU(t,TQ)
_ VU(ta T2)
V= T — ot 1)
Similarly:
V. = VU(taTl)
T ot,Th) — o(t, Tb)
and hence (2.5) becomes:
AV =V IU/(t7 TQ)O-(tﬂ Tl) B /J/(ta Tl)o-(ta TQ) dt

o(t,T1) —o(t,T»)
Invoking assumption 3, that no riskless arbitrage is possible, the instantaneous return on the port-
folio must be the risk free rate, r(¢). That is:
pt, To)o(t, Ty) — p(t, Th)o (¢, Ts)
o(t,T1) —o(t,T»)
s Rearranging the terms in the equation, we have:

:u(taTl) - ’I"(t) _ u(t7T2) - ’I"(t)

=r(t)

2.6 =

( ) U(taTl) U(t7T2)

and since this equality is independent of the bond maturity dates, T} and T, we can define:
u(t,T) —r(t)

2.7 t)=———"=> t<T

(27) atrt) = T i<

where ¢(r,t) is not a function of T'. ¢(r,t) measures the increase in expected instantaneous return
on a bond, for a unit increase in risk, and is referred to as the market price of risk. Substituting
the formulae for g and o from (2.2) and (2.3), we derive a partial differential equation for the bond
price:

oP OP o*pP

) il - 4127 = <
(2.8) 6t+(f+sq)6r+2S a2 rP=0, t<T

This equation, referred to as the term structure equation, is a general zero coupon bond pricing
equation in a market characterised by assumptions 1, 2 and 3. To solve (2.8), we need to specify the
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parameters of the short term interest rate process defined by (1.4), the market price of risk, ¢(r,t),
and apply the boundary condition:

(2.9) P(r,T,T) =1

Using equation (1.1) we can evaluate the entire term structure, R(t, 7).

3. Risk neutral valuation

The mean rate of return on a bond can we written as a function of its variance, the risk free interest
rate and market price of risk. From (2.7) we have:

w(t, T)=r(t) +q(r,t)o(t,T) VE<T

Hence, the bond price dynamics (2.4), may be written in terms of the market price of risk as:

dP = (r+qo)Pdt—oPdW

= rPdt —oP(—qdt+dW)
Let dW = —qdt + dIW and the above equation becomes:
(3.1) dP = rPdt — o PdAW
where W is the Wiener process in the risk neutral world. Since dW = qdt +iw, the equation
describing the dynamics of the risk free rate, (1.4) may be written in terms of dWW as:
dr = fdt+sdW
= fdt+ s(qdt +dW)

(3.2) = (f+sq)dt+sdW

The dynamics of the bond price are given by (3.1) and the boundary condition P(T,T) = 1 is
known. Apply the Feynman-Kac theorem! to yield the valuation formula:

(3.3) P(t,T) = E [exp (— /t Tr(u) du)P(T, T)

and hence (2.8) is the related PDE.

Here we take the expectation with respect to E which corresponds to the risk neutral world. E
corresponds to the equivalent probability measure @ which utilises risk neutral probabilities. (As
opposed to the utility dependent probability measure, QQ which represents investor specific probabil-
ities.) The introduction of the market price of risk, ¢, takes us from the utility dependent world into

IThe discounted Feynman-Kac theorem is applicable in this case. This theorem defines the relationship between
a stochastic differential equation (SDE) and the corresponding partial differential equation (PDE). Considering the
SDE:

dX(s) = a(X (s))ds + y(X(s))dW (s)
Let 0 <t < T where T > 0 is fixed, and let h(y) be some function. Define:
o(t,z) = E [e—’“(T—ﬂh(X(T))‘X(t) = a]
Then the corresponding PDE is:
vi(t, @) + (@)va (t, @) + 577 (@) vee (t,2) = ro(t, )

See [41] for more details.
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the risk neutral world and allows us to transform the probability measure. The Girsanov Theorem?
defines the transformation of the Wiener process:

t
W:—/ qdu+W
0

t* t*
1
Z(t") = exp(/ qdW — —/ quu)
t 2 )
as the Radon-Nikodym derivative used to define the new probability measure, that is:
dQ
daQ
Also expectation with respect to E is calculated as:

E[Y] = E[ZY]

Let t <t* < T and define

Z(T)

for any random variable Y. Hence the expected bond price, (3.3), becomes:

(3.4) P(t,T) = E; |exp (— /tTr(u) du — %/tT q* du + /thdW)P(T, T)

4. Specific model

Vasicek specifies the required parameters for the short term interest rate process and market price
of rigk, to derive an explicit term structure of interest rates. He assumes the market price of risk is
constant:

q(r,t) =q
and that the short term interest rate follows an Ornstein-Uhlenbeck process:
(4.1) dr =aly—r)dt+sdW

where a,~ and s are constants with & > 0. This is often referred to as an elastic random walk
which is a Markov process with normally distributed increments. The instantaneous drift a(y —r),
displays mean reversion, with the short term interest rate being pulled to its long term mean, +,
with magnitude proportional to its deviation from this long term mean. This implies that the
Ornstein-Uhlenbeck process is characterised by a stationary distribution, unlike a random walk
(Wiener process) which is not stable and can diverge to infinite values®.

Substituting (4.1) into (2.8), the term structure equation becomes:

oP oP , 0P

1
. _ P A = <
(4.2) 5 + (a(y —r) + 5q) o + 35 52 rP=0, t<T

This is a linear, second order partial differential equation, which can easily be solved by applying
the boundary condition (2.9). Allowing the bond price to be of the form:

(4.3) P(r(t),t,T) = A(t, T)e~BE&TIr(®)

2For more details about the application of Girsanov’s Theorem and the Radon-Nikodym derivative in the change
of measure see [41] and [37].

3Vasicek emphasises that he is not trying to provide the best characterisation of the short term interest rate
process, but is merely specifying an example in the absence of conclusive empirical results.
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equation (4.2) becomes®:

Awe BT —rABie P" — (a(y —r) + sq)ABe P+ 1s?AB*e BT —rde BT =0

= A — (ay + sq)AB + 1sAB®> = rA+rAB, — arAB
= rA(l+ B; — aB)

Since the right hand side is a function of the short term interest rate, r, while the left hand side is
a function of ¢t and T only, the following must hold:

(4.4) 14+B,—aB=0
(4.5) Ay — (ay + 5q)AB + £s*AB* = 0

Now, solving (4.4) with boundary condition B(T,T) = 0 gives:

1
a (1 _ efa(Tft))

(4.6) B(t,T) =

Rearranging (4.5), we have:

A+ AB(Ls’B—ay—sq) = 0
dA s
7+B(§s B—ay—sq)dt = 0
T dA T
[ B [ @B - e 0B D) dn = 0
AT — A T) 4 L2 (e 2 emorw ¢ L ) [T
" ’ At 222 \F7a° 2% ° p=t
=T
— (74_ ﬂ) (l” _ lea(T#)> " = 0
a a Jt
and hence
A _$ 2 —a(T—t) 1 —2a(T—t)
In (taT) = W(T_t_a(]-_e )+%(1—6 ))
_ SAN (o _ L _ —a(r—t)
(e D)=t =m0
sq §2 1 (T 52 (T2
(4.7) = (’7+E—W)(a(1—e (T ”)—(T—t))—m(l—e (T t))
Substituting (4.6) and (4.7) into (4.3), to obtain the bond price:
P(r,t,T) =
2 2
sq s 1 (T s —o(T—t\2 T —o(T—
exp {(’Y+E — ﬁ) (a(l_e a(T t)) — (T—t)) — M(l_e a(T t)) _ E(l_e a(T t)):|

Now let R(oo) =+ 2L — % and the bond pricing formula becomes:

2

(4.8)  P(rt,T) = exp [% (1—e T (R(c0) = 1) — (T — t)R(c0) — ;7(1 - eMTt))ﬂ

4Here At and B denote the derivatives with respect to t.
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Equations (2.2), (2.3) and (2.4) give the dynamics of the bond price process and the mean and
standard deviation of the instantaneous rate of return of a time T" maturity bond. Substitute the
above bond price formula to calculate the mean and standard deviation in terms of the short term
interest rate parameters and market price of risk:

w(t,T) = r(t) +S£(1—e—a<7’—t>) = r(t) + sqB
o(t,T) = =(1-e™") = sB Vt<T

One can see that the standard deviation (and hence the variance) of the instantaneous rate of return
increases with the bond’s term to maturity and the return in excess of the short term interest rate
is proportional to this standard deviation, with the proportionality constant being the market price
of risk. Using equation (1.1), we derive the form of the term structure as:

1 _ s?
(4.9) R(t,7) = R(c0) + (r(t) — R(c0)) — (1—e7%7) + ——

a2
ot 4a3r(1_ea)’ 720

Since (4.9) reduces to the short term interest rate r(t) for 7 = 0 and lim, , R(t,7) = R(o0) it
is consistent with previous definitions. Various shapes of the yield curve can be obtained, these
depend on the value of r(t). See Figure 1.1. The slope of the term structure is derived from (4.9)
as follows:

OR (r(t) — R(c0)) (r(t) — R(c0))

(410) E = —T (1 —e ) + T ae

S2(1 _ e—ar)2 82(1 _ e—ar)
4372 2031

ae—O(T

For a monotonically increasing term structure, we require % >0, for all 7. From (4.10) we have:

OR

ar
= i <_ a _j_af) [r(t) — R(c0) + % (1- e—ar)] teor [a (r(t) — R(c0)) + % (1- e—aT)D
> % <_ (1 _f_c”) [r(t) — R(o0) + 5—22 (1 e—ar)] + e [r(t) — R(o0) + % (1- —M)D
N i [ae_m B W} [r(t) — R(o0) + % (1- e_aT)}

which is positive if r(t) — R(c0) + = (1 —e=27) <0 because

402

1 —e QT 1 —ar _ 1
e _(1=e™)  (1+ane o v
T T

Hence, the term structure is monotonically increasing if:

82

r(t) — R(oo) + 12 (1—e™®") <0
& r(t) < R(o0) — ;? (1—e7) Vvr
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Since 7 € [0,00), e € (0,1] and 1 —e~®" € [0, 1), we have:

52 52

R(o0) — o2 (1—e 7)€ <R(oo) - E;R(oo)

and hence, for a monotonically increasing term structure, we require:

82

i

ﬂ
—~
=
=
AN

min{R(c0) R(0)}

=>r(t) < R(x

For a monotonically decreasing term structure, we require % < 0 for all 7. Making a substitution
similar to that used when determining a monotonically increasing term structure®, we need to show:

OR

ar
) a_lT <_@ {r(t) ~ Rleo)+ % (1- e_m)] +ae™™ [T(t) — R(o0) + % (1- e_aT)D

2

< (—D [r(6) = R(o0) = 25 (1 = )] + ae 7 [r(t) — R(o0) — 5(1 - e“>]>

ot 202

Since 1 — e™%7 > 0 this is true if and only if:
—aT 82 < (1 — e—a‘r) 3_52
a? ~ T 4a?
(4.11) = 4drae” T -34+3e7%" <0

However, this inequality does not hold because®:

drae™ " —3+4+3e " >0

for some interval T € [0, 7*] where 7* depends on the value of the speed of reversion, a. Hence the
2 2

above substitution is inconsistent with our argument. However, substituting —5> for ;7= (1—e™%7)

and %(1 — e %7) in equation (4.10) we require:

OR
or
_ 1 (1 — e—a‘r) 5? —aTt —aT s? —aTt
= — (— - [r(t) — R(00) + y¥e) (1—e )] + ae [r(t) — R(00) + ¥ (1—e )]
1 (1—e27) 52 —ar s?
a<‘ |0 = Bloo) = g5 ]+ e [r(0) — Rleo) - 55
This inequality holds if and only if:
2 —aT 2
—ar S —ar (1 —€ ) S —aTt
2 (29— < = - J° (3_
ae™ o (2—-e7%) < . 1oz 3—e"%7)
(4.12) = ATae™ —27ae™?T —3 44707 — 72T < 0

2“;22 (1 —e=2T) for 4‘;22 (1 —e 2T and

6This result is shown numerically in the appendix.

2
5Here, substitute — 5oz (1 — e~*T) in equation (4.10).
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This inequality is examined in the appendix and can be shown to hold” for all values of 7. Hence
we can write the following;:

oR
or
_ 1 (1 B efa‘r) 82 —aTt —aT 82 —aTt
=— <— . {r(t) — R(o0) + 1o (1—e )] + ae [r(t) — R(o0) + ﬁ(l —e %)
1 [ (1—e07) 52 2
< _ _ _ _ aT _ _
< < = {r(t) R(o0) 2a2} + ae {r(t) R(o0) 52
1 _ (1—e27) 82
= — ar — t)— R —
e <ae p > <7"( ) (c0) 2a2>
<0
if r(t)— R(c0)— 2f2 >0 since ae™ T — (IL;M) < 0. Hence the slope is monotonically decreasing
if:
2
- 2 >
r(t) — R(o0) 53 2 0
2
that is: t) > —
at is r(t) > R(o0) + 507
The yield curve takes on a humped shape for values of r(t) such that:
s? 52
- — < <
R(0) P r(t) < R(o0)+ 507

0.24
— 1) = Ries) + p2i2 o)

022 St ) = Rise) - p2iid o)

— - Rim) - p2Ad o) =) < Rieo) + pA2 o)
02t 3

018 :

Interest Rate
[
=
|
|
i
[

ooaf .

0.06 - .

004 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 5] 7 g 9 10
haturity (vears)

FIGURE 1.1. Possible shapes of the term structure. v = 0.14, « = 0.5, s =
0.25,¢=10.2

"This statement is true only if @ > 0. However this is an assumption in the formulation of the model in (4.1).
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5. Note on empirical estimation of the market risk premium

Empirical testing and application of this model requires the specification of three parameters: the
instantaneous drift f and instantaneous variance s of the short term interest rate process as well as
the market price of risk ¢q. Since f and s are parameters of the observable short term interest rate
process, these two parameters can be obtained by statistical analysis of market data. As previously
mentioned, the market risk premium is not directly observable. Although it may be calculated from
equation (2.7), ¢(r,t) = (u(t,T)—r(t))/o(t,T), a more direct method of estimation may be applied.
Once f and s are determined, the market risk premium may be estimated from the slope of the
yield curve at the origin. From equation (3.4) we have P as a function of T and W (T') and hence:

dP = PpdT + Py dW + LPyw dWdW
= (-r—1PdT +qPdW + L ¢*PdT

= —rPdT +qPdW
Therefore % = —rP and ‘g;’; = —%.
d(rP) = rdP+ Pdr+drdP

= r(=rPdT + qPdW) + P(fdT + s dW) + sqP dWdW
= (=4 f+sq)PdT + (rq + s)PdW

= 85;"1113) = (=4 f+sqP
and hence
O = (1) = (D)) ~ (1)) g (T.r(T))) P
SO
5.1 S| =70 = e = s(tr0) att )

From equation (1.1) we have:

R(t,7) = —% log P(t,T)
P(t,T) = exp(—7R(t,T))
% = - <22—f + T%) e THRT) 4 <_Tg_lj - R(t,T)>2 e TRET)
% = (—2 % » +R*(t,7) TO) e TRET) .,
= (1) -2 g—f . by (1.3)

Equating to (5.1) we have:

] g_]j o ft,r(8) + s(t,r(t))q(t,r(1))
o gltor() = 2 E |0 =SB

s(t,r(t))
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and hence we have found the market price of risk in terms of the slope of the term structure at the
origin.

6. Conclusion

Few of the early studies of asset prices within an equilibrium economy setting were applicable to
interest rates, mainly focusing on stock prices. If we accept Vasicek’s implicit assumption that
the functional form of the short term interest rate process and market price of risk are in fact
consistent with an economic equilibrium, then his work may be seen as a complete characterisation
of the interest rate term structure in such an economy. This simple model has been praised for its
incorporation of reversion to a long run mean and the ability to produce an analytic representation of
discount bond prices. On the other hand, it has been criticised for allowing interest rates to become
negative and not providing a mechanism by which the initial, market observed term structure may
be reproduced.

Appendix
We need to determine if inequality (4.11) holds. That is if:
drae™ T —34+3e 7 <0

with a > 0. Using the simple Matlab code below, we may determine the curve of the above function.
The exact shape of the curve depends on the value of the reversion speed «. Figure 1.2 shows the
curve for @ = 0.15. The above inequality does not hold for all values of 7. The interval on which
drae™* — 34+ 3e~*" > 0 depends on the value of a.

alpha = 0.15;

y-ans = [|;

x=[f;

for T =0: 50
T2 =T*0.1;
x =[x, T2];

y =4 * T2 * alpha * exp(-alpha * T.2) - 3 + 3 * exp(-alpha * T.2);
y-ans = [y_ans, y|;

end

plot(x, y_ans), xlabel(’7"), ylabel("4rae= " + 3e~ 7 — 3)

We require to show that inequality (4.12) holds. That is:

Arae™ % — 2rae 2T — 3447 — 20T < ()

The Matlab code below, determines the shape of this function on the interval 7 € [0,5]. Again the
exact shape of the curve depends on the choice of a. We can show that the above inequality hold
for all values of 7, however @ must be positive. a < 0 implies negative reversion speed and causes
a contradiction of the inequality. Figure 1.3 shows the curve for a = 0.45.
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alpha = 0.45;

y-ans = [J;

x = [J;

for T=0: 50
T2="T%*0.1;
x =[x, T2];

y =4 * T2 * alpha * exp(-alpha * T_2) - 2 * T_2 * alpha * exp(-2 * alpha * T_2)
- 3 + 4 * exp(-alpha * T_2) - exp(-2 * alpha * T_2);
y-ans = [y_ans, y];
end

plot(x,y_ans), xlabel(’7’), ylabel (47ae™%" — 2rae~ %7 — 3 + 4e7T — e~2077)

g e®l+3g®t 3

FI1cURE 1.2. Shape of curve 4rae " + 3e~*" — 3 for a = 0.15

12
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FIGURE 1.3. Shape of curve 4rae ®" — 2rae 27 — 3 4+ 4e 7 —

e 297 for a = 0.45
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CHAPTER 2

The Cox, Ingersoll and Ross Model

Cox, Ingersoll and Ross (CIR) view the problem of interest rate modeling as one in “general equilib-
rium theory” [16]. Anticipation of future events, risk preferences, other investment alternatives and
consumption preferences all affect the term structure. CIR make use of a general equilibrium asset
pricing model to endogenously determine the stochastic process followed by the short term interest
rate and the partial differential equation satisfied by the value of any contingent claim. Bond prices
are then determined as solutions to this partial differential equation, contingent on the underlying
short term interest rate.

1. General equilibrium in a simple economy

In describing the equilibrium economy, Cox, Ingersoll and Ross [16] integrate real and financial
markets. The specification of endogenous production and randomly changing technology allows
randomly changing investment opportunities. Within a continuous time model, this characteristic
allows the inclusion of effects that cannot be approximated in static, single period specifications of
the economy.

Assumption 1. There is a single physical good which may be allocated to investment or for
consumption. All values are expressed in terms of this good.

Assumption 2. Production possibilities are represented as a set of n linear activities. A vector
of amounts 7, denominated in units of the physical good, invested in production, evolves according
to a stochastic process of the form:

(1.1) dn(t) = I,a(Y,t) dt + I,G(Y,t) dw(t)
where
w(t) — (n + k)-dimensional Wiener process,
Y — k-dimensional vector of state variables,
I, — (n x n)-dimensional diagonal matrix function of 5. Here the i‘" diagonal
element is the i** component of 7,
a(Y,t) — n-dimensional vector of rates of return on production,
G(Y,t) —n x (n + k)- dimensional matrix representing the standard deviation of rates of
return on production. Hence GG’ is the covariance matrix of rates of return

on production.

The stochastic process (1.1) describes the growth of an initial investment, given that output is
continuously reinvested.

14
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Assumption 3. The k-dimensional vector of state variables, Y, evolves according to the system
of stochastic equations:

(1.2) dY (t) = w(Y,t) dt + S(Y,t) dw(t)
where

u(Y,t) — k-dimensional vector of drifts of the state variables,
S(Y,t) — k x (n + k)-dimensional matrix of standard deviations of the state
variables. Hence SS’ is the covariance matrix of changes in state

variables.

These assumptions imply the probability distribution of current output depends on the current level
of the state variables, which themselves change randomly over time. Hence, the development of the
state variables, YV, determines the future available production opportunities. Unless G.S’ is a null
matrix!, changes in state variables are correlated with returns on the production processes.

Assumption 4. Entry to all production processes is free.

Assumption 5. The market for instantaneous borrowing and lending exists. This occurs at a
rate r which is determined as part of the equilibrium in the economy.

Assumption 6. There is a market for a variety of contingent claims to some amounts of the
good. The payoffs of these claims may depend on aggregate wealth and level of the state variables.
The values of the claims depend on the same variables that describe the state of the economy, hence
the movement of the value of claim ¢, F?, is described by the stochastic differential equation:

(1.3) dF" = (F'B; — 6;) dt + F'h; dw(t)
where

F'B; — §; — mean price drift. §; is the payout flow received, hence Fif3;
is the total mean return,
hi — 1 x (n + k)-dimensional vector of standard deviations, hence h;h} is the

variance of the rate of return.

Equilibrium values of ;, the rate of return on the contingent claim and r, the risk free rate of
interest are determined endogenously.

Assumption 7. There is a fixed number of identical individuals, each wishing to maximise
their objective function of the form:

(1.4) E /t U(C(s),Y(s),s)ds

1@S" is the covariance matrix of changes in state variables and returns on production processes.



1. GENERAL EQUILIBRIUM IN A SIMPLE ECONOMY 16

where

E[-] — expectation conditional on current wealth and state of the economy,
C(s) — consumption flow at time s,
U — von Neumann-Morgenstern utility function. It is assumed to be increasing,

strictly concave, twice differentiable and to satisfy:

[U(C(5),Y (5),8)| < ki (14 C(s) + [V (s)]) "™
for some ki, ks > 0.

Assumption 8. Trading and investment take place continuously, at equillibrium prices only
and free of transaction costs.
Consider the problem of allocating an individual’s wealth to investment opportunities. If contingent
claims exist, the solution will usually not be unique. We select a basis to be a set of production
opportunities and contingent claims, such that any other contingent claims may be expressed as a
linear combination thereof. Hence, define the opportunity set as a basis of investment opportunities
consisting of n production activities and k contingent claims. Individuals may allocate wealth among
these (n + k) basis opportunities and the (n + k + 1)!* opportunity: riskless lending or borrowing,.
Since allocation to non-basis contingent claims may be replicated by a portfolio of basis claims, a
unique allocation to basis investment opportunites is sufficient for valuation purposes.
Define:

W — current total wealth,
a;W — amount of wealth invested in the it* production process,

b;W — amount of wealth invested in the i* contingent claim.

Hence, for each individual, we wish to choose controls aW, bW and C to maximise expected lifetime
utility, subject to the budget constraint denoted as®:

n k
(15) dW = [ZGZW(QZ —T') +Zle(61_T’) +rW —C| dt
i=1 i=1
n n+k k n+k
+ Z a;W < Z Gij d’ll)j) + Z b; W < Z hij dwj>
i=1 j=1 i=1 Jj=1
n+k
=Wu(W)dt+W Z g;j dw;
j=1

To maximise the utility function (1.4), the control must be a measurable function. This means the
control, at any time, may only depend on information available at that time. Hence, the following
lemma defines the basic optimality condition for an individual’s allocation (control) problem? (see
[15]).

2Here w; denotes the j** element of w(t), i.e. the j*" Wiener process.
3Here, define the following:

t’
K(u(t),W(t),Y(t),t):]E/t U (v(s), Y (s), ) ds
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LEMMA. Let J(W,Y,t) be the solution to the Bellman equation of the form:
(1.6) mex [L'#)J +U(v,Y,t)] + J; =0
v

for (t,W,Y) € D = [t,t') x (0,00) x RF and with boundary conditions

J(07 Y7 t) = EY,t

/t U(0,Y(s),s) dS] and JW,Y,t')=0

Then

(1) JW,Y,t) > K(v,W,Y,t) for any admissible control v and initial W and Y,
(2) if 0 is an admissible control such that

LY(t)J + U(0,Y,t) = max [LY(t)] + U(v,Y,t)] Y(t,W,Y)eD
then
J(W,Y,t) = K(0,W,Y,1t) Y(t,W,Y)eD

and v is optimal.

Here J is called the indirect utility function.

Assumption 10. There exists a unique function J and control ¢ satisfying the Bellman equa-
tion (1.6) and associated technical conditions.
Since investment proportions a; and consumption C' must be non-negative, necessary and sufficient
conditions for maximising ¥ = LYJ + U as a function of C, a and b may be expressed as [15]:

(1.7a) Yo =Uc — Jw <0,

(1.7b) Cpe =0,

(1.7¢) VYo = (a —r)WJyw + (GG'a+ GH'D)W? Jww + GS'W Jwy <0,
(1.7d) a', =0,

(1.7¢) Uy = (B —r)WJy + (HG'a + HH'D)W?Jww + HS'W Jyy =0

Using (1 7) and the Bellman equation (1.6), C', @ and b may be found in terms of W, ¥ and ¢
only. C a and b are chosen, taking r, a and § as given. The set of stochastic processes (r, 3;a, C)
(that is, the risk free rate of interest, expected returns on contingent claims, production plan and
consumption plan) define the equilibrium economy under the conditions ) a; = 1 and b; = 0 for all
i. These conditions imply that, in equilibrium, the interest rate and expected rates of return on the
contingent claims are such that all wealth is invested in physical production processes only [16].

where v(s) is some admissible control. Also let LY (t)K be the associated differential operator defined as:

k n+k
LYK = u(W)WKw + > niKy, + W Kww > ¢
=1 =1
n+k n+k

+ZWKWY Z q;8ij + 5 ZZKYY Z SimSjim

i=1j =1
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2. Equilibrium risk free rate of interest

We need to determine the equilibrium values of a, r and 8. The solution to an individual’s planning
problem consists of an optimal physical investment policy, a*, optimal consumption plan, C* and
the associated indirect utility function, J*. By writing the portfolio allocation (physical investment)
part as a quadratic programming problem, CIR [15] determine the equilibrium interest rate to be
of the form:

(2.1) r(W,Y,t) = a”a + a”GG'a *W(JJW ) *G5'<J}:VY>
v () ()£ (=)

3. Equilibrium expected return on any contingent claim

Considering optimal physical investment a*, and substituting the equilibrium interest rate, (2.1),
into (1.7e) we get the equilibrium expected return on any contingent claim:

(3.1) BW, Y, 1) = (a”a)1 + (%) [(a'GS' Ty )1 — HS Ty ]

+ <WJWW> [(a*'GG'a*)1 — HG'a*]
Jw

Now, applying Ito’s lemma to F(W,Y,t), and making use of (1.5) and (1.2):

OF oOF O°F
2 F=2" g+ 2 L
(3.2) dF = Zodt + oo dW + § oy

AW dW +28—de

E ok k 82
+5lzzay o7, edY; +Zaway AW dy;

j=1

= ppdt + (FW aWG + Z Fy, S) dw(t)
j=1
with:
k
pr = Fy + Fy (a'aW = C) + ZFY]'“J'(Y’ t) + + Fyw var (W)
j=1
ko k k
+13 Z Z Fy,y, covar (Y;,Y;) + ZFWyJ. covar (W,Y;)
i=1 j=1 j=1

Now comparing the volatility components of (3.2) and (1.3) we have:

k
FH =FyaWG+ Y Fy, S
j=1
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Substitution into (3.1) gives:
BF = (a*'a)F +a*'GG'a*W<J;V—W>F+a*'GS'(m—Y>F

w JW

o] (2 e+ £ ()

+§;Fyi{<_

k
—Jwy;
W) covar (W, Y;) + Z( JWY]> covar(Yi,Yj)}

Jw
JW w

j=1
which, by (2.1), becomes:

(3.3) BF =rF + Fy K‘Jﬂ> var (W) + Zk:(_‘]wyf ) covar (W, Yj)}

Jw
k p—
e
i=1

j=1

k
—Jwy,
W> covar (W, Y;) + Z( JWYJ> covar (Y“Y])]

Jw
JW j=1 w
So the equilibrium expected return on any contingent claim may be written as the risk free return,
rF plus a linear combination of the first derivatives of the contingent claim price with respect to
wealth, W, and the state variables, Y. The coefficients of these derivatives are independent of the
contractual specification for that claim, hence they are the same for all contingent claims. CIR [15]
explain that these coefficients may be interpreted as factor risk premia?.

4. Value of any contingent claim in equilibrium

Now comparing the drift coefficients in (3.2) and (1.3) we have:

k
BF =0 = pp = Fi+ Fu('aW = C) + 3 By (V1) + 3 Fuw var ()
j=1
kook k
+% Z ZFYin covar (Yz:Yj) + Z Fwyj covar (W,Yj)

i=1 j=1 j=1

4Speciﬁcally, from (3.3), the risk premium for the i*" state variable Y; is

k
—Jww JWY]-) ]
WY + 3 (——2 Yi,Y;
{( T )covar( ,)-l—j:l( T covar (Y;,Y})
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Making use of (3.3) yields:

k
_ —J
rE + Fy, [(#) var (W) + E < JWY’> covar (W, Y)}
w

w =
k _J k
+2Fy|:< W)covar W, Y;) +Z< )covar(Yz,Y)} )
i=1 j=1 Jw
k
=F,+ Fw (a'aW = C) + Y _ Fy,1; (Y, 1) + 3 P var (W)
j=1

k
+ %ZZF Yv; covar (Y3,Y;) + ZFWY covar (W, Y})
i=1 j=1 j=1
Rearranging terms we have a partial differential equation for the price of any contingent claim®:

k k&
1 Fyw var ( +ZFWY covar (W,Y;) + £ ZZFYY covar (Y;,Y;)
j=1

j=1 i=1

—Jwy,
WY’) covar (YZ,YJ)]

(4.1) + Xk: Fy, {,ui(Y, t) — <_jWW> covar (W, Y;) + 2:(

i=1 w w

+(rW—C*)FW+Ft—rF+5:0

This valuation equation holds for any contingent claim. Specific terminal and boundary conditions
as well as the structure of 8, the payout flow, define the unique characteristics of a claim.

5. A more specialised economy

For the problem of modeling the interest rate term structure, CIR specialise the economy. They

restrict the class of utility functions to those having constant relative risk aversion®. Specifically,

the utility function is required to be logarithmic and independent of the state variable, Y, hence:
(5.1) U[C(s),s] =e ”*InC(s)
where p is a constant discount factor.
CIR [16] show that for this specialised case the indirect utility function takes the form:
JW, Y, t) = f(O)UW,t) + g(Y, 1)
for some functions f(t) and g(Y,t). By the results of the earlier Lemma
1 — el—pt' =)

flt) = p

SFirst group the coefficients of Fyr and make use of (2.1) to give:

k
—J —Jwy;
{a'aW - ( WW) var (W) — Z( WY; ) covar (W,Y;) — C|Fy = (rW — C*) Fyy
Tw =N v

6That is, neither the interest rate, nor the security risk premia depend on the level of investor wealth.
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Hence we have:

—WJWW _JWY
T R
Substituting into (2.1), the form of the equilibrium interest rate reduces to:
(5.2) r=a"a—a"GG'a*
Similarly, by (3.3), the return on any contingent claim simplifies to:
k
(5.3) BF =1F + Fywa"GG'a*W + Y Fy,a"'GS’
i=1

For the purposes of developing a model of the interest rate term structure, CIR assume that the
contractual terms of all securities are free of explicit dependence on wealth. This implies that the
partial derivatives, with respect to wealth, of all securities, equal zero (i.e. Fiy = Fyyw = Fyy = 0).
As shown above the risk free rate and factor risk premia’ are also independent of wealth. Due to
this additional restriction the valuation equation for contingent claims (4.1), reduces to:

E ok k
(5.4) I Py, covar (Vi, V) + > By, [ps(Y,t) — a*'GS'| + F, —rF +6 =0

i=1 j=1 i=1
6. Term structure model

To model the term structure CIR use equation (5.4) and make several simplifying assumptions about
technological change in their specialised equilibrium economy.

Assumption 1. The change in production opportunities over time is determined by a single
state variable, Y.

Assumption 2. The means and variances of the rates of return on the production processes
are proportional to Y. Hence, the state variable Y determines the rate of evolution of capital and
neither the means nor variances will dominate the portfolio decisions for increasing values of Y.

Assumption 3. The state variable Y follows the following stochastic process®:

dY (t) = [€Y + (] dt + vVY dw(t)

where ¢ and ( constants, ( > 0 and v a vector of constants.
Incorporating the above assumptions into their economic model, CIR [16] derive an explicit formula
for the equilibrium interest rate in terms of the state variable Y, the parameters of its stochastic
process and the means and variances of the rates of return on the production processes in the
economy. Calculating the drift and variance of this equilibrium interest rate and defining a new
Wiener process z(t), such that:

o/rdz(t) = vVY dw(t)

they specify the dynamics of the interest rate as:
(6.1) dr = k(8 — r)dt + o\/rdz(t)
"In (5.3) the factor risk premia, that is the coefficients of Fy,, reduce to a*' GS'.

8This is a specialisation of (1.2)
9See [16] for the details of this.
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where k,0 > 0. (6.1) represents a continuous time first order autoregressive process where the
stochastic interest rate is pulled to its long term mean, 6, with speed k. Imposing an additional
constraint that 20 > o2 (see §7.6) ensures that the rate of interest cannot become negative. The
interest rate structure implied by (6.1) displays the following characteristics:

e negative interest rates are prevented,

e a zero rate of interest can become positive again,

e the level of absolute variance increases with increasing interest rates,

e the interest rate displays a steady state distribution.

Within the same economic framework CIR determine the factor risk premium in terms of the
above mentioned economic variables. Together with all the simplifying assumptions, the factor risk
premium is substituted into (5.4) to give the fundamental bond equation, which, in equilibrium,
must be satisfied by any zero coupon bond:

(6.2) to®rP + k(0 —1)P, + P, — ArP, —rP =0

with P(r,T,T) = 1 as the boundary condition. Here the bond price depends on one underlying
stochastic variable, the short term interest rate, r, which represents the uncertainty in the underlying
economy. This model proposes that the short term interest rate is the predominant variable in
determining the whole term structure. This can only be true if all the simplifying assumptions are
satisfied!©.

7. Distribution of the interest rate

7.1. Mean. To calculate the conditional mean and variance of the interest rate under the CIR
model'!, consider the integral form of (6.1):

r(s) =r(t) + n/ts(ﬂ —r(u)) du + a/ts Vr(uw)dz(u)

since r(t), the current rate of interest is known. The mean of a Wiener process is zero, and so taking
expectations:

E[r(s)|r(t)] =r(t) + /i/ts (9 - E[r(u)|r(t)]) du

In differential form this equation is represented as:

% Elr(s)[r(t)] = & (6 — E[r(s)[r()])
which is a separable differential equation which may be solved as follows:
d Er(s)|r(t)]
0 — Elr(s)|r(t)]
OO
e = ),
0— E[r(s)r®)] _
In 0 —k(s —t)
(7.1) = E[r(s)|r(t)] = 6+e "6 (r(t) —0)

Kk ds

10T hese assumptions can be summarised as: investors have constant relative risk aversion, uncertainty within
the economy is modeled by a single variable, and the interest rate is a monotonic function of this variable.
l1gee [45] for detailed calculations of the mean and variance.
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7.2. Variance. Calculate the stochastic differential equation satisfied by r2(t) by applying
Ito’s formula to (6.1). Define f(z) = z? then:

df(r(t)) = f'(r@®)dr(t) + 5 f"(r(t))dr(t)dr(t)
= d(r2(t) = 2r(t) [k(0 —r(t)dt + a\/r(t)dz] + [n(e —r(t)dt + o\/r(t)dz]
= 260r(t)dt — 2613 (t)dt + 2072 (t)dz + o® r(t)dt
= (260 + o) r(t)dt — 2672 (t)dt + 20 r3/%(t)dz

=7ri(s) = () + (260 +0?) / r(u) du — 2&/ 2 (u) du + 20/ /% (u) dz(u)
t t t
Considering the conditional expectation of r2(s) we have:

E [r2(s)|r(t)] = r2(t) + (26 60+ 02) /ts E[r(w)|r(t)] du — 2k /ts E [rQ(u)|r(t)] du

Partial differentiation with respect to s yields:

ifs IE[ (s )|r(t)] =260+ E[r(s)|r(t)] —2x E [r2(s)|r(t)]
and hence:
% (€2n(s—t) E[T2(S)|T(t)]) — 2H62n(s t) [ |7“(t ] 2k(s—t) [T2 S)| ( )]

e (

= 2GR [ Ir(t]+2n962“ ”E[T(sﬂ (®)]

+o2 e2r(s—t) E[T(S)|T‘(t)] — 9k e2-D R [r2(5)|7‘(t)]
[

= (2660 +0%)e 26(s—t) | r(s)|r(t)]

Integrating the above over [t, s], and using (7.1) gives:

S CIE[P()lr()] - () = /ts(2n9+a2)e2”<“—t>E[r(u)lr(t)] du

[ 268+.02) B0 (e 01 - 00

t

= (260 +0”)r(t) / "Dy + 0 (260 + 0?) / e2r(u—t) _ orlu—t) gy,
t t

= (260 +0%)(r(t) - 0) / ey + 0 (260 + 0?) / 25 (=) gy

t t

i(2&9 + 0?) (62'6(57” -1)

= L0+ ()~ (O 1) + o
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= E[r(s)lr(t)] = rP(t)e 670 + %(%0 +0?)(r(t) — B)e "=

1 1
(2 2 _ —2k(s—t) 10! 2
n( KO+ o) (r(t) —0)e +2H9(I§,9+U)
_ 1 2\ ,—2k(s—t)

P (266 + c°)e

0 o3

= 50 + 6%+ (r(t) — 0) (%2 + 29) e~ k(s—1)

+(r*(8) + 6% = 200(t))e 20 (% 6 — %27“(75))6*2"(5*’5)
= % +6% + (r(t) - 0) (%2 +29) =00

+(r(t) — 0)2e*2n(s7t) i %2 (g _ r(t))€72n(s7t)

From (7.1) we have:
(E[r()[r(0)])* = (r(t) — )¢50 402 4 20(r(t) — )0
and so the conditional variance of r(s) is:
var (r()ir(®) = E[PE)Ir®)] - (Blr(s)lr1)?

(7.2) = —+ %(r(t) — e r7H 4 %2 (_ — r(t))ef%(sft)

7.3. Identifying the distribution. Define
r(t) = X7 (t) + X3(t) + - + X3 (t)
where each X;(¢) is an Ornstein-Uhlenbeck process representing the solution to [45]:
(7.3) dXi(t) = —1BX;(t)dt + Lodz(t)
where 8 > 0 and o > 0 are constants and z; is a Wiener process. The conditional mean of X; is:
(7.4) E[X;(s)|Xi(t)] = e~ BP0 X (1)

The stochastic process for 7(t) is derived by application of Itd’s formula as?:

(7.5) dr(t) = ("% - ﬂr(t))dt + o/r(t) d3(t)

28ince r(t) = X2 + X2 + ...+ X2 = r(X1,X2,..., Xn) we have, by the independence of the X;’s:

2 ifi=j
. =2X; X, = ’
X b { 0 ifi#j.

24
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By setting k = 8 and § = no?/(48) we arrive at the formulation in (6.1). Defining r(¢) as the
sum of squares of normally distributed'® variables X;, i = 1,...,n leads to the correct form of its
stochastic process, hence we may conclude that r(¢) has a non-central x? distribution.

7.4. Chi-Square distribution. Consider a random variable Y, which may be expressed as:
Y =X+ X5+...4+ X3
where the X;’s form a mutually independent set and each X?, i = 1,...,d is a standard normal
variable i.e. X; — ®(0,1), i =1,...,d. Y has a x? distribution with d degrees of freedom [32].
If X;—®(c;, 1), i=1,...,d, that is the X;s are normally distributed with mean ¢; and variance 1,
then Y has a non-central x? distribution with parameter of non-centrality A = >_ ¢? and d degrees
of freedom [32]. The mean, variance and probability density function, f(:), of Y are expressed as
[32]:
E[Y]=d+ A
(7.6) var (V) = 2d + 4\

—3Ye—3) y3d-1 1Y 11 /Y2\?
fory=2-°2-""° (1+ Ay L (—A> +o], 0<Y <o

234 T(Ld) d2 " dd+2)2'\ 2

where T'(-) is the Gamma function'®.

where the subscripts denote partial derivatives, and so

n 1 n
dr(t) = ZT‘XidX,‘-I— EZT'XiXidX,‘dXi
i=1 i=1
" 1 1 "1
_ . . . 27, .
= > 2x; (756X1(t)dt + Eadzz(t)) + ; 10 Azt dz (1)
n

=1
n n 1

= —BX2dt X;dz; (¢ Zoldt
izzl B i +ZU 121()+;40—

i=1

n 2
= Br(dt+0 > Xidzi(t) + %dt
i=1

2
= (% - ﬂr(t)) dt + o\/r(t)dz(t)
where Z(t) the transformed Brownian motion, is defined as:
n t X(t)
a0 =3 [ S5l
; o Vr(t)

To verify that Z(¢) is in fact a Brownian motion, consider:

PR ~ X(t) .
= dz(t) dz(t) = Z L~ dt = dt by definition of r(t)

Also, since z;(t), ¢ = 1,...,n are martingales, then Z(¢) is a martingale and we have verified that Z(¢) is in fact a
valid Brownian motion.

13The X;’s are normally distributed by their specification as Ornstein-Uhlenbeck processes in (7.3).

1 The Gamma, function is defined as:

oo
I'(a) = / et ldt
0
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Define the following variables:

_ 2K
¢ = 02(1 _ e—n(s—t))
u = cr(t e 1)
v = cr(s)
2k 0
¢ = 5 1

Now calculate the parameters required to characterise the distribution function of r(s), conditional
on its value at r(¢). From (7.5) the number of degrees of freedom are:

n=4k0/0* =2q+2

The parameter of non-centrality may be calculated as \* = Y ¢? where ¢;, i = 1,...,n are the
conditional means of the X;’s as specified in (7.4):

n

o= Z(E[Xi(sﬂXi(t)])Q

i=1
= etz
i=1
= e_”(s_t)r(t)

From (7.1) the conditional expectation of the short term interest rate as specified by the CIR model
is:

E[r(s)|r(t)] = 6+e "C(r(t)—0)
= 6(1- e*"(s*t)) + e " Dp(t)
= % + )\*
= E[2cr(s)|r(t)] = n+2cA”

Similarly the conditional variance of the short term interest rate is specified by (7.2) as:

var (r(s)|r(t)) = 92% + % (g - r(t))e—ms—t) + %(r(t) )

o2 9
= %(1 - e—m(s—t))2 + T(t)% e~ r(s—t) (1 _ e—n(s—t))
9(1 — e*N(sft)) N 27‘(t) o rls—1)

c c
2n 4\*

207t e
= var (2cr(s)|r(t)) = (2¢)? var (r(s)|r(t))
= 2n+44(2c\")

and I'(a) = (a — 1)! for « € N.
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So from the definition of the mean and variance of a x? distribution (7.6) we may conclude that
2cr(s) has a x? distribution with n degrees of freedom and parameter of non-centrality
4kr(t) e 5=t

o2(1 — e R0 =2u

A=2c)\ =

To determine the probability density function of r(s), conditional on its value at time ¢, use the

characterisation of the probability density function of a x? distribution (7.6) with Y = 2cr(s):
(2er(s))? . 1 4cr(s)r(t)e =1

2017 (g 4+ 1) 29+ 2 2

1 1 [4c2r(s)r(t)e "D\
(2q+2)(2q+4)5< 5 ) +>

o i A CAC) (1 L ErEre o0 et (s be o0 )
T(g+1) q+1 21(g+ 1)(g+2)

This representation of the conditional probability density function can be shown to be equivalent

—k(s—t)

efcr(s)efcr(t)e

flr@)r@®] = 2¢

+

to the CIR formulation, which makes use of the modified Bessel function'®:
—u—v (V a/2
(7.8) FIr(s)r)] = ce (5) 1, (2/uv)

7.5. Mean reversion. The conditional mean of the short term interest rate depicted in (7.1)
clearly displays its reverting property.
Consider:

e if 7(t) = 0 then r(s) =6, for all s > ¢,
e if r(t) # 0 then limg_, o r(s) =0,

157,(-) is the modified Bessel function of the first kind of order . This function is defined as:
22\ k
e (%)
I, =(= N S
a(?) (2) ,;) KT(q+k+1)

and so in the CIR probability density function, we have:

1o (2Vaw) = Iy (2ey/r(s)r(@em57C0)
= (evrGr@etre=n)’ i (c”r

(s)r(t)e=r(=0)"

e RIT(g+k+1)
_ rls—t)) /2 1 2r(s)r(t)e=r =t cip2(5)r2(t)e—2k(s—1)
= (Sr(s)rme ) (F(q+1) s 1T +3) +>

Hence, making use of the identity I'(a + 1) = aI'(a), (7.8) expands to:

fr@)rm] = Cefcr(srcrme-“(s-”( cr(s) ,)”2 (c2r(s)r(ert=0) "

er(t)e=r(s=1)

< 1 Ar(s)r(t)e 6= cAp2(g)r2(t)e2r(s—t) ‘.. )

I(g+1) I(q+2) 21T (g + 3)

B R A O (1 L (et et (s)r? (pe 2=t )
T(g+1) (g+1) 20 (¢+1)(g+2)

which is equivalent to the distribution in (7.7).
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e for kK = oo (where k is the reversion speed), E[r(s)|r(t)] — 6, the long term mean and
var (r(s)|r(t)) — 0,
e for k — 0, E[r(s)|r(t)] — r(t), the current rate of interest and var (r(s)|r(t)) — r(t)o?(s—
t).16
In the above cases the properties of the future rate of interest are consistent with our expectations,
given the structure of the interest rate dynamics.
If k, 8 > 0, i.e. the interest rate is mean reverting, then as s — oo, the interest rate approaches the
gamma distribution with density function:

flr(oo)|r(t)] =

wl/

Tw) "

v—1 —wr

where w = 2k/0? and v = 2kf/0?. The mean and variance are # and 020 /2k respectively which is
17

also consistent with our expectations of the interest rate dynamics*".
7.6. Negative interest rates. As already identified in §(7.3) and §(7.4) r(¢) has a x? distri-
bution and so it may be written as a sum of squares of normally distributed random variables:

r(t) =Y XA

Consider the case : n = 1, so r(t) = X2(t). Since X;(t) is normally distributed, we know that for
each t, P{r(t) > 0} = 1. However, it is also the case that for any ¢t > 0, P{There are infinitely many
values of ¢ where r(t) =0} = 1.

Now consider n > 2. For r(t) = 0, ¢ > 0 we require X;(t) = 0, for every i = 1,...,n and so
P{There exists a t > 0 such that 7(t) =0} = 0.

Therefore, to prevent zero (and hence negative) interest rates, we require n > 2. From the stochastic
process describing r(t) in (7.5) we have:

TL(72

v
4x0
n =

o2

The requirement n > 2, needed to prevent zero (and hence negative) interest rates translates to:

w
o2 ~

= 2k6 > o
8. Bond pricing formula
Allowing the bond price to take the form:
(8.1) P(r,t,T) = A(t,T)e”B&D"

16 Apply I’Hopital’s Rule to the first term of (7.2) to obtain

Tim var (r(s)[r(8) = lim r(8)o? (=(s = ™™ 4 2(s = )70 = ()0 (s - 1)

k—0

17This mean and variance can also be obtained by letting s — oo in (7.1) and (7.2) above.
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we have's:

P, = — ABe P’

P,, = AB%e P’

P, = Aje B" — AB;re” B
and so the bond price equation (6.2) reduces to:
r(20°AB* + KAB — AB; + AAB — A) = k0AB — 4,

Since the left hand side is a function of the short term interest rate r(t), while the right hand side
is independent of the short term interest rate, the following two equations must be satisfied:
(8.2) A —k0AB =0
(8.3) B,—(k+A)B—-3%0’B>+1=0

First consider (8.3). This is a Ricatti equation'® with solution B(¢,T) = v(t,T)/u(t,T) where
v(t,T) and u(t,T) are solutions to the following system of equations?’:

o', T) +u(t,T) —kv(t, T) = 0

u'(t,T) + Mu(t,T) + 30°0(t,T) = 0
Set 7 = T —t where T is the bond maturity date, then % = —% and the above system of equations
may be written as:
(8.4) —0'(1) + u(r) — Ko(1)
(8.5) —u'(7) + Au(r) + 30%v(r) =
From (8.4) we have:
(8.6) w(t) = V(1) + ko(r)
(8.7) u'(r) = o' (1) + k(1)

substituting into (8.5) gives:
—v"(7) — k' (1) + ' (1) + Asv(7) + 20%0(r) = 0
Expressing this in terms of D-operators results in a simple quadratic equation:

[D> — (A= K)D — (A& + Lo®)]o(r) = 0

18Where the subscript indicates a partial derivative.
19T he general form of the Ricatti equation is:

w'(t) + [a(t) 4+ d(t)] w(t) + b(t)w?(t) — c(t) = 0

The solution of this equation can be written as w(t) = v(t)/u(t) where v(t) and u(t) are solutions of the associated
system of first order linear equations:

=o' (t) + c(t)u(t) — d(t)o(t)
u' (t) — a(t)u(t) — b(t)v(t)
For more details on solving the Ricatti equation see [42].

20y and w are functions of t and T, but 7T is fixed, hence v’ (t,T) and u/(t, T) denote the derivative with respect
to t.

I
o o
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The roots of this quadratic equation are (y+A—k)/2 and (—y+A—k)/2 where v = /(K + \)2 + 202
and hence the solution may be written as:
’U(T) — k16(7+/\7'€)‘r/2 +k‘26(77+/\7'€)7—/2
Since B(T,T) = 0 = v(0)/u(0), v(0) = 0 and hence ky = —ks. Setting k; = 1 and ks = —1, v(7)
becomes:

(88) ’l)(T) = e(7+>‘_’€)7/2 _ e(—’Y+>\—I€)T/2

Substituting (8.8) and

Ly + A= ke (vHA=R)T/2 _ H=y+X—k)e (=v+X=r)7/2

into (8.6) gives:
(8:9) w(r) = 37+ A+ )T = gy 4 X g)el AT
Since 7 = T — t, the solution of the Riccati equation is obtained from (8.8) and (8.9) as:
B(t,T) = o(r)/u(r)

2 (e(v+>\—n)(T—t)/2 — @(—’H-)\—N)(T—t)/?)
(y+ X+ 5)6(7+A—H)(T—t)/2 —(=y+ 2+ 5)@(—7+>\—N)(T—t)/2

2 (ev(T*t) — 1)
(Y + A+ K)eV T — (—y + X+ k)

2 (e7(T=8) — 1)

(Y + X+ &) (e"T=) —1) + 2y

(8.10) =

Now consider equation (8.2) with fixed bond maturity, T', so the bond price is a function of ¢ only.
Hence:

0A
E = k0AB
% = k0OBdt
T
InA(t,T) = —/ kOB(s,T)ds
t
T
(8.11) A(t,T) = exp(—mG/ B(S,T)dS)
t

where k and 6 are constants. Substituting (8.10) into (8.11):

T
A(t,T) = exp —59/ B(s,T) ds)
eV (T=s) _ 1
= — 28 ds)
exp K / 7+ A+ R eV(T s)_1)+27 S
Let y = "% then % = —ve"T=9) and ds = —W—Wd(%’,—s) = —%. Making this substitution and

noting that (y—A—k)(y+A+k) = 9% — (k+A)? = 202, the integral in the above equation becomes:
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T eV(T—s) _ 1 y
/t Y+ A+ m) (@ T —1)+2y "

1/1 —(y -1 dy

Voo (YEX+E) Yy —1)+27 y

1t —27/(y = A~ k) 11
‘/e {(7+>\+f€)(y—1)+2v+(W—A—ﬁ)y]dy

Y Jer(T—t)
-9 y=1
= In[f(y+A+k)(y—1)+ 2y
e CEPETh W=D+ s
1 v=t
+ ————Iny
Yy —A—k) y=er(T—t)
10 Y+ A+ k) y=t
= < |[-In((y+A+K)(y—1)+2y +71ny]
0-2 i (( )( ) ) 2,)/ y:e'y(T—t)
1 '1 y(rFA+R) /27 ] y=1
= = |In
o> | (v+r+Ny -1 +27]|,_pri-n
1 T e(VFAFR) (T—1)/2
s [‘ B TV G —1)+2v}
and hence the solution for A(¢,T) becomes:
2 Oy (VHAFR) (T—1) /2
A(t,T) = exp 268 In e
o2 " (y+ A+ k)T — 1) + 2y

2k0 /0>

276(7+A+N)(T7t)/2
(8.12) =
(Y + A+ &) (eVT= — 1) + 2y

An analysis similar to that in the derivation of Vasicek’s model in Chapter 1 can be applied to
determine the bond price dynamics. Since the bond price is a function of the short term interest
rate, Ito’s Lemma is used to give:

dP = pupPdt — opPdz

1 oP
op = —F (U\/;E>

eBr

= - o\/T ABe B

= o+\/rB

where
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The existence of a factor risk premium, ¢(r,t), implies:
pp —r=q(r,t)op

Vasicek assumes a constant market price of risk, while CIR specify:

A

q(r,t) = —i, A = constant
ag

=ug = r—ArB

and hence under the CIR model the bond price dynamics are specified by:
dP =r[l — AB] Pdt — Bo+/rdz

9. Properties of the bond price under the CIR model

Since it is market convention to quote bond prices in terms of yield-to-maturity, it is more insightful
to examine the behaviour of the yield-to-maturity in the case of a very short and very long time to
maturity. Since a zero coupon bond is a pure discount instrument, its price is written as:

(9.1) P(r,t,T) = ¢~ (T-ORMLT)
where R(r,t,T) is the yield-to-maturity. Equating (8.1) and (9.1) we derive the yield-to-maturity
in terms of A(¢,T) and B(t,T) as:
A(t, T)e—B(t,T)r — e—(T—t)R(nt,T)
InA(¢t,T) — B(t,T)r —(T - t)R(r,t,T)

rB(t,T) —Iln A(t,T)

T—t
Ast — T, R(r,t,T) — r,?! since as the bond approaches maturity, it converges to an instrument

with instantaneous maturity. Now consider the yield-to-maturity, R(r,¢,T), as T — oo. This may
be viewed as the yield on a perpetual bond:

R(r,t,T) =

—InP(r,t,T —InA(t,T)+rB(t,T
Rirt,00) = lim R(r,t,T) = lim — 206D oy ZWAGT) +rB(ET)
T—o00 T— o0 T—t T— o0 T—1t

21ez can be approximated by its power series expansion as:
Sl n
T
et = —
= n!

and hence [41]
LRAR(T-0/2 (r+A +2'i)(T —1) n (y+2+ ';)2(T —t)?
VT - t)?
2

T80 14T —t)+

Therefore as t — T' we have:

LCRMERT0)/2 (v+2 +2'€)(T -t

2y (1 + (y+ A+ &)(T — t)/2)]2'°9/"2
Yy + A+ )T —t) + 2y

{2'y+'y(’y+)\+n)(Tf t)r”"/"2

2y +v(y + A+ 6) (T — 1)

= A@,T) — [

= 1
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Consider In A(t,T) where A(t,T) is given by (8.12):

nA(t,T) = Q—Hf [ln 2ye(VEARIT=8)/2 _ [(v+ A+ ®) (T8 — 1) + 27]]
o
20

= SO HART—0/2+m2y —In [(y+ A+ 1) (T 1) + 29

Now, since
lim [eV(T*t) -1] = eVt
T—o0
Jim [+ A+ R)(@T D)+ 2] = 7+ A+ R) T
—00
Jim [(Y+ A+ 6) (T —1)/2+In2y] = (v + A+ K)(T —t)/2
we have:
. . 2k0 (T—t)
lim InA(t,T) = lim —2[(7+ A+ )T —t)/2=In(y+ A+ k)e” ]
T— o0 T—oo O
0
= lim S[(y+A+r)(T —t) = 29(T - 1)]
T—oo O
= lim H—g(—v + A+ &)(T —1t)
T—oo O

Also from (8.10):

. . 2(e7(T=1) — 1) 2
lim B(t,T) = lim =
T— 00 T— 00 (’)/ + A+ /g)(e‘Y(T*t) — ]_) + 2y ¥+ A+ &

also

eVT=D 5 (T — 1)

2y(T -t
RO T v w1y g
B Tt
(A R)I(T - 1)/2
~ T-—t

for small T — ¢. Hence from (8.1), P(r,t,T) = e~ "(T—1),

33
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and hence??:
B(t,T)r —In A(t,T)

R(r,t,00) = [lim T ¢
— lim /(Y+A+K) = (= + A+ ) (T - 1)
a T—o0 T—1

lim 2r + 25 60(T —t)
T—oo (Y + A+ k)(T —t)

~ im [ 2r . 2k6
Toool(y+ A+ k)T —t) v+A+k

B 2k 60

Y+ A4k

Hence, for bonds with increasing maturity, the yield approaches a limit independent of the current
rate of interest, but proportional to the mean reversion level [41]. As for the Vasicek model, the
CIR term structure can assume various shapes according to the level of the current interest rate,

r(t). See Figure 2.1 below. For r(t) < vfiin’ the long term yield, the term structure is uniformly

increasing while for r(t) > ,fff\ the term structure is uniformly decreasing. For values of r(¢) lying

between these two extremes the term structure is humped.

=
iy
)
T
-
I

o
/o
4

Interest Rate

0ost e T — —— =]

0.06 - E

] 2 4 G =] 10 12 14 16 13 20
Maturity (years)

0.04

FI1cURE 2.1. Possible shapes of the term structure. Kk = 0.3, A\ =0, 0 = 0.6, 0 = 0.15

22Here make use of the following;:

(YHA+R)(—7+A+K) = (8 + 1) =97 = —20°
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10. Extending the model to allow time dependent drift

Consider extending the model specification to allow for a time dependent drift parameter. Hence
the short term interest rate dynamics become:

(10.1) dr = k(0(t) — r)dt + o/rdz(t)

Due to the Markovian nature of the model, we assume that all information about past movements
and expectations of future movements is contained in the current (observed) term structure. There-
fore the functional form of the time dependent parameter 6(t), may be determined from observed
bond prices and the values of the constant parameters. No prior restrictions are placed on the
functional form of 6(¢) since it is determined so as to reflect the specific observed term structure.
Consider the conditional expectation of (s) with the time dependent parameter §(t). Following the
methodology of §(7.1) we have the integral form of the short term interest rate process:

r(s) =r(t) + n/ts(ﬁ(u) —r(u)) du + o/ts Vr(uw)dz(u)

Taking expectations and differentiating with respect to s produces:

Elr(s)|r()] = r(t) + H/ts(0(U) — E[r(w)lr(®)]) du

OEIONO) _ o (o(s) - BIr(e)ir)
0

= &(eN(sft) E[T(S)|T'(t)]) — g et(s—1) E[r(s)|r(t)] + en(sft)w

= kB(s) (5D
so, integrating over [t, s] gives the conditional expectation of r(s) as:
ns ”E[()h’( —7“ —5/0 nu—t)du
(10.2) = Elr(s)lr(®)] =r(t)e "¢ + 5 / B(u) e~ duy
t

The bond price takes the same functional form as specified in (8.1), with a modification to one of
the parameters as depicted below:

(10.3) P(r,t,T) = A(t,T)e” BT
where:

2 (e(T—t) _ 1
(10.4) B(,T) = (e )

(v + A+ ) (T = 1) 42y
(10.5) At T) = exp / 0(s)B(s,T) ds)
Given this formulation of the bond price and the observed term structure, (10.5) can be solved

for 6(s) for all s € [¢t,T] which could then be used in conjunction with (10.2) to determine future
expectations of the short term interest rate as specified by the current observed term structure.
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11. Comparison of the Vasicek and CIR methods of derivation

The Vasicek and CIR models are very similar in their structure®® and tractability, but their key
difference lies in the derivation. Vasicek enforces the no arbitrage requirement between bonds but
does not consider the existence of an underlying equilibrium economy consistent with the model.
CIR begin with a specification of the equilibrium economy, from within which they obtain the
valuation model. The following factors are contained within the CIR economy:

e variables affecting the bond price,
e endogenously determined stochastic properties driving the underlying variables,
e the form of the factor risk premia.
Vasicek makes assumptions about the variables affecting the bond price and the stochastic factors
driving these variables. These assumptions are exogenously specified and imposed directly on the
relevant variables, i.e.
(1) the bond price is assumed to be determined by the short term interest rate only,
(2) the short term interest rate, r, is assumed to follow the stochastic process dr = k(6* —
r)dt + o\/rdz
Application of Ito’s Lemma and existence of the risk premium determines the excess expected return
on a bond, that is u(t,T) — r = excess expected return = Y (r,¢,7T)

(11.1) = L0’ P + k(0" — )P, + P —rP =Y(r,t,T)

If there exists an underlying equilibrium economy which supports (1) and (2), then this function
Y(r,t,T) must exist. However, its dependence on the underlying variables is unspecified.
To preclude arbitrage T must take on the following form:
(11.2) Y(r,t,T) = V(r,t)P.(r,t,T)
where U(r,t) is the required risk premium. Not all functions Y (r,¢,T) will satisfy (11.1) and (11.2)
and hence definite restrictions are placed on the functional form of the excess return.
However, this approach to the specification of a complete model of the term structure may lead to
problems:
(1) Assumptions (1) and (2) do not guarantee a consistent underlying equilibrium economy;
(2) The no arbitrage approach does not guarantee the absence of arbitrage for every choice of
U(r,t).
The model specified by CIR does have a consistent underlying equilibrium economy and hence
precludes arbitrage. Consider the following example which does not meet all the requirements

specified by the CIR model and hence leads to disequilibrium in the underlying economy. Assuming
U(r,t) = ¥y + Ar, (11.1) becomes

%0’27“137»," +5l —r)Pr+P,—1rP—(Pg+Ar)P, = 0
04
(11.3) = %U%PT,-{—E(G* —70 —T)Pr-i—Pt—rP—)\rPr = 0
This is the same as (6.2) with § = #* — 2 and so the bond price takes the form:

K

P(r,t,T) = A(t,T) e B&:Dr

23They apply slightly different functional forms to the volatility of the short term interest rate and the market
price of risk.
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where
* o
2ye(R+rH) (T=1)/2 (07 =58) /o
At,T)
(K+7+A) (er(T-1) —1) + 2y
2mp* (k6% —Wp)
2ye(kHr A (T—)/2 2
I€+’Y+>\ ) (e7(T=t) — 1) + 2y
né‘ —Py) /K0

The solution of the bond price equation (11.3) becomes:
P(T, t, T) — A(t, T)(NH*—\IJO)/HH e—rB(t,T)
and the dynamics of the bond price may be specified as:
(11.4) dP(r,t,T) =[r — (¥o + Ar) B(t,T)] P(r,t,T)dt — B(t,T) o\/r P(r,t,T) dz

The linear form of the risk premium chosen above satisfies the no arbitrage condition and appears
advantageous for empirical studies, but it can easily be shown that the resulting model is in fact not
viable. Consider r = 0. Since the bond is instantaneously riskless, it should, over the next instant,
yield the corresponding risk free rate. However, the bond price dynamics (11.4) reduce to:

(11.5) dP(r,t,T) = —UoB(t,T)P(r,t,T) dt

and hence the instantaneous rate of return differs from the prevailing risk free rate and the model
guarantees arbitrage opportunities instead of precluding them. This model breaks down because
there is no underlying economic equilibrium which is consistent with the chosen risk premium.

12. More complicatted model specifications

The specific term structure model derived by CIR assumes the state of technology is represented by
a single state variable and randomness within the economy is explained by the stochastic dynamics
of this variable. Hence, bond prices of all maturities are determined by a single random variable, the
short term interest rate. The model does allow some flexibility since the term structure may assume
a number of shapes, but the nature of single factor models implies that price changes in bonds
of all maturities are perfectly correlated and independent of the path followed by the short term
interest rate to reach its current value. Multi factor models which allow a richer specification of the
technology will introduce more flexibility into the term structure, but often this is accompanied by
an undesirable increase in complexity and lack of analytical tractability. The two models considered
thus far always involve an explanatory variable that is not directly observable in the market. This is
the market price of risk or factor risk premium. It is dependant on the utility function of individual
investors which cannot be empirically determined. Multi factor models will tend to have even more
investor specific, and hence unobservable, variables. At times, it may be possible to express these
unobservable variables as functions of the endogenously determined prices (e.g. the risk free rate of
interest) and thereby eliminate them from the pricing model. Brennan and Schwartz (1979) derive
a bond pricing model with two underlying stochastic interest rates. Here it is possible to express
one factor risk premium in terms of the other, thus reducing the number of unobservable, investor
specific variables.
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13. Conclusion

The main characteristic of the CIR model is that current prices and stochastic properties of all
contingent claims are derived endogenously. Since CIR use the rational asset pricing model to
determine the term structure of interest rates, the following factors are all material in the derivation:
investor anticipations, risk aversion, available investment alternatives and preferences with respect to
timing of consumption. Equilibrium asset pricing principles are combined with appropriate models
of stochastic processes describing the evolution of randomness in the economy, to derive consistent
and possibly refutable theories.

The drawback of the CIR model is that it is only a general equilibrium model within their simplified
and stylised economy. The investor specific utility function always enters the model via the market
price of risk; for calibration purposes it must be empirically estimated. Model risk will arise since
reality is being forced into a simplified model. The following view may be taken of the CIR model:

(1) if the specification of the economic model is correct,

(2) if the stochastic process chosen for the short term interest rate is in fact the ‘true’ process
describing its development,

(3) if the investor’s utility function is fully specified,

then we may say that the model is fully specified and the endogenously derived term structure is the
observed term structure. However, none of the above specifications is known with any certainty. In
particular the utility function is difficult to determine empirically. Hence, option prices and other
factors derived from the CIR model cannot be seen as accurate quantifications of market character-
istics, but rather as descriptive qualifications. Later models assume that the general structure of the
yield curve dynamics are known a priori. Details of various parameters, which are obtained from
more fundamental factors?, are left unspecified. The current yield curve is used to fit the unspec-
ified parameters. If the assumed structure of the model is an accurate description of reality then
the unobservable quantities can be empirically determined. Certain discrepancies will exist between
observed market rates and those derived from the model. An analysis of these discrepancies will
reveal their importance and effect as well as indicating whether they are the result of a poor model
or a violation of the initial assumptions. Neither the Vasicek nor CIR models allows for complex
yield curve patterns and hence tend to be poor representations of observed yield curves.

24guch as the utility function.



CHAPTER 3

The Brennan and Schwartz Model

Brennan and Schwartz (BS) [9] challenge the primary assumption of many models. That is: all
information about future interest rates is contained in the current instantaneous short term interest
rate and hence the prices of all default free bonds may be represented as time dependent functions
of this instantaneous rate only. They point out that this is not an accurate representation of reality
and propose an interest rate model based on the assumption that the whole term structure can be
expressed as a function of the yields of the longest and shortest maturity default free bonds.

They incorporate the assumption that the long term rate of interest contains information about
future values of the short term interest rate. This long term interest rate is the second, exogenously
specified variable and the term structure between the short and long term interest rate is modelled
as a function of these two rates. Other models derive the whole term structure, and hence the long
term rate of interest as a function of the short term interest rate.

1. The generic model

Let

r(t) — instantaneous rate of interest,
I(t) — long term interest rate represented by the yield on a consol bond paying

a continuous dividend.

BS [9] assume 7(t) and I(t) to follow a joint Gauss-Markov stochastic process of the general form:

(1.1) dr = By(r,lt)dt +m(r,1,t)dz
(1.2) dl. = Ba(r,l,t)dt + na(r,1,t) dzo
where ¢ is the current time and
dz, dzy — represent Wiener processes’,
B1(:), B2(-) — are the expected, instantaneous rates of change of r and I respectively,
(), n3(-) — are the instantaneous variances of  and [, respectively,
p — instantaneous correlation between the unanticipated changes in

r and [l i.e. dzidzy = pdt

IAs usual, the Wiener processes dz; and dzz have the following characteristics:
o Eldz1] =E[dz2] =0,
. dz% = dz% = dt.
This last point is not technically precise, but is used as an informal representation of the dicrete time formulation:

(Z(tk+1) — Z(tk))z Rtpy1 — tg

39



1. THE GENERIC MODEL 40

Let B(r,l,7) be the price of a zero coupon bond with maturity date T and unit maturity value.
Since this bond price is a function of the two rates of interest and time to maturity, 7 = T — ¢, we
may apply Ito’s Lemma to derive the equation of the stochastic process for the bond price?:

0B 0B 0B 10%B 10°B 0’B
B = — - -
d 6rdr+ 30 dl+a dr +262drdr+2612 dl dl + aaldrdl

0B 0B 0B 10°B , 10°B n? 0’°B

- E(ﬂldt'F’lhle)'i'W(ﬂ2dt+n2d22) a dt + 5?” dt + 5@ dt+8ral 771772pdt
and hence the bond price process may be written as
dB 1 0B 1 0B
1. = =
( 3) B (ralaT)dt_‘_Ba nle1+B ol 772d22
where
0B BB 10°B n? 10°B n? 0’°B 0B

(1.4) plryl,7) = <51 52 2 87"2 1 dt + §W 5 dt + wm 772Pdt—¥>

An arbitrage argument is applied to derive the equilibrium relationship between bonds of various
maturities. This relationship takes the form of a partial differential equation which places constraints
on the risk premia of bonds of various maturities. We consider a portfolio of three bonds of different
maturities. This allows us to hedge away the uncertainty associated with both stochastic variables
i.e. 7 and [. Let:

P — portfolio of bonds of three different maturities,

x; — amount invested in bond with maturity =, i =1,2,3

with ). 2; = 1. Tto’s Lemma is applied to derive the rate of return on the portfolio as:

dpP
- - [T (1) + 22p(T2) + 230(T3)] dt +
198 108 108 1.
gy Mt gy, Mt g m tat
Lo 108 198 1.
“Ba T T R |

This return can be made instantaneously deterministic by setting the coefficients of the Wiener
processes equal to zero:

190B 190B 1 0B

(1.5) B 5 m+x °Bor m+x 3By M T 0
1 0B 1 0B 1 90B
(1.6) "B N2 +x 2Bar n+x sgar ™ T 0

To preclude arbitrage profits, the portfolio return must be the risk free rate of interest. Hence:
() + zapu(7e) + w3p(T3) =7
that is:

(1.7) z1 [pu(m) — 1l + 22 [u(r2) —r] + 23 [u(m3) —r] =0

where z is some Wiener process and tk, tr41 are consecutive points in time. See [45].

2 _ o _
Since T = Tftwehaveﬂf Bt
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Equations (1.5), (1.6), (1.7) form a system of three linear, homogeneous equations in three unknowns.
This system is consistent only if:

1 0B 1 0B
/’L(Tl) -r = >‘ (’I",l,t) a m + A?(ralat)B ol 2

1 0B 1 0B
M(T2) -r = >‘ (Talat) a m + )‘Q(Talat)B ol 2

1 0B 1 0B
M(TS) -r = )‘1(7.7 lat) a m + )‘2(T7 lat)B ol 2

and hence this relationship holds for any bond maturity, 7. This equilibrium risk premium relation-
ship may therefore be written as:

1 0B 1 0B
(18) :U’( )_T_Al(ralat) 8 771'1')\2(7“,1,75)3 ol 2

The functions Ay (r,[,t) and Ax(r,!,t) are independent of the bond maturity. The return on a bond
in excess of the risk free rate of interest is the premium required to compensate the investor for the
additional risk. Equation (1.8) expresses this instantaneous risk premium on a discount bond as
the sum of two factors. These factors are proportional to the partial covariances of the bond return
with the unanticipated changes in each of the two exogenous variables. These partial covariances are
represented by % %f n1 and 1 5 l B, respectively. The proportionality factors, A; (r,[,t) and Ao (r, 1, 1),
may be interpreted as the market prices of instantaneous and long term interest rate risk. These
market prices of risk are investor specific and depend on the investors’ utility functions.
Substituting (1.4) into (1.8) leads to the partial differential equation for the price of a discount
bond:

2 2 2
(1.9) %—Ij (Br —Aim) + %—? (B2 — Aame) + %%T? m %%T? m + % pmnz — g—f —-rB=0
This bond pricing equation is dependent on two utility specific variables i.e. the two market prices
of risk. Assuming [ to be the yield on a consol bond allows us to eliminate the market price of long
term interest rate risk, A\o(r,1,%). A consol bond is a bond of infinite maturity paying a continuous
coupon of $1 per annum. Let V() be the price of this consol bond, then:

(1.10) viy=1""!
where [ is the yield. Applying Ito’s Lemma to V() gives:
oV 102V
d = —dl+-—xdldl
v o METE

1
= —l—2(32dt+772d22)+l—377§dt

and so:

(1.11) % - <’l7—§ - &> dt — ("72) dzs

where — (77l—2) is the partial covariance of the bond’s instantaneous rate of return with the unan-

ticipated changes in [. The instantaneous rate of return on the consol bond, u(c0), consists of the
capital gain and the rate of coupon payment, hence:
s B
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Since we are in the risk free world the return on the consol must be the risk free rate of interest and
hence the equilibrium risk premium relationship (1.8) must be satisfied:

10V
Vol
P2 _ _ n2
Yl-r = /\(r,l,t)( 1)

_ 72
(1.12) = Ao(r,l,t) = —%er

2

w(oo) —r = Xof(r,l,t)=

Here we have expressed the market price of long term interest rate risk as a function of r, I and the
parameters of the stochastic process of . This allows us to reduce the number of utility dependent
factors in the bond price equation (1.9). Substituting (1.12) into the bond price equation (1.9)
results in:

10°B 10%B 0’B
5%77% 292 772 ar all”?l?h"‘ (51 A1)

LB (1 o5 ~

(1.13)

which is independent of the market price of long term interest rate risk, Ay. Applying the boundary
condition B(r,1,0) = 1, we may solve the above equilibrium bond pricing equation for any maturity.
Since the entire term structure of interest rates may be inferred from these bond prices, we conclude
that the term structure, at any point in time, is a function of r, [ and A;.

By choosing [ to be the yield on a consol bond, we are able to determine the bond price independent
of A2 and (2. Since the consol is a traded security, the risk associated with [ may be hedged away.
This is the same as the result obtained by Black and Scholes in deriving the option pricing equation,
which is independent of the expected return on the underlying asset. BS [9] make the observation
that the number of investor specific (utility dependent) variables in the pricing equation is equal to
the number of state variables (excluding time), less the number of variables for which all the partial
derivatives are known. Knowledge of the partial derivatives allows the associated risk to be hedged
away. This phenomenon may be demonstrated more generally as follows: the partial derivatives of
the consol bond (which represents the long term interest rate), are known. Also, since it is a traded
security, it must satisfy the bond pricing equation (1.9) [47], hence :

ov ov LV o 1OV, OV

oV
(1.14) E(51—/\1771)4'5(52—>\2772)+§8r2 1+2812 w/”h’h—g—rv—o

Multiplying by %—llg %—‘l/ and subtracting from (1.9) yields:
g (2B _ (9B [V |1, B _ (0BPVY [ oV
'or ol or ar ) T2 o El ar2 al
(L.15) +1 OB _ (9BOVY JOVY 0B v\ /ov
: ol al oz )/ ar ) TP Bran a arol )/ Bl

L(9BoV 90BN Jov. (0B _(0BOVY [oV ___B_O
al or "V al ar Mt oy ol or al "
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We know:
ov o’V
oo
ov
ol
o’V
o
0%V
ordl
ov._ oV
or ot
and hence (1.15) simplifies to (1.13), the bond price equation independent of \y. Hence, by applying
the bond pricing equation to one of the underlying variables, we have reduced the number of utility
dependent parameters. The resulting model has the same estimation complexity as a one factor
model, but the dynamical explanatory power of a two factor model.

— _l—2

= 2073

= -1

2. Specific models

BS performed two empirical analyses ([9] and [10]) using the above general formulation of the two
factor model . In both cases they assign specific functional forms to the drifts and volatilities of r
and [. The free parameters in these functional forms are estimated by applying statistical methods
to market data. Then, assuming the functional forms and parameter values to be the true values,
they estimate the value of the market price of instantaneous interest rate risk, A;. To simplify the
analysis, A; is assumed to be an intertemporal constant.

In the first analysis [9], which makes use of Canadian bond data, BS make the additional assumption
that the excess expected rate of return on the consol bond over the instantaneous rate of interest is
proportional to the degree of long term interest rate risk. This assumption is represented in (1.12).
Solving for the expected rate of return we have:

2
(2.1) Bo(r,1,t) = 1> — 1l + ’772 + Aot

where \» is assumed constant.

Additional assumptions are made to ensure that interest rates remain non-negative. The standard
deviations of the instantaneous changes in interest rates are assumed proportional to their current
levels:

m(r,l,t) = roy

na(r,l,t) = lo
(2.2) and $1(0,0,t) > 0
which ensures (82(r,0,t) > 0

where o1 and o5 are the constants of proportionality. To determine the functional form of 8y (r,[,t),
BS assume that the long term interest rate , [, contains information about future values of the
instantaneous rate of interest, r, hence r regresses towards a function of [. That is, the assumption
is made that:

(2.3) dinr =a(Inl —Inp—Inr)dt + o1dz
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From (1.1) we have:
2

dlnr = ( —%) dt + o1dz

[ o2
=0 = r<aln<—> +—>
pr 2

where « is the speed of reversion of Inr to In %, where p is a scaling factor. Equation (1.1) now
becomes:

l o?
(2.4) dr=r{aln|— )+ —)dt+roidzn
pr 2

Applying the assumptions (2.2) to equation (2.1):
Bo=1(—r+05+02))

s |

and hence (1.2) becomes:
(2.5) dl=1(l—r+ 03 +02X) +1o>dzs

The behaviour of the interest rates is now described by a system of non-linear stochastic differen-
tial equations, (2.4) and (2.5). To empirically estimate the values of the free parameters, that is
p, a, o1, 02 and Az, BS linearise and discretise the system by approximating r and [ with functions
of Inr and In/.

In the second analysis [10], BS use U.S. bond data for the period 1958-1979. The joint stochastic
process for the two interest rates is assumed to have the following functional form:

(2.6) dr = (a1 +b(I—r))dt+roydz
(27) dl = 1 ((12 + bg”' + Cgl) dt + l(72 d22

Again, the unanticipated changes in the interest rates are assumed to be proportional to their
current levels, and the instantaneous rate is assumed to regress to the long term interest rate, hence
by > 0. Allowing a; < 0, introduces the possibility of negative interest rates. BS acknowledge this
flaw, but retain it due to its empirical tractability. They consider the resulting bond pricing model
to be more significant than the properties of the linear approximation of the true stochastic interest
rate process.

To obtain the drift term for the long term interest rate, equation (1.12) was again solved for 8> with
the additional assumption that As is a linear function of the two interest rates, r and [. Therefore,
as outlined in [41]:

(2.8) Ao = ko + ki + kal
where ko, ki and ks are constants. Solving (1.12) for 82 and applying assumptions (2.2) and (2.8):
Ba(r,1,t) = kolog + kyrlos + kyoal? + 031 + 1% — 7l
= 1 ((koo> +03) + (k102 — 1)1 + (kaoo + 1)1)
= [(ag + bar + col)
The system of stochastic equations (2.6) and (2.7) is then discretised so that the unknown param-
eters: ai, b1, o1, az, by, ¢3, 02 and p may be estimated from market data. Assuming these

estimates are the true parameter values, A; is estimated. A; is assumed to be an intertemporal
constant, an unrealistic assumption given the long time span of the market data.
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The results of the empirical tests performed by BS are rather inconclusive since the inconsistencies
observed can be attributed to one of four causes: model misspecification in the form of an omission
of state variables, misspecification of the functional forms of the stochastic processes for r and [,
market inefficiencies or measurement error. Attempts by BS to isolate the specific causes of the
errors are again inconclusive.

Rebonato [41] examines the behaviour of this specific model formulation. He varies the parameters
over a range of reasonable values and finds that the dynamics of the coupled system, (2.6) and (2.7),
tend to be quite unstable. The long term interest rate has a non negligible probability of reaching
very high values in a finite period of time. This instability is due to the specific functional form and
parametrisation chosen by BS in the implementation of their model.

3. Conclusion

The specific model formulations and empirical investigations undertaken by BS admit criticism due
to their lack of stability and inconclusiveness of results. This should however not influence the
significance of their general model formulation, which is mathematically and economically sound.
The general model is an equilibrium model, hence the drifts are real world drifts and internal
consistency requirements needed to eliminate one of the market prices of risk are encapsulated
in the choice of state variables. BS provide a methodology which is successful in reducing the
complexity of modelling the term structure. An alternative choice for the specific functional form of
each stochastic process, can produce reasonable descriptions of the evolution of the term structure.



CHAPTER 4
Longstaff and Schwartz : A Two-Factor Equilibrium Model

Longstaff and Schwartz (LS) [34] developed a two-factor model of the term structure based on the
framework of Cox, Ingersoll and Ross [16] discussed in Chapter 2. The two factors are the short
term interest rate and the instantaneous variance of changes in this rate (volatility of the short term
interest rate). Therefore the prices of contingent claims reflect the current levels of the interest rate
and its volatility. The choice of interest rate volatility as the second state variable is supported by
the fact that volatility is a key variable in contingent claim pricing.

1. General framework

1.1. The underlying economy. The term structure is modelled within a continuous time
economy where physical investment is performed by a single stochastic constant-returns-to-scale
technology'. The single good produced by this technology is either consumed or reinvested in
production. The returns realised on physical investment are described by the stochastic process:

(1.1) dQ = (uX +0Y)dt + oVYdz

Q

where u, # and o are positive constants, X and Y are state variables and z; is a Wiener process. X
is an economic factor driving expected returns but having no effect on the uncertainty of production,
while Y affects expected returns and volatility. This implies that expected returns and volatility of
production are not perfectly correlated. To ensure a non-negative risk free rate of interest, § > o2.
The state variables are modelled by:

(1.2) dx (a — bX)dt + VX dz,
(1.3) dY = (d—eY)dt+ fVYdzs

where a, b, ¢, d, e and f are positive and z», z3 are Wiener processes. Since X is uncorrelated to
production uncertainty, we require z, to be uncorrelated with z; and z3.

Markets are assumed to be perfectly continuous and competitive, with a fixed number of homogenous
investors having time-additive preferences of the form:

E, { / " exp (—ps) In (Cy)ds

where C is the time s level of consumption, p the utility discount function and E; [] the expectation
taken at time t. Here, future consumption is discounted to time ¢ by the factor p which indicates
the decreasing current utility of consumption in the future. However, if consumption is delayed, the

LConstant-returns-to-scale implies that the percentage increase in output equals the percentage increase in all the
inputs required by the technology [40]. Increasing-returns-to-scale implies economies of scale where the percentage
change in output exceeds the percentage increase in inputs; while diseconomies of scale refer to decreasing-returns-
to-scale where the percentage increase in output is lower than percentage increase in inputs.

46
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investor is able to invest more and benefit from greater consumption in the future. Each investor
wishes to maximize their utility subject to the budget constraint denoted by

dW:W@ —Cdt

Q

where W is the investor’s wealth and hence, at any time ¢, the investor may either consume wealth
(denoted by C) or invest the wealth in the single technology (1.1). The derived utility function,
obtained as the solution to the maximisation problem, has the form?:

(1.4) JOW, X, v, ) = SRR

InW + G(X,Y,t)
Optimal consumption and investment amounts are also determined as part of the maximisation
problem. CIR (1985) [16] determined the associated optimal consumption function to take the

form:
pW

1= oxp (—p(T — 1))
where 7' — 0o. Hence determining the optimal consumption level to be pW, the equilibrium wealth
dynamics are derived to be:

(1.5) AW = (uX +0Y — p) Wdt + oW Ydz

C*(W,X,Y,t) =

Equations (1.2), (1.3) and (1.5) form a joint Markov process, the current values of which completely
describe the state of the economy.

Now rescale the state variables such that x = X/c? and y = Y/f? and define H (x,y,7) as the value
of a contingent claim with maturity 7. The value of this contingent claim satisfies the fundamental
partial differential equation [15, Theorem 3]:

(1.6)

2 w

EHM + %Hyy + (y—dz)H, + <77 —&y - (_jWW) covar (W, Y)>Hy —rH = H;

where? v = a/c?, n = d/f?, 6 = b, £ = e, r is the instantaneous risk free rate of interest and
covar (W,Y) is the instantaneous covariance of changes in wealth W with changes in state variable
Y. The coefficient of H, includes a utility dependent term which represents the risk premium
associated with the level of production uncertainty governed by Y. From (1.3), (1.4) and (1.5), we
may show:

<_JWW> covar (W, Y) = \y
Jw

2This is the same form of the indirect/derived utility function as described in Chapter 2 §5
3Under this transformation the processes (1.2) and (1.3) become:

dr = (y—dz)dt+ Vxdzo
dy = (n—¢&y)dt + /ydzs
4From (1.4) we have:
1
Jw = —e
w W e
J - ! e Pt
ww = e
J 1
o _IWwW o
Tw w
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Hence, the risk premium (market price of risk) is proportional to y. The proportionality factor A
is constant. This form of the risk premium has been endogenously derived from the specification
of the underlying economy and so ensures consistency with the equilibrium characteristics of the
economy. The same cannot be said of the no-arbitrage models where the form of the risk premium
is exogenously defined.

Specifying the instantaneous risk free rate of interest, r, in terms of the state variables z and y,
will allow us to solve (1.6) for the price of any contingent claim subject to its initial and terminal
boundary conditions. Since these prices will be in terms of unobservable state variables, we make
a transformation to express the contingent claim prices in terms of intuitive and readily estimated
economic variables. These two economic factors are the short term interest rate r, and variance of
changes in this short term interest rate, V. Hence information about the current term structure
other than its current level is incorporated. This approach has the potential to produce contingent
claim valuations more consistent with actual market prices than one factor models.

1.2. The observable economic variables.
1.2.1. Definition. The equilibrium risk free rate of interest is derived as the expected return on
production less variance of production returns [15, Theorem 1]. That is® :

(1.7) r=ax+ By

where a = pc? and 3 = (6 — o?) f2.
1.2.2. Stochastic processes. Applying Ito’s Lemma to (1.7) we obtain the stochastic processes
describing the development of r:

dr = adx+[dy
(1.8) = a(y—dz)dt + B(n — &y) dt + a/xdzs + B[y dzs

Taking expected values of the above we obtain the expression for the instantaneous variance, V' of
changes in the short term interest rate as:

Eldr] = a(y—déx)dt + B (n — &y) dt
= (E[dr])*> =0

and since z» and z3 are uncorrelated we have:

E [(dr)*] = o®zdt + fydt

Also from (1.3) and (1.5) we find:
covar (W,Y) = WY o f E[dz1 dza]

hence, since o, f and E [dz1 dz3] are constant, we have:
(*JWW
Jw

) covar (W, Y) = Ay

5From (1.1) the expected return less variance of the production process is uX + 0Y — ¢2Y. So, using the
transformed state variables:

ro= plr+0f’y—o’fy
ucz + (0 — o) f7y
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Hence
V = var(dr) = E[(dr—E[dr])2]
= E[(dr)’] - (E[dr])”
(1.9) = o’z +f%

Here the notational dependence on dt is suppressed since it is implicit in the context of the definition.
Now solving (1.7) and (1.9) as a system of simultaneous equations, x and y may be found as functions
of r and V. Hence, assuming « # § we have:

_ Br=V
(1.10) v = G—a)
V—-—ar

Now substituting these values of z and y into (1.8), the stochastic process for r, we have:

(1.12) dr = p,dt + 01 ,,dzs + 05,.dz3
where
Bo—af  £-6
r = - - V
Iz ay + Bn i—a ' -a
” . Br -V
(B - a)
V—ar
02 r = /8
> BB~ a)
Similarly, from (1.9) we derive the process for V' as:
(113) dV = Mvdt + Ul,VdZ2 + 0'2,de3
where

aB6-¢)  Bt—ad

_ 2 20 _
py = a’y+p8n 3 o 5o

2 Br—V
a(f —a)

_ 5y [ V—ar

v = PN B

Since the stochastic evolution of r depends on V' and similarly that of V' depends on r, the two
processes are interdependent, forming a joint Markov process.

1.2.3. Ezpected value. The methodology used to calculate the expected value of the short term
interest rate in the CIR model is applied to evaluate the unconditional expected values of r(t) and
V'(t). Since both r(¢) and V' (t) are linear combinations of z and y, we first calculate the expectations
of x and y. The stochastic processes for z and y are:

(1.14) dr = (y—6x)dt+zdz
(1.15) dy (n—&y)dt + /ydzs
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First, consider the integral form of (1.14):

z(t) = z(0) + /0 (v — 0z(u)) du + /0 Va(u) dz

Hence, taking expectations, we have:

Bla()] = =(0)+ | (- 5Blz@])du
0
> 4 Bla(n] = 5 B[()
which implies
G ERO) = ¢ (B0 + 5 B0
— el

Integrating both sides yields:
et E[z(t)] = z(0) + % (et — 1)

and hence we solve for E[z(t)] as:
(1.16) E[z(t)] = % (1= e +e~%2(0)

If 2(0) = ¥, the mean reversion level, then E[z(t)] = ¥ for all ¢. Alternatively, for z(0) # %, the
long-run mean of z(t) is:

: _7
(1.17) Jim Efz(t)] = <
Similarly, the long-run mean of y(t) is calculated as:
i _n
(1.18) Jim E[y(#)] = ¢
and hence:
ay | B
1.1 E = — 4+ —
(1.19) = G+
2 2
(1.20) B[] = S+ %

1.2.4. Variance. Since zo and z3 are uncorrelated, the variance of r(t) (and similarly of V (¥))
may be calculated as:

(1.21) var (r(t)) = var (ax + By) = o var (z) + 3? var (y)
where:

(1.22) var (z) = E[2%] — E[2]’
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In order to evaluate var(z) and hence var(r(t)), we require the process dz?(t). Applying Ito’s
Lemma and making use of (1.14) we have:

d(z*(t)) = 2x(t)dz(t) + dz(t) dz(t)
— 2(1) ((7 — Sx(t))dt + \/ﬁdZ2) + a(t)dt
= (2y+ 1) z(t)dt —262°(t )dt+2x2 t)dzo
= 2%(t) = x2(0)+(2'y+1)/ du—25/ du+2/0t 2 (u)dzy
hence: . .
E[2°(t)] = 2%(0) + (27 + 1)/0 Elz(u)] du — 25/0 E[2?(u)] du
and
9 B[] = @y +1) Elx(0)] - 6 E[(1)]
therefore:

4 @orp2m]) = o (25 E[22(t)] +%E[x2(t)])

= *(2y+1) E[z(t)]
Making use of (1.16), solve for E [2?(t)] by integrating the above:
2
2 b v 6t)2 2y 1 ot
T ) (- i 1
w(0)+<52+252>( e)+<5 +5>$(0)(e )

= E[22(t)] = 22(0)e~ 20t 4 (% + 2_}2> (1 —e*‘;t)2 n <267 + ;) 2(0)e % (1- e—dt)

e26t E [CUQ (t)]

Now making use of identity (1.22) we calculate the variance of z(t) to be:

N (1 _ e*5t)2 + @ o0t (1 _ efét)

var (z) = 592 5

and the long run variance becomes:

_
hmoo var (z) = 552
Similarly, the long run variance of y(t) is:
- _n
thm var (y) = %

Finally, by identity (1.21), the long run variance of r(t) is:

52
(1.23) var (r) = 2—52 TS

Similarly, the long run variance of V' (¢) may be calculated to be:

4
aly B

(1.24) var (V) = o T oo
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2. Equilibrium term structure

Let F(r,V,7) be the price of a risk free discount bond with time 7 to maturity. The value of this
discount bond must satisfy the fundamental partial differential equation for the value of a contingent
claim (1.6),within the equilibrium economy outlined above.

2.1. Discount bond price. The equilibrium value of F(z,y, 7) may be found by solving (1.6)
subject to the terminal boundary condition F'(z,y,0) = 1. This equilibrium value has the form:

(2.1) F(z,y,7) = A (1) B (r) exp (k7 + (6 = 6) (1 = A(r))z + (v = ) (1 = B(r))y)
where
_ 2¢
(22) Al = (04 )(e?” — 1) +2¢
(2.3) B(r) = 2

(v+ ) (e¥T — 1) + 24

v o= &+

o = V2atd?

v = VBT

ko= 0+¢) +nv+1)

Applying the change of variables from z and y to r and V, the discount bond price may be repre-
sented as®:

(2.4) F(r,V,7) = A%(1)B(r) exp (k7 + C(r)r + D()V)
where
_ad(e’” —1)B(r) — Bp(e?” — DA(r)
‘0 = 503~ a)
P(e’T = DA(T) — ¢(e?” — 1)B(r)
P 50(5 )

6First, substituting (1.10) and (1.11) into the exponent in (2.1) we have:
KT+ (0= ¢)(1 — A(m))z + (v — ¥)(1 = B(7))y
Br—V V—ar
a(f — ) + -9 - B(T))g([s ~ o)
—ry (BE=9)1 = A(T) _alv—¥)(1 - B(7)) (v=9)A=B(r)) (=41 - A7)
-+ (B 5 s-ar )+ (“He—a e )V
From (2.2) and (2.3) we have:

=r7+ (6 - ¢)(1 - A(7))

(0 +¢)(e?” = A(7)

1—A(r) = %
|- () L0080

as well as
62 — % = —2a
V2*¢2:*25
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The utility dependent market price of risk parameter, A\, enters the bond price equation via the
parameter v. This means it need not be estimated separately, but only in a functional form with
parameter £. The exponential form of the bond price solution (2.4) ensures the tractability of the
closed-form solution and simplifies its calculation.

2.2. Yield to maturity. Let Y(7) be the yield to maturity on a discount bond with term 7
to maturity. Hence:

F(r,V,7) = e~ Y ()T
e YT = AV (1)B*"(1) exp (kT + C(1)r + D(1)V)
(2.5) 5 oY) = _2yInA(7) + 2nln B(r) + k7 + C(7)r + D(1)V

-
which indicates that the yield on any discount bond with maturity 7, is a linear function of state
variables 7 and V. We can show’ that lim,_,o Y () = r, which is consistent with our definition of r
as the instantaneous short term interest rate.

We may also show® that lim, o, Y (7) = (¢ — &) + n(¢» — v) which is a constant, independent of
current values of r and V. This is consistent with the above analysis that r and V have long run
stationary distributions and hence the influence of the current level of the interest rate diminishes
for yields far into the future.

2.3. Shape of the yield curve. One of the shortcomings of one factor yield curve models is
the restriction it places on the possible shapes that the term structure can assume. The advantage
of the current model is that the dependence of discount bond prices on both the short term interest
rate and volatility of the short term interest rate introduces greater freedom on the shape of the
term structure. The sign of? F,.(r,V, ) is indeterminate and so changes in the short term interest

and so we may continue as

(ﬁ(5—¢)(1—A(T)) a(v—w)(l—B(T))>r+((V—w)(l—B(T)) (5—¢)(1—A(T)))V

o(8 —a) B(B— ) B(B— ) a(B —a)
_ 7ﬁ(6¢7— —1A(T)  a(e¥™ —1)B(1) ., _ (e¥™ —1)B(1) = (e?” — 1)A(7)
- (% e ) (e )
_ ad(e¥T — )B(r) — (e — DA(r) n W(e?T —1)A(r) = (e —1)B(7) |,
oY(B — ) oY(B — @)

It is easy to see that both the numerator and denominator of Y (7) tend to zero as 7 tends to zero. Hence apply
L’Hopital’s Rule. We have:
2y A’ 2nB’
lim V(r) = lim— (—7 () , 2B (r)
T—0 T—0 A(T) B(T)
—(=v(0+¢)—nv+y)+r—r)
= r
since, by definition k = y(§ + ¢) + (v + ¥).
8 Again, apply L’Hopital’s Rule to Y (7):

+K+C(T)r+ D’(T)V)

. _ 29A' (1) | 20/(7)
Jim Y(r) = lim — ( A(7) B(r)
= —(-2v¢ —2n¢ + k)
= ¢p—-0)+n(y—v)

+x+C(T)r + D'(T)V)

by the definition of k.
9Subscript indicates a partial derivative.
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rate may introduce varying, often opposite, changes at different maturities on the yield curve. Short
term interest rate volatility V' may change while r remains constant. Changes in V' may affect the
slope and volatility of the yield curve, often to different degrees at various maturities, changing the
overall shape of the term structure. In fact very complex yield curve shapes can be obtained with
relatively easy manipulations of the parameters of the underlying state variables r and V.

2.4. Term structure of volatility. For the purposes of option pricing, it is important to
correctly fit the yield curve and the term structure of volatilities [41]. Determining the volatility
at various points on the yield curve is equivalent to determining bond yield volatilities for various
maturities, 7. To calculate the yield volatility, first use Ito’s Lemma to calculate bond price volatility
and then use Ito’s Lemma again, to find the yield volatility.

Volatilities of discount bond prices for various maturities may be derived by applying Ito’s Lemma
0 (2.4):

oF oF O*F oF O’F
F o= - 17 - Qv+ L1 aqvav
d adt+ad+2a2dd+avd +26V2dd

(“FF + O + D@y + 5C3()(02, +03,) + 5D (1) (03 + 02y )

+ (C(T)O-l,r + D(T)Ul,V)dZQ + (C’(T)UM + D(T)UQ,V)dzg
and since z> and z3 are uncorrelated the variance of bond price returns becomes:
(26) war () = B[, +ak) + D0ty )
+20(R)D(7)(01, 01, + 00, 72,1)|

From (2.4) we have:

a?¢? (e — 1)2B*(r) + 82¢* (e — 1)°A%(7) — 2aB¢pd(e¥” — 1)(e?” — 1)A(7) B(7)

(1) =

P*? (B — @)?
D(r) = P2 (e —1)°A%(1) + ¢* (VT — 1)°B?(1) — 2¢p¢(e?” — 1)(e”” — 1) A(1)B(r)
- P*P? (B — a)?
(D) = (a + B)hp(e¥™ — 1) (e®T — 1)A(T)B(1) — B2 (e®™ — 1)2A2%(1) — ag?(e¥™ — 1)2B2(r)
P (B — @)?
Also
O'ir + Ug,r =V
U%,V + Ug,v = —af(B+a)r+ (52 +aB + a2)V
01,01y + 03,0y = —afr+(f+a)V
Hence the variance, (2.6) may be expressed as:
(2.7) var (%) = C*(1)V + D*(1) (—aﬂ(ﬂ +a)yr+ (B2 +aB+ a2)V)

+2C(1)D(1)(—afr + (B + a)V)
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Grouping and simplifying the coefficients of r and V', the variance of bond price returns becomes:

(2.8) var (%) = %
_ <aﬂ¢2(e¢” 1)242(r) — aBgR(eVT — 1>2B2<r>> )
2028 — a)
BE(e¥™ — 12B(r) — agp? (%™ — 1)24%(r)
* ( 2025 —a) ) v

Finally, to derive the volatility of bond yields, apply Ito’s Lemma to the expression Y (r) =
—InF(r)/7 as in [41]:

ay . oy 192V
dY = = dt + = dF + 5= dFdF
oy 19,

1
= E §W UF(T) dt + T(T)(HF(T)dt_‘_UF(T)dZ)

= /Ly(,.)dt + Uy(,.)dZ

dt +

and so:

1
2. = —F
( 9) Oy (r) TF(T) OF(r)

The volatility of bond price returns and hence bond yield volatility is a function of the term to
maturity, 7, as well as the underlying variables, r and V. This implies a term structure of volatilities
that may assume a wider variety of shapes than is possible for one factor models.

2.5. Correlation between rates of various maturities. One of the advantages of a two
factor model over a one factor model, is that it allows for imperfect correlation between rates of
various maturities. To determine this correlation, we calculate the correlation between yields on
discount bonds of various maturities.

From (2.5), we may write the yield to maturity of a 7 maturity bond as:

W(r)+C(r)r + D(1)V

(2.10) Y(r)=
i
Applying Ito’s Lemma to (2.10) and making use of (1.12) and (1.13):
oY oY oY 19%Y 10%Y
ay = —dt+——dr+ =d ———drdr + - —— dVd
()= Gty At Gy WV g g drdr g gy VAV
= dt + a_Y + a_Y dzo + a_Y + a_Y dz
= My(s) ar O1,r v O1,v 2 ar O2,r v 0o v 3

= pymdt+ %(C(T)Ul,r + D(T)Ul,v)dZQ + %(C(T)UQ,, + D(T)UQ,V)dzg

and so:
1

2.11)  dY(n)dY(r) = R[(C(n)ol,r+D(n)ol,v)(0(rz)ol,r+D(Tz)01,v)

+(C(11)0a, + D(11)oayv) (C(72)0m, + D(Tg)aw)] dt
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By the definition of correlation we have:
covar (dY (11),dY (7))
V/ var (dY (1)) var (dY (72))
Since Y (1) and Y (72) are Wiener processes, E[dY (11)] = E[dY (11)] = 0 and hence:
covar (dY (11),dY (m2)) = E[dY (1) dY (12)]

(2.12) cort (dY (1), Y (72)) = pyryyv () =

and (2.12) becomes:
E[dY(Tl) dY(TQ)]

Oy (r1)0Y (r5)dt

PY (r1)Y (r2) =

Finally, using (2.11) the correlation may be expressed as:

1
PY ()Y () = —————— [(C’(H)Uu + D(m)o1v) (C(r2)o1, + D(12)01,v)

TIT20Y (r1) OY (72)

+ (C(Tl)az,r + D(Tl)O'z,V) (C(TQ)O'Q,T + D(Tz)O’g,V)jI

where the variances, 0%, , and 0%, may be obtained by taking expectations of (2.10) or by making
use of bond price volatilities and (2.9).

3. Option pricing

LS [34] derive an analytical formula for the value of a European option on a default free discount
bond. The option value is derived from within the equilibrium framework and is hence a function of
the two factors determining discount bond prices. The explicit dependence on the current interest
rate volatility is a desirable characteristic, since volatility is one of the key determinants of option
values.

Let C(r,V,7; K,T) be the price of a European call option with maturity 7, strike price K, on a
discount bond with term to maturity 7 + 7. Since the value of this call option must satisfy the
fundamental pricing equation (1.6), LS show the closed form solution to be:

(31) C(T’, VaT;Ka T) = F(’f’, VaT + T)‘I’(91,02;4%477,w1,w2)
—KF(T‘, V7 T)‘I’(93,04;4%477aw3,w4)

where () is the bivariate non-central chi-square distribution and 61,6s,603,604,w1,ws,ws and wy
are functions of the parameters of the underlying state variables. Since the two variates of each
bivariate distribution are independent, the joint density is a product of the individual densities of
the two variates that are non-central chi-square!®.

Since the variance of the interest rate follows a stochastic process, this model allows option pricing
with stochastic volatility. This is one of the few interest rate option models allowing for closed form
solutions with stochastic volatility [41].

To extend this methodology, LS [35] use a separation of variables technique to incorporate the initial
observed term structure. This extended model incorporates actual discount functions to determine
the initial option prices. This means that it cannot be used to price simple discount bonds. However,
all other European interest rate contingent claims may be valued.

Consider the value of a European default free contingent claim, H (z,y,7), with payoff at maturity
H(z,y,0) = G(z,y). (The contingent claim is a function of the transformed, unobservable state

10For details of the non-central chi-square distribution, see Chapter 2 on the CIR model.
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variables z and y.) The value of this contingent claim may be factorised into its forward value and
a discount function, with the same maturity date as the contingent claim:

(3.2) H(z,y,7) = F(z,y,7) M(z,y,7)

where F(z,y,7) is a discount bond and M (z,y,7) the forward value of the contingent claim. Cal-
culating all required partial derivatives we rewrite (1.6) as:

M(%Fm + 5Fyy + (v = 6x)Fp + (n —vy)Fy — (ax + By)F — FT)
(3.3) +F(%Mm + §Myy + (v — 02) My + (n — vy) My — Mr)
+xFy M, +yF,M, =0
However, since F(z,y,7) also satisfies (1.6), we have:
5Foa + §Fyy + (v = 02)Fy + (n —vy)Fy — (az + By)F — Fr =0
and (3.3) becomes:
F(ng +EMyy + (v — 62) M, + (7 — vy) M, — MT) + 2F, M, + yF,M, =0
F, F,
z Y _ - _ -y _ —
(3.4) :>2Mm+2Myy+(7 5a:+a:F)MI+(n I/y+yF)My M,.=0

with terminal boundary condition M(z,y,0) = G(x,y). The terms dependent on the price of the
discount bond, F,/F and F,/F can be evaluated from (2.1) as:

F, = F(@-¢)(1-A(r)

Ey F(v —¢)(1 - B(1))
and hence the forward value of a European contingent claim may be found by solving (3.4) subject
to an appropriate terminal boundary condition. The present value of this contingent claim is found

by discounting the forward price by the unit discount bond (with appropriate maturity) observable
from the current term structure.

From (3.4) we may consider the forward value of the contingent claim, M (z,y, ), to be the expected
value of the terminal payoff, G(z,y), hence:

M(z,y,7) = E[G(z,y)]

where the expectation is taken over the joint probability distribution of # and y implied by the risk
adjusted processes:

Fy
(3.5) de = ('y —dz + ya :U) dt + \/zdzy

F
(3.6) dy = (n —va+ L y)dt + /ydzs

The two processes above are square root, processes, much like in the CIR model and hence produce
distributions related to the non-central chi-square distribution. Since x and y are independent,
the joint distribution (the bivariate, non-central chi-square distribution) is a product of the two
distributions.

The advantage of this extension to the model is that all information from the current term structure,
as well as dynamics of the state variables are incorporated in the pricing. However, this approach
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loses the general equilibrium consistency, since not all discount bond prices are endogenously deter-
mined.

4. Conclusion

In developing a two factor model, LS overcome one of the most frequently cited criticisms of one
factor models: the perfect correlation of instantaneous returns on bonds of all maturities. The model
produces closed form option prices for the case of stochastic volatility; this is a highly desirable
feature few other models can produce. Additionally, the very flexible functional form of the model
allows for very complicated shapes of the yield curve to be obtained with relative ease. However, this
flexible functional form makes calibration rather difficult. The flexible functionality allows almost
any market observed term structure to be fitted, but this does not necessarily ensure meaningful
term structure dynamics. One of the inevitable side effects of increasing the numbers of factors
is the increased complexity, here pricing of a simple European option requires evaluation of the
bivariate non-central chi-square distribution.



CHAPTER 5
Langetieg’s Multi Factor Equilibrium Framework

The term structure of interest rates is embedded in the macro-economic system and is related to
various economic factors. For this reason, Langetieg [33] proposes a model that can accommodate
an arbitrary number of economic variables. The model is essentially an extension of Vasicek’s term
structure model [46], studied in Chapter 1, with multiple sources of uncertainty.

1. Underlying assumptions

Langetieg makes certain assumptions which allow for a mathematically tractable, intuitively sound
model:

Assumption 1. The set of stochastic economic factors which are related to the interest rate
term structure follow a joint elastic random walk.

Assumption 2. The instantaneous risk free rate of interest may be expressed as a linear
combination of these factors.

Assumption 3. The market prices of risk of the factors are deterministic, that is, they are

either constants or function of time only.
The assumption of an elastic random walk means that the Vasicek model, which incorporates a
univariate elastic random walk, is extended to a multivariate elastic random walk. Vasicek does not
assume the functional form of the bond price, but derives it from the following assumptions (which
apply to Langetieg’s model as well):

e Bond prices are functionally related to certain stochastic factors.

e These underlying factors follow a specific stochastic process.

e The markets are sufficiently perfect to allow for a no arbitrage equilibrium to be reached.

2. Choice of generating process

There exists empirical evidence to support both the random walk and the elastic random walk
as generating processes for stochastic factors within a macro-economic system. Therefore we may
conclude that the generating process for the short term interest rate is adequately described by:

dr(t) = (a(t) + b(t)r(t))dt + o(t)dz(t)

where a(t), b(t) and o(t) are either constants or functions of time. a(t) + b(t)r(t) is the stochastic!
instantaneous drift and o(t) the deterministic instantaneous variance of r(t). The behaviour of r(t)
is determined by the value of b(t) since, for:

e b <0, tends to —7,

U1t is stochastic in nature due to the functional dependence on r(t).

59
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e b =0, the generating process for r simplifies to a random walk,
e b >0, r explodes in finite time since it is repelled by the level —.

Under the random walk generating process, short term interest rates drift to positive and negative
infinity with probability one. The elastic random walk with b < 0 eliminates this problem. It does,
however, allow transient occurrences of negative interest rates and hence is not an appropriate model
when short term interest rates are close to zero. Negative interest rates are completely eliminated
by setting the variance coefficient proportional to r*, a > 0. In the case of the Cox, Ingersoll and
Ross model [16], & = 1 (see Chapter 2). This creates a natural reflecting barrier at r = 0, but
introduces mathematical complexity which is difficult to implement in the multivariate case where
the underlying factors are stochastic. Langetieg makes use of an elastic random walk process, with
the assumption that the short term interest rate is sufficiently above zero to make the probability

of negative interest rates, in finite time, negligible.

3. Multivariate elastic random walk

From Assumption 1, the n underlying factors follow a multivariate joint elastic random walk>:
de; = a;(t,x)dt + o;(t,z)dz; i=1,...,n

where a;(t,z) = a; + B;; ;. In matrix notation this linear system of equations becomes:

(3.1) dx = (a+ Bz)dt + o dz
where
de' = [dzidzs ... dvy]
a' [a;az ... ay,)
B = n xn matrix, elements B;;
(0dz)! = |[o1dz1 09dzy ... opdzy]

The short term interest rate is expressed as a linear combination of the underlying stochastic factors
(Assumption 2), hence:

n
(3.2) r=wy+ Z w;T; = wo + w'x
i=1
where
x — vector of stochastic factors characterising the underlying economic system,
w — vector of weights which are either constants or functions of time.

The solution to (3.1) has the form?:

(3.3) 2(t) = P(t — to) (m(to) - t U(s —tg) tads + t V(s —ty) o dz(s)) t >t

2Here, dz; is the standard Wiener process with:
e E[dz] =0,
o E[dz; dz;] = dt.
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where 1 (t — tp) is the matrix solution [30], [2] to:

dip(t —to)

dt = B’(,b(t — t()) with ’(,b(t() — to) =1

In the special case where B is a constant:
P(t —to) = exp (B(t — to))

and (3.3) becomes
t t
(3.5) x(t) =Yt —to)x(to) + | Y(t—s)ads+ | ({t—s)odz(s) t>tg
to to
3The deterministic system of equations corresponding to (3.1) is:
(3.4) dx = (a + Bz)dt
This is a linear system, which has a solution of the form
z(t) = ¢(t —to)v(t)
where v(t) is some function of time and (¢ — to) is the solution to the homogenous matrix equation
d(t — to) = Bu(t — to)dt

with initial condition ¥(to — to) = I, and hence it is the fundamental matrix of the system (3.4).
Matrix equation (3.4) now becomes:

Wz]m +(t — to) 3’(;?) = a+ Byt — to)u(t)
BY(t— to)() + (i~ 10) P20 = oy By(t — to)u(t)
¥(t —to) 81{;55) = a
t
=>v(t) = v(to)+ : w(sfto)_lads
St = m(t0)+/tt1/;(sft0)71ads

and hence the solution to the deterministic system is:

x(t) = P(t — to) (x(to) + tw(s - to)_lads)

to
Now consider the system of stochastic equations

dv =9t —to)~" (adt + o dz)
which has solution . .
v(t) = v(to) +/ (s — tg)flads +/ (s — to)fladz
Applying Ito’s Lemma to z(t) = ¢(t — tO;?/(t) ’
dx dyp(t —to) v+ p(t — to) dv
By(t —to)vdt+adt +odz
(a+ Bzx)dt + odz

which is the original differential system (3.1). Hence, we have shown that the solution to this system is

¢ t
z(t) = (t —to) (x(to)-i- Y(s —to) " lads + w(s—to)_ladz>

to to
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For this special case?, the expected value and covariance matrix of z(t) and z(t*) (¢ and t* are future
points in time) are then calculated to be®:
t

(3.6) Ei, [z(t)] = (t —to)z(to) + ) Yt —s)ads
(3.7) covary, (z(t), o(t*)) = /t D(t — 8) SH(t* — s)'ds

where ¥ is the covariance matrix:
¥ = covary, (0dz,0dz) = By, [odz - 0d2']

with elements o;; = p;j 0; 05 where p;; = By [dz; - dz;].

4. The bond pricing model

Langetieg presents a general model for pricing default free bonds. The model allows any number
of underlying stochastic factors which follow an arbitrary Ito process. Although the form of the
solution can always be obtained, an explicit solution can only be determined for certain distributions.
The case considered here, where the underlying factors follow a multivariate elastic random walk,
is mathematically tractable and hence an explicit solution can be found.

4The calculations are shown for the special case due to the simplified notation, however the more general case
proceeds in a similar fashion.
5The covariance is calculated as follows:

covare, (z(t), z(t*)) Feo [(2(t) — Eep [2(6)]) ((t*) — ']
Eto [2(t)z(t") — x(t) B, [2(t )]—Eso[()]
= B, [2(0)x(t*)] — By [2(1)] Beo [2(7)]

o(t") + Fio [2(t)] Feo [2(t)]]

Consider:
z(t)z(t*) = Pt —to)z(to) (Y(t* — to)z(to)) + ¥ (t — to)x(to) ( to* Y(t" - S)ad3>,
AUt = to)alto) ( t (e = 5) o de(s ) + [ wte=s)ads 0" =~ to)atto))
t ,
+/t0 W(t — s) o da(s) (B(* — to)z / W(t — s) o da(s (/to w(t* s)(rdz(s))
and so

5

to

Eio [z(0)z(t")'] = ot —to)z(to) (¥(t* — to)a(to))" + ¥(t — to)z(to) ( Y™ — S)ad8>

+ /t: Yt —s)ads ((t* —to)x(to)) + /t:/\t P(t — ) S(t* — s)'ds

Also:

*

Bto [2(t)] Beo [2(t")]

»(t — to)z(to) (V(t™ — to)z(to))" + 1 (t — to)x(to) ( Pt —s) ad8>

to
t
: Y(t —s)ads (Y(t* — to)z(to))’

and hence (3.7) follows.
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4.1. The Equilibrium bond price equation. Let P = P(t,T,x) be the time ¢ price of a
default free discount bond paying $1 at time 7. Applying Ito’s Lemma, the bond price generating

process is:
dP =
dP
4.1 — =
41y =3
where
(4.2) wp
(4.3) B

n

OP aP
E dt + 2 a dmz Z Z oz, dwldwi
OP
o dt + ; 9%, aldt + Z a,dz, + - 2; 2_; awzaw] 0;0;5pij dt
ppdt + Z Bhdz;
i=1
1 [ 0P
= 7| a0 4 Oéz + - ZZ Bz, Ulgjle
_10P

i.e. up is the expected rate of return, and 3% the unanticipated rate of return due to unexpected

changes in factor z;.

A no arbitrage argument may be applied to derive the partial differential

equation for the bond price. Let P be a portfolio of n+ 1 bonds P;, with maturities 7; and portfolio

weights ;, such that Z?Jrll v =

where

= 1. Then

n+1

P = Z'YjPJ
j=1

!

Y
Pl

'7n+1]
Pn+1]

[’)/1’)/2
[P P; ...

Hence, by Ito’s Lemma the stochastic process for the bond portfolio is:

where

dp n+1 n+1
5 = Z Yjpp;dt + Z Vi (Z B, le)
n+1 n n+1

Y vimedt+Y Dbk | dai
j=1 i=1 j=1

= ypdt+ Y+ Bldz
p‘l [:up1 Hpy - p’Pn+1]
8" (B, Bry - Br,,.]
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For the portfolio to be risk free, its return must be deterministic and hence the coefficients of the
stochastic terms must be zero. That is:

n+1
(4.4) Z%ﬂf}j =4'6i=0 fori=1,...,n
j=1

To prevent profitable arbitrage, the return on the bond portfolio must be the risk free rate of interest
and hence:
n+1

> vime =r
j=1

n+1
(4.5) = Z Vi (e, =) =7 (p—1) =0

The vector « is an (n + 1) vector and by (4.4) it is orthogonal to the n vectors 3°. Additionally,
(4.5) implies that v is orthogonal to vector (i — 7). An (n+ 1) vector can be orthogonal to at most
n independent vectors in an (n + 1) space, hence (i — r) must be a linear combination of the 3’s,
i =1,...,n and so:

(4.6) p—r =B+ X+ + A8

where \;, ¢ = 1,...,n are scalars which may depend on time and the underlying stochastic factors.
(4.6) is a matrix equation, with (n + 1) elements, one for each of the bonds in portfolio P. Since
Ai, ¢ =1,...,n are independent of the bond maturity, that is, they are the same for every bond P;

in portfolio P, (4.6) applies to any bond P:

(4.7) pp =7 =MPBp + Xafi + -+ Xaf3}

This equation is the equilibrium condition for the instantaneous expected rate of return on a bond.
Substituting for pp and B% from (4.2) and (4.3), we derive the equilibrium bond price equation:

OP <~ 0P I e~ O2P
+ —ai+—zzaij0'i0'jpij—rp

ot P ox; 2 Pl ;0T
opP " 9P
=AM 4+ A n — iAi
15 o1 + + amna - amia
n n n
oP 1 9’P oP
4.8 —(a; — o3\ - e Gigipii 4+ — —rP =0
(4.8) = 2 oz, (a; — oy \) + 5 ;; Foi07,; 0i0jpij + T

with boundary condition P(T,T) = 1.

4.2. Risk neutral measure. The solution of (4.8) takes the form:

(4.9) P@t,T,z) = B [exp(A(T))]

T T T
A(T) = —/ r(v)dv—/ %)\UIE_IAUdU—/ Ao'E 7o dz(v)
t ¢ ¢
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where
)\0” = [)\10'1 )\20’2 )\nan]
UdZI = [01d21 (72de e andzn]
Y = the covariance matrix

This valuation is obtained by transforming to a risk-neutral measure via the Girsanov Theorem®

and applying the Feynman-Kac Theorem (see [41]). Consider (4.7), that is:
po—r =3 A
i=1
Substituting into (4.1), the bond price generating process, we have:
dP S i

rdt + ) Bh(Nidt + dz;)

i=1

rdt + Xn: B},dfl

i=1

where, by the Girsanov theorem, dz; = \;dt + dz;, @« = 1,...,n are Brownian motions under the
equivalent martingale measure. This change of measure technique has taken us into the risk-neutral
world where the bond price grows at the deterministic risk free rate of interest r(t), and some
stochastic component driven by the transformed Brownian motions, Z;, i = 1,...,n. Now we solve
for the market risk premium vector.

6The Girsanov Theorem, [39, Theorem 8.6.4], states: Let Y (£) be an Ito process:
Yy (t) = B(t)dt + 0(t)dB(t) t<T
where B(t) is a Brownian Motion. Assume there exist functions p(t) and «(t) such that

0(B)u(t) = B(t) — a(t)

E [exp (% /OT u2(s)d5>] < 00

where p(t) satisfies

Set,
t 1 t
zi=ep (- [(uwans) - 5 [ ) as)
0 2 Jo
and
dP = ZpdP t<T
then

. ¢
B(t) = / u(s) ds + B(t)
0
is a Brownian Motion under P and the Tto process for Y (t) may be represented in terms of B(t) as

Ay (t) = o(t) dt + 0(t) dB(t)
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Suppressing the notational dependence on P, we have:
Noo= M\
go= [65%... 5"
and (A\8) = [MB' XaB? ... \B]
In vector notation, (4.7) becomes:
B'XN=p—r
= (B8 BBA=(BB") "B (n—T)
A=(u—r)(B6)7'8
and so Mz =(\B) (BB') ' Bdz

This expression for the market risk premium vector takes into account the correlations between
various Brownian motions. It can be shown” that

AB)' (BB 'Bdz = Mo’ odz
where Ao’ and ! are defined in (4.9). Also®
M'E7 oA’ o) = A'ETIEY e
= X' Mo

hence the bond pricing formula (4.9) follows by Girsanov’s Theorem.

4.3. Bond price solution. A solution to (4.9) can only be found if the probability density
function of A(T') is known and hence the expectation can be evaluated. In other cases, numerical
procedures may be applied directly to partial differential equation (4.8) to obtain the bond price
solution.

Consider the solution to (4.9) under the assumption of a multivariate elastic random walk. Since
the instantaneous short term interest rate may be expressed as a linear function of the underlying

"Here the result is shown in two dimensions, the extension to higher dimensions, follows naturally. Since
B' = [8B?], the covariance matrix is:
61 2 ﬂ1,2
BB = ( 1)2 2)2
phs o (B7)

where 812 = pB3132. The inverse of this covariance matrix is:

(ﬁﬂ,)_l — 1 |: (ﬂ2)2 7ﬂ1’2 :|
(B1)2(8%)% — (B22)2 | =B (B')?
From (4.3) we have 3% = %g—fi o = %Pi o; and since 01,2 = poioa:
pt 1 P} P}
(AB) (BB 1Bdz = P22 0702 — (019)2 1P42 (a3 x dz1 — poiod Ay dza — poiadde dzy + 0103 A dzo)

142 0102 —\01,2
1

= ﬁ [(/\1 — p)\Q) dz1 + ()\2 — p)\l) dZQ}

= Xo'EZ7lodz

8Since ¥ and so X! are symmetric matrices we know (Z~1) = %1,
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stochastic factors, we have from (3.2) and (3.3):
r(v) = wo + w'z(v)
(4.10) =wp +w' (1/)(1; —t)x(t) + / (v — s)ads + / Y —s)o dz(s))
t t
Hence (4.9) becomes:

AT) = - /tT (wo +w'p(v—t)z(t) +w' /tv (v — s)ads +w' /tv (v —s)o dz(s)) dv

T T
(4.11) —/ %AU'Zfl)\Udv—/ \o'S o dz(v)
¢ ¢

Since A(T) is normally distributed?, we may evaluate the bond price as'®:

(4.12) P(t,T,z) = exp (E [A(T)] + £ var, (A(T)))

9A(T) is normally distributed since it depends on a linear combination of stochastic factors generated by an
elastic random walk, and the market prices of risk, A;s, are deterministic.

10Consider a random variable X, which is normally distributed, X ~ ®(«, 3). The probability density function
of X is:

fla) == 3 (55)

and hence the expected value of any function of X, u(z) is calculated as:

Let u(z) = e*, and noting that e* =1+ = + ””2—? + g—? + -+, we have

=l - /_Zezﬁe*%(”;“)zdx
= /::(1+x+2—?+§—T+...)#ﬁe_%(m_;ﬂ)zdx
- /j:oﬁe‘%(%)2d1+/72#%8_%(1_;&)2d$
e G R g (R

Since E[X] =a:
B[(X—a)] = E[x?] —a’= g = E[x?] =440’

and
E[(X —a)? = E[X? -3aE[X?] +2°
= E[Xx3] -3ap%-a®
= K
= E[X?] = k+3a8’>+a?

for some k € R. Hence
L+a+3(®+8%)+ 2(k+3a8”+0%) +- -
= 1+(a+38°)+ 5(a+ 36"+

ea+%ﬂ2

=
(s}

Nl
[
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where!?

E [A(T)] = —/T<wo+w'1/)(v—t) +w/ (v —s)ads + A 'S™ 1/\o>d

vary ( ///wwv—sEi/J(v—s)wdsdvdv
+/ AU’Eil)\UdU+2/ / w'p(v — s) Ao ds dv
t t Je

An explicit bond price is obtained by evaluating the above integrals.

4.4. Alternative approach to determining the bond price. Alternatively, considering
equation (4.1)

dp LN

- updt+26£dzi

we see that bond risk, that is the unexpected changes in bond price, is related to the bond gradient
vector where the gradient is taken with respect to the underlying stochastic factors. From (4.12),
the bond gradient vector is:

OP(t,T)
or’

OF; [A(T)]

= exp (Et [A(T)] + 5 vary (A(T))) Oz

T
= P(t,T) (—/ w'p(v — t)dv)
t
LTy calculate vary (A(T)), the variance of A(T), consider:

covary (A(T)v, A(T)y+)
= B[(A(). = BIAMT)]) (AT)or — BIAT),e])]

R e . P
+/tT [ vt o dsts) o (/tT /\U’E_ladZ(v*)),+/tT)\U’2_1adz(v) (/tT /t e s)gdz(s)dv*)
. /TM oty ( [

T
/ / w'h(v* — s)Aods dv* +/ Ao’ o dv
t

Since vary (A(T)) = covars (A(T)w, A(T)y) we have:

vary (A(T)) = /t /; /tv w' (v — )T (v — s) wds dv dv + 2 /tT /:J w' (v — s)Aa ds dv

T
+/ Ao’ S o dv
t
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Let V(¢,T) denote the normalised gradient vector, that is:

1 9P(t,T)
P(t,T) o0

T
—/ w'p(v — t)dv
t

(4.13) V(t,T) =

This defines the bond risk per unit bond and hence V(¢,T') represents the bond risk vector. Next,
calculate the expected instantaneous equilibrium return on the bond. From (4.6), derived by means
of a no-arbitrage argument and (4.3), the definition of 3%, the expected instantaneous equilibrium
return of the bond is:

pdt = (r FMB o+ AT dt
_ )\10’1 8P(t, T) )\nO'n 8P(t, T)
= PLT) 0 T PG 0my )

(r(t) + V(t,T) o)) dt

) = PET) | e as defined in (4.13). Hence the bond price generating

process, (4.1) becomes:

where V(¢,T) 1 [‘9P(t’T) BI;S;&;T)]

= udt-{—iﬁidzi

(r(t) + V(t,T) o) dt +V(t,T) ocdz

By Ito’s Lemma we have:

2
dnP(t,T) = m%g’ndp 2aln(,jLP(tT)deP
_ — _li 2 !
= dP 55 P (V(ET)SV (8, T)) dt

= ( )+ V(t,T)oNdt+V(t,T)odz — iV (¢, T)SV(t,T)dt

= InP(s,T)—InP(t,T)

/S r(v) + V(©,T)'oX = $V(v,T)'SV (v, T) dv
+/ts V(v,T) odz(v)

(4.14) = P(s,T) = P(t,T)exp (/s r(v) + V(v,T)'oX — iV (v,T)'SV (v, T) dv

+/ts V(,T) o dz(v))

where P(s,T') is known. From (3.6):

Bt [z(v)] = (v — )z /¢v—uadu
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SO

wo—l-w( PY(v—t)x /¢v—uadu>

= wo + w' E [z(v)]
= E [r(v)]

by (4.10), therefore

Therefore (4.14) becomes

S

P(s,T) = P(t,T) exp (/ E; [r ]dv+/ L(v,t)dv

/ /1/Jv—uadz dv+/VUT odz(v )

where L(v,t) = V(v,T) oA — iV(v,T)'EV(v,T).
Now making use of (4.13), we have:

/ts w' /tv Y(v —u)odz(u) dv
_ /t /u W' — w)odv dz(u)
- /ts V(u,s) odz(u)

(4.15)

and
T
V(,T) = —/ w'y(m —v)dm
vs T
= —/ w'p(m — v)dm — / w'yh(m —v)dm
T
=V(v,s) — / w'p(m — v)dm

Hence (4.15) simplifies to

P(s,T):P(tTexp(/ E: [r ]dv+/s (v,t) dv

/ / w'p(m — v)o dm dz(v ))

(4.16)
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Now, since 1 (m—v) = exp B(m — v) for constant B, we have ¢)(m—v) = exp (B(m — s) + B(s — v))

and
/ts /sTw'zp(m—v)Udmdz(v)
- /ts/sTw'expB(m—s)expB(s—U)admdz(v)
- /tsexpB(s—U)/sTw'expB(m—s)admdz(v)
- —/tsexpB(s—v)aV(s,T)'dz(v)
- [ o= 0oy d:(0)
Also from (3.5) and (3.6) we have:
2(s) = (s — )z /¢s—vadv+/¢s—vadz()
E: [2(s)) = (s — Ha /ws—v adv
= [ 0t = 00 i) = as) - B fo(o)
Hence (4.16) becomes:
P(s,T) = P(t,T) exp (/ E [r ]dv+/tsL(v,t) dv-l-V(s,T)’/tsz/J(s—v)adz(v))
(4.17) = P(t,T) exp </ E |r ]dv+/sL(v,t) dv-l-V(s,T)'(a:(s) ~E [x(s)]))

By the definition of P(¢,T"), we have the boundary condition P(T,T) = 1. Setting s = T in (4.17)

above and noting that V(T,T) = 0, solve for P(¢,T) as:

P(t,T) = exp ( / E, [r(v)] dv — /tT L(v,t)dv + V(T, T)’(a:(s) ~ E [a:(s)]))

(4.18) —exp( / E; [r dv—/ L(v,t) dv)

This equation provides a simple and intuitive representation of the bond price. Changes in bond
price may be attributed to the expected changes in the risk free rate of interest and another term

dependent on the underlying economic factors.

By definition P(¢,T) = exp (—R(t,T)(T —t)), and so the term structure equation may then be

determined as:

T T
R(t,T) = TL_t (/t E, [r(v)] dv+/t L(v, 1) dv)
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5. Conclusion

Langetieg’s model allows the incorporation of an arbitrary number of economic factors into the bond
pricing equation. The short term interest rate is specified as a linear combination of the economic
factors, which are assumed to follow a joint elastic random walk. Hence, the bond price becomes a
function of this linear combination of economic factors. The ability to find a closed form solution
for the bond price depends on the type of process assumed for the economic factors. The elastic
random walk results in a normal distribution which makes such a solution possible.

This model makes a theoretical rather than a practical contribution to interest rate modeling. Its
contribution lies in the theoretical framework it provides for the incorporation of multiple economic
factors. The model parameters are left unspecified, so application of the model requires the spec-
ification of the number and type of economic factors determining the short term interest rate, the
estimation of the parameters of the joint elastic random walk process followed by the economic fac-
tors and the estimation of the associated market prices of risk. This is a rather challenging exercise
giving rise to many estimation complexities.



CHAPTER 6

The Ball and Torous Model

Ball and Torous (BT) [3] propose an equilibrium methodology to value contingent claims on risk
free zero coupon bonds. The resulting closed form valuation formula is independent of investor
preferences and eliminates the need for numerical estimations of utility dependent factors.

The underlying state variable is the risk free zero coupon bond directly. Its price is assumed to
follow a Brownian Bridge process, ensuring that it converges to the face value at maturity. Also,
since this underlying state variable is a tradable security, a preference free, closed form valuation
formula for European options may be derived.

1. Holding period returns

Let P(t,m) be the time t price of a risk free zero coupon bond with maturity m. P(m,m) = 1.
Define £(t,m) to be the t-period log return on the zero coupon bond:

(1.1) ¢(t,m) = In P(t,m) — In P(0,m) = In 11;((3, 7:1))
Since "
£(0,m) = 1In PEo’:g 0
and " |
f(m,m) = IHW:’ITL) = —IHP(O,m)

we see that £(t,m) is constrained at t = 0 and ¢ = m.
The yield to maturity, u(m), is defined as the continuously compounded rate of return (per unit
time) earned if the bond is bought at time ¢ = 0 and held until maturity ¢ = m. Hence:

P(m,m) = P(0,m)exp (u(m)m) m € [0,00)
o oum) = —ln]ZEO,m)

Therefore, if the investor commits to holding the bond until maturity he earns a log return of u(m)t
after ¢ units of time, where ¢ < m. However, if the bond is not held until maturity, the return
diverges from the deterministic yield to maturity and is stochastic. Let n(¢,m) be the excess log
return earned on the risk free bond over time ¢. Therefore:

(1.2) n(t,m) = &(t,m) —p(m)t - tef0,m]

As illustrated by (1.2), the bond return may be decomposed into a deterministic and a stochastic
component. Holding the bond for time ¢, a deterministic return of u(m)t is earned. Selling the bond
prior to maturity introduces the stochastic component, n(t,m), which reflects the changing market
conditions.

73
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Since:
W(Oam) = £(O,m)—0:0
n(m,m) = &(m,m) - p(m)m = 1o P(0,m) +In P(0,m) = 0

the stochastic part of the bond return is constrained at ¢t = 0 and t = m.

2. Brownian bridge process

Let
(2.1) n(t,m) = os(t/m)
where {e(s) : s € [0,1]} is a Brownian Bridge process and o is the instantaneous standard deviation
of the excess return.
{e(s) : s € [0,1]} is a standardised Brownian Bridge process if:

e P(e(0)=0) =1,

e the process is Gaussian, where

Ele(s)] =0 Vs €0,1]
and E[e(s;)e(s;)] = si(1 — s5) 0<s;<s;<1

e P(e(1)=0)=1.
Hence, the standardised Brownian Bridge process is an augmented standardised Brownian motion®
with the added requirement that it takes on the value zero at time s = 1. The definition of n(t,m)
in (2.1) satisfies the requirements that 7(0,m) = n(m,m) = 0 and hence it may be specified as a
Brownian Bridge process.
Our assumption that markets are efficient implies that all currently known information is included
in current market prices, or market yields. Under this assumption, the return on the bond can
only vary from the deterministic return p(m)t, by unanticipated information becoming known. Had
this unanticipated information been known, market yields would have adjusted to accommodate it.
Hence, we may conclude that:

E[n(t,m)] = 0

It is appropriate to represent the unexpected returns by means of a Gaussian process, since they
are a result of random economic events.

Let {Z(s) : s € [0,00)} be a standardised Brownian motion. The properties of a standardised
Brownian motion process, for t > 0 and A > 0 where 0 < ¢t + A < 1, imply?:

(o -]
E{{Z(li-it-—AA)_Z(lt—t)}Q Z(%—t) :Z} = (l—t)(lA—t—A)

IThe stochastic process {Z(s) : s € [0,00)} is a standardised Brownian motion if:
o P(Z(0)=0)=1,
e the process is Gaussian with
E[Z(s)] =0 Vs>0
and E[Z(s;)Z(s;)] = si 0<s; <s;
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Define a diffusion process W (t), as follows:

(2.2) W(t) = (1 - t)z(lL_t) 0<i<1

o POV(1)=0) = 1,
e and

E[W(#)] = 0 Vielo]
E[W(ti)W(tj)]:(1—ti)(1—tj)1E{z( fti)z(l?tj)} 0<ti<t; <1

=ti(1 —t;)
which implies that {W(¢) : ¢ € [0,1]} is a standardised Brownian Bridge process.
If {X(t):teT} is a diffusion process, where T is some index set, it may be represented as
dX = px(z,t)dt + ox(z,t)dZ teT

where px (z,t) and ox (z,t) are, respectively, the instantaneous mean and variance of the diffusion
process. More specifically, we have:

E[X(t+ A) — X(8)| X (¢) = 2]

(2.3a) ux(z,t) = iiglo A and
. . ]E[{X(H—A) —X(t)}2‘X(t) :w]
(2.3b) ox(z,t) = ilglo A

Hence to determine the process describing the evolution of the Brownian Bridge we need to calculate
the instantaneous mean and variance, uw (w,t) and o2, (w,t) respectively. Using the specifications

2Consider a Brownian motion B starting at x, that is P(Bo = «) = 1. Then the following are true [39]:

E[Bt|Bo=2z] = =z vit>0
E[(B: — Bo)’|Bo=1] = t
E[(B:t — Bo)(Bs — Bo)|Bo=12] = sAt
Hence:
E[(Bt — Bs)*|Bo=%] = E[(Bt— Bo)>—2(Bt — Bo)(Bs — Bo) + (Bs — Bo)?| By =z] s<t
= t—2s+s
= t—s

and translating this analysis into the required notation, we may calculate
t+ A t 2 t t+ A t
G20 Y -] -
1-t—A 1—t 1—1t 1—-t—A 1—-t

1—t)1—t—A)
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in (2.3) above, we have:

E[W(t+A) —W(t)|W(t) =w]

A—0 A
‘ E[(l—t—A)Z(lfg_AA)—(1—t)Z(1L_t)‘Z(1L_t) :1%]
= i, 5
(=t =A) % —w
- ilino A
w
-

and
o2 (w,t) = Jim. E [{W(t +A4) - W(t)}Q‘ W(t) = w]
-y [{z(ts) - et () )| 2 = ]
- -
Now:
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and s0:
() - s o)) -
- 2(7555)| 2(75) - 7]
s B 2(75 )| () = ) ey
A w? 202 w?
S A-pi—t—A) T a—02 U-nl-t=2) U=t=Ap
A AZq?
S O-pn—i-A) Ta-P—i=-Aap
Hence:

A AZ 2
. (1-t—-A) {(17t)(17t7A) + (14)2(1&7@2}
owlwt) = A50 A

_ 1—t—A N Aw?

T oA T 1o Ta—e

=1

We have determined the instantaneous mean and variance of the standardised Brownian Bridge
process to be pyw (w,t) = —1% and o}, (w,t) = 1 respectively. Hence, the standardised Brownian
Bridge process is characterised as:

w
The standardised Brownian Bridge is subject to a restoring force, pulling it back towards zero. The
instantaneous variance remains constant, but the total variance, as at time ¢, is non-stationary and
expressed as E [WW?(t)] = t(1 —¢t). This non-stationarity is due to the imposed terminal constraint.
Since the excess return is assumed to have the functional form of (2.1), it is modelled as:

—n(t
dn(t,m)zq(f’;n)dt—i—adZ 0<t<1

The economic interpretation of the time ¢ return £(¢,m), is given by (1.1) and (1.2), hence:

exp&(t,m) =
= P(t,m) = P(0,m)exp (u(m)t +n(t,m))
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The discount bond price dynamics are determined by application of Ito’s Lemma:

oP 196%P oP
p = & 7o il
d an dn+26n2ddn+8t dt
= P(t,m) <_77§t,—_mt) dt + UdZ) + $P(t,m)odt + p(m)P(t,m)dt
= % = (u(m) +10% + —”(m)tl__i(t’m)> dt + odZ

p(m)t + 1n [P(0,m)/ P(t, m)]
1-—t¢

(2.5) (,u(m) +30° + > dt + odZ

3. Option valuation

We now examine the equilibrium pricing of a European call option where the underlying is the risk
free zero coupon bond described by (2.5). Without loss of generality, the following assumptions can
be made:

e bond matures as time 1,
e option expiry is at time 7 where 7 <1,
e option exercise price is k < 1.

Further we assume:

e Markets are frictionless. That is:
— no transaction costs, no taxes,
— continuous trading,
— unlimited lending and borrowing,
— unlimited short sales.
e The dynamics of the underlying risk free zero coupon bond are described by (2.5), which
is a non-standard Brownian Bridge process.
e There exists a risk free discount bond maturing at time 7, also described by (2.5). Assume
that:

E[dZ(t,1) dZ(t,7)] = p dt

where p is the instantaneous correlation between the unexpected returns on bonds maturing
at time 1 and 7 respectively. An initial upward sloping yield curve is assumed, that is
P(0,7) > P(0,1), which implies that initial forward rates are positive.

e Investors are assumed to be rational and to have concensus views on the instantaneous
standard deviations of bond returns and their distributions. They need not have the same
views of the term structure or expected returns on bonds of various maturities.

By forming a hedge portfolio in bonds and the call, the equilibrium value of a European call may
be calculated. The time ¢ price of a European call on a discount bond with maturity 1, expiry 7
and strike k is:

(3.1) C(k,7) = P(t,1)N(hy) — P(t,7)kN (h2)
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where
b = In (P(t,1)/k) —InP(t,7) + (v2/2) (t — )
v /T — 1
ha = hi—v/T—1
v: = o} +0l—2poio,

and N (-) is the cumulative normal distribution. Here v, is the volatility, at time 7 of the price of
the bond with maturity time 1, i.e. it is the forward bond volatility. Consider the forward bond
price P(r,1) = P(t,1)/P(t, 7). Its volatility may be calculated as:

v, =/o? + 02 —2poio;

where o1 and o, are the current (time #) volatilities of the bonds with maturity time 1 and 7
respectively.

4. Conclusion

In this model, BT assume that default free discount bond prices follow a non-standardised Brownian
Bridge process. This assumption satisfies the pull-to-par characteristic of bond prices, but ignores
the dependence of bond prices on the underlying interest rate term structure. No restrictions are
placed on the dynamics of the bond price to ensure a model that precludes profitable arbitrage.
This essential factor limits the usefulness and applicability of this model.



CHAPTER 7
The Hull and White Model

The Vasicek [46] and CIR [16] models, studied in Chapters 1 and 2 respectively, allow all interest
rate contingent claims to be valued in a consistent manner, but involve unobservable parameters
and do not provide a perfect fit for the current interest rate term structure.

The process describing the evolution of the short term interest rate may be deduced from the
observed term structure of interest rates and interest rate volatilities. Hence the Vasicek and CIR
models may be extended so as to be consistent with the current term structure of interest rates and
the current short term interest rate volatilities or current forward rate volatilities.

1. General model formulation
The Vasicek and CIR models are special cases of a general mean reverting process of the form:
(1.1) dr = a(b—r)dt + or’dz

where = 0 for the Vasicek model and g = % for the CIR model.
Since market expectations of interest rate movements can be time dependent, the drift and volatility
parameters should be functions of time:

(1.2) dr = [8(t) + a(t)(b —r)]dt + o(t)r’dz
where 6(t) is the drift rate imposed on the interest rate which otherwise reverts to a constant level
b. Rewriting (1.2) in the form:
ot
(1.3) dr = a(t) o) +b) —r|dt+o(t)r’dz
a(t)
gives a mean reverting model where the reversion level is a function of time.
Hull and White (HW) [25] make assumptions about the market price of interest rate risk and fit

the Vasicek and CIR special cases of the above mean reverting model to the current term structure
of interest rates and short (or forward) interest rate volatilities.

2. Extension of the Vasicek model
HW propose an extension to the Vasicek model of the form:
(2.1) dr = [0(t) + a(t)(b—r)]dt + o(t) dz

This is (1.2) with 8 = 0. Assuming that the market price of interest rate risk has the functional
form A(t), and is bounded on any time interval (0,7), we may apply Ito’s Lemma to derive the
general partial differential equation that must be satisfied by any interest rate contingent claim, f:

80
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f

N R WP Y A W T
- <f+< f )f” of )d” I
p(t)dt + s(t)dz

The market price of risk represents the excess return required above the risk free rate. This rela-
tionship is denoted by:

and so
fi+@@) +a®)(b—7)) fr+ 50 frr —rf = AB)o(t)f;
(2.2) = fi+ (0(t) —alt)r) fr + 3 () for —7f = O

where ¢(t) = a(t)b+0(t) — A(t)o(t). Now let f(r,t,T) be the time ¢ price of a discount bond paying
$1 at maturity 7', hence f(r,T,T) = 1 and it satisfies the partial differential equation (2.2). Assume
that f has the form:

(2.3) flr,t,T) = A(t, T)e B&Dr,
hence:
fi = Are BT —AByre B
fr = —ABe Br
frr = AB?ePT

Substituting into (2.2):
Ave B —ABire B"— AB(¢(t) —a(t)r)e P" + L AB*o*(t)e P" — Are P" =

(2.4) e P (Ay — AB§(t) + L AB?0*(t)) + Are”P" (Ba(t) — By —1) =
Therefore to solve (2.4) we must solve the system of simultaneous equations:
(2.5a) A — AB¢(t) + 1 AB%0*(t) = 0  with A(T,T) =1
(2.5b) Ba(t)—B:—1 = 0 with B(T,T)=0

For ¢(t), o(t) and a(t) constant, (2.5a) and (2.5b) are solved to yield the Vasicek model where the
bond price has the form assumed in (2.3) with':

(2.6) AGT) = exp (B(t,T) — TJ;? (ap—0%/2) UzBZ; )2
(2.7) B(t,T) = 2 (1 _ e—a(T—t))

For the extended, timen dependent model, o(t) should be chosen to reflect the current and future
volatilities of the short term interest rate. A(0,7T) and B(0,T) are coefficients associated with the
current term structure and are hence functions of the current interest rate term structure, current
term structure of short/forward interest rate volatilities, and o (0) (the current volatility of the short

IThese are the same formulae as calculated for the Vasicek model in Chapter 1 equations (4.6) and (4.7) with
the following notational substitutions:

A=—q, o=p, a=qa, ¢/a=v+pg/o
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term interest rate). Since the current term structure is observable, we are able to determine A(0,T),
B(0,T) and o(t). Therefore, we must determine A(¢,T), B(t,T), a(t) and ¢(t) in terms of A(0,T),
B(0,T) and o(t).
First, differentiate (2.5a) and (2.5b) with respect to 7. From (2.5a) we have:

Avr — ¢(t)ArB — ¢(t)AB7 + L 0°(t)Ar B* + 0> (t)ABBr = 0

Also from (2.5a):

A
hence:
A
At — [% o*(t)B + ﬁ} (ATB + ABr) + L 0*(t)ArB? + 0*(t)ABBr = 0
A A AyB
AtT - %(7'2(75)147‘32 - %O'Q(t)ABBT - tAT - tB r + %(7'2(75)147‘32 + UQ(t)ABBT = 0
(29) = ABAyr — BAjAr — AA; Bt + %02(t)A2B2BT = 0

with A(T,T) = 1 and A(0,T) = ¢ where ¢ is some known value. Similarly differentiating (2.5b)
with respect to T yields:

B — a(t)BT =0
From (2.5b) we have:

By 1
2.10 t)= — + —
(2.10) alt) = 2+ -
therefore:
BBt Br
By — -—— =0
tT B B
(2.11) = BByr — BiBr—Br = 0

with B(T,T) =0 and B(0,T) = n where n is some known value. HW [25] solve (2.9) and (2.11) to
yield:
B(0,T) — B(0,t)

(2.12) B(t,T) = B0
ot
(2.13) A, T) = A(o,T)—A(o,t)—B(t,T)%—
1 oB0,012 [ otr) |’
§[B(t,T)7at }/0[%] dr
where At,T) =log A(t,T)

We have solved for A(t,T) and B(t,T) in terms of the initial term structure. Now solve for a(t)
and ¢(t). Differentiating (2.12) yields:

B, = (— <aB£’t)) —(B0,T) - B, 1) LEOD gig’t)>/<83£’t)>

S5 (— (%) —(B(O,T)—Bm,t))ag—g’”) / (ang’” (B(O,T)—Bw,t)))
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and so from (2.10) we solve for a(t) as:

aB(tt),w 92B(0, t) 0B(0,t) %?’t)
alt) = _B(O,T)B—B(O,t)_< ot )/( ot >+B(0,T>B—B(0,t)

- (%22 ()

Differentiating (2.13) yields:
. _0A(0,5)  , 0A(0,1) d2A(0,1)

A = ot B ~ P~
2 2
8B(0,t) [ 0B(0,t) _8?B(0,t)] [*| o(r) 1[_0B(0,)]*| o)
5% {Bt ot P /0 5B(0.1) =3 P~ 7500
Since A(t,T) = log A(t,T) we have:
At = At exp A(t,T) = AtA
hence
A A 200 Bgdy)  9PA(0,)
AB B B B 0t ot2
2
0B(0,t) [, dB(0,1) 2’B(0,t)] [*| o(r) 1,
o [Bt T /0 | P

Therefore substituting into (2.8) we solve for ¢(t) in terms of the initial term structure:

s - L BOAON 2A0n o (9B0.0) / o0 |,
- B B ot ot P\ ot o |20 | Y

ot ot?

_50B(0,1) °B(0,1) /tl o(7) ] ir
0

also from (2.5b) and (2.14) we have

B 1
5 = -3
8B(0,1)\> dB(0,t) 02B(0,t)  [OB(0,t)\”
and Bt( ot ) = % ot ot
hence
s = Y00 | PRY A0 | 0B0.1) 8°BO.Y /t o |
- B "o B o2 ot o, |Zha| 7

4 g0B0.1) 8B, 1) /tl o(r) ] dr

0B(0,4)\* [*| alr)
T\ T . | ZBon o o BB0.1)
or or
~ ~ 2
DA(0,t)  9%A(0,1) aB(0,)\> [t] o(r)
_a(t) ot - o2 + ot / dB(0,7) dr
or

and we have specified all the required model parameters in terms of the initial yield curve.



3. PRICING CONTINGENT CLAIMS WITHIN THE EXTENDED VASICEK FRAMEWORK 84

3. Pricing contingent claims within the extended Vasicek framework

Let P(r,t,T) be the time ¢ price of a discount bond maturing at time 7'. Since this is an interest
rate contingent claim, it may be written in the functional form specified in (2.3):

(3.1) P(r,t,T) = A(t, T)e~ B&:T"

By Ito’s Lemma we have:

0P oP , 0°P
= 68—1: dt — ABe B [(0(t) + a(t)(b — 1)) dt + o(t)dz] + & ABe P70 (t)dt

= Pt —BP[0(t) +a(t)(b—r)]dt — BPo(t)dz + + B> Po®(t)dt
Hence the price process of the discount bond is described by the stochastic equation:
(3.2) dP = [P, — BP (0(t) + a(t)(b—r)) + 3 B?Po*(t)] dt — PBo(t)dz

The relative volatility of P(r,t,T) is B(t,T)o(t). Since it is independent of r, the distribution of
the bond price at any time t*, conditional on its value at an earlier time #, must be lognormally
distributed.

Consider a European option on this discount bond. This option has the following characteristics:

X — exercise price,
T — option expiry time,
s — bond maturity time,
t — current (valuation) time, where t < T < s.

This option may be viewed as being equivalent to an option to exchange X units of a discount bond
maturing at time 7" for one unit of a discount bond maturing at time s. Define:

a1(t) —  time 7 volatility of the price of a discount bond with maturity s,
as(7) —  time 7 volatility of the price of a discount bond with maturity T,
p(t) — instantaneous correlation between the bond prices,

then the price of a European call option may be written as:

(3.3) C = P(r,t,s)N(h) = XP(r,t, )N(h— op,(1,5))
(34) where h = In (P(T‘,t, 5)/ (XP(TataT))) + %UPf(Tﬁ)
OP;(T,s)
T
(3.5) and ‘7129,(T,s) = /t [a%(r) + a3 (1) — 2p(1) a1 (T)az (T)] dr

2Here, the appropriate volatility to use is that of the forward bond price, i.e. the volatility of the time T' price
P(r.t,s)

Pt T Use Ito’s Lemma to determine this

of the bond maturing at time s which may be expressed as Py(T,s) =
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One of the characteristics of a one factor model is that instantaneous returns on bonds of all
maturities as perfectly correlated. Hence, p(r) = 1 for all 7. Also from the equation of the general
bond price process (3.2) we may write the volatilities of the two bonds as:

ai(t) = o(r)B(r,s)
(3.6) as(r) = o(r)B(r,T)

3.1. Time dependent parameters. Given the functional form of the volatilities above, cal-
culate the volatility required for option valuation as:

T
ofgf(T7s) = /t [02(7')32 (1,8) + o2 (7')B2 (r,T) — 202(7')3(7', s)B(r, T)] dr

T
/t o2(r) [B(r,s) — B(r,T)] dr

From equation (2.12) we have B(t,T) = (B(0,T) — B(0,t)) / (%) and so:

9B(0,7) - 9B(0,7)
or or

T S)— T - T ?
U%‘,-(Tﬁ) _ /t 02(7_) B(Oa ) B(Oa ) B(OaT) B(07 )] dr

(3.7)

T 2
B0, - BOT) [ [%] dr
t ~ar

Equations (3.3), (3.4) and (3.7) give analytical formulae for the price of a European call option on a
discount bond. The corresponding European put option price may be obtained via put-call parity.
This formulation of the pricing formula is very attractive since a(t) and o(t) may be chosen in
such a way that a whole set of cap or swaption prices observed at time 0 can be exactly replicated.

volatility:
aP T’ aP Ta 8P T,
dP§(T,s) = 1(19) gy OPHT8) oy o OP1TS) p
ot OP(r,t,s) OP(r,t,T)
1 82P¢(T, 1 8%2P¢(T,
- Lsg dP(r,t,s)dP(r,t,s) + = Ls)z dP(r,t,T)dP(r,t,T)
20P(r,t,s) 28P(r,t,T)

0% P(T, )
OP(r,t,s)0P(r,t,T)

dP(r,t,s)dP(r,t,T)

OP;(T, ) 1 P(r,t,5)
- dt dt — P(ryt t)dz) — D55 dt — P(ryt, T)as(t)d
ot T PmLT) (et (8, s)aa (t)dz) P2(r,t,T) (p e (&, T)er(8)dz)
P(r,t,s) o 2
—— P t,T t)dt — ——P(r,t, T)P(r,t t)ao (t)dt
PR P T)O3 (0 = s P TP 5)p o (Ba(1)

= wpp(rs)dt = Pp(T,5) (a1 (t) — ax(t)) dz

Hence, the instantaneous volatility of the forward bond price is a1(t) — a2(t) and so the square of forward price
volatility over the life of the option is:

T
Ty = [ () —aa(r)ar

T
/t [03(7) + a3(r) — 20(r)ar (T)aa ()] dr
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However, this full level of precision results in undesirable side effects [41], [26]. Examine the process
for the short term interest rate as considered thus far:

dr =[0(t) + a(t)(b—r)]dt + o(t)dz

Here 6(t) is chosen such that the prices of all discount bonds at the initial time are reproduced, i.e.
the initial term structure is matched, a(t) and o(t) provide another two degrees of freedom which
allow matching of the initial volatility term structure and volatilities of the short term interest rate
in the future. Initial volatilities of rates depend on ¢(0) and a(t), hence a(t) defines the relative
volatilities of long and short term interest rates. Finally, o(¢) determines the future volatilities of
the short term interest rate.

It is appealing to take advantage of all these degrees of freedom since all the available initial market
data will be incorporated into the model. Unfortunately this results in non-stationarity of the
volatility term structure which could result in the mispricing of instruments contingent on the
future, rather than simply the current, volatility structure.

Fitting all the model parameters to initial option prices results in a model which exactly reflects the
initial term structure, but also introduces assumptions about the future evolution of the volatility
structure. Making use of all the degrees of freedom produces an over-parameterisation of the model.
Hull and White [26] recommend keeping the parameters a and o constant. Within this simplified
model, observed cap and swaption prices will only be approximated, but the model evolution can
be more directly controlled. A stationary volatility term structure is achieved, resulting in robust
pricing of more exotic interest rate options.

3.2. Constant parameters. If we allow the volatility of the short term interest rate and the
rate of interest rate reversion to be constant, i.e. o(t) = ¢ and a(t) = a, we have®:
1— e—a(T—t)

(3.8) B(t,T) = -

The corresponding function A(t,T') is obtained from (2.13), setting o(t) = o in the integral [26].
Making use of (2.12) and (3.8) we have:

InA(t,T) = InA(0,T)—1InA(0,t) — B(t,T)%t(o’t) — % {B(t,T)%] /0 lﬁoﬁ)] dr
2B0.7)
L A(0,T) dlnA(0,t) o2 5 [t B(r,T) >
= In A00.0 —B(t,T)iat —E[B(O,T)—B(O,t)] /0 [B(O,T)—B(O,T):| dr
_ A(OaT) aln A(07t) 02 —at —a 2 ! 2aT
= In 200.0) _B(t’T)T_Ta?(e —e T /0 e“*"dr
(3.9) = In i((%,f)) - B(t,T)%t(o’t) — %13 (e*at _ e*aT)2 (e2at _ 1)

Now, to calculate the volatility required for the option pricing, make use of (3.8) to give:

1— e—a(s—r)

B(r,) ;
1— —a(T—7)
B(r,T) e

a

3This is the value of B(r,-) obtained in Chapter 1.
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o (1 _ e—a(s—r))
a

o (1 _ efa(Tf‘r))
a

ai(t) = oB(r,s) =

and ao(1) = oB(r,T)=

Substituting into (3.5), find the appropriate volatility op, (7, as?:

Hence:
(3.10)

where

Setting 8 =

(4.1)

Lin

2
OP;(T,s)

a? a?

_ /T l02 (1 _ e—a(s—r))2 N o2 (1 _ e—a(T—r))2
t

2 _ ,—a(s—7) _ po—a(T—71)
B 20 (1 e 2) (1 e )] dr
a

T
— U_/ [67211(577') + 6*2E(T*T) _ QG*U'(SJFT*%')] dr
t

2
_ U_ i 672a(s7‘r) + i 672a(T77') _ lefa(erTfZ‘r)
2a 2a a

2
_ (1 1 e2a(s=T) _ 26—a(s—T)) (1 _ e—2a(T—t))

243
— 5723 (1 _ efa(sz))2 (1 _ 672a(T7t))

TPy(Ty5) = U(tC’LT) (1= emet=m)

2

v(t,T)? = (27_(1 (1 - 672E(T7t)) .

4. The extended Cox-Ingersoll-Ross model

(1.2) leads to the extension of the CIR model proposed by HW:

dr =1[0(t) + a(t)(b—r)]dt + o(t)\/rdz

87

The assumption is made that the market price of interest rate risk has the functional form A(t)+/r
where A(t) is some function bounded on any time interval (0,7). Again, let f be the price of a

4Alternatively we may substitute the appropriate value of B(0, ) into (3.7) to calculate TP, (T,s) @St

OPs(T,s)

—as —a 2 T g 2
(0 ()
T
— a2 (efaT _ efas)2\/t (82117') dr

% 2

— U_ (e—aT _ e—as)2 (62aT _ e?at)
2a3
2
_ 2% (1 _ e_a(S_T))2 (1 _ e—2a(T—t))
a
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contingent claim dependent on r and make use of Ito’s Lemma to derive its price process:

df g{dt+?d +§a—];drdr
fudt + £, (18(8) + a(t)(b — )] dt + o(OVFdz) + § e ()r fyr dt
= p(t)dt + s(t)dz

where p(-) and s(-) are the drift and volatility of f defined as:
pt) = fe+ frla®)b+0() = alt)r] + 5 0 (O)r for
s(t) = oOVrf

Letting m(t) = A(t)4/r be the market price of interest rate risk, we have pu(t) — rf = m(t)s(t) and
so:

fr+ frlat)b+0(t) —a(t)r] + L > () frr — 1 f = AXE)Vro ()T fr
(4.2) = fe+ fr[a®b+0(1) —at)r — At)ot)r] + S o> O)rfrr —rf =0

-
—~
~
A

|

a(t)b +0(t)
P(t) = at) +A(t)o(t)
and (4.2) may be expressed as:
(4.3) fe+ frlo(t) = (@O)r] + 50° (O frr —1f =0
As in (2.3), the price of the contingent claim is assumed to have the functional form:
f(r,t,T) = A(t, T)e  B&TIT

Hence (4.3) becomes:

Ae™ BT — AByre™B" — ABe P [p(t) — o (t)r] + : AB%eBro?(t)r — Are™Br =

= A —AB§(t) + A[-Bi + By(t) + 1 Bo*(t) — 1] r =

To solve this partial differential equation we must solve the system of differential equations:
(4.4a) Ay — ABo(t) 0
(4.4b) and B, — By(t)— L1 B**(t)+1 = 0

subject to the boundary conditions A(T,T) = 1 and B(T,T) = 0. In the special case where
¢(t), ¥ (t) and o(t) are constant, we solve (4.4a) and (4.4b) to give analytical formulae for A(t,T)
and B(t,T) as presented in the original CIR paper® [16]:

2 (ev(T*t) — 1)
(v+ 1) (e7T-1 —1) + 24
2ve(YTUIT—1)/2
(v+ ) (e7T-H —1) + 2y

B(t,T) =

2¢/0°
A(t,T)

5These are the same formulae as calculated for the CIR model in Chapter 2 equations (8.10) and (8.12) with
the following notational substitutions: ¢ = kf and ¥ = k + A.
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where v = /92 4+ 202. In the HW extension of this model, o(t) needs to be chosen to reflect the
observed current and future volatilities of the short term interest rate. As in the case of the extended
Vasicek model, we use:

e 5(0), the current i.e. time 0 volatility of the short term interest rate,
e current interest rate term structure,
e current volatility term structure.

to determine A(0,7) and B(0,T). These initial conditions, together with the already specified
boundary conditions allow us to solve equations (4.4a) and (4.4b).
Firstly, differentiating (4.4b) with respect to T', and multiplying by B yields:

(4.5) BByr — BBri)(t) — B*Bra®(t) =0
Multiplying (4.4b) by Br and subtracting (4.5) gives:
(46) B;Br — BB;1 + %B2BTU2(t) +Br =0

Since this equation cannot be solved analytically, B(¢,T") must be obtained via a numerical method
such as finite differences. o(t) is a known function obtained from the current and future short term
interest rate volatilities observed in the market. Hence, once B(t,T') is known, equation (4.4b) may
be used to determine (¢).

Next, solve (4.4a) for A(¢,T). From (4.4a) we have:

94
ot
= % = dln A(t,T)

AB¢(t)

B(t,T)é(t)dt

/OtdlnA(s,T) /Ot B(s,T)¢(s)ds

InA(t,T) — n A(0,T) = In j((é?) - /OB(S,T)gb(s)ds
(4.7) = A@,T) = A(0,T)exp [/0 B(s,T)gb(s)ds]

To be able to fully evaluate A(¢,T'), ¢(-) must be known. Since A(T,T) =1 and A(0,T) is known,
evaluate (4.7) at t =T

1 = A(0,T)exp

T
/0 B(s,T)qﬁ(s)ds]
T
= —InA0,T) = /OB(s,T)cb(s)dS

which may be used to determine ¢(+) iteratively. This is computationally time consuming since ¢(s)
needs to be evaluated at each time point in the interval [0,¢] so that the integral in (4.7) may be
calculated numerically.
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5. Fitting model parameters to market data

To use either model for contingent claim pricing, the functions A(0,7T) and B(0,7) must be es-
timated. By determining the relationship of A(0,T) and B(0,T) to the initial term structure of
interest rates and volatilities, historical data may be used to estimate these functions.

5.1. Relationship between B(0,7) and the current term structure of interest rates.
We derive the relationship between B(t,T) and the current term structure of interest rates and
interest rate volatilities. Here, volatility refers to the standard deviation of proportional, rather
than absolute, changes in interest rates.
The time ¢ price of a discount bond with unit maturity value and maturity time T, is simply the
unit maturity value discounted to time ¢ using the appropriate rate of interest i.e.

P(r,t,T) = e RntDI(T—)

1
= R(nt,T) = —T_tlnP(r,t,T)

where R(r,t,T) represents the continuously compounded time ¢ rate of interest applicable for the
period (¢,T). Since, by equation (2.3) the bond price takes the form:

P(r,t,T) = A(t,T)e” B&TIr®

we have
InP(r,t,T) = A(t, T) + Ine BEDT = 1n A(t, T) — B(t, T)r(t)
and so
RO6T) = =g I AGT) = B(, Tyr(o)]
dR(r,t,T) _ B(t,T)
(5-1) = or Tt

Applying Ito’s Lemma to determine the stochastic process for R(r,t,T) we haveS:
OR OR 10%R

8R OR 18R , , OR
<E —+ E a+ §W r O'T.(T,t)> dt —+ E TUT(T,t)dZ
hence:
(5.2) R(r,t,T)og(r,t,T) = ro.(r, t)w

where og(r,t,T) represents the volatility of R(r,¢,T). Now, from (5.1) and (5.2) we have:
R(r,t,T)or(r,t,T)(T —t)
ro.(r,t)

(5.3) B(t,T) =

This equation represents the relationship between B(¢,T') and

e the instantaneous short term interest rate,
e the term structure of short term interest rates,
e instantaneous volatility and

6Here the price process of the instantaneous short term interest rate r is represented as dr = adt + ror(r,t)dz
where o,(r,t) is the volatility of r (i.e. standard deviation of relative changes).
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e the term structure of volatilities.

Therefore given the current term structure of short term interest rate volatilities, (5.3) may be used
to determine B(0,T) for all T

Alternatively, consider the relationship between short term interest rates and forward rates where
F(r,t,Ty,T5) is the time t forward rate applicable for period (T1,7%). We have:

Bt T1) (Th =) o F (1,2, 11, To) (T2 —T1) R(r,t,T2)(T2~t)

e
R(’I", t, TQ)(TQ — t) — R(’I", t, T1)(T1 — t)
T, — T

(54) = F(T,t,Tl,TQ)
Again, applying Ito’s Lemma, allows us to determine the volatility of the forward rate, hence:

dF = Z—dt+ —dr+

OF OF  10°F , , OF
= <§ + o @ + 352" O'T(T,t)> dt + Wrar(r,t)dz
and so the standard deviation of F(r,¢,Ty,T5) is:

aF(T, t, Tl, TQ)
or

However, F(r,t,T1,T>) is a function of R(r,t,T1) = Ry and R(r,t,T>) = R» which in turn, are
functions of r, therefore:

(55) F(rataTlaTQ)UF(rataTlaTQ) = TUT‘(T7 t)

OF _ OF 0R, + OF OR,
or  ORy, Or OR> Or
and so by (5.1) and (5.4) we have:

OF Ty —t B(r,T1) To—t B(r,T»)
o To-T\ Th—t To—-T To—t
B(r,T») — B(r,T})
To—T,

Substituting into (5.5) gives:
B(T‘, T2) — B(’I‘, Tl)

F(T‘,t,Tl,T2)UF(T',t,T1,T2) = TUT(T, t)
T — T
F(r,t, Ty, T5)or(r,t, Ty, T
(56) = B(’I", TQ) — B(T, Tl) = ( L r;)(rFi) ! 2) (T2 — Tl)

The above equation gives the relationship between B(t,T}) and B(t,T>) and

e the instantaneous short term interest rate,

e instantaneous volatility,

e the term structure of forward rates and

e the term structure of forward rate volatilities.

Here (5.3) and (5.6) represent two ways by which B(0,T) may be obtained for all T', either as a
function of the current term structure of short term interest rate volatilities or as a function of the
current term structure of forward rate volatilities.
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5.2. Determining A(0,7T) from the current term structure. Knowing the current interest
rate term structure implies that the current prices of zero coupon bonds are known for all maturities,
i.e. we know P(r,0,T) for all T. Evaluating equation (3.1) at t = 0 gives":

P(r,0,T) = A0, T)e B0
Knowing B(0,T) we may determine A(0,T) for all T' from the above relationship as
A(0,T) = P(r,0,T)eB©Tr0)

Alternatively, since it is possible to find analytical solutions to European option prices under the
Vasicek model, historical interest rate term structure and option price data can be used to imply
the values of A(0,T) and B(0,T") by means of equations (3.3) and (3.7).

5.3. Stability of fitted parameters. For a model to be a good description of term structure

movements through time, the fitted model parameters A(¢,T) and B(t,T) need to remain stable
through time. That is parameters fitted to the term structure of interest rates and interest rate
volatilities at time ¢; need to be the same as the parameters fitted to the term structure of interest
rates and interest rate volatilities at time T, t; # T. Hence, a model fitted at one time, would
correctly describe the term structure at some other time.
The extended Vasicek model does not meet these criteria and hence appears to be unsuitable for
this application. However, the goal here has been to develop a model which correctly values most
of the interest rate contingent claims in the market. Initially fitting the model to observed prices of
vanilla instruments, then allows more exotic instruments to be valued consistently.

6. Conclusion

Both the Vasicek and CIR models, as discussed in Chapters 1 and 2, incorporate a deterministically
mean reverting process. In these models, the mean reversion is incorporated without additional
assumptions about the future behaviour of the short term interest rate volatility. This is a highly
desirable feature. By allowing time dependent parameters and therefore the matching of any ar-
bitrary initial yield curve, HW manage to overcome one of the major drawbacks of the Vasicek
and CIR models. The HW-extended Vasicek model is usually implemented with constant absolute
volatility and reversion speed. However, in some yield curve environments, such as rising term
structure of rates and declining term structure of volatilities, this version of the model provides a
rather poor fit to observed cap prices [41]. On the other hand, allowing time dependent absolute
volatility and reversion speed results in unsuitable behaviour of short term interest rate volatilities
in the future. If these shortcomings are recognised and accounted for during the calibartion process,
the extended Vasicek model can be of great value since it allows for closed form solutions of discount
bond and discount bond option prices.

"The explicit functional dependence of r on current time ¢ has, until now, been suppressed to streamline the
notation. Here r(0) explicitly denotes the time ¢ = 0 short term interest rate.



CHAPTER 8
The Black, Derman and Toy One-Factor Interest Rate Model

Black, Derman and Toy (BDT) [5] make use of a binomial tree approach to model interest rates
in a discrete time framework. The model has one fundamental factor, the short term interest rate,
which is used to determine all rates and security prices. The current term structure of interest rates
and related volatilities are used to construct a binomial tree of possible short term interest rates
in the future. Since an interest rate sensitive security is characterised by its payoff at expiry, the
constructed tree of possible interest rates is used to determine the current price of a security by
means of an iterative procedure.

1. Model characteristics

The fundamental variable which drives security prices within the model is the short term interest
rate which is defined as the annualised one period rate of interest.

The model inputs are a set of long term interest rates of various maturities and their corresponding
volatilities. Hence, a yield curve and a volatility curve are required to calibrate the model.

These inputs are used to determine mean values and volatilities of future realisation of the short
term interest rate. As the input yield and volatility curves change, so do the means and volatilities
of future short term interest rates. Changes in future volatility have an impact on the degree of
mean reversion.

As with most models, the assumption of perfect markets is made, hence:

e changes in the yields of all zero coupon bonds are perfectly correlated,
e the expected one period returns are the same for all securities,

e short term interest rates are lognormally distributed and

e the market is free of taxes and transaction costs.

The lognormality feature holds several advantages for calibration of the model [41]. Negative
interest rates are prevented and the volatility input may be specified in percentage terms i.e. the
volatility refers to relative price moves. This is the market convention for quoting volatilities and
so calibration to market observed volatilities is simplified.

2. Pricing contingent claims

The short term interest rates at every node in the tree are found such that the term structure
produced by the model matches the current observed term structure. European style contingent
claims may then be priced. The value at a node is the discounted expected value one time period in
the future. Since the binomial tree is calibrated to the market observed risk free rate, the contingent
claim is priced in a risk neutral environment, where the probabilities of an up and down move are

93
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1/2

1/2

Sa

FIGURE 8.1. Tree with one time step

equal. Hence, our expectation of the price of the contingent claim after one period is:
5 (Su+ Sa)

where S, and S; are the prices of the contingent claim after an up and down move respectively.
Discounting by the current one period short term interest rate, r, the current price of the contingent
claim, S, is:
% (Su + Sd)

147
This method may be used to determine the price, at any node in the tree, from the prices one step
in the future. Iterative application of (2.1) allows valuation of contingent claims of any duration,
as long as the tree of short term interest rates extends sufficiently far into the future.

(2.1) S =

To value bond options, the tree must first be used to determine the bond value at every node
according to the interest rate associated with that node. Then, making use of the known option
value at expiry”’, and working backwards through time, the bond option value may be found at every
node prior to expiry.

3. Calibrating the lattice to an observed term structure

The market convention for quoting a term structure is in terms of annualised yields of zero coupon
bonds of various maturities. Therefore if y is the IV year rate, then the current price of the associated

zero coupon bond? is:
100

T +y)N

Calibration of the tree involves finding the one period yield (short term interest rate) at each node,
such that the observed term structure is matched. The following methodology for calibrating the
binomial tree to a market observed interest rate and volatility term structure is outlined by BDT
[5]-

Consider the interest rate and volatility term structures observed at time ¢t = 0, represented by
{(yi,0:) :i =1,..., N} where y; is the yield of a zero coupon bond with maturity ¢t = 7 and o; the
corresponding volatility. For simplicity, assume that each time interval in the tree is one year and

'This is the option payoff at expiry, hence for a call option the payoff is spot less the strike, while for a put
option it is the strike less the spot.
2 Assume all zero coupon bonds have a maturity value of 100.
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P2 =100

@ _ p® _
P = P2 =100

P2 =100

FIGURE 8.2. Valuation of a 2-year zero coupon bond

we wish to calibrate the tree such that the yield and volatility term structures are matched. For
shorter time intervals we would require the observed yields and volatilities at more frequent time
intervals.

At time ¢t = 0, the short term interestrate may be taken directly from the observed term structure
as the 1-year yield, hence ro = y;. To determine the short term interest rates at time ¢ = 1, make
use of the observed 2-year yield and associated volatility. The current value of a 2-year zero coupon
bond, P2 = P® is calculated as:

(3.1) PQE:H:EJ

At time ¢t = 1, the 2-year zero coupon bond has one year left to run and so its prices, P152) and Pf)
(where the subscript indicates an up or down move in the short term interest rate), may be found
as:

pe) 100 p@ _ 100
“ 147, d 147y

(3.2)

where r, and r4 are the time ¢ = 1 short term interest rates resulting from an up move and down
move respectively. These time ¢t = 1 bond prices must be such that discounting by the ¢ = 0 short
term interest rate o, we obtain the time ¢ = 0 price of the 2-year zero coupon bond, P(?). That is:

2 2
(2):%P‘E)+%Pd()

(3.3) P T

We also need to match the term structure of volatilities. The standard deviation of the short term
interest rate at time ¢t = 1 is matched to the volatility of the 2-year yield, o, hence?:

Inr, —1
(3.4) . :w
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FIGURE 8.3.

The equations (3.2) -

(3.5a) PP (1 41,)
(3.5b) PP (1 +r4)
(3.5¢) P® + p?
(3.5d) T

The resulting ¢ = 1 short term interest rates 7,

Tree of short term interest rates out to 2 years

(3.4) are solved simultaneously for the four unknowns:

100
100
2P (1 + 1)

ry €272

and rg are exactly consistent with the 2-year term

structure of yields and volatilities. To determine the possible short term interest rates at ¢ = 2, make
use of the 3-year yield and volatility. There are three possible short term interest rates at ¢ = 2,
Tuw, Tdu = Tud and 744, but only two known values, the yield and volatility, to which we calibrate.
This means that the solution is not unique. However, the short term interest rate volatility is a

function of time only, therefore:

Inryy —Inrgg  Inryg —Inrgg
2 2

Tuu _ Tud

Tud Tdd

2
= Tud = TuuTud

and hence, we need only match two short term interest rates to two observed values and can find a

unique solution.

3Consider a random variable, X. At time t = t*,

X may take on two possible values, x; and x2, each with

probability % Without loss of generality, let 1 > x2. Hence:
var (X) = E[X? E[X]
_ CE% (Il + xo )
) 2
_ T1 — T2 )2
N 2
T1 — T2

= stddev (X)
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4. Continuous time equivalent

The original specification of the BDT model is in a discrete time framework. There are several
disadvantages associated with this type of formulation. The algorithmic manner in which one must
view the model makes it difficult to identify the embedded assumptions and their implications
affecting, for example, the characteristics of the mean reversion. While the lognormality of the
short term interest rate is a positive feature since it precludes negative interest rates, it does make
analytical analysis cumbersome [41]. We examine the continuous time equivalent of the BDT
model*. Consider a process for the short term interest rate r(-), as follows®:

(4.1) r(t) = u(t) exp (a(t)z(t))

where
u(t) — time ¢t median of the short term interest rate distribution,
o(t) — short term interest rate volatility at time ¢,
z(t) — standard Brownian motion.

To examine the nature of the stochastic process driving the short term interest rate as modelled by
BDT, we must examine the evolution of Inr(t) where

dlnr(t) 1 9%Inr(t)
dlnr(t) = TdT-F 5? dT'dT'
(4.2) = Lldr— s drdr

Since r(t) = r(t, z(t)) Ito’s Lemma gives:

2
(4.3) r=2" a1 O g, 1O

ot it 5 g bt

“Rebonato [41] details an analysis of binomial pricing within a lattice, which leads to the derivation of the
continuous equivalent of the BDT model.

5In the BDT model, a lognormal distribution of the short term interest rate is assumed. This implies that Inr(t)
is normally distributed. At each time step ¢ in a binomial lattice, we have ¢+ 1 possible states of the world and hence
t + 1 possible values of the one period rate. Consider time ¢t = 1, we have 2 possible states of the world and interest
rates denoted r(1,1) and 7(1,—1). The mean short term interest rate at this time, In7,, (1) may be calculated as:

Inry, (1) = % Inr(1,1) +Inr(1,-1)]

Knowing the time ¢ = 0 percentage volatility of the short term interest rate i.e. o(0) the standard deviation of
the time ¢ = 1 short term interest rates is represented as:

(o)L = nr D) _21”(1’ =D L (1,1) = (1, — 1) exp [20(0)V/A1]

and hence, we find each of the two possible rates as an offset from the median rate of interest, rym, (1)
r(1,1) = rm(l)exp [g(o)\/m]
and r(1,-1) = rm(l)exp [70’(0)\/Atj|

Note, the mean of the distribution of the logarithm of the short term interest rate corresponds to the median of the
lognormal distribution of the short term interest rate. Inr(t) is normally distributed with mean Inrp, (1) and r(t) is
lognormally distributed with median rp,(1).
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where
% it = agit) (o(8)2(8)) dt + u(t) 2 (g)tz(t) exp (0(1)2(1)) dt
(4.4) _ agit) exp (0(1)2 (1)) dt + u(t) {z(t) a‘;gt)} exp (o(£) (1)) dt
(4.5) % dz = u(t)o(t)exp (o(t)=(t)) dz
(4.6) g—z dzdz = u(t)o?(t)exp (o(t)z(t)) dt
Substituting (4.1), (4.3) - (4.6) into (4.2) we have®:
dnr(t) = e (10 GEO) (615?) exp (0(1)2(1)) dt + u(t) {z(t) a‘gﬂ (o(t)2(1)) dt
+u(t)o(t) exp (o(0)=(0)) dz + & u(t)o? (8) exp (o (1)2(1)) de)
“5 () expl( EOEO) u?(t)o? (t) exp (20(t)z(t)) dt

- ahy:(t) dt + z(t)a‘;—f) dt + o(t)dz + L o®(t)dt — Lo (t)dt

_ 811:9 1:(75) e lnr(t)azt)lnu(t) agit) U+ o
(4.7) - ahy:(t) _ alna‘z(t) (Inu(t) — Inr()| dt + o(t)dz

This is a mean reverting process that is explicitly dependent on the median of the distribution. This
median is implicitly determined during the tree-fitting procedure.

If we allow the volatility to be constant i.e. o(t) = o then Blnaj(t) = 0 and there is no mean
reversion. The logarithm of the short term interest rate follows a simple diffusion with a drift that

follows the logarithm of the median of the distribution. That is, the process simplifies to:

Olnu(t
(4.8) dlnr(t) = 1:31:( ) dt + o(t)dz
For a volatility that decays with time, i.e. mna—‘:(t) < 0, the reversion speed becomes positive and

the logarithm of the short term interest rate Inr(t) reverts to the logarithm of the median ln u(t).
This assumption of a decaying short term interest rate volatility is necessary to ensure that the
unconditional variance of the short term interest rate, o2(t)t, does not increase without bound as ¢
increases and the mean-reverting nature of the short term interest rate process is maintained.

The reversion speed determines the volatility of rates for various maturities. In this model the
reversion speed is a unique function of the short term interest rate volatility, o(¢), and hence we
conclude that the entire term structure of volatilities is fully determined by the future short term

6From (4.1) we have:

ﬁ

—
=

=
Il

u(t) exp (a(t)2(t))
Inr(t) — Inu(t)

a(t)
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interest rate volatilities. This is unique to the BDT model, since other models, e.g. the Hull-White
model [25], specify the reversion speed as an independent parameter. This artificial link created
between the future short term interest rate volatilities and the term structure of volatilities may be
seen as one of the shortcomings of this model.

5. A fundamental flaw

Let us revisit the calibration methodology outlined in §3. It is easy to see that this methodology
contains a fundamental flaw. No distinction is made between the current term structure of interest
rate volatilities and future volatilities of the short term interest rate. Equation (3.4) shows that
the standard deviation of the time ¢ = 1 short term interest rate is matched to the volatility of
the 2-year yield, hence the volatility of the short term interest rate at time ¢ = 1 is matched to
the current volatility of the 2-year yield. Assuming time steps of 1 year, this may be generalised
as follows: the time ¢ = ¢* volatility of the short term interest rate is equated to the current (time
t = 0) volatility of the (#* + 1)-year yield. Surprisingly, there are few texts that make mention of
this flaw.

The artificial link between the future short term interest rate volatilities and the term structure of
volatilities is often cited as a major drawback of the BDT model. In fact Rebonato [41] discusses the
fact that “the term structure of volatilities is completely determined by the specification of the future
volatility of the short rate” and examines the shape of the term structure of volatilities for various
functional forms of the short term interest rate volatility. However, he does not explicitly show the
relationship between the volatility term structure and the short term interest rate volatility function,
nor does he explicitly discuss the calibration to market observed volatilities thereby side-stepping
the issue.

A slightly more complex procedure to that outlined in §3 is required to build a binomial tree repre-
senting both the observed interest rate and volatility term structures. The following methodology
[13] allows matching of the observed interest rate and volatility term structures.

5.1. Preliminaries. We begin with the observed interest rate and volatility term structures
represented by P(i) as the price of a discount bond” maturing at time iAt and og(i) as the volatility
of the yield on this bond. Let

At — time step size chosen for the tree,
u(i) — median short term interest rate at time iA#,
o (i) — volatility of the short term interest rate at time ¢At,
r;,; — short term interest rate at time ¢At¢ node j, applicable for the period [iAt, (i + 1)At],
d;,; — the time iAt, state j value of a discount bond maturing at time (i + 1)At, hence:
d;; =1/(1 +r; ;At). In [13] this is called the one period discount factor at node (3, j).
Q;,; — time 0 value of a security paying:
1 if node (7, ) is reached,

0 otherwise.

"This discount bond price is related to yield R(i) by:
P(i) = exp (—R(i)iAt)
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The Q;, ;s are in fact Arrow-Debreu securities. For a discussion on this topic see [41]. They may be
viewed as discounted probabilities, hence, by definition Qoo = 1.

Hence, the current (time ¢ = 0) price of a discount bond maturing at time (i+1)A¢ may be expressed
as:

(5.1) P(i+1)=> Qijdi;
i

for j € A, where A is the set of all possible states at time ¢. The calibration of the tree is by forward
induction, where the time 1At Arrow-Debreu securities are updated using the already known Arrow-
Debreu securities at time (i — 1)At as follows:

Qi =1Qic1i—1dim1,i1
(5.2) Qij =3 Qi—1j—1di—1j—1 + 3 Qi1 jt1di—1 j41
Qi—i =2 Qi—1,—it1di—1,—it1

5.2. Fitting the interest rate and volatility term structures. From (4.1) the short term
interest rate at each node (i, j) may be represented as:

(5.3) ri; = u(i)exp (a(i)j\/&)

First we define the notation used to index the nodes of the tree: At starting time i = 0, there
is a single state 7 = 0. At each subsequent time ¢ there are (7 + 1) possible states indexed as
j = —i,—i+ 2,...,% — 2,i. The state index represents the net moves required to reach it. For
example, at time ¢ = 4, there are 5 possible states with indices {—4; —2;0;2;4} corresponding to 4
down moves, 1 up and 3 down moves (net 2 down moves), 2 up and 2 down moves (net zero move),
3 up and 1 down move (net 2 up moves) and 4 up moves respectively.

Now from the initial node (0,0) at the root of the tree, we have a possible up move and possible
down move. Hence, node (1,1) is denoted U and node (1, —1) is denoted D. At these nodes define
the following;:

Py (i), Pp(i) — price, at nodes U and D respectively, of discount bond with maturity
1At after an initial up or down move, i > 1,

Ry (i), Rp(i) — the discount bond yields at nodes U and D respectively, corresponding
to the above discount bond prices,

These values of Py(i) and Pp(i) must be consistent with the observed values of P(i) and og(i).
Therefore the following relationships must hold:

1 . . . .
(54&) m(%PU(Z)'F%PD(Z)) :P(Z) 7,:2,...,N
) In Py (7) .

4 VAt =1n —= =2,...,N
(5.4b) or(i)VAt = 3In 0 Py (l) i e
Equations (5.4) above may be solved simultaneously for Py (i) and Pp(i) as:
(5.5) Py (i) CorOVAD | pp (i) = 2P (i) (1 + 19 0 At)
and

(5.6) Py (i) = Pp (i) (20r()VAL)



5. A FUNDAMENTAL FLAW 101

where (5.5) must be solved numerically for Pp(i).
As in §5.1 we define state prices, this time corresponding to nodes U and D, as follows:

Qu,:,; — value at node U of security paying 1 if node (i, j) is reached, 0 otherwise,

Qp,i,; — value at node D of security paying 1 if node (4, j) is reached, 0 otherwise.

By definition Qp ;.7 = 1 and Qp,,,_; = —1 and so from (5.1) the values at nodes U and D of a
discount bond maturing at time (i + 1)A¢ may be written as®:

(57) P[f(l'l-].):z@[f,l’jdl,] 'l:].,,N_].
J

(5.8) Po(i+1)=) Qp.;dij je{——i+2...;i—2i}
J

respectively.

The state prices may then be updated as in (5.2):

(5.9a) Qu,ii = %QU,i—l,i—ldi—l,i—l

(5.9b) Quij=3Qui-1j-1dic1j1+3Qui—1j+1di1j41
(5.9¢) Qu,i,—i+2= % Qui—1,-i+3di—1,i13

and

(5-9(1) QD,i, —i = % QD,i— 1, —-i+1 di—l,—i+1

(5.9¢) @p,i,; = % @p,i—1,j—1di—1,j—1 + % @p,i-1,,j+1di-1,j+1
(5-9f) QD,i,i72 - %QD,i—l,i—Sdifl,i73

5.3. Basic algorithm. First, set the initial values:

(R(AL) _q
ro,0 = U,(O) = € Al
QU,1,1 =1
QD,I,—I =-1
a(0) = or(1)
1
To0 = T

Now foreachi=1,...,N —1

(1) Using a numerical method such as Newton-Raphson solve (5.5) for Pp(i + 1) and then
solve for Py (i + 1) by means of (5.6).
(2) Now making use of Pp(i + 1) and Py (i 4+ 1) derived above, equations (5.7) and (5.8) may
be used to solve for ¢(i) and u(i). The following substitution is made:
1

T 1+ u(i) exp (0 (i)jVAY)

di,;

8Here N is the total number of time steps in the tree.
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hence:
Qu,i, .
v (i +1) = i=1,...,.N—-1
;1+u (1) exp (o(2)jV At)
QDij . .. . .
p(i+1) = JE€E{——1+2;...;1— 251
2]:1+u (i) exp (o(i)jV At) { !

and o(7) and u(i) may be found using a two dimensional Newton-Raphson (or other opti-
misation) technique.

(3) Using these calculated values of o(i) and u(7) the one period short term interest rates and
discount factors may be found for each node j = —i, ..., using (5.3) and the definition of
the discount factor as d; ; = 1/(1 + r; j;At).

(4) Qu,:,; and @Qp,; ; may now be updated using equations (5.9).

The fundamental concept behind this calibration methodology is rather simple. The observed term
structure of volatilities represents the volatilities of current rates of various maturities. A shift up
and shift down of the entire term structure is simulated by the U and D nodes. The magnitude of
this up and down shift is determined by the bond yield volatility (as represented by (5.4b)). This
allows the volatility term structure information may be incorporated. Comparing this to the original
BDT calibration methodology in §3 highlights their error of matching the initial time volatility of
the i-year interest rate to the short term interest rate volatility at year (i — 1). Their methodology
could be used to build a tree representing the interest rate term structure and future volatilities of
the short term interest rate. Obviously this is only possible if one has a view of short term interest
rate volatilities at each time interval in the future.

6. Conclusion

The BDT model has several positive features such as

e for positive value of the decay factor (reversion speed) the general shape of the term
structure of volatilities which is captured within the BDT model is consistent with the
market observed volatility term structure.

e due to the lognormal process assumed for the short term interest rate, calibration to market
prices becomes much simpler. It is possible to fit the model to both the yield curve and
to cap volatilities at the same time. Hence the model can simultaneously reproduce the
prices of various maturity caps, displaying a declining term structure of volatilities.

However, it also displays several problems

e as with all one factor interest rate models the changes in rates of various maturities are
by and large parallel which is not consistent with market observation. Hence, the BDT
model is not able to capture a tilting effect on the yield curve. This would require a second
factor.

e no specification is made of the evolution, through time, of the term structure of volatilities.

e gince the future short term interest rate volatilities fully determine the term structure of
volatility it is impossible to specify one independently of the other.

This model was developed by practitioners for practitioners and hence allows for easy calibration
to observed data and easy pricing of European and American style contingent claims.



CHAPTER 9

The Black and Karasinski Model

The discrete time Black, Derman and Toy (BDT) model [5] makes provision for two time dependent
factors, that is the mean short term interest rate and the short term interest rate volatility. The
continuous time equivalent of the model clearly shows that the rate of mean reversion is a function of
the volatility. This is equivalent to future short term interest rate volatilities being fully determined
by the observed volatility term structure. This dependence makes it impossible to specify these two
factors independently.

Black and Karasinki (BK) [6] develop a model, within a discrete time framework, where the target
rate, mean reversion rate and local volatility are deterministic functions of time. The specification
of three time dependent factors allows the future short term interest rate volatilities to be specified
independently of the initial volatility term structure.

As in the BDT model, the short term interest rate is assumed to have a lognormal distribution at
any time horizon. The standard assumptions underlying perfect markets are also made.

1. The lognormality assumption

Ideally one wants a process for the short term interest rate such that negative interest rates are
prevented, but the zero level may be reached and maintained for extended periods of time. None
of the processes examined thus far, i.e. normal, lognormal and square root processes, satisfy both
these requirements. A lognormal process does not admit a zero interest rate, while the square root
process makes the zero level a reflecting barrier.

BK use a lognormal process. A lognormal distribution is fully described by its mean and variance,
which are functions of time and so we have a different lognormal distribution of the short term
interest rate at each future time. When mean reversion is combined with a lognormal model, we
have three time dependent factors. An example being the BDT model:

d(lnr) = (6(t) — ¢(t) Inr) dt + o(t)dz

However, here ¢(t) is a function of o(t). Dropping this functional dependence, and letting u(t) be
the target interest rate, i.e. the reversion level, the BK model may be written as:

d(lnr) = ¢(t) (In u(t) — Inr) dt + o(t)dz

where ¢(t) is the speed of the mean reversion and o(t) the local volatility, i.e. the volatility of the
short term interest rate. BK calibrate their model to the initial observed interest rate and volatility
term structures as well as the observed cap curve. The cap curve gives the prices of at-the-money
caps, which pay the difference between the forward rate (strike) and the realised short term interest
rate at maturity. BK do not attempt to specify a process which accurately depicts the evolution
of the short term interest rate, but rather a short term interest rate process which can be fitted
to observed market prices and hence used to price securities in a consistent manner. The future
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risk neutral distribution of the short term interest rate generated by the model is not the true
distribution, but rather a distribution which leads to correct option prices.

2. Specification of the binomial tree

BDT make use of a binomial tree to specify their lognormal model. Within the binomial tree they
are able to match two inputs, that is the interest rate and volatility term structures. This is done
using the location and spacing of the nodes at each time point.

To match three input values, one could use a trinomial tree. However, to avoid the additional
complexity of a trinomial tree, BK approach this problem with a binomial tree, but vary the time
spacing during its life. This introduces another degree of freedom, allowing all three inputs to
be matched. The computational simplicity of a binomial tree is maintained and the risk neutral
probabilities are .

2.1. Known model inputs. If the input functions defining the model, i.e. u(t), ¢(t) and o(t)
are known, the binomial tree of short term interest rates is constructed so as to match these values
at each time step. The tree has the following specifications:

e At each time, the (vertical) spacing of the nodes must match the local volatility (volatility
of the short term interest rate). Since volatility is a function of time only, spacings for a
given time are equal.

e The drift of the nodes from one time to the next is determined by the target rate.

e The time (horizontal) spacing differs over the life of the binomial tree. This time spacing
is calibrated to the mean reversion speed.

Define the following variables:

Tp =tpy1 —tn, — time period between two consecutive time nodes,
¢n = ¢(t,) — mean reversion speed at time ¢t = n,
on =0(t,) — local volatility at time ¢ = n.

Mean reversion is defined as the speed with which the short term interest rate tends towards the
target rate. As the short term interest rate gets closer to this target rate, the local volatility
decreases. Hence, the mean reversion may be equated to the rate of change of local volatility, which
is represented by:

(2.1) b = 1 (1 _ M)
Tn On—14/Tn—1

I . 0n\/Tn .
For positive mean reversion 0,+/Tn < 0n_1+/Tn—1 and 1 — A Bives the percentage decrease

in volatility from time period 7,,_; to 7,,. From (2.1) we may find 7,, as a function of 7,,_; and the
speed of mean reversion. Hence, at each time node, we may determine the size of the next time
step, dependent on the speed of mean reversion. Using equation (2.1) we have:

by = Lo
" Tn Unfl\/ Tny/Tn—1
1 1 On 1
( ) Tn ﬁ <Un—1> Tn—1 ¢)
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which is a quadratic polynomial in \/%_n with roots:

2
1 _ 1 On 1 " On 1 + 46,
\/ﬁ 2 On—1 VTn-1 On—1 Tn—1
1+ \/1 + 4oy, (Un_l/an)2 Th-1
2\/7'71,71 (Unfl/an)

> 0, only one of the roots is an admissible solution to (2.2) and:

1
&

Since by definition

3

4(0n_1/0n)2

(1 + /14 460 (001 /)’ Tn_1> 2

(2.3) Tn = Tn—1

Hence the time spacing is dynamically constructed, with the next time step size determined at each
node after all its associated variables o, ¢, etc. have been determined. The initial time step 7 is
chosen according to the required accuracy. Small 7y equates to very fine time spacing which produces
more accurate results. For positive mean reversion speed, the time spacing decreases through time,
the higher the speed of mean reversion, the more pronounced this decrease.

2.2. Known model outputs. If we already have the model outputs, that is the interest rate,
volatility and cap term structures, we need to find the corresponding values of the model inputs,
u(t), ¢(t) and o(t). Here, time is divided into segments which are subdivided into time steps. The
values of i, ¢ and o, applicable for the first time segment, are chosen so as to match the outputs at
the end of this segment. Similarly p, ¢ and o applicable during the second time segment are chosen
such that the outputs are matched at the end of this segment. Using this methodology, we find
the implied target rate, mean reversion speed and short term interest rate volatility for each time
segment. These implied values do not specify the real world evolution of the short term interest
rate, but they do specify a short term interest rate process in a one factor world which produces
the required security prices.

When the model outputs change, that is the interest rate and volatility term structures observed
in the market shift, the tree needs to be recalibrated to determine new parameters of the implied
process.

Ideally, we would like to determine a general interest rate process as a function of several parameters.
Reestimation of the process should yield the same parameters. This type of model would be a true
description of the interest rate process and could be used to give valuations at any time.

3. Matching the lognormal distribution

We have assumed the short term interest rate has a lognormal distribution at any time horizon. This
means we require only a mean and standard deviation to fully specify its distribution. However,
in the BK model, three factors are required to describe the short term interest rate process - the
target rate, mean reversion speed and local volatility. This means that for a given time horizon, the
solution is not unique and the distribution of short term interest rates may be matched by a family
of possible processes.
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These processes will differ in their mean reversion and local volatility characteristics. Strong mean
reversion means a move away from the target rate is quickly reversed, which is not the case for
weaker mean reversion. Hence, a narrow (wide) distribution of the short term interest rate in the
future may result from either strong (weak) mean reversion or low (high) local volatility.

4. Conclusion

In a simple and concise extension of the BDT model, BK are able to eliminate one of its most
frequently cited shortcomings - the direct but artificial link between the current volatility term
structure and future values of short term interest rate volatility. BK introduce a third time depen-
dent variable, reversion speed, which allows an additional degree of freedom. Now the interest rate
and volatility term structures as well as cap prices can be included in the calibration procedure.
Empirical results of calibration exercises for this model are not widely available. However, based
on results of other models! attempting to include all three term structures (interest rate, volatility
and cap prices), one could suspect an over parameterisation may result, with future volatility term
structures taking on unreasonable shapes.

lFor example the extended-Vasicek Hull White model discussed in Chapter 7.
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The Ho and Lee Model

Models studied in the previous chapters specify the movement of the short term interest rate and
thereby endogenously determine the form of term structure (including its initial value). Ho and
Lee (HL) [24] developed a model which takes as input, the initial interest rate term structure and
derives its subsequent stochastic evolution. Hence, the theoretical zero coupon bond prices (that is,
those produced by the model) will be exactly consistent with those observed in the market.

HL use all information within the current observed term structure to price contingent claims in such
as way as to ensure that profitable arbitrage is precluded.

1. Assumptions

The assumptions made by HL are the standard assumptions for a perfect capital market in a discrete
time framework.

Assumption 1. The market is frictionless, i.e. there are no taxes or transaction costs and
securities are perfectly divisible.

Assumption 2. In a discrete time framework each time period is taken to be one unit of time.
Hence a zero coupon bond with term to maturity 7', pays $1 at the end of the Tth time period
(taken from valuation time).

Assumption 3. The bond market is complete, with a bond maturing at the end of each time
period n, n =0,1,2,....

Assumption 4. At each time period n, there are a finite number of possible states of the world.
At time n, state ¢, denote the equilibrium price of a T-maturity zero coupon bond as Pi(n) (T'). This
function is termed a discount function. At any time n, state ¢, the interest rate term structure is
fully described by a series of discount functions.

By its definition as a discount function, Pi(")(-) must satisfy certain conditions. That is:

(1.1) P"(T) > 0 VT,iandn

(1.2) P™M(O) = 1 Viandn

(1.3) lim P"(T) = 0 Viandn
T— o0

2. Binomial lattice specification

HL make use of a discrete time framework within which the stochastic process describing the evo-
lution of the discount function is represented by a binomial lattice. At time n, Pi(n)(-) represents
the discount function after 7 upstate moves and (n — i) downstate moves. During the (n + 1)th

period, that is from time n to time (n+ 1), the discount function may again be subject to one of two
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PV ()

P

(3

FiGURE 10.1. Binomial tree showing possible discount bond prices after one time step.

moves, an upstate move or a downstate move. Therefore given the time n discount function Pi(”) (),
two possible discount functions may occur at time (n + 1), Pi(ffl)(-) or Pi("ﬂ)(-) (see Figure 10.1).

Within such a framework we have:

e At each time n, there are (n + 1) possible states, denoted by ¢, i =0, ..., n.
e The discount function in each state is independent of the path followed to get there. It is
defined by the number of upstate and downstate moves only.

The price of each discount bond follows a binomial process where the step size is time dependent.
This feature greatly increases the explanatory power of the binomial lattice approach. When mod-
elling the term structure with a view to pricing interest rate contingent claims, we are concerned
with the movement of interest rates of various maturities relative to each other - that is the relative
movement of different maturity discount bonds. For this reason the binomial lattice is used to model
the entire term structure instead of just a specific bond. The time dependent step size ensures the
convergence, at maturity, of the bond price to unity.

The binomial lattice approach imparts the following characteristics on the stochastic process of the
bond price:

e Bond price uncertainty is small near bond maturity and in the immediate future.
e Bond price uncertainty increases with distance from these two points.

These characteristics are a result of two factors:

e For longer time horizons, the number of variations and hence uncertainty associated with
the term structure increases.

e As the time horizon approaches bond maturity, price uncertainty decreases since the bond
price must converge to unity at maturity.

For a given bond, as the time horizon increases, the term structure uncertainty increases resulting
in greater price variance. This is accompanied by the bond approaching maturity. At some future
time horizon, the pull-to-par effect dominates, resulting in a decrease in bond price variability.

3. Arbitrage free interest rate evolution

The movement of the term structure must be constrained to ensure that no-arbitrage principles are
not violated. This translates to constraints on the binomial lattice modelling the term structure
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P (0) = 1.000
5 P (0) = 1.000
P;7’(0) = 1.000 P(2)(1)
P(l)(l) 2
(0) ' (3)
P(0) = 1.000 PO (2) P (0) = 1.000
(1) P (0) = 1.000
PO(O)(z) P(l)( : pl(Z)(l)
= 1.000 5
P (3) o (0 P®(0) = 1.000
Py (1) 8
PO (2) P (0) = 1.000
PP
B P (0) = 1.000

FIiGUurE 10.2. Binomial tree is used to model the whole term structure, not only
the short term interest rate.

evolution. HL impose an additional restriction which simplifies the construction of the pricing lattice.
The perturbation functions and implied binomial probability (h(T'), h*(T) and 7 respectively') are
taken to be independent of time n and state i. This is equivalent to the continuous time constant
volatility assumption. Allowing this functional dependence would lead to a more general arbitrage
free model.

3.1. The perturbation functions. Consider the time n, state ¢ discount function Pi(n) (T).
If there is no interest rate risk/uncertainty over the next time period, then the time (n+ 1) discount
functions and hence entire term structure must be the same in the upstate and downstate. To
prevent arbitrage opportunities, the realised (time (n + 1)) discount function must be the (time n)

implied forward discount function, Fi(n) (T):

()
(3.1) FOT) = POy = Py = BT HD
P (1)

In this riskless world, if the realised discount function differs from the implied forward discount
function, arbitrage opportunities exist. Hence, modelling term structure uncertainty reduces to
determining the perturbation of the next period discount function from the implied forward discount
function.

! These variable names are given here for completeness only; the investigation which follows defines these variables
correctly in the appropriate context.




3. ARBITRAGE FREE INTEREST RATE EVOLUTION 110

Let h(T) and h*(T) be two perturbation functions where:

(n)
(3.2) P(T) _ BT, g

(3.3) PMI(T) = ST pN(T)

define the upstate and downstate perturbations respectively. These two perturbations specify the
deviation, from the implied forward discount function, of the upstate and downstate discount func-
tions. Hence, these functions give an indication of the difference between the upstate and downstate
discount functions in the next period. For h(T) >> 1 (h*(T) << 1) for all bond maturities, the
bond prices will consistently rise in the upstate (fall in the downstate).

Conditions (1.1) to (1.3) imply that:
h(T), h*(T) >0 VYT

and?

h(0) = h*(0) = 1

The magnitude of the perturbation depends on bond maturity and hence h(-) and h*(-) are functions
of T. To construct the binomial lattice determining the term structure movement, we require the
set of perturbation functions {h(T"), h*(T') : YT} and the initial discount function PO(O) (T) = P(T).

3.2. The implied binomial probability. As stated above, knowing the perturbation func-
tions and initial discount function, allows us to construct the term structure movement. However,
the modelled evolution of various maturity interest rates relative to each other must be such that
profitable arbitrage opportunities do not arise. Hence, consider a portfolio of two different maturity
discount bonds held in proportions such that risk free rate of return is realised over the next time
period. To preclude profitable arbitrage, this risk free rate of return must equal the return on a one
period discount bond. This requirement implies a restriction on the perturbation functions at each
node (n,7) of the lattice. These restrictions can be determined by constructing the above mentioned
risk free portfolio:

At any time n, state i we construct a portfolio with:

e 1 discount bond with maturity 7',
e ¢ discount bonds with maturity .

Suppressing the notational dependence on time and state (n, i), the value of the portfolio is:

V = P(T) + €P(t)

2Consider (3.2) and (3.3) with T = 0

P =D (1)
P(0) = T MO =1 = h0) =1
(n) p™=bD (1)
PMo) = = R*(0) =1 = h*(0)=1

Pi(n—1)(1)

since all bonds mature with face value 1.



3. ARBITRAGE FREE INTEREST RATE EVOLUTION 111

Depending on whether an upstate or downstate move occurs during the next time period, use (3.2)
or (3.3) to revalue the portfolio:

P(T)W(T — 1) + £P(H)h(t — 1)

(3.4) V (upstate) = P

P(T)h*(T — 1) + EP(t)h*(t — 1)

(3.5) V (downstate) = P

For a risk free portfolio, we require V (upstate) = V (downstate), so

P(T)W(T — 1) + EP(H)h(t — 1) = P(T)R*(T — 1) + EP($)h*(t — 1)

P(T)h*(T — 1) — P(T)h

(T-1)
PO(t — 1) — P(H)h*(t — 1)

(3.6) =>{=

To prevent profitable arbitrage, a risk free portfolio must yield, after one period, the return on a
one period discount bond, i.e. 1/P(1). Therefore, we require®:

1 _ P(T)WT — 1) + EP(t)h(t — 1)
(P(l)) (P +£P®) = (D)
(3.7) P(T) + £P(t) = P(TYW(T — 1) + EP(®)h(t — 1)

Substituting the calculated value of £ from (3.6) we have
P(T)R(T — 1)+ &P(t)h(t — 1)

PT) [W(T=1) = MT - 1)]
P(t) [p(t =1) = h*(t = 1)]

— P(T)WT —1) + PRt — 1)

28 _ P(T) [h(t — 1)h*(T — 1) — h(T — Dh*(t — 1)]
(3:8) N h(t —1) — h*(t — 1)

Substituting (3.6) and (3.8) into (3.7):

P(T) [p*(T 1) = h(T - 1)]
Pt [h(t — 1) — I (t — 1)]

P(T) [h(t — 1)h*(T — 1) — K(T — 1)h*(t — 1)]

P(T) + WE—1) —h(t—1)

P(t) =

h(t—1)—h(t— )R (T —1) = h*(t— 1) = (T — 1) — h(T — DA*(t — 1) — K*(T — 1)

3By the choice of ¢ as the value resulting in equal portfolio values in the upstate and downstate, we may also
use the portfolio value after an upstate move to give

P(T) 4+ ¢P(t) = P(T)h* (T — 1) + EP(t)h*(t — 1)

in place of (3.7).
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Adding h*(T — 1)h*(t — 1) to both sides and factorising:

h(t — 1) [1 = B*(T = 1)] = B*(t = 1) [1 = B*(T = 1)] = h(T = 1)[1 = B*(t — 1)] = B* (T — 1) [1 — B*(t — 1)]
1= B (T = D][A(t = 1) = h*(t = 1)] = [1 = h*(t = D] [A(T — 1) = h*(T — 1)}
1—h (T -1) 1—h*(t—1)

:*'h(T—l)—h*(T—l):h(t—l)—h*(t_1) VT,t>0

The LHS of (3.9) is a function of T only, while the RHS is a function of ¢ only. This can only hold
true if

L—h(T-1) 1-h*(t-1)
(3.9) WT-1) W (T -1 hi-1D -1 "« >0

where 7 is some constant. More generally, we write:

- (1)
and so
1-hw"(T) = =nh(T)—7nh*(T)
(3.10) =1 = ah(T)+ (1 —m)h*(T) VYT >0andn,i >0

If the condition in (3.10) is satisfied across all bond maturities, profitable arbitrage opportunities
are precluded.

The constant 7 is independent of bond maturity 7" and the initial discount function P(T"), but it
may depend on time n and state i. We refer to = as the implied binomial probability.

3.3. Comparison to traditional option pricing approach. Consider solving (3.2) and
(3.3) for h(T) and h*(T) respectively:

P P (1)
WT) = (n)
P; (T+1)

P (1) P (1)

R = PUT +1)

Substituting the above values into (3.10), we have:

__REY@mEY ) P () (1)
1 = « +(1-m
P"(T +1) P"(T +1)
(3.11) =P"(T+1) = [71' P(T) + (1 — =) P T(T)| P (1)

which is consistent with the traditional binomial tree approach to option pricing introduced by Cox,
Ross and Rubinstein [17]. In their approach the price at time n is the weighted sum of prices at
time (n + 1), discounted by the risk free rate over this one time period. The appropriate weights
are the probabilities of the time (n + 1) prices being attained. For this reason 7 may be viewed as
a risk neutral probability.
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Let us examine (3.11) in more detail. Re-arranging terms, we have:

P"(T
B o [pe@ -1 - P @ - 1] + PO @ - 1)
P(1)
1 Pi(n+1)(T ~1) Pi(fj_l)(T —1) ~ Pi(n+1)(T ~1)
P P P"(T) P{"(T)
where
PIY(T - 1)
% =u is the percentage up move,
P"(T)
(n+1)
P T-1
% =d is the percentage down move,
P(T)
and
1
o) =r is the single period risk free return.
P (1)
Hence

r—d = 7w(u—d)

r—d

u—d
and 7 may be interpreted as the extent of the downstate move with respect to the spread between
an upstate and downstate move. Large m implies a general price decrease over the next time
period, while for values of 7w close to zero, a general price rise may be expected over the next
time period. The required no arbitrage condition, of equation (3.9), implies this ratio (i.e. the
general increase/decrease in the bond price over the next time period) must be the same for all
bond maturities® T'.

Cox, Ross and Rubinstein applied a constant discount rate at all points of the binomial tree. In
this model the one period discount rate is time and state dependent. This is due to the one period
rates, Pi(”)(l) for all n, 7 being determined by the initial term structure and hence endogenised by
the no arbitrage methodology.

3.4. Constraints to ensure path independence. As we construct the binomial tree/lattice,
the discount function evolves according to the number of upstate and downstate moves only, not
their sequence. This condition implies constraints on h*, h, and 7 so that at any time n, state i,
an upward move, followed by a downward move is equivalent to a downward move followed by an

upward move. We examine the restrictions required to ensure this path independence.
First, consider a downward move, followed by an upward move to get from Pi(n) (T'+2) to Pl(ff 2) (T).
From (3.3) the downward move is represented by:
n P"(T +2
P +1) = %
P (1)

K3

h*(T + 1)

4This is the discrete time equivalent of the continuous time condition that to preclude arbitrage opportunities
the instantaneous return on bonds of all maturities must be the same.
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and then from (3.2) the upward move is:

_ PMTY(T 41

P (7 = i h(T)

i+1

hence we have:

_ P™(T +2) b*(T + 1) h(T)

P‘(n+2) T) =
i+1 ( ) Pl(n)(l)Pl(rH-l)(l)
Also, we may write:
! P (2)
Py = 21
PM(1)
(n) *
n P"N(T +2) h*(T + 1) h(T
(3.12) = Py = L (T +2) W*(T + 1) h(T)

P (2) (1)

Similarly, an upward move, followed by a downward move yields:

P™(T +2)
prtryy)y = T2 WT +1)
+1 ( ) Pz(n)(]_)
P»(n+1)(T+ 1)
(n+2) _ it+1 "
P = =0 (T)
+1 n
P ()
(n)
r™(2)
and PV = i pn
i+1 ( ) Pi(n)(l) ( )
(3.13) S Py = P"(T +2) h(T + 1) h*(T)
" P (2) h(1)

The path independence condition means that (3.12) must equal (3.13) so:

PMT+ 2 (T+1)WT)  P™(T +2) (T +1) h*(T)
P (2) h*(1) - P (2) h(1)
(3.14) = W (T+1)AT)h(1) = (T +1)h*(T)h*(1)

From (3.10) we may express h*(:) as a function of h():

_ 1—7h(T)

1—-n

h*(T) VT
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so (3.14) simplifies as:

1-7h(T+1 1—nh(T 1-mh(1
—1_(7r )h(T)h(l) = h(T+1)< 1_75 )>< 1—71'()>
1-7h(T+1) 1—7h(T) 1—mh(1)
WT+1) ( h(T) )((1—7r>h(1>)
L (L_W (1—7rh(1)>
h(T +1) W(T) (1—m)h(1)
1 . 1—7h(1) m(1 —mh(1))
WT+D) - O—mhOWT)  d—mh@) 7"
B L-wh(l)  «(h() ~ 1)
 A=-mh)MT) (1 -m)h(1)
Letting
1—7h(1 w(h(1) =1
(3.15) 5:% and 7:%

we may represent the condition guaranteeing path independence as a first order, linear difference
equation of the form:

1 5
(3.16) WT+0 w1

3.5. Solution to the first order, linear difference equation. Let g, = ﬁ and so gr41 =

,L(T%H) and (3.16) may be written as:

(317) gr+1 = gr(S +7

First, let 2,41 = E(z,) = z, + Az and consider the solution to the homogeneous part of the
difference equation:
(E—d)gr =0
which has the root ¢ and the solution® is g = k16", where k; is a constant.
Now calculate the particular part of the solution

(E_(S)gr = 79
(E-0)(E-1g = (E-1)y
= 7-7=20

This equation has roots d and 1 so the particular solution® is g = k20" + k3 where ky and k3 are
again constants. Since §” is included in the homogeneous part of the solution, we exclude it and

substitute g7’ = ks into (3.17) to solve for the constant. Hence:
k3 — k3(5 = 9
Y
k‘ = _— =
= K3 1-5 ™

5Here the superscript H denotes the homogeneous part of the solution.
6Here the superscript P denotes the particular part of the solution.
"Making use of the definitions of y and & in (3.15) we calculate v/(1 — §) =«
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So the solution to (3.16) is

g = gl+g”
= 7T+k'15r
1
1 WMT) = ——
(3.18) = W) T+ k16T

The initial condition on h requires h(0) = 1 so from (3.18) k; = 1 — 7 and the unique solution is
determined as:

1

(3.19) WT) = Py

forT >0

Equation (3.10) gives the relationship between h(T') and h*(T) required to preclude profitable
arbitrage. It may be used in conjunction with (3.19) to solve for an h*(T") which maintains the no
arbitrage equilibrium. Substituting (3.19) into (3.10) to have:

™

1 = m + (1 — W)h*(T)
N _ 1 T
> T = (1—m) (7 + (1 —m)oT)
5T
(3.20) = m

For a given pair of constraints, 7 and ¢ (which corresponds to a specification of h(1)), the unique
arbitrage free model is fully specified by (3.2), (3.3), (3.19) and (3.20). Here 7 is the implied binomial
probability and ¢ determines the spread between the perturbation functions h(-) and h*(-).

4. Relationship to Vasicek and CIR models

The Vasicek [46] and CIR [16] models describe the instantaneous short term interest rate by means
of a stochastic process. Within the discrete time HL model, the short term interest rate equivalent
is the one-period rate. To make a meaningful comparison of these models we need to find the
stochastic process described by the evolution of this rate in the binomial lattice.

4.1. Calculating the continuous time equivalent.

4.1.1. General functional form. Rebonato [41] presents a simple analysis by which the contin-
uous time equivalent of a discrete time model, modelled within a binomial lattice, may be found.
At each time step ¢ in a binomial lattice, there are ¢ + 1 possible states of the world and hence ¢ + 1
possible values of the one period rate. Consider time ¢ = 1, there are two possible states of the
world and interest rates, denoted r(1,1) and r(1,—1). Given the assumption that the short term
interest rate follows a Gaussian process, the standard deviation of the time ¢ = 1 one period rate
may be represented as:

(4.1) ov/aL = ") —27«(1,—1) = r(1,1) =r(1,—1) + 20VAL

where o is the absolute volatility of the one period rate.
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Let r,,,(1) be the median interest rate at time ¢ = 1, hence:

rm(l) = $[r(1,1)+7r(1,-1)]
= r(1,1) = rp(1)+oVAt
and r(1,-1) = rp(1)—oVAt

and so, in continuous time, we may write:
r(t) = u(t) + oz(t)

where u(t) is time ¢ median of the short term interest rate distribution, o is the constant short
term interest rate volatility and z(t) is a standard Brownian motion. Now, apply Ito’s Lemma to
determine the stochastic process for the short term interest rate, r(t) = r(t, 2(t)):

or or 82
_ Ou(t)
= 5 dt + odz

Letting 6(t) = 885 ),

(4.2) dr = 6(t)dt + odz

the process for the short term interest rate may be expressed as:

where 6(t) is a function of the initial term structure. This is the case since u(t), the median of the
short term interest rate is determined as part of the binomial tree calibration process.

4.1.2. Specific functional form of 6(t) dependent on lattice parameters. Now we examine how
this drift function, 6(t), is dependent on the specific parameters of the binomial tree. First, we make
use of (3.2) and (3.3) to determine the discount function at time n, state 4 in terms of the initial
discount function and the perturbations required to get there. Equations (3.2) and (3.3) are:

n P"(T +1)
(4.3) PIYO(T) = ——S"=n(T)
o P ()
P"(T +1
P (1)
Repeated application of (4.4) yields:
(n—1)
pi(") (T) = T+l h*(T)

P M (1)
PO=2(T + 2) h*(T + 1) h*(T)
P (1) PN (1)

PO=3)(T + 3) h*(T + 2) h*(T + 1) h*(T)
pln—

PO 1) PP (1) PV (1)
and (n—2) (n—3)
n—2 n—3

P =t By e = BB
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hence:
P"(T + 3) h*(T + 2) h*(T + 1) h*(T)
P (3) h*(2) h*(1)

Pi(n) (T) =

Eventually we arrive at the formula:

P(T+n) (T +n—1)R*(T+n—2)...h*(T +i) M(T +i—1)...h(T)
P(n) h*(n — 1) h*(n—2)...h*(i) h(i — 1)... h(1)

(45  PU(T)=
The above combination of perturbation functions results from the i upstate moves and (n — 7)
downstate moves required to reach the ith state at time n. The order of the moves is not important
since the time n, state ¢ discount function is path independent. Equation (4.5) can be used without
loss of generality.

From (3.19) and (3.20) we have:

5T

T

=0T n(T)

hence (4.5) may be written as:

(n) _ P(T +n)
POT) = Tpe
MT+n—1)h(T+n—-2)...h(T+i)W(T +i—1)...h(T)sTHn"1§T+n=2  §T+i
h(n —1)h(n—2)...h(i)h(i —1)...A(1) o1 n—2 . . §
(4.6) _s P(T+n) h(T+n—-1)h(T+n—-2)...0(T) §T(n—0)

P(n) h(n —1)h(n —2)...h(1)

where the exponent of ¢ is consistent with requiring (n — ) downstate moves (and ¢ upstate moves)
to reach time n, state .

8Considering the 0 terms in the numerator, we have:

5T+n71 5T+n72 5T+i — 5T+n71+T+n72+...+T+i

Here the exponent may be written as:

TH+n—1
TH+n—-1+T+n-2+...+T+i = > k

k=T+1i

T4n—1 T4i—1

= > k= > k
k=1 k=1
= L(T+n)(T+n—-1)—(T+i)(T+i-1)]

Similarly, the exponent of the § terms in the denominator may be expressed as:

1
k

n

n—14+n—-24+...41¢

=i

n(n —1) —i(i — 1)]

N 3

Then, to simplify, we subtract the exponent of § in the denominator from the exponent of § in the numerator to
yield:
ST +n)(T+n—-1)— (T+i)(T+i—1)]— §[n(n—1) —i(i — 1)] = T(n — i)
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Now, consider the special case of a one period bond i.e. T'= 1. From (4.6) we have:

- Pn+1) hn)h(n—1)...h(1) .,
R P hn—1)h(n—2)...h(D) °

_ P(TL + 1) n n—i

N P(n) h(n)d

But, from (3.19) we have:
1

R N T

hence: )
P(n+1) ot

Pn) w+(1—mon
To represent the interest rate term structure in terms of yields as opposed to discount functions, let
r(T) be the continuously compounded yield on a discount bond of maturity 7', then:

P(T) = (T
In P(T
(4.7) ) = PO
T
and so the time n, state ¢, one period yield may be expressed as:
M) = —mP™M)

—In [P(JZ(Z)D T+ ((in::r) 5n]

_ P(n) ] T+ (1 —m"”
= In _7P(n+ 0 +1n [7671,2' j|
_ [ P(n) | —n+i i
= ln_m_+ln[ﬂ'5 ++(1—7T)(5]
F ()
(4.8) = In ﬁ +In[ré "+ (1—n)]+ilnd

The value of i, that is the possible state at time n, has a Binomial distribution® with probability q.
Hence, at time n the mean value of ¢ is u(i) = ng. Since rz(n)(l) is unique for every state and time,
it also has a Binomial distribution in 7 for each time n. The mean of this distribution, that is the
mean short term interest rate at time n, may be calculated from (4.8) as:

P(n)
1.9 () =1 |5 I [ (1 )

The first term in (4.9) is the implied forward rate, while the other two terms give the bias introduced
by uncertainty, i.e. § which gives the ratio of the upstate and downstate perturbations. Consider the
drift of the short term interest rate, (t), in (4.2). This drift is chosen so as to fit the initial observed
term structure. This dependence on the initial term structure is represented by the first term in

9At each step of the Binomial tree the movement of the discount function is subject to a Bernoulli trial. A
Bernoulli trial has one of two possible outcomes - success (1) or failure (0), where g denotes the probability of success.
The Binomial distribution is made up of n identical Bernoulli trials. It has the following characteristics:

mean =ngq variance =nq(1 — q)
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(4.9), i.e. the implied forward rate. The time dependence of 6(t) is indicated by the parameter n,
in each of the three terms of (4.9).
The variance of the short term interest rate may be calculated from (4.8) as follows:

var (7)) = E [(rgm(l) - E[r§”>(1)])2]
- E[(“na—nqlna)?]

(In8)> E [(i - nq)2]

= (Iné)? var (i)

nq(l - q)(Iné)?

As the spread between the up and down perturbation functions (h(-) and h*(-)) increases, so the
value of ¢ decreases'?. An increase in this spread implies an increase in variance, hence the variance
is negatively related to 4.

(4.10)

Consider the volatility of the short term interest rate, o, defined in (4.2). This is the instantaneous
volatility, hence for a specified time period the volatility is ov/t. From (4.10) the corresponding
time n short term interest rate volatility is Ind4/q(1 — ¢)y/n. Therefore the constant value o is
represented by Ind+/q(1 — ¢) since § and ¢ are constant parameters'! associated with the binomial
lattice.

4.2. Comparing the modelling techniques. By calculating the mean and variance of the
short term interest rate, we have specified the stochastic process that governs its evolution. This
stochastic process depends on information contained in the initial term structure, therefore the future
evolution of the short term interest rate is determined by the initial term structure. Traditional
one factor models, such as the Vasicek and CIR'? models, do not fit the initial term structure
exactly since they specify the short term interest rate process exogenously. These two different
approaches (that is the Vasicek/CIR on one hand and HL on the other) may be justified since they
are each applied for a different purpose. The traditionally one factor models, like the Vasicek and
CIR models, endogenise the equilibrium term structure by first attempting to determine a short
term interest rate process that generates a meaningful equilibrium term structure. The function of

105 is defined as h*(-)/h(-) that is, the down perturbation function divided by the up perturbation function,
hence § < 1 for all values of h(-) and h*(-). As the spread between the two functions increases, so § tends to zero.
Therefore:

Ind <0 vV 4§

and limIlnd =—o00
§—0

so  lim(Ind)? = oo
5§—0

hence the increasing value of the variance with decreasing value of §.

HUparameter q is the binomial probability corresponding to the risk neutral probability 7 characterising the
lattice.

2In the most general form, the process used by the traditional Vasicek and CIR models is:

dr = k(0 —r)dt + orPdz

where k, # and o are constants. In the Vasicek model f = 0 while in the CIR model 8 = % Since none of the

parameters are time dependent, only the initial short term interest rate can be fitted to a rate observed in the
market.
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the approach taken by HL is not to determine an equilibrium term structure, but rather to price
contingent claims consistently with respect to the initial term structure. For this reason the short
term interest rate movements incorporate information from the initial term structure.

5. Pricing contingent claims

The binomial lattice used to price contingent claims is characterised as follows:

C — interest rate contingent claim,
C(n,i) — unique price of the contingent claim defined at each node (n,1),
T — expiry time of the contingent claim,
{f())} — set of payoffs of the contingent claim at expiry 0 < ¢ < T (since at each time
n there are (n + 1) states, hence at time T there are (T + 1) possible payoff
values). Therefore the terminal condition is C(T,4) = f(i), 0<i < T,
L(n,i), U(n,i) — lower and upper bounds on the contingent claim price such that
L(n,i) < C(n,i) < U(n,i),
X (n,i) — amount paid by the contingent claim at time n, state ¢, 1 <n < T.

5.1. No arbitrage contingent claim price. Let V' be the value of a risk free portfolio made
up of one discount bond with maturity 7" and £ of asset C. Consider we are at time n, state 7, the
value of the portfolio is:

(5.1) V =P"(T) +£C(n,i)
This portfolio is subject to an upstate move. Hence the price of the discount bond becomes:
p"(T
P -1 = By
P (1)

and the value of the portfolio may be expressed as:

V(upstate) = PUTI(T—1)+¢CMm+1,i+1)
p"(T
l(n)( ) (T -1)+€6Cn+1,i+1)
P(1)
Similarly, if the portfolio is subject to a downward move its value is:
V(downstate) = P"™N(T —1)+¢C(n+1,i)
(n)
b (T) ,
= (T —-1)+€6Cn+1,i
g, @D HECE L

By definition the portfolio is risk free and so V (upstate) = V(downstate). Therefore, the amount
of asset C required to ensure a risk free portfolio is calculated as:

P"(T) ., P™(T) B | |
P (1) (T =1) = P MT—1) = €[Cm+1,i+1)—Cn+1,i)
(n) *
(5.2) S¢ = P (T) [W*(T = 1) = h(T = 1)]

PM(1)[C(n+1,i+1) = C(n +1,)]
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Given this value of ¢ the portfolio is risk free over one period and hence must earn the risk free rate
(7) (13-
of return, 1/P;"/(1):

V = V(downstate) Pi(n)(l) = V (upstate) Pi(n)(]-)
= P{(T) + £C(n,i) = PP (T) WA (T = 1) + € P (1) O + 1,3)

and making use of (5.2), (3.19) and (3.20) we may solve for the time n, state i price of the contingent
claim as a function of the possible contingent claim prices at time (n + 1):

P(T) [1(T = 1) = 1]

C(n,i) = P™A)Cn+1,i)+ :
(n) . P (T) [ﬁ - 1] P (1) . .
= PV (1)C(n+1,4)+ ) e [C(n+1,i+1)—-C(n+1,i)]
B(T) [m]

= Pi(n)(l) Cn+1i)+n[Cn+1,i+1) - C(n+1,i)] Pi(n)(l)
(5.3) = [*C(+1i+1)+(1—7)C(n+1,i)]P™

Now the contingent claim may be priced by backward induction. We know the value of the contingent
claim in all states ¢ at expiry time 7. The price of the contingent claim in each state ¢ one period
prior to expiry i.e. C*(T — 1,1) is determined from equation (5.3). This calculated price is subject
to the pre-specified boundary conditions, hence:

O(T —1,i) = max[L(T — 1,i),min [C*(T — 1,i), U(T — 1,4)]]

Iteration of this methodology produces to the initial price of the contingent claim. Knowledge of
the implied binomial probability and the one period discount bond price, Pi(n)(l), at each time n,
state i, allows us to price any interest rate contingent claim. We conclude that the pricing depends
on the stochastic evolution of the short term interest rate and so this model may also be referred
to as a one factor model.

The parameters 7 and J are not directly observable in the term structure, but are reflected in
the valuation of contingent claims. An estimation procedure may be used to ensure a best fit of
the model generated (theoretical) contingent claim prices to actual observed prices. Since 7 and
& are characteristics of the term structure and not of the specific contingent claim, the estimated

parameter values may be used to price any contingent claim.

6. Conclusion

This model is the first to allow a direct matching of the initial observed term structure. The model
contrasts to previously developed models by considering the stochastic development of the whole
term structure. Hence, each node in the binomial tree has a series of discount bond prices (or
equivalently, rates of interest) of various maturities associated with it. This contrasts to, say the
BDT model (Chapter 8) where, at each node, one only considers the value of the short term interest
rate applicable over the next time step.

Models such as the Vasicek [46] and CIR [16] models hypothesise a functional form for the stochastic
process governing the evolution of the short term interest rate. They then attempt to determine
parameter values so as to match, as closely as possible, the market observed term structure. HL use
a different approach by using the market observed term structure to specify the stochastic process
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of the short term interest rate. This allows all securities to be priced relative to the observed term
structure.



CHAPTER 11

The Heath, Jarrow and Morton Model

Heath, Jarrow and Morton (HJM) [23] present a unifying framework for term structure models.
Previously developed models are special cases of their general framework. This general framework
leads to a new methodology for interest rate contingent claim pricing. The framework incorporates
both necessary and sufficient conditions required to preclude profitable arbitrage and all contingent
claims are valued in a consistent manner.

HJM specify an initial forward rate curve and a stochastic process describing its subsequent evolu-
tion. To ensure the stochastic process is consistent with an arbitrage free (and hence equilibrium)
economy, the stochastic process is chosen such that there exists an equivalent martingale probability
measure.

The HJIM methodology encompasses several new concepts:

(1) A stochastic structure is imposed on the evolution of the forward rate curve.

(2) Contingent claim prices are not dependent on the market prices of risk. This implies
inversion of the term structure to solve for these market prices of risk, is not required.

(3) Evolution of the term structure is determined by the short term interest rate, which follows
a process influenced by a number of stochastic variables.

The derivation of the HIM model is rather technical in nature. It consists of a series of conditions to
determine a restriction on the drift of the forward rate which ensures a risk neutral and arbitrage free
pricing framework. In §2 we impose conditions to ensure well behaved forward rate, money market
and bond price processes. The relative or discounted bond price process is also defined. In §3 we
examine necessary and sufficient conditions required to ensure the existence of a unique equivalent
probability measure under which the discounted bond prices are martingales. This is equivalent to
ensuring an arbitrage free pricing framework. In §4 we specify a final condition ensuring a unique
martingale measure across all bond maturities. It is here that the forward rate drift restriction is
explicitly specified. In later sections I examine contingent claim pricing with the HIM framework,
compare earlier term structure models to the HJM framework and examine conditions under which
this framework gives rise to a Markovian short term interest rate process.

1. Initial specifications

HJIM develop their model within a continuous trading economy, with trading interval [0,7], 7 > 0
fixed. Uncertainty within the economy is represented by the probability space (2, F, Q) where Q
represents the state space, F' the o-algebra representing all measurable events and ) the proba-
bility measure. Information becomes available over the trading period according to the filtration
{F; : t € [0, 7]} which is generated by n independent Brownian motions {z1(t),...,2z,(¢) : t € [0, 7]}
with n > 1.

124
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Assume there exist default free zero coupon bonds with maturities on each trading day T', T' € [0, 7].
If P(t,T) represents the time ¢ price of a T-maturity bond, where T € [0, 7] and ¢ € [0,T] then the
following must be true:

P(T,T)=1 YTel0,7]
Pt,T)>0 VYTel0,7],t€][0,T]
Oln P(t,T)

5T exists VT €[0,7], t €[0,T]

Define the time ¢ instantaneous forward rate for time T, T' > ¢ as:

Oln P(t,T
(1.1) f(t,T):—% VT e0,7], t€[0,T]
Solving this differential equation for the bond price yields:
T
(12) P(t,T) = exp [— [ s dy} VT e, te0,T]
t
The short term interest rate at time ¢ is the instantaneous forward rate for time ¢, hence:
(1.3) r(t) = f(t,t) Vte[0,7]
Alternatively, expressed in terms of the bond price':
_ OlmP(t,T) . [InPt,T+h)—InP(T)
f6.T) =~ - _;lfi‘h{ h
. P(t,T)
= jm | In P(t, T+ h)}

=r(t) = Alg%)

(=)

— m tt+h)
w50 | hP(t,t+h)

1

h

L
- im[i (Frrem tm -1)]

1

LA

[1-

1Here, make use of the Taylor series expansion of the natural logarithm of a number:

z2 2
1n(1+z):m7?+?7... where -1 <2 <1
Consider:
1+ P(T) = P, T) 1>0
e S — r=——2"7
P(t, T+ h) P(t,T + h)
By definition h is small, so P(¢,T) is only slightly greater than P(¢,7 + h), and ﬁ is only slightly larger than
1, hence:
0< P T) 1<1
P(t, T +h)
Therefore applying this expansion:
P(t,T) P(t,T) Lt ( P(t,T) 1) 2 N
n = e Tl
P(t,T +h) P(t, T + h) 2 \P(t, T+ h)
P(t,T)

A -
P(t,T +h)
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and the short term interest rate may be interpreted as the rate of return on an instantaneously
maturing bond.

2. Specifications of the various processes

We present a family of stochastic processes describing the evolution of forward rates and hence
uniquely determining the short term interest rate and bond price processes. A series of conditions
is presented ensuring the processes are bounded and well behaved.

2.1. Forward and short term interest rate processes. Technical conditions are applied
to the processes defining the short and forward interest rates as well as the money market account.

CoNDITION 1. A family of forward rate processes. Define a family of forward rate processes f(t,T),
for fixed T € [0, 7]:

(2.1) f@&,T)— f(0,7) :/Ota(w,v,T)dv+i/0t0i(w,v,T)dzi(v) VOo<t<T

where?:
e {f(0,T):T €[0,7]} is a fixed, non-random initial forward rate curve, measurable as a
mapping f(0,-) : ([0, 7], B[0,7]) — (R, B) where B[0, 7] is a Borel o-algebra restricted to
[0, 7].
e a:0x{(ts):0<t<s<T}— Risafamily of drift functions jointly measurable from
FxB{(t,s):0<t<s<T}— B, adapted and having

T
/ |a(w,t,T)| dt < +00  ae. Q
0

e O x{(ts) :0<t < s <T} — R are volatilities, jointly measurable from

F x B{(t,s):0<t<s<T}— B, adapted and with

T
/ 0l (w,t,T)dt < +o0 ae. Q fori=1,....,n
0

Starting from the initial fixed forward rate curve {f(0,T) : T € [0, 7]}, the n independent Brownian
motions determine the stochastic evolution of the whole forward curve through time. The sensi-
tivity of the change in a given maturity forward rate to each Brownian motion, is specified by the
volatility coefficients. The only restrictions imposed on the forward rate process that have economic
implications are:

e time is continuous and
e stochastic movement is specified by a finite number of random shocks.

since the higher order terms are negligibly small by the definition of A.
2Here, and in subsequent formulae w denotes the possible dependence on the history of the Brownian motions.
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CONDITION 2. Regularity of the money market account. Given the forward rate process in (2.1),
the dynamics of the short term interest rate may be expressed as:

(2.2) r(t) = f(0,1) + /Ot a(w,v,t)dv + Xn: /Ot oi(w,v,t)dz;(v) VY te€][0,7]
i=1

Now, define an accumulation factor or money market account B(t), as:

(2.3) B(t) = exp </0t r(y) dy) vV te[0,7]

with initial condition B(0) = 1. The value of this money market account must satisfy:

0 < B(w,t) < +c0 ae.Q V tel0,r7]

To guarantee that this condition is satisfied, we require:

T T t
/ 17(0,0)] dv < 400 and /(/ la(w, v,1)| dv) dt < 400 ac. Q
0 0 0

2.2. Bond price process. Here technical conditions are applied to parameters of the bond
price process, thereby allowing the subsequent bond price process to be well behaved.

CONDITION 3. Regularity of the bond price process. To ensure a well behaved bond price process,
the following regularity conditions are imposed:
2

t t
/(/ Ui(w,v,y)dy> dv <400 ae. @ VYitel0r],i=1,...,n
0 v

t 2

t
/(/ ai(w,v,y)dy> dv <400 ae. @ VYV Tel0,7],t€[0,T],i=1,...,n
o \JT

and
2

T t
t— / (/ oi(w,v,y) dzi(v)> dy is continuous a.e.Q V T €[0,7],i=1,...,n
t 0

Given Conditions 2 - 3 and using the lemma and two corollaries below, we determine the bond price
process. I have constructed the proofs of the lemma and corollaries since HJM omit them from their
analysis.
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LEMMA 0.1. This is a generalised form of the Fubini Theorem for stochastic integrals. Given the
following:

(Q,F,QQ) — probability space,
{F;} — filtration generated by a Brownian motion {z(t) : ¢ € [0, 7]}
Let {®(w,t,a) : (t,a) € [0,7] x [0, 7]} be a family of real random variables such that
(i) ((w,t),a) € {(Q x[0,7]) x [0,7]} = ®(w,t,a) is L x B[0, 7] measurable®,

t
(ii) / ®?(w,s,a)ds < +oo ae. Y te[0,7];
0

2

(iii) /0t</0T(I>(w,s,a)da> ds < 400 ae. Y te0,7].

If t — fOT(fOt ®(w,s,a) dz(s)) da is continuous a.e. then:

([ s o= ([ anris) v e

PROOF. Let x4 and xp be characteristic functions such that:

() = 1 forwe A
XAWI=910 forwe A°

1 forweB
and Xp(w) = 0 forwe B®

where Ais aset {t:t € [s,7)} and B € F;. Now we have:

/ / XX didz = / A(A) o dz = A(4) Q(B)

where A is the Lebesque measure and ) the measure associated with filtration F. Also:

/A/BXAXBdZdt:/AXAQ(B)dtZA(A)Q(B)

Therefore:

(2.4) //XAXBdtdz://XAXdedt
BJA AJB

Let V be a class of functions f(t,w) : [0,00] x @ — R such that:
o (t,w) = f(t,w) is B x F— measurable?,
e for each t > 0 the function w — f(t,w) is Fi-measurable and
o E [f;er(t,w) dt] < 00

Now an elementary function ) € V may be defined as a sum of characteristic function as®:

w) = Zej (w) 'X[t,-,t]url)(t)

i>0

3L is the smallest o-field on (Q X [O,TD such that all left-continuous Fi-adapted processes
Y i (w,t) € (2x[0,7]) = Y(w,t) € R? are measurable.

4As before B represents the Borel g-algebra on [0, 00).

5The following has been adapted from [39].
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Since ¢ € V, each function e; must be F;;-measurable. Hence we may define:
T
/ P(t,w) dze(w) = Z ej(w) [2t,41 — 2] (W)
s §>0
for some 0 < .S < T'. Therefore the Ito Integral of some function f € (V) may be written as:

T T
/ Fltw)dzy(w) = Tim [ (b w) dz ()

where the limit is taken in L?(P) and {t,} is a sequence of elementary functions such that:

r 2
El/ (f(t,w) — u(t,w)) dt]—)O as n— oo

S

We have shown that the integral of any function f € V may be written as the limit of the integral
of a sequence of elementary functions. The elementary functions may be expressed as sums of
characteristic functions. A similar results (used in the proof of the standard Fubini Theorem, e.g.
[14]) exists for the purely deterministic case. Hence we conclude that since relationship (2.4) holds
for characteristic functions, it holds for any function ®(w,t,a).

For an alternate description of this proof see [30, Chapter 3, Problem 6.12]. O

CoOROLLARY 0.1.1. Assume Lemma 0.1 holds and define:

B(w, 5, a) = 0 if (s,a) €10,t] x [t, 7]
155 o(w,s,a) if (s,a) €[0,t] x [t,7]

/0y</t‘ro'(w,s,a,) da> do(s) = /tT</0yU(w,s,a) dz(s)> do Ve
/Oy /tra(w,s,a) da dz(s)

_ /Oy /0T<I>(w,s,a) da dz(s)

Ty
= / / ®(w, s,a)dz(s) da by Lemma 0.1
o Jo

_ /t /Oya(w,s,a) dz(s) da

COROLLARY 0.1.2. Assume Lemma 0.1 holds and define:
0 if 0,t 0,t
@(w,s,@:{ if (s,a) & [0,4] x [0,1]

then

PROOF.

o(w,s,a)ls<q if (s,a) €10,t] % [0, 1]

/j(/stg(w’s’a) da) dz(s) = /;(/Owg(w’s,a) dz(s)) da ¥ y€|0,t]

then
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[} rtosaaaizc

Y t
= / / ®(w, s,a)dadz(s) since ® =0 for a < s

PROOF.

t ry
:/ / ®(w, s,a)dz(s) da by Lemma 0.1

// o(w,s,a)dz(s)da since ® =0 for s > a

Now consider the bond price (1.2):
T
PuT) = |- [ s
¢

T
=WPtT) = —/ f(t,y)dy
t

Substituting (2.1) we have®:

(25)  WmPT) /nydy /(/( )dy Z/(/Ulvydzl()>dy

Now, apply the standard Fubini theorem to the double integral on a(v,y) and Corollary 0.1.1 to

the double integral on o;(v,y) to get:
t/ T
/ ( | stow dy> dz:(v)
t

—/tTf(o,wdy—/:(/fa(v,y)dy) do -
_ _/OTf(O,y)dy—/0t</vTa(v,y)d) /(/ oi(v,y dy> dz:(v)
o o ([ ([ e
Applying Corollary 012 to the last two terms of (26) gives:

[([ ) e ()
[([ene)orEf([Eemenc)s

and from (1.2) we know:

In P(¢,T)

||M§ 1 Ms \:\Ms

T
- /0 £(0,9) dy = n P(0,T)

6Here to improve readability, we suppress the notational dependence on w.
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hence (2.6) becomes:

InP(t,T) = lnP(O,T)—/Ot</v a(v,y) dy) dv—Z/ (/ oi(v,y)d ) dz;(v)
+/0tf(0,y)dy+/0t</0wt( )dy+2/</y/:7tlvydz,( )) dy

However, from (2.2) we have’:

/Otr(v)dv:/Otf((),y)dy-l-/ot(/oyz(v,y)dv) dy+i2:;/0t</oyi(u,y)dzi(v)> dy

and so the dynamics of the bond price process are:

InP(t,T)=InP(0,T) + /Ot r(y)dy — /0t</vTa(v,y) dy) dv

(2.7)
_Z/</ oi(v,y d>dzi(v)
Let:
T
(2.8a) ai(w,t,T) = / oi(w,t,y)d fori=1,...,n
tT
(2.8b) b(w,t,T) = / a(w,t,y)dy + = Za (w,t,T)

i=1
and (2.7) becomes:

In P(t,T) =1n P(0,T) +/0 (r(v) +b(v,T)) dv — % Z/o az(v,T) dv
(2.9) =t

n

+Z/0 a;(v,T) dz;(v) a.e. Q

i=1

which may be expressed in differential form as:

1 n n
dln P(t,T) = <r(t) +b(t,T) — 3 Z a?(t, T)) dt + Z a;(t,T) dz(t)
=1 =1
Now applying Ito’s Lemma, we find the stochastic differential equation satisfied by the bond price
P(t,T), to be:
o*pP OP

d(In P) d(In P) + — dt

oP 1
2 9(In P)* ot

a(In P)

dP(t,T) = d(In P) +

"Directly integrating (2.2) yields:

/Otr(y)dy:/Otf(O,y)der/Ot(/Ot ) dy+2/ (/ oi(v,y dzl(v)) dy

However, by definition of a(v,y) and o;(v,y) as drift and volatility parameters of the forward rate process, we
require v < y for all v,y € [0,7] and hence the upper limit on the inner integrals must become min (y,t) =y A t.
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where
orP p_ 0%P
d(In P) d(ln P)*
and so:
1 n
dP(t,T) = P(tT) <r(t) +b(t,T) — 3 Za?(t,T)) dt
i=1
n 1 n
+P(t,T) Y ai(t,T) dzi(t) + 5P(,T) > @i (t,T)adt
i=1 i=1
n
(2.10) = P(,T)(r(t) +b(t,T)) dt + P(t,T) > _ai(t,T)dzi(t)  ae. Q
i=1
Since in (2.10) both the drift term r(¢) + b(w,t,7) and the volatility coefficients
a;(w,t,T), i =1,...,n, may depend on the history of the Brownian motions, the bond price process

is non-Markovian.

2.3. Relative bond price process. Let Z(¢,T) = Plgt(’g)‘); T € [0,7], t € [0,T] be the time
t relative price of a T-maturity bond. Here, the bond price is expressed in terms of the money
market account, so its drift with respect to the short term interest rate is removed. Make use of

Ito’s Lemma to determine the dynamics of the relative bond price as®:

dZ(t,T) = aa%t(,g) dB(t) + % dP(t,T) + %% dP(t,T) dP(t,T)
P(t,T) dP(t,T)

= gz B+ gy 0

- —% dt + (r(t) + b(t, 7))~ g(’tf)r) dt + ; ait,T) 2 g(’tf)r) dzi ()
(2.11) — Z(t,T)b(t,T)dt + Z(t,T) zn: ai(t, T) dz(t)
Also: :

dinZ(t,T) = %t(t}? dZ(t,T) + %%(;’)? dZ(t,T) dZ(t,T)
1 1 1 2 ~ 5
= 72T dZ(t,T) — §Z2(t’T)Z (t,T) ;a (t,T)dt

(2.12) - <b(t, T)-1 Zn: a2(t, T)> dt + Zn: a;(t, T) dzi(t)

8Dynamics of the money market account are easily found from (2.3) as:

t
aB(t) = exp ( /0 r(y) dy)r(t)dt = B(t)r(1)dt
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Hence the integral form of the relative bond price process is:

t n t
(2.13) mZ(t,T) = 1nZ(0,T)+/ b(v,T)dv—%Z/ a2 (v, T) dv
0 = Jo

n oo
+ Z/ a;(v,T) dz;(v) a.e. Q
i=1 0

Again, the relative bond price is non-Markovian since the drift and volatility coefficients may depend
on the history of the Brownian motions through the cumulative forward rate drift and volatility
terms b(w,-,T) and a;(w,-,T), i =1,...,n.

3. Arbitrage free framework
In (2.10) we found the bond price process, under the probability measure @, to be:
dP(t,T) = P(t,T) (r(t) + b(t,T)) dt + P(t,T) > ai(t,T) dz(t)
i=1

Absence of arbitrage may be equated to the existence of a probability measure @ such that all
discounted security prices are martingales [20]. We wish to find this martingale probability measure
such that it is equivalent® to the market measure ) and the drift in (2.10) becomes r(t). Hence we

wish to find a vector of Brownian motions {Z(t),...,2,(t) : t € [0,7]} with n > 1 (and associated
adapted processes {7;(t);t € [0,7]} which define Z;(t) = — f(f ~vi(u)du + z;(t), ¢ = 1,...,n) such
that'?:
dP(tT) = PLT)(r(®) +b(t,T) + Y ailt, T)it) ) dt
i=1
+P(6,T) D ai(t,T) (—vi(t)dt + dz(t))
i=1
with
(3.1) b(t,T) + > ai(t, T)vi(t) =0

i=1

Since, by definition, b(¢,T') represents the cumulative drift of forward rates over [¢,T], (3.1) implies
a restriction is required on the forward rate process to ensure arbitrage free pricing.

9Equivalence of two probability measures, Q and (:j implies Q(A) = 0 if and only if @(A) =0, A € F, that is,
the probability measures have the same null sets [22].
10This is equivalent to finding an equivalent probability measure such that the relative bond price process (2.11)
has no drift term, i.e. may be expressed as:
n
dZ(t,T) = Z(t,T) > ai(t,T) dz;(t)

i=1
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3.1. Specification of the martingale measure. Let us examine necessary and sufficient
conditions on the forward rate process ensuring the existence of a unique, equivalent martingale
measure and hence arbitrage free pricing.

CONDITION 4. Euxistence of the market prices of risk. Set Si,...,S, € [0,7] such that
0< S <8 <...<8, <7 andlet X be a Lebesque measure. Assume there exist solutions

Vil Sty 8) 1 2 %x[0,5;] 2 R fori=1,...,n ae QxA
to a system of equations specified as:

b(t,S1) ay (¢,51) ... an(t,51)] [ (%S, ...,S0) 0
(3.2) : + : : =|:

b(t,Sn) ay(¢,Sn) ... an(t,Sn)| [yn(t;S1,...,50) 0

Also assume these solutions satisfy the following three conditions!':

S1
(3.3a) / V2 (v;S1,...,8y) dv < 400 ae. Q fori=1,....n
0

n S1 n S1
(33b) EQ exp (Z/ ’Yl(va Sla 7Sn) dZZ(U) - %Z/ 71’2(’0;517 . 7Sn) d’l))] =1
i=1 70 i=170
n S,
(330) EQ exp (Z/ (ai(vay) + ’Yi(’U;Sla 7Sn)) dzl( )_
i=1 70
1w [ 2
5 / (ai(vay)+’7i(v;‘517"'75n)) dU)] =1 foryE{Sl,...,Sn}
i=1 70
From the system of equations (3.2), we may view ~;(¢;S1,...,S,), ¢ = 1,...,n, as the mar-

ket prices of risk associated with each source of uncertainty, that is with each Brownian motion
zi(t), i=1,...,n.

The market price of risk is defined as the mean rate of return in excess of the risk free rate of
interest, normalised by the volatility of that return. From (2.10) the instantaneous expected re-
turn on a T-maturity bond is r(¢) + b(¢t,T) with a;(¢,T), ¢ = 1,...,n, the corresponding instan-
taneous standard deviations of bond return due to the ith random factor. Therefore, interpreting
~i(t;51,...,8n), i =1,...,n, as the market prices of risk associated with the sources of uncertainty,
this market price of risk relationship may be expressed as:

(3.4) b(t,T) = Z ai(t,T) (—=yi(t; S1,. .., 50))

where the market prices of risk ~;(¢;S1,...,S,), i =1,...,n, depend on the specific choice of bond
maturities {S1,...,Sn}. We see that (3.4) is equivalent to (3.1) which was derived using a heuristic
argument12.

The above Condition 4 guarantees the existence of an equivalent martingale measure. This is shown
by means of the following proposition.

L gP [-] is the expectation taken with respect to some probability measure P.
12The two formulae are equivalent up to the former’s dependence on a specific choice of bond maturities.
However, later in the analysis this dependence is eliminated.
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PROPOSITION 1. Ezistence of an equivalent martingale probability measure. Set Sy,...,S, € [0,7]
such that 0 < S1 < S2 < ...< S, < 7. Given a vector of forward rate drifts {a(-,S1),...,a(-,Sn)}
and wvolatilities {o;(-,S1),...,0:(-,Sn)}, @ = 1,...,n, which satisfy Conditions 1 - 3, then Con-
dition 4 holds if and only if there exists an equivalent probability measure QS1,...,Sn such that
{Z(t,S1),...,Z(t,Sn)} are martingales with respect to {F; : t € [0,5:1]}.

PRrROOF. The proof of this proposition is by the following to lemmas.

LEmMA 1.1. Assume Conditions 1 - 3 hold for some fixed {Si,...,S,} € [0,7];
0<SI<S2<---<SnST-

Define
¢ nooat
X(ty) = [ dodo+ Y [atwa)dat) Vi€l ye (Si....Sn)
0 = Jo
Then 7; : Q@ x [0,7] = R for i = 1,...,n, satisfies the following four conditions:
b(t,Sl) al(t,Sl) an(t,Sl) 'Yl(t) 0
(i) : + : : =|: a.e. Q X A
b(t,Sn) ai(t,Sn) ... an(t,Sn)| [n(t) 0
S1
(i) / Y2 (v) dv < +o00 ae. @ fori=1,...,n
0
n St 1 n St
(iii) exp 2/ ~i(v) dz;(v) — 52/ YVw)dv || =1
i=1"0 i=1"0
S1 S1
(iv) exp(Z/ (a;i(v,y) + vi(v)) dz; (v Z/ (ai(v,y) + 7i(v))? d)]:l

fory € {S1,...,S,}

if and only if there exists a probability measure @51, .5, such that the following are true:

~ S1 o
(a) dQsdliQS = exp (Z/ 7i(v) dzi(v Z/ n )

(b)  Z70Sn(t) = (1) — /0 vi(v)dv are Brownian motions on

(3

{(F,Qs,,...5,), (Fi;t €[0,81])} for i =1,.

dX(t,Sl) a1 (t,Sl) Ce an(t,Sl) d~51 """ Sn (t)
(c) - for t €[0,.51]

dX(t,Sy) ar(t,Sn) ... an(t,Sp)] [dz5r -5 (t)
(d)  Z(t,S;) are martingales on { (1, F, @517___7&), (Fi;t€[0,8])} fori=1,...,n

PrOOF. I have constructed this proof since HJM omit it from their analysis.

In the first part of this proof assume (i) - (iv) hold and show that (a) - (d) hold. Make use of the
Girsanov Theorem, see [19, Corollary 13.25]. Properties (ii) and (iii) satisfy the conditions for the

Girsanov Theorem and so there exists a probability measure Qsg, ....s, on (2, F') defined by (a) and
a corresponding n-dimensional Brownian motion on (2, F) Qsl, .S ) defined by (b).
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Consider the stochastic differential equation (2.11) describing the evolution of the relative bond
price Z(t,y):

dZ(t,y) = Z(t,y) b(t,y) dt + Z(t,y) Z a;(t,y) dzi(t)
dZ(t,y) -
7y = b(t,y)dt + ; ai(t,y) dz;(t)
hence
tdZ(Uay)_ ! v v - ta~v 2 (V) =
(35) [ Fy = owar+ X [ atvn o = Xt

by the definition of X (¢,y) and for all ¢ € [0,y], y € {S1,...,Sn}. Therefore:

i=1

and from (i) we have:
n

b(t7 y) = Z a; (ta y) (_'7i (t))

i=1
S0:

dX(t7 y) = Z a; (t7 y) (_'Yi (t)) dt + Z a; (t7 y) le(t)

i=1

— Z a; (t, y) (dZZ (t) — % (t) dt)

by definition of 27" in (b) and for all ¢ € [0, 51], y € {S1,...,S,}. Hence (c) follows.
From (3.5) and (c) we have:
dz(t,y)

Zty) =dX(t,y) = ; a;(t,y) dz5v S (1)

Now by [39, Corollary 3.2.6 | Z(t,y) is a martingale and hence (d) is satisfied.

Conversely, assume (a) - (d) hold and show that (i) - (iv) are true.
Again by (3.5) and (c) we have:

dZ(t,y) - =S 5
=dX(t,y) = a;(t,y)dz;> " (t
where dz7" 5" (t), i = 1,...,n, are defined in (b) as:
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Hence:
dZ(t,y) <~ '
Z(t,y) ;az(t,y) (dzi(t) — vi(t) dt)
= Z ai(t,y) (—i(t)) dt + Z a;(t,y) dzi(t)

But in (2.11) the process for Z(t,y) is defined as:
dZ(t,T) = Z(t,T) b(t,T) dt + Z(t,T) Y _ a;(t,T) dz(t)

i=1

hence:
b(tv y) = Z a; (t7 y) (_7i(t))

and (i) holds. The stochastic integral of any variable v;(t) with respect to a Brownian motion z;(t)
is defined only if ~;(¢) is square integrable (see [27, Definition 1.5]). Since this integral is defined
in (a), v;(t) is square integrable, hence (ii) holds. The Radon-Nikodym derivative (a) defines the
relationship between measure () and ésl,...,s , hence:

n

Z(0,y) = E9s15n [Z(Sy, y)]

|
2

I
2

n 5’1 1 n 5’1 9
= Z(0,y) B9 [GXP <Z/o (ai(v,y) +7i(v)) dzi(v) — 3 Z/o (ai(v,y) + 7i(v)) dv)]

hence (iv) holds. O
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LEMMA 1.2. Assume Conditions 1 - 3 hold for some fixed {Si,...,Sp} € [0,7];
0<S 1 <S<...<S8, <.
Define

X = [ b+ 3 [t dat) Vi€ ) v € (SiennSi)

Then there exists a probability measure @Q equivalent to @ such that Z(t,S;) are martingales on
{(F,Q), (F;t€[0,8])} for all i = 1,...,n, if and only if there exists 7; : Q@ x [0,7] = R for
i=1,...,n, and a probability measure @517___5“ such that (a), (b), (c) and (d) of Lemma 1.1 hold.

PRrROOF. Again, the following is my own analysis since HJM omit this proof from their paper.
First, suppose:

e there exists a probability measure @) equivalent to Q,
e Z(t,y), y € {S1,...,S,} are martingales under @,

and we need to prove there exists:

e vi,i=1,...,n, _
e probability measure Qs,.....s,.,

such that (a) - (d) hold.
Since probability measure @ is equivalent to ) we know, by the Radon-Nikodym Theorem (see [45])
that there exists a non negative random process N(t), t € [0, S1] such that:

dQ _

a0 - N(S1)

For any generic process to be a Radon-Nikodym derivative it must satisfy the following three con-
ditions [41]:

[
(1) N(0) =

(2) N(t) > 0 for all t € [0, 5],
(3) E?[N(S1)|F]=N(1).

Defining N (t) such that:
(t) = exp <Z /0 7i(v) dzi(v) = 5 >
i=1
then (1) and (2) are met. Taking the natural logarithm of N(¢) we have:
IHN Z/’Y@ dzz __Z/’Yz
= dIn N(t Z% ) dz;(t) __Z%
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By Ito’s Lemma we have:

ON(t)
OIln N(t)

1 82N(t)
dInN(t)+ - ——=
(¥ 2 lnN(t2

n

Z% ) dzi(t ——N Z’yf t)dt + N Z%
Z'Yz ) dzi(t

which, by the converse of the martingale representation theorem (see [39]), implies N (t) is a mar-
tingale and (3) holds. All the conditions for N(¢) to be a valid Radon-Nikodym derivative are met.
Hence, let @ Si,...5. be the equivalent probability measure defined by this specific formulation of
N(t). Then (a) holds, and by the Girsanov Theorem (see [39, Theorem 8.6.4]) the new Brownian
motion, Efl """ Sn (t), i =1,...,n, corresponding to the measure @517“,5" is defined by:

AN (t) = In N () dln N ()

Z0 S () = 2(t) —/0 7i(v) dv

and (b) holds.
Z(t,y), y € {S1,...,S,} are martingales under probability measure @, more specifically they are
martingales under the specific probability measure Qs,,....s,, and (d) holds. By the martingale

representation theorem we may write:

y) =Y ilt,y)dzm 5 ()
i=1

Now we may define a;(t,y) = wz’((tt;!))a =1

nl

.,n, and so:

i=1
dZ(t,y) - 5 s
= a;(t,y)dz;* ™ (t
T = S ult) 0
However, by the definition of X (¢,y) we showed above in (3.5) that:
dZz(t,y)
dX(t,y) = ——= f Siy...,8
( 7?}) Z(t,y) Orye{ 1, ) ’ﬂ}

and hence (c) holds.

Conversely, suppose there exist

.’Yiai:]-w"ana .
e probability measure Qs ,...s,.,

such that (a) - (d) are satisfied; we need to prove:

e there exists some probability measure @) equivalent to Q,
e Z(t,S;),i=1,...,n, are martingales under Q).
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Since Q S1,...5, and @ are related by the Radon-Nikodym derivative specified in (a) they are equiv-

alent, and we may sef Q= Qsl, .S.- By (d) Z(¢t,S;), i =1,...,n, are martingales under Qs,,....s,
and since Q = Q Si...s, they are martlngales under Q. O
Hence, by the proofs of Lemma 1.1 and Lemma 1.2 we have proved Proposition 1. O

This proposition states that, if Conditions 1 - 3 are satisfied, then Condition 4 is necessary and
sufficient to allow an equivalent martingale measure Q)gs,.....s, to exist. An important feature of the
proof of this proposition is Girsanov’s Theorem, which defines the equivalent martingale measure
as:

dQs, .5, =~ [ o1
. — A = €& ACH 17"'7 l i 1y-++yn
(3.6) dé’ exp Z ~i(v; S ) dzi( Z 72 (v; S Sp) dv
i=1"0
and a new set of independent Brownian motions
t
(3.7) S (1) = (1) — / (Wi Srs . S)dy fori=1,....n
0
on {(,F,Qs,,...5,), {Fs : 1 € [0, S1]}}.

An additional constraint needs to be imposed to guarantee the uniqueness of the equivalent mar-
tingale measure.

CONDITION 5. Uniqueness of the equivalent martingale probability measure. Set Sy, ..., S, € [0,7]
such that 0 < S1 < 83 < ... < S, <7 and assume

al(t,Sl) an(t,Sl)

a1(t,Sn) ... an(t,Sp)
is non singular a.e. Q X .

This Condition 5 is both necessary and sufficient to ensure that the equivalent martingale measure
is unique. This is proved in the following proposition.

PROPOSITION 2. Uniqueness of the equivalent martingale probability measure. Set Sy,...,S, € [0,7]
such that 0 < S1 < S2 < ...< S, < 7. Given a vector of forward rate drifts {a(-,S1),...,a(-,Sn)}
and volatilities {0;(-,S1),...,0:(-,Sn)}, © = 1,...,n, which satisfy Conditions 1 - 4 then Condi-
tion & holds if and only if the martingale measure is unique.

PRrROOF. The proof of this proposition is by the following two lemmas.

LEMMA 2.1. Set S < 7 and define 3; : 2x[0,7] = Rfori =1,...,n,to besuch that fo B?(v) dv < +00
a.e. Q. Also define:
I~ [*
T =inf(t€[0,S]; E|exp (52/0 B; (v)dv) >m

2 _exp<z/” ) dzi(v __Z/T“ )
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Then
n S 1 n S
2 —
E | exp (121/0 Bi(v) dz;(v) — 3 lzl/o B; (v) dv)] =1

if and only if {M™(S)}2°_, are uniformly integrable.

ProOF. Since f;(t), i = 1,...,n, is, by definition, a square integrable variable on (2, F, @),

then the Ito integral, given by X™(¢) = 7", JATW Bi(v) dz;(v) follows a continuous martingale

on (9, F,Q) [37, Proposition B.1.2.]. Every martingale is a local martingale'?, so by [19, Lemma
13.17]

M™(t) = exp (X™(1) - <Xm,Xm><t>)

L
2
tATm tATm
—eo (3 [ B0 - 33 [ B
is a supermartingale.

By definition, T}, is the lowest ¢ € [0, S] such that E [exp (% > fot B2 (v) dv)] > m, hence for all
t <T,, wehaveE [exp (% > fot B%(v) dv)] < m, in particular E [exp (% > fOTm 3% (v) dv)] < m.

Hence
n SAT, n T
exp (% Z/o B2 (v) dv) =E lexp (% ;/0 B2 (v) dv)] <m

i=1
and so by [19, Theorem 13.27] the supermartingale M™(t), t € [0, S] is a martingale and
(3.8) E[M™t)] =1 Vit e |0,S].

E

Now we need to prove both sides of the ‘if and only if’ statement:
(1) Assume {M™(S)}5°_, are uniformly integrable. By [19, Corollary 3.19]

lim M™(S) —exp( /[3, ) dzi(v /ﬂ2 ) a.s and in L'
m—»00
Taking expectations:
n S 1 n S
Blew (3 [ s dat) - 5> [ Be)dv)| = lim BM(S) =1
i=1 70 =170 e
by (3.8) above.

(2) Conversely, assume

n S n S
E | exp (Z;/O Bi(v) dzi(v) — %Z;/O CHQ) dv)] =1

13A local martingale may be defined [37, p. 462] or [27, Definition 1.7] as follows: A stochastic process
X = (X(t))¢>0 is said to be a local martingale on (Q, F,Q) if there exists an increasing sequence 7, of stopping
times such that 7, tends to T a.s., and for every n the process X™(t), given by the formula X" (t) = X(t A 1), is a
martingale.
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then this is a martingale and so

[exp (Z / Bi(v) dzi (v Z / 82(0) )‘

hence by [19, Theorem 3.20] {M™(S)}2>_, are uniformly integrable. O

= M™(S)

LEMMA 2.2. Assume that Conditions 1 - 3 hold for a fixed set {Si,...,S.} € [0,7],
0< S <...< 8, <7. Also assume that the following four conditions of Lemma 1.1 hold:

b(t,Sl) al(t,Sl) an(t,Sl) ’)/1(t) 0
(i) : + : : =|: a.e. Q X A
b(t,Sy) a1(t,Sn) .. an(t,Sn)| [ya(t) 0
S1
(ii) / 72 (v) dv < +oo ae @ fori=1,...,n
0
o n 1 n S1 ,
(iii) E* |exp ;/ v)dz;(v) — 3 ;/0 yi(w)dv || =1
n S1
(iv) exp(Z/ (ai(v,y) + 7i(v)) dzi(v ——Z/ (ai(v,y) +7i(v))? d)]zl
i=1
fory € {S1,...,S,}
Then v;(t) for i = 1,...,n, satisfying the above conditions are unique (up to A x @ equivalence) if
and only if
al(t,Sl) an(t,S1)
At) = :
ay(¢,Sn) ... an(t,Spn)

is singular with (A x @) measure zero.

Proor. First, assume A(t) is singular with (A x @)) measure zero. Since condition (i) holds we
have:

a1 (t,S1) ... an(t,S1)] [n() ~1(t) b(t,S1)
z =am| [ =—]
ay(t,Sn) ... an(t,Sn)] Lyn(t) Y (1) b(t,Sy)
Singularity with measure zero implies A(t) is invertible, hence we may solve for unique (up to Ax @)
vi(t)s;i=1,...,n, as:

M(t) b(t, 51)
| =—an |
Yn(t) b(t, Sn)
Conversely, define ¥ as the set on which A(t) is singular, that is ¥ = {t x w € [0,5] x Q :
A(t) is singular}. Assume that ¥ has (A x @)(X) > 0. Then proof is by contradiction. Hence,

having assumed A(t) is singular, we wish to show that the functions satisfying (i) - (iv) are not
unique.
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Firstly, since (i) - (iv) are assumed to hold, we have a vector of functions (71 (t), ..., v, (t)) satisfying
these conditions.

Part 1 We wish to show that there exists a bounded, adapted and measurable vector of functions
(61(t), ..., 0,(¢t)) which is non zero on ¥ and satisfies:

51 (t) 0

and where ¢(t), defined as:

_exp<2/5 ) dz; (v 2/5 v)y; (v dv—— /52 )

is bounded a.e. on Q.
Let ¥; = {(t,w) : A(t) has rank i}. ¥; has the following properties:

e Y, is a measurable set,
o X = U?z_ll by
e X,NX; =0fori+#j,

Fix n > 0. On each ¥; set 7 (¢), i = 1,...,n, to be a solution to'*
o7 () 0
an | ;| =
on(t) 0

such that 67 (¢) is bounded by min {n,1/7;(t)i = 1,...,n}. Also, let §;(¢) be zeroon ¢ i = 1,...,n.
By construction, d; (t) are adapted, measurable and bounded by 7. Also:

Z/ 87 (v)yi(v) dv + = Z/ 67 (v)? dv
i=170 25 o

< nt+ lnt172
= 2+477]int aeQ

Set « =inf {j € {1,2,3,...}: (%)MS < 1} and define inductively the following stopping times:
no o
— . (1/2) ) 1
71 = inf (t € [0,5]: E / d; (v) dzi(v) > 5)

= inf (t €1[0,9]: Z/ 1/2)2]+a (v) dz;(v) > (—;)1) for j =2,3,4,...

14Here we iteratively build vector 67(t). That is for each ¥; we determine element 67 (t), until the entire vector
has been determined.
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We need to show that the claim Q(lim;_,o, 7; = S) = 1 is true. First consider:

n s 2j+a 1\J
Z/ 51(1/2) (v) dz;(v)| > (5) FT]-1>
i=1"Ti-1

S

Qry <S|Fy,) < Q (

2j4a 2
< (1/12)2]. / (5§1/2) ! (U)) dv by Chebyshev’s Inequality
1 s a2
< 2% / ((%)27“’) dv by the boundedness of §; (v)
1 )2
S
1 1\2j+a
< g (@70)'s
1N27 /11 20
- 3 (3) s
1\2j . 1\2«x
< (5) by choice of a such that (5)**S <1

and hence E[Q(r; < S|Fy,_,)] = Q(r; < S) < (3)%. Now consider!®:
Q(hm T < S) < Q(ﬂ(T] < S)) < inf [Q(Tj < S) 1= 1,2,3,...] =0

j—00
J J=1

hence:
Qjim 7 =5) =1-@Q(fim 5 <5) =1

and we have proved the claim. Set

o0

5y =510 STy fori=1,....n

[1j,mj41] 7t
i=0

By this construction of §;(t) we know it is bounded, adapted, measurable and satisfies:

91(t) 0
Alt) | - =|: ae. A x @

Also for all t € [0, S] we have:

i/ot 0i(v) dzi(v)| < i(%)g —9

and so
n

wwwqiﬁk@mw—Zékmwwwéiéﬁw@)

i=1
is bounded a.e. A x Q. Part 1 is complete.

15 his result is by Fatou’s Lemma, e.g. see [37].
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Part 2 Now, to complete the proof, we wish to show that (v1(t) + 61 (¢), ..., (t) + 6, (¢)) satisfies
(i) - (iv).

Consider condition (i). We need to show that:

b(t, S1) T (t) + 61(t) 0
5 + A(t) : =|: a.e. Q X A
b(t, Sn) Yn(t) + 0n(t) 0
Since (y1(t),...,vn(t) satisfies (i) we have:
b(t7 Sl) it (t) 0
: + A(t) : =|: a.e. Q X A
b(t, Sn) n (t) 0
and by construction above
51 (%) 0
A | | =
On () 0

Hence condition (i) is satisfied.
To satisfy condition (ii) we require

S1 2
/ (%(v)+6i(v)) dv < +00 ae Q,i=1,...,n
0

Expanding the integration, we have:

/051 (%’(U) + 5i(v))2 dv
S

51 Sl
= / %2(1;) dv + 2/ ~i(v)d; (v) dv + (52»2(1)) dv
0 0

0
Since 7;(v) satisfies condition (ii) and from part 1 we know

/ 0;(0)vi(v) dv + = / 67 (v

is bounded, we conclude (y;(t) + d;(t)), i = 1,...,n, satisfy condition (ii).
Condition (iii) requires:

exp(Z/Slm +6;(v) dz; (v 2/31% +6;(v)7 d )] 1

To show this condition holds, follow the proof of Lemma 2.1. Define:

Tm:inf{te[OS [exp( Z/ i () + 6;(v))° d )] m}

i/OTMA;i(v) + 6;(v) dz; (v Z/T " v))2dv>

i=1

M™(t) = exp (

and we need to show that {M™(S)}2_; is uniformly integrable.
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We have
n T AS n T, AS
M™(S) = exp <Z/0 vi(v) dzi(v) — %Z/O 7 (v) dv) X
n T AS n T AS n T, AS
exp (Z/O i (v) dzi(v) — Z/O ¥ (v)8; (v) dv — % Z/O 52 (v) dv)

From part 1 we know that

n T, AS n T.AS T AS
exp (Z:/o 0i(v) dz;(v) — Z/O ~i (v)d; (v) dv — %Z/O 62(v) dy)

i=1

is bounded by some value, say K > 0. Hence:

n T NS n T NS
OSMm(S)SKexp<Z | wane -3 [ vf(v)dv>

and since ~;(t) satisfies condition (iii), the right hand side is uniformly integrable and hence it may
be shown that M™(S) is uniformly integrable.
Finally to show that condition (iv) is satisfied, we must show:

S1 S1
EleXp<Z/ azvy)'i'%()'i'(s( dzl _%Z/ alvy-i-% )+6()) )] 1

fory € {S1,...,Sn}
Again, following the proof of Lemma 2.1 we define:

exp( Z/ ai(v,y) + vi(v )+5()) ) >m}
_exp<2/TAc;vy + 73 (v) + 6;(v)) dz;i (v ——Z/TAc;vy +'yl()+6i(v))2dv>

and the condition holds if {M™(S)}>°_, is uniformly integrable. M™(S) may be decomposed as:

M™ _exp<Z/T ASalvy ) + i (v) dz, ——Z/T Asalvy )+ vi(v ))2dv>><
ex (Z/T /\S ) dzi(o Z:/T /\salvy () -~ (0)5( dy——Z/T /\s )

By choice of §;(v) in part 1 we have

Tm:inf{tE[OS

n_ T, AS
Z/o a;(v,y)d;(v)dv =0

i=1
and

o (i /OTMAfSi(v) Do) - i/OT AS  )60)do - _Z/T /\s >

i=1
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is bounded by some value, say K > 0. Therefore we may write:

T AS T AS 5
0< M™(S) < Kexp Z/ alvy + i (v) dzl Z/ alvy + (v )) dv

and since ~;(t) satisfies condition (iv), the right hand side is uniformly integrable and hence it may

be shown that M™(S) is uniformly integrable. O
Hence, by the proofs of Lemma 2.1 and Lemma 2.2 we have proved Proposition 2. a
Conditions 1 - 5 impose restrictions on the market prices of risk, ~;(¢;S1,...5,), ¢ = 1,...,n
which results in restrictions on the drifts of the forward rate processes {a(:, S1),...,a(-,Sp)}. These

restrictions are required to guarantee the existence of the unique equivalent martingale probability
measure for relative bond prices {Z(t,S1),...,Z(t,Sn)}, 0<S1 < S2<...< S, <.

3.2. Model dynamics under the martingale measure. Let us now determine the dynam-
ics of the forward rate and bond price under this equivalent martingale probability measure. In
(3.7) the Brownian motions with respect to the equivalent martingale measure are defined as:

(3.9) dziv oS (t) = dzi(t) — vi(t; Si,.. ., Sp)dt i=1,...,n

Substituting into (2.1), the dynamics of f(¢,7") under the equivalent martingale measure are:

f(t,T):f(O,T)Jr/O a(v,T)dv+Z/0 i (v, T)Yi(v;S1, ..., Sy) dv
(3.10) =t

To determine the bond price process under the equivalent martingale measure, substitute (3.9) into
(2.10) and make use of the market price of risk equation (3.4) to give:
n
dP(t,T) = P(t,T)(r(t)+0b(tT))dt+ P(t,T) Z ai(t,T) (dz7" 5" (t) + vi(v; S1,.. ., Sy) dt)

i=1

I
~
iy
=
—~
SN
Q.
Iy
+
Y
—~
~
N
A
W'Ms
N
Q
=
=
o
‘U}
3
—~
N
o
D
Q
n
n
g
=
N
m
n
Y
©n

Also from (2.9), the logarithm bond price process, we have:

P(t,T)=P(0,T)exp (/0 r(v)dv — %Z/o aZ(v,T) dv

(3.11)

Similarly, the relative bond price under the equivalent martingale measure may be determined from
(2.13) as

1 Y ! 2 - ! . ~S1,.ey Sn
pip DO (_5 Z;/o Tyt Z;/o ai(v,T) d2; (v)>

ae. Qs,, s, forT €S,...,5,



4. ELIMINATING THE MARKET PRICES OF RISK 148

Although these processes evolve in a risk neutral economy, the forward rate process (3.10) (and since
r(t) = f(t,t), also the short term interest rate process) displays explicit dependence on the market
prices of risk, v;(v; S1,...,5n), i = 1,...,n. Hence, to price any security depending on either the
short or forward interest rate, the market prices of risk must be known.

4. Eliminating the market prices of risk

Equations (3.10) - (3.12) depend on a specific set of n bond maturities, with maturities {S1,...,Sn},
for which the market prices of risk exist. These are the n bond maturities which define the equivalent
martingale measure.

By making an additional assumption, specified in the condition below, we show that there exists a
unique equivalent martingale measure simultaneously making relative bond prices of all maturities
martingales. This allows the dependence on n specific bond maturities to be eliminated and pricing
equations (3.10) - (3.12) become entirely independent of the number and maturity of bonds used to
determine the equivalent martingale measure.

CONDITION 6. Common equivalent martingale measures. Given Conditions 1 - 3, let Conditions
4 and 5 hold for all bond maturities Sy,...,S, € [0,7] with 0 < S} < ... < S, < 7. Also,

Q = QSI7"'7Sn'

PROPOSITION 3. Uniqueness of the equivalent martingale probability measure across all bond matu-
rities. Given:

e a family of forward rate drifts {a(-,T) : T € [0, 7]},
e a family of forward rate volatilities {o;(-,T) : T € [0,7]}, i =1,...,n

which satisfy Conditions 1 - 5, then the following are equivalent:

@, defined by @ = Qvgl,___75n for any Si,...,Sy €[0,7] is the unique equivalent probability

4.1a
(4.12) measure such that Z(t,T) is a martingale for all T € [0,7] and t € [0,T].

~i(t; 81, ..., Sn) = vi(t; Thy ..., Ty) fori=1,...,nand S1,...,Su,T1,...,T, € [0,7],

4.1b
( ) t€0,7] such that 0 <t<S;1 <...< S, <7, 0<t<T1<...<T, <.

(4.10) alt,T)=—=3" 0:(t,T)(¢i(t) — ftT oi(t,v)dv) VT €10,7], t € [0,T] where for

e
i=1,...,n ¢;(t) =i(t;S1,...,Sn) for any S1,...,S, € [0,7] and t € [0, 54].

Hence, the existence of the unique equivalent probability measure @ which makes all relative bond

prices martingales, is equivalent to the condition making market prices of risk independent of the

specific bond maturities chosen, which is equivalent to the above restriction on the drift of the

forward rate process. All of the above conditions ensure an arbitrage free framework.

Examine the derivation and resulting implications of each of the above conditions in turn. (4.1a) im-

plies the martingale approach to bond pricing. Z(t,T') is a martingale with respect to the equivalent
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probability measure @, hence:
Z(t,T) = B? [Z(T,T)|F}]

- 40— [2BB)s] - o]

Then, by Girsanov’s Theorem:

(4.2) P(t,T) = B(t) B¢ | =% ——

where dg is the Radon-Nikodym derivative defining the equivalent martingale probability measure.
From (3.6) and the above proposition, showing the independence of the market prices of risk of
bond maturity 7" and equivalently the uniqueness of the equivalent probability measure across all
bond maturities, the Radon-Nikodym derivative may be written as:

Z = exp( / @i(v) dz;(v / ¢2 )

exp (S0 i 6iv)dzi(v) = 00, ) 6 (v) av)
B(T)

and so (4.2) becomes:

(4.3) P(t,T) = B(t) E?

When pricing under the original market measure ), the bond price is explicitly dependent on the
money market account B(T) and the market prices of risk ¢;(¢), ¢ = 1,...,n. This introduces an
implicit dependence on:

e forward rate drifts under the market measure {a(-,T) : T € [0, 7]},
e forward rate volatilities {o;(-,T) : T € [0,7]}, i =1,...,n,
e initial forward rate curve {f(0,T): T € [0, 7]}.

Condition (4.1b), requiring the independence of the market prices of risk of bond maturity, is a
necessary condition for the absence of arbitrage. It is a standard condition, imposed by many
earlier models (e.g. Vasicek [46], Cox, Ingersoll and Ross [16] and Brennan and Schwartz [9]) to
derive the fundamental partial differential equation for contingent claim valuation.

Condition (4.1c) imposes a restriction on the functional form of the family of drift processes
{a(:,T) : T € [0, 7]}, which is required to ensure the existence of the unique equivalent martingale
probability measure. Not all possible forward rate drift processes will comply with this condition.
Examine closely the derivation of (4.1c). By (4.1b) the market prices of risk are independent of the
set of bond maturities specified, so (3.4) is equivalent to (3.1) with ~;(¢) = v;(¢; S1, ..., Sn) = &;(t).
Making use of the definitions of a;(¢,7) and b(¢,T) in (2.8), equation (3.4) becomes:

b(t,T) =

M-

a;i(t,T) (= ¢i(t))

n n

Zaf (6T)+ Y ai(t, T)ei(t)

i=1

2

l\)l»—t

T
/t
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Differentiating with respect to 7" yields the required form of the forward rate drift restriction:
at,T) = ZaltTmtT Zalthbz
i=1

= at,T) = —Za,tT ¢i(t) +a;(t,T))

:_Zme%@w—KZMWWﬂ

To eliminate the market prices of risk from the forward rate process (3.10), make use of this forward
rate drift restriction. Integrating the restriction in (4.1c) over [0, #] yields:

/Ot a(v,T)dv = — i /Ot oi(v,T)p;(v) dv + i /Ot o (0.T) /Tai(v’y) s

v

Substituting into (3.10) yields the forward rate process under the equivalent martingale measure
and independent of market prices of risk as:

" MJﬁﬁ@n+gékmnlkmw@w+gﬂkmn&m>
ae.Q VO<t<T

From (1.3), we have r(t) = f(¢,t), and the short term interest rate process may be expressed as:

r(t):f(O,t)+Z/0 Ui(v,t)/ Ui(v,y)dydv+2/0 o5 (0, ) dZ:(v)

ae.Q V telo,r]

(4.5)

Here, the market prices of risk have been replaced by a series of forward rate volatilities of various
maturities. Hence, the short term interest rate for time ¢ is determined using all possible volatility
information contained in the term structure over the time interval [0, ¢].

The bond price in (3.11) is not an explicit function of the market prices of risk, these enter only
via the short term interest rate process 7(¢). Hence the formulae for the bond and relative bond
prices (3.11) and (3.12) remain unchanged once the market prices of risk have been eliminated,
except the Brownian motion no longer depends on the specific n bond maturities chosen, that
is dz7* %" (-) = d#%(+). Additionally the formulae may be applied to bonds of all maturities
T,Te[0,7]

The original formulation of the CIR [16] model (see Chapter 2) begins with a characterisation of an
equilibrium economy. The functional form of the short term interest rate process and the market
price of risk are determined from within this economy. CIR criticise arbitrage pricing theory on the
grounds that it exogenously specifies the functional form of the short term interest rate and market
prices of risk, independently of an underlying equilibrium economy. They show that this may lead
to inconsistencies and a model admitting arbitrage.

However, in this model the interdependence of the short term interest rate process, bond price
process and market prices of risk is easily seen in equations (3.10) - (3.12). Additionally, HIM make
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use of information contained in the bond price process to eliminate the market prices of risk from
the pricing formulae. This makes their general pricing framework immune to the criticism of CIR.

5. The problem with forward rates

By (4.4) we see that the forward rate process is completely specified by the volatility functions
oi(,), i = 1,...,n. Consider a framework with one source of uncertainty and so one volatility
parameter. For practical implementation it is desirable to apply a lognormal volatility structure
for all forward rates [41]. This is because market prices of caps and swaptions assume a lognormal
structure of forward rates. Hence, set o1(t,T) = of(¢t,T), where o > 0 is a constant. However,
under this volatility structure (4.4) becomes:

T
(5.1) A7) = 1(0.T) [ F(t.9)dydt+ af(6.T) )

Here, the drift of the forward rate grows as the square of the forward rate [45] and causes the
forward rate to explode in finite time. Therefore, for calibration purposes an upper bound needs to
be imposed:

o1(t,T) =ocf(t,T)min{M, f(¢t,T)}
This problem is not particular to the HJM model, but rather a characteristic of all lognormal models
of instantaneous forward rates.

6. Unifying framework for contingent claim valuation

HJM impose conditions on the forward rate process to ensure that a unique, equivalent martin-
gale probability measure exists and hence the process is consistent with an arbitrage free market.
This implies that the market is complete and contingent claims may be valued using an approach
detailed by Harrison and Kreps [21] and Harrison and Pliska [22]. Harrison and Pliska examine
martingale theory within a continuous trading environment, presenting a general methodology for
contingent claim valuation. First consider some important concepts and definitions characterising
this methodology:

(1) If Qis a set of probability measures, equivalent to initial probability measure ) and making
discounted prices martingales, then by Harrison and Pliska [22, Corollary 3.36]: if Q is a
singleton'S then the market is complete.

(2) In a complete market there are enough non redundant securities being traded [20], such
that every integrable contingent claim is attainable.

e By attainable, we mean that there exists some trading strategy, requiring an initial
investment and thereafter producing the same cash flows as the contingent claim.

e A trading strategy may be viewed as some portfolio of securities, where the number
of units of each security held changes through time.

(3) Define a contingent claim as a random variable X : @ — R, X > 0 which is Fr, measur-

able!”. Since contingent claim X must be integrable, we require E [%] < 4o00.

(4) Denote an admissible, self-financing trading strategy Y by {No(t), N1(t), ..., Nn(t)} where
N;(t) is the quantity of asset P;, i = 1,--- ,n in the portfolio at time .

16 singleton is a set having a single element
T isa security entitling the holder to a payment at time 77. The magnitude of this payment depends on the
history of price movements up to time 77, hence it is F;;, measurable.
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e A trading strategy is admissible if it is self-financing and the value of the associated
portfolio remains non negative through time. This implies that an investor enters the
trading strategy with positive wealth and is never in a position of debt.

e A self-financing trading strategy is one where changes in value of the portfolio are
due to capital gains (changes in value of the instruments held) only, not due to cash
inflows and outflows. Let V;(Y) be the time ¢ value of trading strategy Y, then by
[20, Definition 1] a self-financing trading strategy is one where:

dVi(T) = iNi(t) dPi(t)

(5) An arbitrage opportunity is some trading strategy Y such that V5(Y) = 0 and
E[Vr, (T)] > 0. The existence of arbitrage opportunities is inconsistent with an equi-
librium in the economy.

(6) Harrison and Pliska present a theorem showing that a market is free of arbitrage oppor-
tunities if and only if Q is not empty. Hence the absence of arbitrage opportunities is
equivalent to the existence of an equivalent martingale probability measure.

(7) By Harrison and Pliska [22, Proposition 2.9], if X is an attainable contingent claim gen-
erated by trading strategy Y, with time ¢ value V;(Y) and Cj € Q then:

Vt(T):E@[ X

B(1) B(Ty)

Ft:| , t€[0,T1]

Now, consider the economic framework characterised in the previous sections: Let Conditions 1 - 6
hold. By Proposition 3, there is a unique equivalent measure Q making all Z(¢t,T), T € [0,7], t € [0,T)
martingales. Since @ is unique, the market is complete and there exists an admissible, self-financing
trading strategy, as denoted above, such that the portfolio value satisfies:

(6.1) No(T1)B(T1) + ZNTi (T)P(T1,T;) =X ae. Q
=1
where
No(Ty) — amount held in the money market account at time 77,
N, (Th) — amount of bond with maturity time T in the self-financing strategy at time 7,
P(Ty,T;) — time T value of a bond maturing at time Tj,
X — time T payout of a contingent claim.

Now, since we are in a complete market where all contingent claims are attainable and where a
unique equivalent martingale measure exists, we conclude that arbitrage opportunities do not exist
and the time ¢ price of a contingent claim paying X at time 7} is given by:

(6.2) EQ [%

Ft} B(t)
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Hence given (6.1), the trading strategy which generates X, the time ¢ value of the portfolio is:

] X
= | 5 Ft}B“

= B9 N + +ZNT T) T“f) | B@)
(6.3) = E9 | No(Th) + NTl Tl Zn:NT T\)Z(T\,T.)| F,| B(t)

Therefore, to value the contingent claim, the dynamics of the short term interest rate r(¢) and the
relative bond price Z(¢,T) must be known under the equivalent martingale measure. Since the
market is complete, every contingent claim may be replicated by means of some admissible, self-
financing strategy consisting of only the money market account and some n bonds with maturities
Ty,...,T, €0,7]. From this we conclude that all contingent claims may be valued.

7. Ho and Lee model within the HIM framework

By way of an illustrative example, consider the continuous time equivalent of the Ho and Lee [24]
model (studied in Chapter 10) within the above specified framework.

7.1. The model specifications. Consider a model with a single Brownian motion and hence
single volatility parameter o1 (w,t,T) = o > 0 where ¢ is a constant. Assume Conditions 1 - 6 are
satisfied with {f(0,7) : T € [0, 7]} the initial forward rate curve and ¢(w,t), t € [0, 7] the market
price of risk corresponding to the single source of randomness. From (4.4) the forward rate process
with respect to the equivalent martingale measure is:

f@&,T) = f(0,7) +/0 o?(T —v) dv+/0 o dz(v)
= f(0,T)+ [U2Tv 021)2] :j) +0z(t) — 0Z(0)
(7.1) = f(0,T)+0*t(T — > t) +0(t)

and hence the short term interest rate process is specified as:
ot?
(7.2) r(t) = f(t,t) = f(0,t) + 5 + oZ(t)

Since there are no restrictions placed on the evolution of forward or short interest rates, there exists
a positive probability of negative forward and short term interest rates. To determine the bond
price dynamics, substitute (7.1) into (1.2) to give:

P(t,T) = exp <— /tT (f(o,s) + U2t(s - %t) + aé(t)) ds)
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From the definition of the forward rate (1.1), we have:

dln P(0, s)
0 = ——F
£(0,5) .
T T
dln P(0, s)
= — 0,s)ds = ——d
| o = [Tt
P(0,T)
=1
" PO,
and so:
_ P(0,T) U2 2 1 2 15T .
P(t,T) = exp <1n P00 [50 ts® — o7t s]s:t —o(T —t)2(t)
_ P(O,T) | o .
(7.3) = P00 exp <—2 o’ tT(T —t) — o(T — t)2(¢)
7.2. Pricing contingent claims. Define the following notation:
C(t) — time t value of a European call option on bond P(t,T),
K — option exercise price,
t* — option expiry date, 0 <t <t* <T.

At expiry of the option, its value is:
C(t*) = max {P(t*,T) — K,0}

Making use of (6.2), the time ¢ value of the contingent claim is'®:

max { P(t*,T) — K,0} B(t)
B(t*)

Fy

(7.4) Ct)=E l

An analysis, similar to that used in the initial formulation of the Black Scholes valuation formula,
yields the contingent claim price to be!?:

(75) C(t) = P(t,T)N(hy) — KP(t,t*)N (h2)

with

(7.6) = In (K’}(Ef;l)) + Lo (T — °)2(t* — t)
o(T — t*)\/t* —t

and

hQZhl_U(T_t*) t* —t

The above formula is a modification of the Black Scholes option pricing formula where the required
volatility is the standard deviation of instantaneous returns on the forward bond price, that is the
standard deviation of returns at time t* of a bond maturing at time T'.

18Here E [-] denotes the expectation taken with respect to the equivalent martingale measure.
19Here N(-) is the cumulative normal distribution.
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From (2.10), the bond price process within the current framework is:

T
dP(t,T) [..]dt - P(t,T) / o dv dz(t)

= [.]dt—P(t,T)o(T —t)dz(t)

and so the standard deviation of the forward bond price 1;((:3;)) =Pt*,T),iso(T—t)—o(t*—t) =
o(T —t*).

8. Comparison of equilibrium and arbitrage pricing

The CIR model [16] (studied in Chapter 2) is an example of equilibrium pricing methodology, while
the HJM model makes use of arbitrage pricing. In order to compare the two methodologies, we
examine the CIR model within the HIM framework.

CIR use a square root process to model the single underlying state variable, the short term interest
rate, 7(t), t € [0,7]. Hence, the short term interest rate process is specified as:

(8.1) dr(t) = k(0(t) — r(t)) dt + o\/r(t) dz(t)

where the constants r(0), k, 0 > 0, 6(t) > 0 are continuous and {z(¢) : t € [0,7]} is a standard
Wiener process. To ensure that negative interest rates are precluded, the restriction 2k0(t) > o
for all t € [0, 7] is imposed, making r(t) = 0 an inaccessible boundary.

The time ¢ price of a T maturity bond (T € [0,7], t € [0,T]) is assumed to be of the form?’:

(8.2) P(t,T) = A(t,T) e B&Dr (1)
and so, in equilibrium the bond price dynamics are represented by:

dP(t,T) = P(t, T)r(t)[1 — AB(t,T)]dt — P(t,T)B(t,T)o/r(t) dz(t)

where?!
V(T-t) _
(83 BT = s (;) (@@ : 0 +2y
(8.3b) InA(t,T) = —k /tT 8(s)B(s,T)ds
(8.3¢) v = (k+A)? + 20

and )\ is a constant related to the market price of risk such that ¢(t) = —’\Tm. This functional form
of the market price of risk is not arbitrarily specified, but is determined directly by the underlying
equilibrium economy.

From (1.1), the forward rate is defined as:

F(4,T) = Oln P(t,T)
T oT
20Here, B(-,-) is used rather than the more conventional B(,-), so as not to cause confusion with the money

market account B(-), used in the derivation of the HJM model.
21These are the functional forms of B(t,T) and A(t,T) as presented in equations (10.4) and (10.5) of Chapter 2.
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So, making use of (8.2) and (8.3b) the form of the forward rate curve is:

F4,T) = —g(lnA(t,T) B(t,T)r(t))
- r(t)aBa(tTT ( / 0(s)B(s,T) ds)
-, _ 20D aB £,T) / ” aB (s T)

While HIM allow the initial (t+ = 0) forward rate curve to be an exogenous input, here the initial
forward rate curve has a pre-specified functional form. The functional form is dependent on the
parameters of the specific model (i.e. s, o, Aand #(-)) and may be determined by evaluating (8.4)
at time ¢t = 0:

(8.5) £0,T) = ()aBOT / o(s 8BsT)

To allow any specific initial forward rate curve to be matched, CIR suggest solving (8.5) for
{6(t) : t € [0,7]}, thereby determining the time dependent short term interest rate drift parame-
ters from the initial forward rate curve. However, CIR do not attempt an implementation of such a
methodology or prove the existence of such a solution. Additionally, the CIR model is not consistent
with all possible forward rate curves since it imposes the restriction 2k6(t) > o2 for all t € [0, 7].
Consider this restriction in terms of the parameters of the forward rate process. Substituting the

restriction 6(t) > % into the initial forward rate process (8.5) we have??

0T = T(O)BBOT /9 aBsT)

0B(0,T) o2 [T 8B(s,T
> r(O)iéT ) t5 /0 78(T ) ds
_ T(O)M+£477<i_ 1 )
B oT 2 (Y+e+AM)\2y (y+e+A)(T—1)+2y
_ oB(0,T) (T —1)
= 0 ar 7 (vy+ K+ (T 1)+ 2y
oB(0,T B(0,T
= r(0) éT )+a2 (2 )
22By definition of B(t,T) we have:
oB(t,T) 4y2ev(T—8)
O [(y+r+X)(e7T=D —1) +29]°
and so:
0 oT B 0 [('y+n+)\)(e’Y(T—S) — 1)4»2')/}2
_ 4y 1 s=T
O (HEEN (X T) — 1)+ 27|

dy (L_ 1 )
(v+E+M0)\2y  (v+r+X) (T —1) +2y
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Hence only initial forward rate curves satisfying this functional form are admissible.

One of the key features of the HJM framework is the restriction placed on the forward rate drift,
which ensures that profitable arbitrage is precluded. We need to derive the forward rate process in
such a form so as to verify that this restriction is satisfied within the CIR equilibrium framework.
Apply Ito’s Lemma to (8.4), treating the forward rate as a function of the stochastic variable r(t)
and time ¢, that is f(¢,T) = f(r(t),t,T):

df (4, T) agit(’t)T) r(t) %La{« ((i) D) ar(ty dr(p) + 2LED) g;T) dt
_ 7‘938(;:”_617«@) + r(t)ia_ gT(gtT) dt — vty 2BE D) ;;T) dt
(8.6) = ) (a gT(gtT) _ 08 a(tT’T)> dt + o/7(0) % dz(t)

This is a representation of the CIR model within the HJM framework, hence the short term interest
rate r(t), written in terms of the forward rate, which is taken as the starting point of the HJM
framework, is (from (8.4)):

r(t) = <f(t7T)_H/tT0(S)aB(§;T) ds)/aéa(;:T),

The initial forward rate curve {f(0,T) : T € [0, 7]} is an exogenous input and is used to determine
6(t), t € [0,7] as a solution to (8.5).
The HIM no-arbitrage condition (4.1c) requires that the forward rate drift «(¢,T’) has the form:

a(t,T) = —o(t,T) <q§(t) _ /t " tt0) dv)

where o(t,T) is the volatility of the forward rate and ¢(¢) the market price of risk. Within the CIR

model the market price of risk has the fixed functional form ¢(t) = —A—V:(t) and from (8.6) the

forward rate volatility is % o+/r(t), hence the forward rate drift must have the form:

B VT ToB(t,v
alt,T) = —Max/r(t)<—>\7(t)—/t BB(;Z, )U\/r(t)dv>

oT
oB(t,T) 0B(t,T)

= 7r(t) (AT + U2B(t,T)T>

From (8.3a), the definition of B(t,T) we have:

ABE(t,T) . 4Ay2er(T=1)
O [(y+&+N)(T=) =1) +29]’
and
_ B 2~27(T—1) (eV(T—1t) _
S2B(t,T) 0B(t,T) __ 8a%y% (e 1)

O [(y+ &£+ N)(1T=) = 1) +29]°
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hence:
oB(t,T) = 0B(t,T)
A T +0°B(t,T) 5T
AT [(y + 6+ A) (€T — 1) + 29] + 802427 T8 (e7(T=1) — 1)
[(y+ K+ (T —1) + 27]3
®.7) 42T [(e(T=0) — 1) (202 + A2 + Ak + Ay) + 2)]

[(r+ 5+ N (@ T = 1) +29]°
However, in (8.6) the forward rate drift is represented as:

ot <825’(t,T) BB(t,T)>

orot " aT
Again from (8.3a), the definition of B(¢,T), we have:

?B(t,T) 8

4/)/267(T7t)
OTOt Ot | [(y+k+N) (1T — 1) +25]°
AP TII [(y 4+ e+ N (T = 1) +29] + 897 T (y + K+ 1))
[(y + &+ X)(eT=0 — 1) +25]°

and so:
82§(t,T) 8B(t,T)

oTor " oT
—4y3e T D [(y 4+ K+ A) (7T — 1) + 29] + 83> T (v 4+ k + A)

[(v+ 5+ M) (T = 1) +29]°
472’ T [(7 + 5+ X) (777D — 1) + 29]
- [(y+ K+ (T — 1) + 27]3
4927 T=D (7T — 1)(y% — k% — A& + \y) + 2\7]
[(v+ 54+ ) (T = 1) +25]°

From (8.3c) we have:
72 = k24206 + A% + 207
> k2= Xe=202 + X2 + Xk

and so
0’B(t,T) 0B(t,T)
orot " aT
®.8) _ 4727 T=0 (7T — 1)(202 + A2 + Ak + \y) + 2)\9]

(7 + 5+ A (T — 1) +24]°

Comparing (8.7) and (8.8) we see that:

OB(t,T) OB(t,T) 0°B(t,T) B K@B(t,T)
oT or 0Tot or

and the CIR forward rate drift satisfies the HIM no-arbitrage condition (4.1c).

A +o?B(t,T)
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The fundamental difference between the above two approaches is that CIR fix the functional form
of the market price of risk (this market price of risk is determined such that an underlying economy
is in equilibrium) and derive the forward rate process endogenously. HJM take some form of the
forward rate process (determined by an unrelated exogenous methodology) and use it to determine
the prices of contingent claims, ensuring that profitable arbitrage is precluded.

9. Markovian HIM model

In term structure models such as the Vasicek [46] and CIR [16] models, the starting point is the
dynamics of the short term interest rate. The drift and volatility are specified such that the short
term interest rate is Markovian. In the HJM framework the forward rate volatility and initial
forward rate curve are used to characterise the term structure. Such a specification may give rise
to non Markovian short term interest rate dynamics. In fact many HJM-based models cannot
occur in a framework of Markovian short term interest rates. The Markovian property of the short
term interest rate is desirable since it allows for simpler numerical valuation procedures of the term
structure and interest rate contingent claims since:

e The term structure at time ¢ is a function of ¢, maturity T" and the time ¢ short term
interest rate.

e The evolution of the short term interest rate may be modelled using a recombining tree or
lattice, which has significant implications for computational efficiency.

Carverhill [12] and Jeffrey [29] characterised restrictions on the volatility structure of forward rates
that lead to Markovian short term interest rate dynamics.

9.1. Deterministic bond price volatility. Carverhill requires the bond price volatility struc-
ture to be deterministic, that is a;(¢,7) = — ftT oi(t,v)dv, i =1,...,n are functions of ¢t and T only.
Also each a;(t,T) is assumed to be twice continuously differentiable with respect to the maturity
time 7.

Consider the short term interest rate process within the HIM framework (4.5):

(9.1) r(t) :f(O,t)+Z/0 Ui(v,t)/ai(v,y) dydv+2/0 o5 (0, ) dZi(v)
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Taking the derivative with respect to ¢, the dynamics of the short term interest rate may be found
as:

dr(t) = dt—l—Z/ <0’Z v, t)oi(v,t) + 801(;7; .t /UUZ(U Y) dy) dv dt
+Zaltt /Ulty dydt+2/ aa”’t dz;(v) dt
+ Z oi(t,t) dz(t)

E 2 o))

+Z/ ag’“ dt+201ttd2l()

i=1

92 - (

Carverhill [12] gives the following necessary and sufficient condition for the above short term interest
rate specification to be Markovian:

Assuming o;(¢t,T) # 0, T € [0,7], t € [0,T],¢ = 1,...,n, then there exist functions g;(-) and h;(-)
such that:

(9.3) oi(t,T) = gi()hi(T) VT €0,7], t€[0,T),i=1,...,n

The HL model, as examined in §7, satisfies the above condition. It corresponds to a forward rate
volatility o(t,T) = o, where o is a strictly positive constant. The short term interest rate is defined
in (7.2) and leads to short term interest rate dynamics of the form>?

(9.4) mw:(@%ﬁ+f0m+a&@

The disadvantage of the HL model that, only parallel shifts in the term structure are possible, is
clearly demonstrated by the short term interest rate dynamics. We expect shorter maturity forward
rates to be less volatile than longer maturity forward rates. Hence, in an attempt to obtain more
realistic term structure dynamics, let the forward rate volatility be a decreasing function of time,
more specifically, allow for an exponentially dampened volatility structure: o(¢,T) = oge~1(T—1)
where v, 0 > 0 are constants. Making use of (4.4) the corresponding forward rate process is:

T
df (t,T) = ge=(T=1) / oe "0 dy dt + oe~7(T=8 dz(t)
t

2
=T T (e "D —1)dt + ge 7T dz(t)
v

23The short term interest rate dynamics may be determined using (9.2) with n = 1 and o(¢,T) = 0.
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From (9.1) the short term interest rate is expressed as:

t 2 t
r(t) = £(0,t) + / T emn(t=v) (1—e ) do + / ae” ") 4z (v)
o 7 0
2

t
= F0,8) + o5 (1—e ") + / oe ) gz (v)
2y 0

=Y(t) + /0 t oe "¢V dz(v)

where 9(t) = f(0,t) + % (1- e‘”t)Q.

Now, using (9.2), the short term interest rate process is specified as:

t
d’[‘(t) _ <6fg)); t) +/0 026727@70) _ 02677@70) (1 _ e’y(tv))dv> dt

t
- / ove ") dz(v) dit + o di (1)
0

2 t
_ (M T et (1—e ) - / gye1(E=0) di(v)) dt + o dz()
ot ¥ 0

= (' (t) + v (t) — yr(t)) dt + o d3(1)

This is an extension of the constant parameter Vasicek model studied in Chapter 1. Here the mean
reversion level ¥ (t) /v +1(t), is a function of time, but the speed of mean reversion «, and volatility
o, are constant. The Hull-White extension of the Vasicek model (see (2.1) Chapter 7) allows for time
dependent reversion level, reversion speed and volatility. However, Hull-White observe that allowing
all three parameters to be time dependent leads to unreasonable evolution of the volatility structure
and hence they recommend a model where reversion speed and volatility are kept constant. It
appears that the formulation of the Vasicek model within the HJM framework results in an optimal
extension of the model.

9.2. More general framework. Jeffrey [29] develops a more general result, allowing a sto-

chastic volatility structure. However, he restricts the volatility to be a function of valuation time ¢,
maturity time 7" and the time ¢ short term interest rate r(¢) only. Consequently, within a one factor
framework (n = 1) the HIM forward rate volatility may be expressed as o(w,t,T) = o(r,t,T).
Notice that o(r,t,t) is the volatility of the short term interest rate, as shown in (9.2).
In this analysis, the requirement that the term structure be a function of ¢, T' and the Markovian
short term interest rate r(t) leads to restrictions on the form of the forward rate volatility structure
and the initial forward rate curve. These restrictions take the form of necessary and sufficient
conditions indicating;:

(1) which HIM models exhibit Markovian characteristics, and;
(2) what volatility and initial term structure restrictions are inherent in models within a
Markovian setting.
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Jeffrey shows that a forward rate volatility o(r,¢,T), leads to a Markovian short term interest rate
if there exist functions 6(r,t) and h(t,T) such that:

o(rt,T) /tTa(r,t,v) dv = % 6(r. 1) + % [/0 % dm}

22{a(r,t,T)}

ot | o(r,t,t)

(9.5)
+h(t,T) + % o(r,t,1)

To illustrate this condition, consider a constant forward rate volatility structure, that is o(r,¢,T) =
o. By (9.5) we must find a 6(r,t) and h(t,T') such that:

8(r,t) = o*(T — t) — h(t,T)

A simple choice of h(t,T) = o>T gives (r,t) = —o?t and the required condition is satisfied.
Hence the associated short term interest rate is Markovian. Now, consider a forward rate volatility
structure o(r,t,T) = or® for some 3 > 0. Evaluating (9.5), we require

0(r,t) = o2r*?(T —t) — h(t,T)

which is impossible, since there is no choice of h(¢,T) such that the right hand side is independent
of T. We may conclude that this forward rate structure is not admissible in a Markovian short term
interest rate paradigm.

Further to the above condition, Jeffrey formulates a requirement on the structure of the initial
forward rate curve. Given a forward rate volatility structure satisfying (9.5), the associated initial
forward rate curve must have the form:

(9.6) f@ﬂjﬁz/wﬂﬁﬁﬁz

T
0 U(m,0,0) dm+k( )

where k(T') = — fOT h(s,T)ds for any h(t,T') that is valid for (9.5) to hold. Since the set of allowable
initial forward rate curves is determined by the choice of h(¢,T') in (9.5), Jeffrey presents a result
[29, Theorem 1] detailing the restrictions on the initial forward rate term structure.

We have o(r,t,T), a volatility structure satisfying (9.5) and let £(¢,T) be a deterministic function
of t and T'. Then one of the following is true:

e If o(r,t,T) is not of the form &(t,T)o(r,t,t), then there is only one pair of functions 6(r, t)
and h(t,T) such that (9.5) holds. Here k(T), and the allowable initial forward rate curve
is completely defined by o(r,t,T).

e If o(r,t,T) is of the form &(¢,T)o(r,t,t), then the set of valid pairs of functions 6(r, t) and
h(t,T) satisfying (9.5) may be represented as:

o (" t,T
o(r,t) = — —/ omt D)l — e
ot Jo o(m,t,t) Tt
h(t,T) = &(t,T) (c(t) — hy(t, 1)) + hyp(t, T)

where h,(¢,T) is any particular h(¢,T) satisfying (9.5) and c¢(t) is any function of time ¢.
The choice of ¢(t) is such that any function k(7T') (and hence any initial forward rate curve)
may be fitted in (9.6).

This result clearly demonstrates that the volatility structure and initial forward rate curve can-
not be fitted independently. If the volatility structure is not of the form £(¢,T)o(r,t,t), then it
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uniquely determines the allowable initial forward rate curve. If the volatility structure is of the form
&(t,T)o(r,t,t), then k(T) may be chosen to fit any initial forward rate curve.
Consider the short term interest rate model proposed by CIR [16] as studied in Chapter 2. The
short term interest rate process has the form (see equation (6.1) Chapter 2):

(9.7) dr = k(8(t) — r)dt + o/rdz(t)

Since the short term interest rate volatility o(r,t,t) = o4/r, is not purely deterministic, and it is
reasonable that the associated forward rate volatility maintains this stochastic characteristic, it is
not allowable within the analysis outlined by Carverhill. However, we show that the forward rate
volatility associated with the CIR short term interest rate process does in fact satisfy the criteria
for a Markovian short term interest rate as set out by Jeffrey.

Consider the analysis of the CIR model within the HJM framework in §8. The forward rate process
is derived in (8.6) as:

_ 0’B(t, T)  0B(t,T) OB(t,T)
(9.8) df (¢, T) = r(t) ( aTor. a7 ) dt + o7 o/ r(t) dz(t)
and so the forward rate volatility o(r,¢,T) may be found as:

or,t,1) = 22D o /i

oT
_ dy?er 0 o /r(D)
(v + A+ 8) (1T — 1) + 27)
Since o(r,t,T) is of the form &(¢, T)o(r, t,t), with
472ev(T—t)
(v + A+ R)ETD —1) + 29)°

we conclude that the short term interest rate within the CIR model is Markovian and that any
initial forward rate curve may be fitted?*.

§t,T) =

10. Conclusion

HJM develop a new methodology for modelling the term structure of interest rates. They make use
of a process describing the evolution forward rates to derive a methodology for contingent claim
valuation, which is free from arbitrage and independent of the market prices of risk. By modelling
forward rates, the stochastic behaviour of the entire term structure, not just the short term interest
rate is modelled at any point in time. This allows information from the term structure to be used
to eliminate the dependence on market prices of risk.

For the single factor case, the HJM formulation does not add much to previously developed models
such as the extended Vasicek Hull-White and BDT models. In fact, the complexity of the calibration
and contingent claim valuation procedures may act as a deterrent. However, within a multi factor
context the elegance of the HJM framework is undeniable. The methodology provides a coherent
framework allowing easy incorporation of additional factors. The resulting increase in computational
time tends to be linear (as opposed to exponential increases exhibited by other models). This is

24The admissible initial forward rate curve will be subjected to the requirement that 2x0(t) > o2, as explained
in §8. However, this restriction is required to prevent negative interest rates and is not associated with the Markovian
nature of the short term interest rate process.
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because the non Markovian nature of the model makes Monte Carlo simulation the valuation tech-
nique of choice. This allows easy valuation of path dependent options, but does become problematic
for American style contingent claims.



CHAPTER 12

Brace, Gatarek and Musiela Model

1. Introduction

1.1. A continuum of forward rates. All the models examined thus far have been based

on instantaneous short term or forward interest rates. This implies that the fundamental building
blocks, that is default free bonds, are assumed to be continuous (or smooth) with respect to the
tenor. Even the discrete time models such as Ho and Lee [24] (see Chapter 10) and Black, Derman
and Toy [5] (see Chapter 8) which make use of a discrete set of discount bonds, assume these are
extracted from an underlying continuum of default free bonds. Such a continuum of default free
discount bonds is not actually traded, nor does the associated continuum of instantaneous short
term or forward interest rates exist.
This assumption need not be problematic since calibration of the models often requires a discreti-
sation of the continuous time processes. Additionally traded instruments are only contingent on a
discrete number of points on the yield curve. For example, the pricing and hedging of a forward
contract on the discrete forward rate' f(¢,T, T + §) requires the existence of two bonds P(¢,T) and
P(t,T + 0), maturing at the expiry and payoff times respectively. Similarly, a swap based product
depends on bonds maturing at the start of the swap and at the payment times of the fixed leg.
Usually it is only a small set of discrete discount bonds that determines the price and associated
hedge of such LIBOR-based? instruments. Given a complete set of spanning forward rates, the
required set of bonds may be recovered. Hence, a complete set of spanning forward rates provides
a sufficient description of the yield curve enabling the pricing of LIBOR based instruments.

1.2. The lognormality assumption. Caps and floors are fundamental components within
a swap and swap derivative market. A cap (floor) is a strip of caplets (floorlets) which are calls
(puts) on an underlying forward rate. The market convention is to assume a lognormal structure for
the forward rate process and hence to price each of these options using the Black futures formula.
However, as shown in §5 of the previous chapter, allowing the instantaneous forward rate to assume
a lognormal volatility structure causes it to explode in finite time. This implies that all forward rates
cannot be lognormal under a single arbitrage free measure. One could conclude that the market
prices of caps and floors are flawed in some way and inconsistent with an arbitrage free framework.
Brace, Gaterek and Musiela (BGM) [8] consider discretely compounded forward rates and show
that a lognormal structure may be imposed while maintaining an arbitrage free framework. In the
HJM model of instantaneous forward rates, a single spot arbitrage free measure is applied to all
forward rates; while BGM assign, to each forward rate, a forward arbitrage free measure defined by

Here f(t,T,T + 6) represents the time ¢ value of the forward rate applicable over the interval [T, T + 4].
2London Interbank Offer Rate, this is one of the most frequently used discrete forward rates.

165
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the settlement date of the associated forward rate. This model then justifies the use of the Black
futures formula for pricing caps and floors?.

2. Initial framework

The mathematical framework used by BGM is much the same as that used by HIM. We have a
probability space (2, {F};t > 0}, C~)) where () is the state space and the filtration {F};¢ > 0} is the
Q-augmentation of the filtration generated by the n-dimensional Brownian motion = {(t);t > 0}.
Since we make use of the arbitrage free results of the HIM analysis, @ is the risk neutral probability
measure with Z the corresponding Brownian motion. The trading interval is specified as [0, 7] where
7 > 0 is fixed. The following processes are defined on this probability space*:

e f(t,T) denotes the instantaneous, continuously compounded forward rate prevailing at
time ¢ for maturity 7. The process {f(¢,T);t < T} satisfies:

(2.1) df (¢, T) = o(t,T) - o* (¢, T) dt + o(t, T) - d3(t)

where o(t,T) is the forward rate volatility and o*(¢,T') ft o(t,v) dv.

e P(t,T) = exp( j; ft,u) du) describes the price evolution of a T-maturity discount
bond, and so:

(2.2) dP(t,T) = P(t,T)r(t) dt — P(t,T)o*(t,T) - d3(t)

where ¢*(t,T) may be interpreted as bond price volatility and hence o*(¢,t) = 0 for all
t>0.

e Defining the short term interest rate r(t) = f(t,t) for all t > 0, the money market account
is represented as:

(2.3) B(t) = exp < /0 o) dv)

with initial condition B(0) = 1.

We know that if discounted bond prices PBTS;) t € [0,T], T > 0 are martingales under some

probability measure @, then we are in an arbitrage free framework. Within this framework, the
bond price may be represented as®:

(2.4) Pétgt?) = Pé()(,oi)“) exp <— /Ot *(s,T) — —/ lo*(s,T)] ds)

3Here the observation needs to be made that the market does not appear to distinguish between forward measures,
and hence forward probabilities, at different maturities

4The initial BGM formulation [8] of these processes uses r(t,z) to represent the instantaneous forward rate
prevailing at time ¢ for maturity ¢ + . I feel this formulation obscures any value it adds and hence I maintain
consistency with the notation used in Chapter 11 by using f(¢,T) to denote the time ¢ instantaneous forward rate
for maturity T'. The obvious relationship between the two representations is r(¢,z) = f(t,t + ).

5See equation (3.12) of Chapter 11.
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3. Model of the forward LIBOR rate

Specifying the above model of the instantaneous, continuously compounded forward rate is equiv-
alent to determining the volatility function o(¢,T) (or equivalently o*(t,T) where o*(¢,T) =
ftT o(t,v)dv). Fix some § > 0, then the LIBOR rate process {L(¢,T);t € [0,T],T € [0,7]} is
defined as:

(3.1) 1+ 0L(t,T) = exp < / " F(t,v) dv)

T

Imposing a lognormal volatility structure on L(¢,T'), the associated stochastic process may be writ-
ten as:

(3.2) AL(t,T) = pyge,m dt + L(t, T)y(t, T) - d (1)

where pir(¢, ) is some drift function and 1 : R? — R" is the deterministic, bounded and piecewise
continuous relative volatility function. Letting h(t,T) = TT +o f(t,u) du we make use of Ito’s Lemma

to determine the correct functional form of (3.2). Hence:

2
aL(t,? .7y + LPLET)

(3.3) dL(t,T) = 3 ot 1)

dh(t,T) dh(t,T)

Here:

dh(t,T) = d ( /T e du)

T+45
= / df (t,u) du

T

_ / M(a(t, u) 0" (b, u) dt + o (t,u) - d5(1) ) du

T
T+6 * 2 T+6
:/T %Wdudﬂﬁ o(t,u) du - d3(t)

T+6 T
=%(IU*(t,TH)IQ—Ia*(t,T)|2) dt+/ U(t,u)du-dé(t)—/t o(t,u) du - d3(t)

t

= %(|a*(t,T+6)|2 _ |g'*(t’T)|2) dt + (U*(t,T-{-&) —U*(t,T)) ()

therefore:

dh(t, T) dh(t,T) = d ( /T AT du) d ( /T " ) du)

= |o*(t,T + 8) — o (t,T)| dt
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and (3.3) becomes:

ALt T) = %exp ( Tmf(t,u) du> (% (Io* (L. + ) ~ lo* (. )

+% 0" (t, T + 8) — o™ (¢, 7)) dt + (U*(t,T +0) - a*(t,T)) : dé(t))

= %(1 +5L(t,T)) (|g*(t,T+5)|2 — 0" (t,T) ‘U*(t,T+5))dt
+ %(1 +6L(t,T)) (U*(t,T+5) 3 U*(t’T)) )

(3.4) = (1 +6L(t, T))a*(t, T +6)- (0* (t, T +6) — o*(t, T))dt

| =

1 * * ~
+3 (1 + 6L(t,T)) (a t,T+0) -0 (t,T)) - d3(1)
Hence by (3.2) we require:

%(1 +01(,7)) (0" (1,7 +6) = 0° (1, T)) = L(t, T (2, T)
SL(E,T)

(3.5) = o*(t,T +68) — o*(t,T) =

= 1o D

and so (3.4) may be written in terms of the (7" + §)-maturity bond price volatility as:
(3.6) dL(t,T) = L(¢t, T)y(t,T)-o*(t, T + §)dt + L(t,T)y(¢t,T) - dz(t)

Alternatively, solving (3.5) for o*(¢,T 4+ 0) we may write this LIBOR, stochastic process in terms of
the T-maturity bond price volatility as:

SL(t,T)?

B ALt T) = (LN ET) -0 0T) + T g

[t T) ) dt + L(t, T, T) - d2(1)
Now let us assume® o*(t,T) = 0 for all + € ((T —90) VO,T] and T € [0,7], then a recursive
relationship may be used to define o*(¢,T) for T —t > § as”:

"I SL,T — ké)

(3.8) o (t,T)= Y T SLT k) v(t, T — kb)
k=1 ?

6T his assumption implies the volatility factor disappears for all rates where 0 < 7" — ¢t < §, that is the time
between valuation date and maturity date is less than §. This allows for the construction of a tractable model. We
have o*(t,t) = 0 for all ¢ € [0,T] since this is the price volatility of an instantly maturing bond. Relationship (3.5)
implies:
OL(t, T —6)

T)=0c*"(t,T -0+ —————~ _~(t,T -4
oTBT) =0 (0T = 8) + T pr s (6T = 9)
hence, for T =t + 6
SL(t,t)
tt+0) =0 (t,t) + ————>—~(t,t) =0
o (bt +8) = 0" (0,8) + s (b

since y(¢,t) = 0 is the volatility of the spot LIBOR rate. So, since ¢*(¢,T) =0 for T =t and for T =t + § we
let o*(¢,T) = 0 for all T € (¢,t + J) as well. This is equivalent to ¢*(¢,T) = 0 for ¢t € (T —4,T).
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Substituting this recursive relationship into (3.6), the stochastic process describing the evolution of
LIBOR may be written purely in terms of LIBOR rate volatilities as:

§~H(T—t)
SL(t,T 46 — ko N
dL(t,T) = L(t, T)y(t,T)- > " ;L(t T 5o 125) v(t, T + 6 — kd)dt + L(t, T)y(t, T) - d(t)
k=1 ?

Letting j = k — 1 we have:

s~ (T—t)—1

(3.9) dL(t,T)=L(t,T)y(t,T)- Y
j=0

SL(t,T — j6)
1+0L(t, T — jo)

v, T — jo)dt + L(t,T)y(¢t,T) - dz(¢)

4. Forward risk neutral measure

The framework within which the HJM model is derived, in fact the framework within which the
above analysis is performed, is the risk neutral framework. This is characterised by a risk neutral
probability measure under which all discounted asset prices are martingales. Other risk neutral
probability measures may be defined in a similar way, allowing various asset/option pricing problems
to be solved. Changing between probability measures is associated with numeraire changes. This
allows the numeraire to be chosen in such as way as to expedite the option valuation procedure.
Consider a non dividend paying security X (¢), which is a martingale under the risk neutral proba-
bility measure @ There exists a probability measure Q¥ such that the price of any asset relative
to X is a Q¥ -martingale. The probability measure Q¥ is defined by the Radon-Nikodym derivative
with respect to Q) as [20, Theorem 1]:
aQ* _ X(T)

(4. 0~ XO)BT)

since the money market account B(t), is the numeraire asset associated with probability measure
Q.

Calculating the time t price of an asset generating a cashflow at the future time 7' lends itself to
a T-maturity discount bond as numeraire. Let QT denote the probability measure associated with
P(t,T) (T-maturity discount bond) as numeraire. Making use of (4.1), we define this probability
measure as:

Q" P(T.T)
(4.2) 10~ PO.T)B(T)

T T
= exp (—/0 o*(s,T) - d3(s) — %/0 lo*(s,T)|? ds) from (2.4)

"By (3.5) we have:
SL(t, T — 6)

U*(taT):U*(taT*‘s)‘Fm’Y(t:T*‘S)
SL(t,T — 25) SL(t,T — 5)
=0 (t, T —20) + — == (4, T —20) + — =" (1, T —§
ot ) Tt —2) ' vy o e RACE L)
SL(t,T — ko) SL(t,T — 6)

=o*(t,T — ké) + Y(t, T — k&) +--- + y(t, T — 6)

L+ 6L(t, T — ko) 1+ 6L(t, T — 5)

Since, by assumption, o*(¢,7) = 0 for T'— ¢ < ¢ the first term on the RHS vanishes for T'— ¢t — kd < § i.e. the
term vanishes for k > §~1(T —t) — 1, hence the upper bound for the summation index is k = § 1 (T — ¢t).
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Now since the relative price of a T-maturity discount bond is a martingale with respect to the risk
neutral measure and P(0,7) is known at time ¢, we define:

QT
dQ Ip,
gl

n =

P(0,T)B(T)
___P@T)
~ P, T)B(t)

— exp (- /Ot (5, T) - d5(s) —%/Ot 0% (5, T ds> from (2.4)

By the Radon-Nikodym derivative (4.2), we have for any asset S(-):

Q7 _ 0 Q71 _ pa

(1) 5 (1) = B2 [S(7) | = B2 (T e
and for conditional expectations we make use of Bayes’ Rule to yield [45]:
(4.4 B (S(T)|Fi) = - B2 [S(T)ne | )

_ BOPO,T) -5 S(T)

-oen = [ smran |7

__S5®

- P(t7)

since the relative asset price % is a martingale under probability measure @ and P(0,T) is known

at time ¢. Since the time ¢ forward price for time T of asset S may be written as [37]:

S()

FST(t7T) = P(t T)

we observe that the forward price process Fs,(t,T), t € [0,T], follows a martingale® under the
measure Q7. Hence this measure is referred to as the forward martingale measure or forward
neutral probability measure.

We use Girsanov’s Theorem (for example see [37, Theorem B.2.1.]) to define the new Brownian
motion under the forward martingale measure as:

t
(4.5) 2T(t) = 2(t) -I-/O o*(u,T) du
8Since
Fs,(T,T) = Pf;T;) =S(T)

we may write

B9 [Fs, (1,7 7] = 597 (S(T) | ) = S = s, 1,T)

and hence Fs,.(t,T), t € [0,T] follows a martingale.
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5. Forward LIBOR rate with respect to the forward measure

Consider (3.6), the LIBOR rate process represented in terms of the (T + §)-maturity bond price
volatility:

(5.1) dL(t,T) = L(t, T)y(t,T) - o*(¢t, T + 6)dt + L(t,T)v(¢t,T) - d2(¢t)

We may introduce a new n-dimensional process zT *9(t) corresponding to time T + § where

(5.2) dz" VO (t) = d2(t) + o*(t, T + 8)dt

and a corresponding probability measure QT ¢, equivalent to Cj , under which 27 *4(¢) is a Brownian
motion. By (4.2), this new probability measure, called the forward measure, may be defined as:

dQT*°  P(T+6,T+9)
dQ  P(0,T+0)B(T +4)

T+6 1 [T+0
(5.3) — exp (-/ o* (5, T + 6) - d3(s) — 5/ 0% (5, T + 5)° ds)
0 0
Now, considering (5.1) and making use of (5.2) we have:
(5.4) dL(t,T) = L(t,T)y(¢,T) - o™ (t, T + 6)dt + L(t,T)y(¢t,T) - dz(¢)

T)y
— L(t, T)y(t,T) - ( 2(t) + o™ (¢, T + 6)dt)
= L(t,T)y(t,T) - d="*°(t)

Hence, each forward LIBOR rate L(¢,T) follows a lognormal martingale process under the forward
measure corresponding to its settlement date 7'+ 4.

Using a forward measure for a date other than the settlement date, will require a drift adjustment.
Consider (3.7), the LIBOR rate process expressed in terms of the T-maturity bond price volatility:

SL(t,T)?

55 dLT) = (LEDHET) 0" (6T) + Tospis

(£ D)) dt + L(t, T)1(1,T) - d2(t)

Making use of (5.2) and (5.3), we define the Brownian motion and forward probability measure
corresponding to time T', the expiry date of the forward LIBOR rate, as:

(5.6) dz"(t) = dz(t) + o*(t,T)dt
and
QT P(T,T)

dQ ~ P(0,T)B(T)

T T
(5.7) — exp <_/0 o*(5,T) - d(s) — %/0 10 (s, T) ds>
respectively, and so (5.5) becomes:
dL(t,T) = % Iy (t, T dt + L(t, T)v(t, T) - (dé(t) +o*(t,T) dt)
SL(t,T)?

= Trorm 1T dt+ Lt Dyt T) - d" (1)
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SL(t,T)
T+ L(t,T)
the expiry date of LIBOR is used. Making use of the recursive relationship of bond price volatilities
shown in (3.5) and (3.8), the drift adjustment for any forward measure may be found. Equation
(3.9) shows the drift adjustment when the spot measure is used. This corresponds to the money
market account as numeraire and hence may be viewed as the time ¢ measure. From this we may

conclude that under this spot measure, no forward LIBOR rate follows a lognormal martingale.

where |v(t,T)|” is the drift adjustment required when a forward measure corresponding to

6. Derivative pricing
Let us consider a cap on the forward LIBOR rate. Settlement is in arrears at times T}, j = 1,...,n,

+
with cashflows at time T} equal to 6(L(Tj_1 JTj—1) — n) for each j = 1,...,n, where & is the strike
price of the cap. Consider the cap price at time ¢, ¢ < Ty. By the risk neutral valuation principle,
the arbitrage free price is given by:

n
Cap(t) <= .5 5(L(Tj—1,Tj_1) —K,)
(6.1) ) = 3 E? e .

From (4.4) we have:

and so:

(@ - n)+

E“ F,
B(T}) '
P(t,T;) T 6(L(Tj_1, Tj-1) - H)+
=) pgQy P(0,T;)B(T;)| Fi
P(0,T;)B(t) B(T;)
P(t,T; T; +
= ﬁ EQ |:(5(L(Tj1,Tj1) - Ii) Ft:|
Substituting into (6.1) the cap price may be written as:
(62) Cap(t) = 3 P(.1) B |5(L(Ty-1,T5-1) - x) ‘ |

Jj=1

where each cash flow is valued under the forward measure corresponding to payment date 7). Here

EQ [[] denotes expectation under the time T; forward measure Q7. This forward measure is
defined, using (4.2), as:

2 (Po.TB)) "

dQ
T; T;
= exp <—/0 o*(s,Tj) - dz(s) — %/0 |U*(S,Tj)|2 dS)
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From (5.4) we know L(t,T;) may be represented as a lognormal martingale under the forward
measure QTi+1, hence:

dL(t,Tj) = L(t, Tj)v(t, Tj) - dz="5+* (¢)
and so given the time ¢t forward value of the time T; LIBOR rate we have:

69 ) =twTen (- [ AT e -1 [ henP )

Now consider the process followed by L(%T) By Ito’s Lemma we have:

1 A T) 1 62ﬁ
t t
dL(t,Tj) T OL(t,T;) dL(t,Tj) + 57611( )2 dL(t,Tj)dL(t,T})
L(t,Tj) L(t T)

~dz"(t)

dz"i+1(t) TRAGLE dt

1

W(taTj)m

where

dz"(t) = —d2"i+1(t) + (¢, T}) dt
is the Brownian motion corresponding to probability measure Q* under which L(+TJ) is a lognormal
martingale. This change of measure affects the drift but not the volatility coefficient, hence as in
(6.3) we may write:

(6.4) L L. /Tj (s,Ty) - dz"(s) 1/Tj| (s, T;)|” ds
. = X — ). N — .
L(T;,T;) ~ LTy P\~ ), 70 2 ),
From (6.2) we see that the cap is made up of a series of n call options on LIBOR, or caplets, maturing
at times T}, j = 1,...,n respectively. Consider the value of a caplet with cashflow occurring at
time Tj4q:
Q Tj41 +
Caplet(t) = 0P (t, Tj,1) E (L F
T]
= 0P(t,Tjs1) B2 [ LT )I{L( Tj) >k} Ft]
T;
= 6P(t, Tjs1) (L( t,T;) PQ" {L(T ;) > n} — kPR {L(Tj,Tj) > n})
_ . apetf_ L IV et 1
(6.5) SP(t,T;s1) <L(t,T])]P’ {L(Tj,Tj) < n} kP {L(T],T]) > n}>

Hence, making use of (6.4) we have:
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where

h(t,T;) =

T;
FT) = [ s TP ds
t
Similarly, making use of (6.3), we have:

PO (T, 1) > k)

) T; 1 T;
:]P’QTJ-H{—/ S,T‘ 'dZTjJrl s) >1In <L> + _/ SaT' 2 ds}
61 a0 > 0 (7 ) +5 [ T
(T L(t,T; 1 h
= PRt {/ v(s,Tj) - dz"i+1(s) < In <¥> - 5/ (s, Ty dS}
t

= N(h(t,T)) — ¢(t,T)))

Substituting these results into (6.5), the time ¢ value of a caplet with cashflow at time T4, may be
written as:

(6.6) Caplet(t) = dP(t, Tjt1) (L(t, T;) N (h(t,T;)) — & N (h(t,T;) — ¢(t, Tj))>

and so, by equation (6.2) the time ¢ value of the entire cap is:
6 Caplt) = 3 6P 1) (L T0) N (A0, Ty-0)) = RN (M0 T5o) = plt.Ty-1)
j=1

7. Conclusion

The implications of the modelling approach presented by BGM are twofold. Firstly, we see that, in
order to justify the market convention of pricing caplets by means of the Black formula, one needs
to consider forward rates under a forward measure [8]. No forward rates are lognormal under the
spot measure, but rather under an appropriate forward measure, which depends on the settlement
date of the forward rate.

Secondly, the modelling framework presented here is somewhat different to that used by previously
studied models. Other models, specifically the HIM model (see Chapter 11), model unobservable
market parameters. Instantaneous forward rates, as modelled by HJM, are not observable and so
implementation requires a suitable discretisation. BGM have developed a continuous time model of
discrete forward rates which are market observable quantities.

One of the most difficult tasks faced by users of the traditional models is that of ensuring the recovery
of market observed values and volatilities [41]. Within the BGM framework the modelled variables
are in fact the market observed quantities, hence one is spared the difficult task of transforming
unobservable model parameters into values of traded quantities.

Another more subtle advantage is that the BGM model may be used to directly express views
about future values and volatilities of market observables. Via the BGM model, these predictions
are directly translated into option prices and the resulting option strategy will be a direct reflection
of the view taken on traded quantities.



CHAPTER 13

Calibration of the Hull White - extended Vasicek approach

1. Using information from the observed term structure of interest rates and
volatilities

Let [0, T*] be some trading interval. Data representing the term structure consists of the following:

r(t) — the instantaneous, continuously compounded short term interest rate at time ¢,
R(r,t,T) — the interest rate term structure, that is continuously compounded rates
for a series of maturity dates, T', T € [0, T*],
or(r,t) — instantaneous short term interest rate volatility,
or(r,t,T) — term structure of interest rate volatilities with maturities corresponding to those

of the term structure of interest rates.
The price of a zero coupon bond takes the functional form:
(1.1) P(r,t,T) = A(t, T)e B&D®
where B(t,T) may be found from the time ¢ term structure as (refer to (5.3) Chapter 7):
R(r,t,T)or(r,t,T)(T —t)
r(t)o,(r,t)

Letting ¢t = 0 denote the current time, the term structure of B(0, -) in terms of the current volatility
and interest rate term structures is:

B(t,T) =

R(r,0,T)ogr(r,0,T)T

r(0)o,(r,0)
The initial term structure of interest rates R(r,0,-) may be used to determine the term structure of
zero coupon bond prices, or discount factors as:

(1.3) P(r,0,T) = ¢~ Br0.T)T

(1.2) B(0,T) =

This term structure of zero coupon bond prices, together with the term structure of B(0,-) allows
the term structure of A(0,-) to be found as:

(1.4) A(0,T) = P(r,0,T)eBO1r©)

Within the HW-extended Vasicek framework, the time ¢ price of a European call option, with expiry
time T, ¢,T € [0,T*] and strike price X, on a zero coupon bond of maturity s is given by!:

(1.5) C(t,T,s) = P(r,t,5)N(h) — XP(r,t,T)N(h — 0,)

See equations (3.3) - (3.5) of Chapter 7.
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where

1 P(r,t,s) o
1. o= L POuts) | ow
(1.62) o VPt TIX 2

T 2
(1.6b) o2 = (B(O,s)—B(O,T))2/t (%) dr

or

2. Call option on a coupon paying bond

The option pricing formula (1.5) may be used to obtain the value of a call option on a pure discount
bond. However the bond options traded in the South African market are options on coupon paying
bonds. Jamshidian [28] developed the following methodology allowing options on coupon paying
bonds to be valued as portfolios of options on discount bonds.

Let P.(r,t,s) be the time ¢ price of a coupon paying bond maturing at time s, t,s € [0,7*]. P.(r,t, s)
consists of n payments ¢;, ¢ = 1,...,n at times s;, ¢ = 1,...,n where s; € [t,s]. The time ¢ price
of such a bond may be expressed as:

n
PC(T, t7 S) = Z CZ’P(T', t7 SZ)
i=1

At option expiry time T', the bond has m payments remaining. Let r* be the instantaneous con-
tinuously compounded short term interest rate at time 7T, such that the price of the coupon paying
bond equals the option strike price, i.e.:

(21) PC(T*,T,S) = ZCiP(T'*,T,Si) =X
i=1
The time T payoff of the European call option on such a coupon paying bond is:
max [0, P.(r, T, s) — X]

= max |0, Z ciP(r,T,s;) — Z ciP(r*,T,s;)
i=1

i=1

I
NE

cimax [0, P(r,T,s;) — P(r*,T, s;)]

-
I
-

I
NE

cimax [0, P(r,T,s;) — Xi]

-
I
-

where X; = P(r*,T,s;), i = 1,...,m. Hence the payoff of the i'" option is:
max [0, P(r, T, s;) — X;]
and the time ¢ price of this option is:

Ci(t, T, Si) = P(’I‘, t, SZ)N(hZ) - XiP(’I‘, t, T)N(hl — Upi)
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where
(2.2) h; = LIHM Tp;
op;  P(rt,T)X; 2
ICRY
o\T
(2.3) o2 = (B(O,si)—B(O,T))2/t (W> dr
or

2.1. Finding r*. From equations (2.1) and (1.1) we may write the option strike price as:
m
X = Z CiP(T'*, T, Si)
i=1
m
(2.4) = G AT, s;)e BT
i=1
where (refer to equations (2.12) and (2.13) of the Hull-White extended Vasicek model in Chapter

7):
B(0,s;) — B(0,T)

(25) B(Ta Sl) = 3B(0,T)
oT
and
(2.6) A(T, s;) = A(0,s;) — A(0,T) — B(t, si)%
2
1 B0, T)]1> [T | o(r)
— = B( 75i) oT :| / BBigO,T) dr
where

A(T) Si) =In A(T) Si)
Since B(T, s;) and A(T, s;) are fully specified by the initial term structure, we may apply a numerical
search technique such as Newton-Raphson to solve for r* such that (2.4) holds.

3. Specification of the data used

Now that we have considered the model formulation that allows us to incorporate observed term
structure data into the pricing formulae, let us examine the actual data used in the calibration
exercise.

For each day, the continuously compounded rate of interest and historical volatility are available for
the following terms to maturity:

Days Years Days Years Days Years

1 0.00274 365 1 2922 8.00548

7 0.01918 731 2.00274 3287 9.00548

30 0.08219 1096 3.00274 3653 10.00822

61 0.16712 1461 4.00274 5479 15.01096

91 0.24932 1826 5.00274 7305 20.0137

183 0.501373 2192 6.00548 9131 25.01644
274 0.75068 2557 7.00548
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e The interest rate with term to maturity 1 day and its corresponding historical volatility
are taken as proxies for the instantaneous short term interest rate r(0) and its volatility
ar(r,0).

e Making use of (1.2) we calculate B(0,T) at each of the node terms listed above.

e Applying (1.3) we determine the time 0 discount bond prices, P(r,0, -), with maturities at
the above nodes.

e These term structures of B(0,-) and P(r,0,-) are applied in (1.4) to obtain the values of
A(0,-) at the above nodes.

An interpolation technique must be applied to the term structures of A(0,-) and B(0,-) so that
values for any maturity term maybe extracted. Cubic spline interpolation was selected for the
smoothness of curves it produces (see [1]).

4., Cubic spline interpolation

Cubic spline interpolation is a type of piecewise polynomial approximation that uses cubic polynomi-
als between successive pairs of nodes [11]. Additionally, the constructed cubic piecewise interpolant
is required to be twice continuously differentiable. This condition differentiates cubic spline inter-
polation from other types of cubic piecewise interpolation techniques, such as Cubic Hermite and
Cubic Bessel interpolation (see [18]).

At each of the nodes across which the cubic splines are fitted, the following hold:

e The values of the fitted splines equal the values of the original function at the node points.
e The first and second derivatives of the fitted splines are continuous.

Given a continuous function f on interval [a,b] with nodes z;, @ = 0,...,n such that
a=x9<x <---<xy=Db, acubic spline interpolant S, is a function such that:

(1) The cubic polynomial on the subinterval [z;,2;41], 7 = 0,1,...,n — 1 is denoted

S(x) = Sj(x);

(2) S(zj) = (CU]) forall j =0,1,...,n

(3) Sjt1(zj41) = Sj(xjqq) for allj —0,1,...,n—2;

(4) Sjyi(zj1) = Sj(xjy1) forall j =0,1,...,mn — 2;

(5) Siyi(zjp) = S (®jp1) forall j =0,1,...,n —2;

(6) Since we have no conclusive information about the second derivative of function f at the

boundary nodes, we fit a free or natural cubic spline by imposing the condition:
S"(xg) = S"(x,) =0
Here, the cubic polynomials take the form:
(4.1) Si(z) = aj +bj(x —x;) + cj(v — xj)* + dj(x —x;)®  forall j=0,1,...,n—2

Applying conditions (1) - (5) to the set of polynomials in (4.1), we arrive at a linear system of
equations:

3 3
(4.2) himrej 4 2(hj = hy)ej + hicjpn =3= (a1 = a5) = 53— (a; —aj1)

J i

where

hj =zj+1 = 2;
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and condition (6) gives:
(4.3) co=0¢,=0

The above equations form a tridiagonal linear system, which may be solved for a unique solution
(see [11]).
As shown in (2.5) and (2.6), we require the derivatives of the initial term structures of A(0,-)
and B(0,-). Although the construction of the cubic spline does not ensure the derivatives of the
interpolant agree with the derivatives of the initial function [11], it does provide “acceptable ap-
proximations to derivatives” [18]. For this reason the derivatives of the fitted cubic splines are used
. . . c . . 8A(0,) 8B(0,)
as approximations to the required derivatives i.e. ==+ and —5>.
Now consider approximating the derivative at each node point z;, by first fitting a quadratic poly-
nomial to points z;_1, ; and z;;; and then evaluating its derivative at x;. Comparing these
derivatives to those produced by taking the derivatives of the fitted cubic splines shows that the
cubic splines produce much more extreme derivative values. In equations (2.3) and (2.6) the integral
of the square of inverse of the derivative of B(0,-) is required. Here, the more extreme derivatives
generated by the cubic splines give rise to inconsistencies and rather high integral values between
certain node points. The effect is that of unreasonable future term structure shapes of A(t, -) and
unreasonably high volatility values for some of the sub-options constituting the coupon bond option.
I attempted to mitigate the magnitude of this effect by using Cubic Bessel interpolation (see [18]).

5. Cubic Bessel interpolation

Using Lagrange interpolation, fit a quadratic polynomial p(z), to node points z;_1, ;, £;41. This
takes the form

f( (z —z;)(z — zj41) 2 )&= 2i-1)(@ — Tj41)
(51) p({l?) _f( ]—1) (-ijl — l_])(l_371 — xj+1) + f( ]) (:L_J — 1_371)(1_3 — -Tj+1)
, (z—zj1)(z — =)
@) (Tj+1 — zj—1)(Tj+1 — =)
hence
(5‘2) p'(l‘) :f(l'jfl) 2r — Tj— Tjt1 + f(l'g) 2r — Tj1 —Tj41

(wj—1 —x;)(Tjo1 — Tjs1) (xj —wj—1) () — Tjy1)

2r — Tj—1 — Tj

+ fzj+1) (zj41 —xj1)(Tjp1 — z5)

and so evaluating this derivative at node x; we have:

21‘]' —Tj-1 —Tj41

(zj —zj-1)(®j — Tjt1)

’ _ . Tj — Tj+1 )
p ('/L.J) —f(l'],l) (wj—l _ CU]]')(HS]']—1 — mj+1) + f(xj)

Tj— Tj—1
+ f(zj
f(@j) (Tjr1 —wjm1) (@1 — x5)

Hence we find the polynomial S;, j =0,1,...,n — 2 such that:

Sj(z;) = f(x;) Sj+1(xjr1) = f(zj41)
Sj(zj) =p'(z;) 1 (@) =p' () forj=0,1,...,n -2
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This gives rise to coefficient values defined by (see [18]):

a; = f(-TJ)
b; :pl(my)
_ flzi4) — flay) P'(z;) (et —
T (l’]jﬂ - l“j); - Tj+1 —]»Tj ~dile — )
g = PE) A0 @) o f(@ie) — flz;)
! (Tj+1 — zj)? (zj41 — ;)3
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By forcing the derivatives of the cubic interpolant to be equal to those of the quadratic polynomials
at the nodes, the derivatives between the nodes become less extreme and the integral of the square
of the inverse of the derivative of the cubic polynomials becomes smoother. However, the integral
between some of the short term nodes is still rather large, again leading to overestimation of the

volatility.

I made a third attempt at smoothing the integral by assigning, to the derivative values at the nodes,
the derivatives of the quadratic polynomials fitted as above and applying cubic spline interpolation
to these derivatives. This results in a smoothly interpolated derivative curve and hence smooth
integral values. The required integral becomes the integral of the square of the inverse of the cubic
spline applied to the derivatives at the nodes. To evaluate the integral we must integrate the inverse

of the square of a cubic polynomial.

6. Integrating the inverse of the square of a cubic polynomial

The required integral has the form:

n 1 2
6.1 d
(6.1 /m <dj($—$j)3+Cj($—$j)2+bj($—$j)+aj> !
First, consider a cubic polynomial of the form:

(6.2) dv® +cx® +br+a=0

then according to the methodology detailed in [38] define the following variables:

c

(6.3a) Ty = —3o

(6.3b) Yn = da:?\, + cw?\, +bzy +a
2 _

(63C) (52 = CTJ;O)db

(6.3d) h? = 4d*6°

Now, three cases must be considered:
(1) yx —h* > 0;
(2) yx — 0> =0;
(3) y% —h*<O.
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6.1. y2 — h% > 0. Here, the cubic polynomial has only one real root, given by:

— of 1 [ 22 2 of 1 2 2
$1—$N+\/2—d<—y1v+ yN_h>+\/2_d<_yN_ yn —h

hence:

dz® + ex? +bx +a
= (a: — 561) (d:n2 + (c+ dml)w +b+cxy + dm%)

b
= d(:n—a:l)(a:2 + (s + )T+ R g:m +x%)
=d(z —z1)(2” + px + p)

where 1 = S 4+ 21 and p = % + Sy + a3,
Applying this to (6.1) the integral takes the form:

(6%‘)2/7: ((m—xj—xl)((x_xlj)z+M(x_xj)+p)>2dx

-(3) [ iy )

1
G=—— I=-Ga: +
x%-l-um-l-p (1 N)

where:

Further:

2 n 2 (I -G —x))”
(d_la> /m ((37—35—371)2 " ((9c—37Ij)2 f(u(ﬂl?—ﬂzj)-i-P)Z

2G(I — G(z — x;)) )dw
(a: —x; — 371)((33 — ;)% + p(z —z;) +p)

+

(1N G? G2 L(z —xz;)+ M

_<dj> /m <(5”_95j_951)2+(33—55j)2+ﬂ(55—35j)+/)+ ((a:—a:j)2+u(:n—a:j)+p)2
N r Plr—z;) +Q .
{17—21,']'—21,'1+(£U—$j)2+u(w—ﬂfj)+p>d

where:

L=—-2GI -G*n M=TI"-G?

p_ 2G%(2z1 + ) _2G%((p+21)* — p)
23 + pxy +p x3 + pay + p
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and so
1 2/" G? i
d; m \(z—2j—21)? z—-z;—m
N (5) 2(r —zj) +p Q+G?—LPu
2 )Gl v pe - m) e G e )

N (E) 2z —zj) + p - M —5Lp 2>da:
2) (w1 ) (2 2) 4 e —25) 1)

1\’ G? )
:<—> {—m—P1n|w—%’—$1|+51ﬂ|($—%’) + (e — ;) + pl

iL Q+G>*—Pnp M—1Lny T—zj+n
- = + + ) tan ( ———
(=22 + plz— ;) +p ( 5 s ) retan ()

+M—Ln< T—x;+0n )Y"
2¢2 (.’L‘—l‘j)2 +M(x_$J) +p z=m

where n = Ly and ¢ = \/p — 2.

6.2. y2 — h? = 0. For this case there are three real roots, with a repeated root. Again from
the methodology in [38], the three roots are:

Yn

—=rn — 282N

I N 2d

Ty =23 =21 YL
2 3 N 2d

Substituting into (6.1) we have:

(%’)2/n<(€U—w;—ﬂf1)zw—%—w2)2>2d$ 2
< ) /m (w—w]—ml_:U—a;j—a:2+(a:—m]~c—x2)2> da

B 2/" L A+H  24C
B m \(x—2zj—21)? (r—2;—22)2 (x—2x;—29)3

C? F—-D F—-D >
7 — dzr

(x —xj — x2)

_<1>2[_ A? A+ H AC

r—T; —T1 r—T; — T2

T—z;—x1 T—xj—T2 (T—xj —22)?
112
sC

(- xj —m)?

+(F-D)m |t~ N

} =N
r=m

T —Tj — T
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where:
1 -1
A - C =
(iIZl — £U2)2 r1 — I2
2
D_ 2A P 2AC i I 2AC
r1 — I2 (ZIZQ — 561) T2 — T

6.3. y3 — h? < 0. Here we have three distinct real roots. These roots are:
1 =xNn + 20 cosb

Ty = Tn + 26 cos (0+2§)
T3 = Tn + 20 cos (0—{-4%)

where?:
_1 —Yn
# = 3 arccos (T)

Again, substituting into (6.1), we evaluate the integral as:

1\ [ 1 2
@) [ )
d l'—Z'J—.’L'l)(.’L'—Z'j—.’L'Q)(.’L'—.’L'j—.’L'g)
(1) [ = : )
+ + dx
m a:—arj—arl T—xj—Ty T —Tj—I3

B 2/n N B2 N C?
B m \(z —z; —m1)2 (x—zj—x2)?  (v—x; —x3)?
D+ F H-D H+F >
+ dx

T—T;—% T—Tj—Ty T —T;— T3

1)\? A? B? 2
:<—> {— - - ¢ +(D+F)ln|z—z; —x
d; T—T;—T1 T—X;—Ty T —T;—T3
+(H—D)1n|a:—a:j—x2|—(H+F)ln|x—a¢j—a¢3|]
r=—m
where:
A= T2 — I3
- 23(w3 —m1) — 22 (22 — 11) — 23 (23 — T2)
B= Ir3 — T
- 23(z3 — m1) — 22 (22 — 71) — 23 (23 — T2)
O = Tr1 — T2
a3y —m1) — 23 (22 — 11) — 2 (23 — 22)
and
2AB 2A
D Ja C - 2BC
T — To €Ty — T3 T2 — T3

2As defined in (6.3), h = 2dé3.
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7. Constant mean reversion and volatility parameters

The implementation of the HW-extended Vasicek model, as described above represents a stochastic
process of the short term interest rate of the form?:

(7.1) dr = [0(t) + a(t)(b—r)]dt + o(t) dz

The three time dependent parameters allow three characteristics of the initial term structure to be
fitted (see [26]). The time dependent drift parameter 6(t) allows the model to exactly match the
initial interest rate term structure; the time dependent short term interest rate volatility o(t) defines
the volatility of the short term interest rate at times in the future; time dependent reversion speed
a(t) specifies the relative volatilities of long and short term interest rates hence replicating the initial
volatility term structure. However, fitting all three time dependent parameters to current market
data results in an over-parameterisation of the model, which may cause undesirable side effects [26].
Resulting future term structures of volatilities may take on implausible shapes, leading to mispricing
of exotic options. For this reason implementations with constant reversion speed and short term
interest rate volatility, @ and o respectively, are recommended. The volatility term structure will
no longer be fitted exactly but only approximated. However the model now displays a stationary
volatility term structure which allows more control over future values of model parameters and
hence more accurate, robust pricing of exotic derivatives.

The resulting process of the short term interest rate is:

(7.2) dr =[0(t) + a(b—r)]dt + odz
with associated functional form of B(t,T) reducing to®:

1— e—a(T—t)

(7.3) B(t,T) = -
hence the initial time ¢ = 0 value is:

1— —aT
(7.4) B(0,T) = Z

Since the time ¢t = 0 term structure of interest rates is known we find the initial term structure of
discount factors (zero coupon bond prices), P(r,0,-), as shown in (1.3). Consequently the initial
values of the A(t,T) coefficient may be found as:

A(0,T) = P(r,0,T) e (BOTIr©)
(7.5) — P(r,0,T) e (1=c7"T)r(©)/a)

Since P(r,0,-) and r(0) are known, the exact values of A(0, ) are determined by the chosen value
of parameter a. The initial discount bond prices can be exactly reproduced for any arbitrarily
specified value of a. This does not say anything about the correctness of this parameter value.
Incorporation of additional market data dependent on volatility parameters, such as interest rate
options, is required to allow a correct choice of a.

3See Chapter 7 equation (2.1).
4See Chapter 7 equation (3.8).
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Once the initial values A(0,-) and B(0,-) are known, any future values A(¢,T) and B(t,T) may be
calculated using (2.5) and (2.6). For constant a and o these reduce to®:

1— e—a(si—T)

_ ., P(r,0,s;) 1—e 26=D\ 9ln P(r,0,T)
(7.7) InA(T,s;) =1In Per0.T) < - a7

_ U—(l _ e—a(si—T))2(1 _ e—QaT)

Similarly the forward bond price volatility (2.3), required to value each of the m zero coupon bond
options making up the coupon bond option, reduces to:

(7 8) 2 0-2 (1 —a(si—T))Q(l —2a(T—t))

. Upi = ﬁ — € — e

Calibration of the model to observable market prices involves retrieving values of ¢ and a such that
these market prices may be recovered from the model.

8. Flat volatility term structure

The functional form of B(t,T") considered in §7 does not allow @ = 0. This is the case of zero mean
reversion. Assuming a constant, flat volatility structure and consequently a zero mean reversion
parameter, the equation of the short term interest rate process becomes:

(8.1) dr = 0(t)dt + o dz

Consider the relationship of B(0,T') to the initial interest rate and volatility term structure as shown
in (1.2):

R(r,0,T)or(r,0,T7)T

(82) BOT) = == r.0)

Allowing a constant volatility structure implies:
or(r,t) =or(r,t,T)=0c Vt,T € [0,T*]andt < T
hence (8.2) reduces to:
R(r,0,T)
r(0)

To show that this does in fact imply a zero reversion speed parameter, consider equation (2.14) in

Chapter T
- (43 (247)

0 *

7(0)

(8.3) B(0,T) = T

5These can easily be shown to be equivalent to the functional forms specified in (3.8), (3.9) Chapter 7 for constant
a and o.
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Making use of (1.1) to determine the functional form of A(0,-) we have:
P(r,0,T) = A0, T)e~BOIr(0)
— A(0,T)e FrODIT
however from (1.3)
(8.4) P(r,0,T) = ¢~ Br0.T)T
hence A(0,T) =1 for all T € [0, T*].

The calibration of the model now requires the fitting of a single volatility parameter o such that
market prices of traded securities are recovered.

9. Calibration methodology

9.1. Algorithm for constant mean reversion and volatility parameters. The following
is a high level algorithm showing the basic methodology used to calibrate a reversion speed a and
associated volatility parameter ¢ which give rise to the smallest mispricing.

For valuation_date 1 to n
a = initial_value
While a is in the acceptable interval
For expiry 1 to m
initialise o1 and o2
get Black_premium for this expiry and valuation date
P, = HW _option_premium (o) - Black_premium
P, = HW _option_premium (o5) - Black_premium
While |P;| > 1%107° and |Py| > 1% 107°
Omid = (01 + 02)/2
Py;a = HW _option_premium (o,;4) - Black_premium
If P, x P,;q4 <0 Then
02 = Omid
Elself P x Pp,;q9 < 0 Then
01 = Omid
End If
Loop
0 = Omid
Next expiry
Oave = Average(o for expiry 1 to m)
ave_mispricing = Average ((HW _option_premium (o,,¢) — Black_premium) /Black_premium;
for expiry 1 to m)
If ave_mispricing < optimal_mispricing then a,ptimaq = a
update a
Loop
Next valuation_date
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For a given value of parameter a, determine the corresponding values of ¢; for expiry date
i=1,...,m. Since a and o are parameters associated with the term structure, specifically the
reversion speed and volatility of the short term interest rate, they tell us what the price of the bond
option implies about the characteristics of the short term interest rate. Ideally, we would like the
ois to be the same for all maturities 4 = 1,...,m. This would imply all maturity bond options
are priced consistently with our model of the short term interest rate. However, in practice these
ois may differ quite substantially. To determine an optimal value of a¢ and corresponding o, take
the arithmetic average of o;, i = 1,...,m to be the proxy for o. Pricing each bond option using
the value of a and corresponding o allows us to determine the degree of mispricing to market ob-
served option premia. The optimal value of a and corresponding ¢ (calculated using the averaging
described above) are determined as those causing the smallest mispricing across the bond option
maturities.

The methodology used in procedure HW _option_premium to calculate the HW option premium is
as described in §7. To calculate the strike prices and hence premia of the sub-options comprising
the coupon bond options we require A(T), s;) where T is the option expiry date and s; is a coupon
payment date. From equation (7.7) we require P(r,0,s;), P(r,0,T) and w in order to
evaluate A(T,s;). Since T and s; will not necessarily fall on the available node points, we must
interpolate the P(r,0,-) and (9111P87(-r,0,-) curves to obtain values for the correct maturity dates.
Given the initial interest rate term structure R(r, 0, -), make use of (1.3) to obtain the term structure
of P(r,0,-). We then apply the cubic spline interpolation of §4 to retrieve discount bond prices for
any maturity date.
In order to evaluate Mpai(r,o,-)
Lagrange interpolation to fit quadratic polynomials and hence evaluate derivatives at each node®.
Applying cubic spline interpolation to these derivative values allows us to retrieve %(“0") for any
maturity date.

, we first calculate In P(r,0,-) at each node point and then apply

The methodology used to determine the Black model premium is the standard methodology used
in the South African market. See [44] for the details.

9.2. Algorithm for a flat volatility term structure. The following is a high level algorithm
showing the basic methodology used to calibrate a volatility parameter o which gives rise to the
smallest mispricing. This algorithm is essentially a subset of the previous algorithm in §9.1 since
the methodology corresponds to @ = 0 and hence only an optimal o needs to be found given this
value of a.

6This is the methodology described in the final paragraph of §5.
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For valuation_date 1 to n
For expiry 1 to m
initialise o1 and o>
get Black_premium for this expiry and valuation date
P, = HW _option_premium (oq) - Black_premium
P, = HW _option_premium (o5) - Black_premium
While |P;| > 1%1075 and |Py| > 1% 107°
Omid = (01 + 02)/2
P,,;a = HW _option_premium (o,,i4) - Black_premium
If P, x Pp;q <0 Then
02 = Omid
Elself P, x P,,;4 < 0 Then
01 = Omid
End If
Loop
0 = Omid
Next expiry
Next valuation_date

To determine the strikes of the sub-options and hence their premia we require (by (1.6)) values of
B(T,s;) and A(T,s;), where T is the option expiry date and s; the coupon payment date.

To determine B(T, s;) we must determine’ B(0,-) and %. Given the initial interest rate term
structure R(r,0,-), make use of (8.3) to determine the values of B(0,:) at all the node points.

Applying cubic spline interpolation allows us to retrieve B(0, -) for any maturity date. To determine
‘9B(07')

9.

we fit a quadratic Lagrange polynomial at each node point and evaluate its first derivative.
Then applying cubic spline interpolation to these derivatives allows us to retrieve % for any
maturity.

To determine A(T,s;) we also require fOT(l / %)2 dr. This is found by applying cubic spline

interpolation to % and then evaluating this integral. This involves the integral of the square of

a cubic polynomial as presented in §6.

10. The empirical results

Reliable bond option implied volatility data is rather difficult to obtain in the South African market.
Although bond options have been listed on SAFEX® for some time, these are not often traded and
much of the market is in the form of over-the-counter (OTC) options, which mirror the expiry dates
of the exchange listed contracts. It is primarily options on the R150 and R153 bonds® that are
traded and for which implied volatilities are available.

"See equation (2.5).

8South African Futures Exchange

9The R150 is a 12% coupon bond expiring 28 February 2005. Coupons are paid semi-annually, on 28 February
and 31 August. The R153 bond pays a 13% coupon, also semi-annually on 28 February and 31 August. It expires on
31 August 2010.
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FIGURrE 13.1. Volatility parameters: a and average o

I obtained data from Gensec Bank. Each day ATM implied volatilities are obtained from two to
three of the most active brokers in the bond option market. These are averaged to obtain the daily
implied volatilities for available option expiries. Options expire on 2 February, 2 May, 2 August and
2 November!® of each year. At any time only two to three option expiries trade, the next expiry
becomes available only once the shortest option expires. The market may at times be fairly illiquid,
especially for the longer expiries and this makes the data fairly unreliable.

Historical data was quite difficult to obtain. The calibration exercise was done using the following
data:

e R150 - 2 May 2000 until 31 July 2001,
e R153 - 1 February 2000 until 31 July 2001.

10.1. Constant mean reversion and volatility parameters. Figure 13.1 plots the values
of a and o, the short term interest rate reversion speed and volatility parameters obtained from the
calibration exercise. The following observation can be made:

e The reversion speed is consistently negative which implies a mean repelling rather than a
mean reverting short term interest rate process'!. This implies a process where the short
term interest rate diverges with time, rather than tending to some long run mean.

e The R153 bond options give rise to a slightly higher reversion speed (less negative) and
hence lower volatility in comparison to the R150 bond options.

101f one of these falls on a weekend or public holiday, the closest business day becomes the expiry date.
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FiGURE 13.3. R150 mispricing: constant a and o
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e This may lead one to conclude that the bond option prices are also influenced by factors
other than the movement of the short term interest rate. These factors maybe related to
the duration of the underlying bond, its coupons and liquidity.

e The spread between the reversion speeds and volatilities remains fairly constant during the
time period under review. Moves up or down in the reversion speed implied by one bond
are mirrored in the reversion speed of the other and similarly for the associated volatilities.

Figures 13.2 and 13.3 show the percentage mispricing of the coupon bond options priced using
the optimal reversion speed and volatility as depicted in Figure 13.1. The short maturity options
are consistently overpriced, the long maturity options under-priced, while the in between maturity
option fluctuates between over- and under-pricing. The data has been slightly smoothed. Prior
to option expiry dates, the volatility parameter for the short term option becomes distorted which
causes extreme mispricing just prior to option expiry. These data points have been removed since
they cannot be said to be representative of the underlying yield curve.

10.2. Flat volatility term structure. As mentioned before, allowing a flat volatility term
structure is equivalent to zero reversion speed and constant short term interest rate volatility. The
daily values of the short term interest rate volatility produced by the calibration exercise are depicted
in Figure 13.4.

1 The HW-extended Vasicek model is a normal model, hence the volatility parameter is the absolute volatility
of the short term interest rate. The short term interest rate during the calibration period was approximately 10%.
This means an absolute volatility in the range 1,0% — 1,4% as depicted in Figure 13.1 implies a relative short term
interest rate volatility of 10% — 14%. This seems consistent with average market conditions.

2.30%
—R 150 —R153
L R T RRRRITTITLE
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=
1.70% it === R R R
1.80% --sremmesmennas T e AR -t T T T S L RE e FE R ol SRR R
135%- ------------------------------------------------------------------------------------------------------
TA0% e emmmmmmsmmnmmm e oonae ’ ---------------------------------------------------------------------------------------------------------------------
DB - m = m e R
L
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= 2 2 =] 2 8 =] = b= = = = = 5 z
z z z % z < < z 2z
g 5 2 2 & & £ i & 5 & & F 5 23
2 s o g 8 g 8 g = 8 = = & S e

FIGURE 13.4. Average o: Flat volatility term structure
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FIGURE 13.5. R153 mispricing: Flat volatility term structure

e The short term interest rate volatility obtained from the R150 bond option prices is slightly
higher than that resulting from the R153 bond option prices. This is consistent with the
findings for constant (non zero) reversion speed and volatility as depicted in Figure 13.1.
This implies that option prices on the R153 bond imply a more volatile short term interest
rate of interest than do option prices for the R150 bond.

e The volatilities obtained from options on the two bonds follow the same pattern, that is,
as one moves up or down so does the other. This is encouraging since option prices on
the two bonds appear to reflect the same directional moves in short term interest rate
volatility.

e The spread between the two volatility series appears to be widening over time. This could
be caused by a decoupling of the market for the two bond options. However, it could
be caused by the unsuitability of this model for describing the short term interest rate
dynamics. Since this same observation is not made for the model having reversion speed
and short term interest rate volatility parameters, the more probable cause of the widening
spread is the unsuitability of the model.

Figures 13.5 and 13.6 show the mispricing when the bond options are priced using the average
volatility calibrated for each day. The mispricing follows the same pattern observed during the
calibration exercise for constant reversion speed and volatility parameters. Short term options
are consistently overpriced while long term options are under-priced. The medium term option
mispricing level fluctuates in-between. The same smoothing exercise described above was performed.
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FIGURE 13.6. R150 mispricing: Flat volatility term structure

Days prior to an option expiry show extreme mispricing, mainly due to the short term option
volatility becoming disproportionately large.
Comparing Figures 13.2 and 13.5 and Figures 13.3 and 13.6 respectively, we see that the degree
and pattern of mispricing for the two models is quite similar. A choice of one model over the other
would be rather difficult to make and justify.

11. Concluding remarks

It is difficult to make any definite conclusions about the validity and usefulness of the above two
versions of the HW-extended Vasicek model for the pricing of interest rate contingent claims in the
South African market. There are a number of factors to be considered when interpreting the results:

e Using coupon bond option implied volatilities is not ideal for calibration. Interest rate
caps are more suitable since they are the most basic form of interest rate option; they
are options directly on the interest rate. Coupon bond options introduce a more complex
pricing methodology. It is also quite possible that, given their more complex structure,
market observed prices of coupon bond options will reflect factors other than the evolution
of the term structure. This is unlikely to be the case for caps. These additional factors
could result in a significant amount of noise in the calibration exercise.

e The South African market for bond options is not sufficiently liquid to make the observed
prices fully representative of the market consensus view on the evolution of the term
structure. Much of the noise in calibration results could be ascribed to the staleness of
some data points used.
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e An implementation of the HW-extended Vasicek model having constant reversion speed
and volatility parameters is recommended since it allows for a better behaved future model
evolution. It does however mean that the prices of the contingent claims used for calibration
(in our case, coupon bond options) will no longer be exactly recoverable [41]. A ‘best fit’
exercise is performed to approximate the prices as closely as possible. This statement is
consistent with the mispricing observed in both calibration exercises.

e According to observations made by Rebonato [41], implementations of the model using
constant reversion speed and volatility can poorly account for market observed contingent
claim prices in certain yield curve / volatility curve environments. A rising interest rate
term structure, as observed in the South African market during the calibration exercise,
appears particularly problematic.

The aim of performing a calibration exercise is to allow the pricing of exotic interest rate contingent
claims consistently with more vanilla instruments traded in the market. At present the South
African interest rate market consists of fairly liquid trade in bonds, FRAs and swaps, a somewhat
less liquid market in bond options and a rather illiquid market in swaptions and caps. All these
are vanilla instruments that can be accurately priced using a simple Black formula. At first glance
the above models may not appear particularly useful for pricing of more exotic contingent claims.
However, one must consider the quality of the underlying data, the generally illiquid market in even
vanilla interest rate contingent claims, and simplifications assumed in the model structure. Despite
showing large deviations to observed prices of bond options, the structure imposed on the evolution
of the yield and volatility curves may provide a useful framework for pricing exotic claims which
may depend on future volatilities and correlations.



CHAPTER 14

Calibration of the Black, Derman and Toy discrete time
model

Setting the short term interest rate process equal to':

(0.1) r(t) = u(t) exp (a(t)z(t))
where
r(t) — the short term interest rate at time ¢,
u(t) — median of the (lognormal) short term interest rate distribution at time ¢,
o(t) — short term interest rate volatility at time ¢,
z(t) — standard Brownian motion.

the continuous time equivalent of the BDT model is determined to be:
_ [0lnu(t) Olno(t)
B ot ot

Since this model is not analytically tractable (this is a characteristic of all lognormal models) it
must be implemented by means of a binomial tree. The tree is constructed so as to approximate
the above stochastic differential equation of the short term interest rate. By construction, the short
term interest rate tree is consistent with observed market prices of bonds.

(0.2) dlnr(t)

(Inu(t) —lnr(t))| dt + o(t)dz

1. Imitial Term Structure

Following the notation and methodology of §5.1 of Chapter 8 we have the initial term structure of
interest rates and interest rate volatilities described by the following variables:

(1.1a) P(i) — time O price of a discount bond maturing at time iAt,

(1.1b)  R(i) — time O (continuously compounded) yield on a discount bond maturing
at time (At

(1.1c) ogr(i) — time O volatility of yield R(7).

2. Calibrating to yield curve only

As discussed in Chapter 8, the rate of mean reversion is a function of the short term interest rate
volatility. This implies that, by specifying the functional form of the time dependent short term
interest rate volatility, we are simultaneously specifying the shape of the term structure of volatilities
and vise-versa. This may not be a desirable property since future volatility term structures may
be distorted, taking on unreasonable characteristics. For this reason many practitioners allow for

L This relationship is derived in §4 of Chapter 8.
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a constant short term interest rate volatility parameter when using the BDT model. This implies
that the mean reversion speed is zero and the model is calibrated to the initial yield curve only.
We have an additional reason for allowing a constant volatility parameter. As discussed in Chapter
13, a reliable term structure of implied interest rate volatilities is not available in the South African
market. The attempted calibration of the HW-extended Vasicek model to the term structure of
historical volatilities proved quite unsuccessful. The historical volatilities do not appear to be a
reasonable proxy for the implied volatilities and it seems more reasonable to exclude these from the
calibration.

Now, let o(t) = o where o is constant and (0.2) reduces to:

_ Olnu(t)

(2.1) dinr(t) = T dt + odz

and from (5.3) in Chapter 8, the discrete time representation of the short term interest rate becomes:
(2.2) r;; = u(i) exp (0jV At)

Hence, calibration of the binomial tree to market data reduces to finding u(i) at each time step.
Given a value of ¢ we may calibrate the binomial tree such that market observed discount bond
prices are retrieved. Since the bond price is independent of o, this gives no clue as to the correctness
or otherwise of the chosen o value. To ascertain the correctness of the o parameter we need to make
use of another set of security prices which depend on interest rate volatility (i.e. o).

3. Forward Induction: making use of state prices

The calibration procedure is a simpler version than outlined in Chapter 8, §5. Again we make use
of forward induction and state or Arrow-Debreu prices. Define (); ; as the time 0 value of security
paying 1 if node (i, j) is reached and 0 otherwise. By definition Qg0 = 1.

These Arrow-Debreu prices may be seen as discounted probabilities and hence may be used to
specify the value of any instrument. Specifically, the time 0 price of a discount bond maturing at
time (2 + 1)A¢ may be written as:

(31) P(Z + ].) = Z Qi,jdi,j
J
where d; ; is the one-period discount factor at node (i, j) expressed as:
1
3.2 dij = ———
(3-2) Y T4y At

At each node (i,7) of the tree, the state prices are determined as functions of the state prices at
time (7 — 1) as:

(3.3a) Qii =2 Qic1,i—1di—1,i1

(3.3b) Qij=32Qi—1j1di—1j—1 + 3 Qi1 j+1di—1,j41 Vj#i,—i

(3.3¢) Qi—i =3 Qi1,—it1di—1,—it1
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Initial step: Initialise variables at time ¢ = 0 as follows:

Qoo =1,
(R(1)AY) _ 1
u(0) =rg0 = CT and
1
doo = —
0,0 1 + T070At

Now, for ¢ > 0, we assume the following are known for all states j at time step (i — 1): Q;—1;,
u(i — 1), r;—1; and d;—1 ;. Hence, the values of Q; ;, u(i), r;; and d; ; may be found for all states
j at time ¢ as follows:

Step 1: Make use of (3.3) to generate @Q; ; as follows:

Qii = 2 Qic1i—1di—1 i1
Qi—i = 5 Qi1 —it1dim1,—it1
For j =—i+4+2toi—2 Step 2

_ 1. ) . i 1. . . .
Qij=5Qi1j1di1j1+5Qi1j11di 111

Step 2: A numerical search technique such as Newton-Raphson (e.g. see [11]) is used to find
u(i) such that the following is satisfied>:

P(Z + ].) = Z Qi,jdi,j
J

1
B 2]: Qi 1+ u(i) exp (ojVAt) At

Step 3: Using the u(i)s calculated in Step 2, the short term interest rates, r; ;, and corresponding
discount factors, d; ;j, are updated for each state j at time step ¢ as:

ri; = u(i) exp (0 VAt)
1

dij=—
J l—l-’l”iJ'At

Steps 1 - 3 are repeated for all i = 1,..., N where NAt is the longest maturity discount bond.

4. Pricing contingent claims - Backward Induction

Once the short term interest rate tree has been constructed such that the short term interest rate
and associated discount factor are known at each node of the tree, any interest rate contingent claim
may be priced by a simple backward induction procedure.

4.1. Pricing Coupon Bonds. Consider a coupon bond maturing at time* 7' = NpAt and
paying coupons at discrete time steps {t1,%2,...,tmn} where m is the number of coupons due until
maturity. If ¢ is the amount payable at each coupon time and the last coupon payment coincides

2Here the summation is over all states 7 at time step ¢, hence j = —i,—1 4+ 2,...,%1 — 2,4.
3Hence, this bond may be seen to mature Np time steps from initial time ¢ = 0.
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with bond maturity, i.e. ¢, = Np, the maturity value of the bond may be initialised at time ¢ = Ny
as:

C i
PNTJ =l+c
where Pf; is the value of the coupon paying bond at node (4, 7).

Now for i < Ny, the value of the coupon bond is equal to the discounted expected value of the bond

at the next time step (¢ + 1). Since the risk neutral probability associated with each branch of the

binomial tree is 1, the value of the coupon bond for all i < Ny is determined as*:

If i € {t1,t2,...,tm} then
ch’] = %dz,.j (Piil,j+1 + Pﬁi’l,jfl) +c
else

c __1 c c
Pij=35di; (Pi+17j+1 + Pz’+1,j—1)

4.2. Pricing European Options on Coupon Bonds. Once we have determined the value
of the coupon paying bond at each node of the binomial tree, we may price claims contingent on
this coupon bond. Consider a European call option on the above coupon paying bond with:

e expiry date s = N, At,
e strike price X.

Knowing the value of the coupon bond in all states at option expiry time ¢ = N,, we determine the
option payoff as:

(4.1) Cn,,j = max{0, Py, ; — X'} for each j = —Ng,..., N,

where C; ; is the value of the European call option at node (i,7). For each i < N, the value of the
European call is determined as the discounted expectation of option values at time (i 4+ 1), hence:

1
Cij=5dij (Ci+1,j+1 + Ci+1,j71)

More directly, utilise the discounted probabilities or state prices, @; ; to determine the time ¢ = 0
European option value directly from the expiry condition (4.1) as:

0070 = ZQNS7j maXx {O’Pﬁfs,j - X}
J

5. Calibration methodology for a constant volatility parameter

5.1. Algorithm. The following is a high level algorithm showing the basic methodology used
to calibrate a volatility parameter o which gives rise to the smallest mispricing. The optimisation
technique used is the same as for calibration of the HW-extended Vasicek model.

4lere j represents each node at time step 4, hence j = —i,—i +2,...,¢ — 2,1.
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5.1.1. Main procedure. This is the main procedure within which the optimisation is performed.

For valuation_date 1 to n
For expiry_date 1 to m
initialise o1 and o>
get Black_premium for this expiry and valuation date

Calibrate_Rate_Tree (o1)
Evaluate_Bond_Tree
P, = BDT _option_premium (o) - Black_premium

Calibrate_Rate_Tree (o2)
Evaluate_Bond_Tree
P, = BDT _option_premium (o3) - Black_premium

While |P;| > 1%1075 and |Py| > 1% 107°
Omid = (01 + 02)/2
Calibrate_Rate-Tree (omiq)
Evaluate_Bond_Tree
P,,;a = BDT option_premium (o,,;4) - Black_premium
If P, x P,;qg <0 Then

02 = Omid
Elself P, x P,,;4 < 0 Then
01 = Omid
End If
Loop
O = Omid
Next expiry_date
Next valuation_date

5.1.2. Sub-procedures. The procedure Calibrate_Rate_Tree builds the binomial tree of short term
interest rates for the specified volatility parameter. The basic procedure followed is as described in
§3. Once the tree of short term interest rates has been constructed, the coupon bond is priced in
the procedure Evaluate_Bond_Tree. Due to the long maturity dates of the coupon bonds it is not
practical to construct trees with daily time steps. Using a larger time step, say 30 days, introduces
some complications. Since bond maturity and coupon payments may fall between node points, we
need to interpolate these values to maintain accuracy. Below is the algorithm used to price the
coupon bond for time steps greater than one day. We let N, be the final time step of the tree. This
will be either equal to or just greater than, the maturity of the bond underlying the option we wish
to price.
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If bond maturity lies between time N, — 1 and N then
offset = [(Maturity_Date — Valuation_Date)/Time_Step — (N, — 1)] * Time_Step/365
For each state j = —(Np, — 1) to (N — 1) Step 2
B(Ny —1,j) = (14 Coupon)/(1 + r(Np — 1, j) * offset)
Next state j
End if

For each time i = (N — 2) to 0 Step —1
If a coupon lies between times i and 7 + 1 then
offset = [Coupon_Term/Time_Step — ] * Time_Step/365
For state j = —¢ to @ Step 2
Coupon_Value = Coupon/(1 + r; ; * offset)
Bi7]’ = %di,j [Bi+17j+1 + Bi+1_]’_1] + Coupon_Value
Next state j
Else
For state j = —¢ to @ Step 2
Bij = 3 di;j[Bit1,j+1 + Bit1.j-1]
Next state j
End If
Next time ¢

A similar problem is encountered when pricing the coupon bond option in the procedure
BDT_option_premium. The option expiry date may fall between two time nodes. A further compli-
cation, specific to the South African market, arises due to the T + 3 settlement rule® of bonds. The
strike all-in-price, corresponding to the strike yield-to-maturity® refers to a bond price at option
expiry + 3. This means we need to discount this value from (option expiry +3) to option expiry,
prior to calculating the terminal option value. Option expiry and (option expiry+3) may occur
between the same pair of time nodes, on either side of a time node or either one, but not both may
occur at a time node (unless time step is 3 days). These possibilities must all be taken into account
to allow for correct interpolation of the strike price and bond price. Below is the basic algorithm
used to value the option in the procedure BDT_option_premium.

5This represents time T plus three business days. See [43] for details of South African bond pricing conventions.
5The South African bond option model is struck on yield but the pricing formula is price based. For details of
the bond pricing formula see [44].
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Interpolate to determine bond price and option strike price at option expiry.
If settlement date of option expiry lies between time i and 7 + 1 then
offset = [Settlement_Term/Time_Step — i] * Time_Step/365
For state 7 = —i to i Step 2
Strike; ; = Strike_AIP /(1 + r; ; * offset)
Next state j
Else
For state j = —i to i Step 2
Strike; ; = Strike_AIP
Next state j
End If

If option expiry date lies between time ¢ and ¢ + 1 then
For state 7 = —i to i Step 2
Linearly interpolate between Strike; ; and
Strike_AIP at time Settlement_Term to obtain the
Strike_at_Expiry;
Linearly interpolate between B; ; and B;y;,; to obtain
B_at_Expiry;
Next state j
Else (here option expiry lies prior to time i)
For state j = —(: — 1) to ¢ — 1 Step 2
Strikei,Lj = %d@j (Strikei7]’+1 + Strikem'_l)
Next state j
For state j = —(i — 1) to s — 1 Step 2
Linearly interpolate between B;_; ; and B; ; to obtain
B_at_Expiry;
Linearly interpolate between Strike;_; ; and Strike; ; to obtain
Strike_at_Expiry;
Next state j
End If

Initialise option value at option expiry.
For state j at option expiry

V_at_Expiry; = Maz{B_at-Expiry; — Strikeat_Expiry; , 0}
Next state j

Determine option value at node directly prior to option expiry.

Let k be the node directly prior to option expiry. This corresponds to
either node 7 or node i — 1 above.

For state j = —k to k Step 2
Vij = % dr.; (V_at_EXpiryj+1 + V_at_EXpiryjfl)

Next state j

Using backward induction, determine initial option value.
For time i = k — 1 to 0 Step —1
For state 7 = —i to i Step 2
Vij = 5dij(Vierje1 + Vigr,j-1)
Next state j
Next time

201
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6. Results of model calibration

The data used for the calibration of the BDT model is the same as that in the HW-extended Vasicek
model calibration. Hence I used interest rate data for the period: 1 February 2000 until 31 July
2001 and bond option implied volatilities as follows:

e R150 - 2 May 2000 until 31 July 2001,
e R153 - 1 February 2000 until 31 July 2001.

These daily bond option implied volatilities are obtained as described in §10 of Chapter 13.

I performed the calibration exercise with two different time steps. Using a 30-day time step has
the advantage of being much faster, especially for the R153 bond options where the tree must be
constructed to bond maturity in 2010. However the large time step, as well as the interpolation
which must be performed on bond coupons and at option expiry, introduces potential for error. A
5-day time step is significantly slower to calibrate but produces better behaved results, especially
for short dated options. Also, any required interpolation is performed over shorter time periods,
reducing the potential approximation errors.

6.1. 30-day time step. Figure 14.1 depicts the average relative volatility obtained as a result
of calibration to the R150 and R153 bond options. Comparing these results to Figure 13.4, Chapter
13 shows a very close agreement. Figure 13.4 shows an absolute short term interest rate volatility of
approximately 1,5% for the HW-extended Vasicek model with zero reversion speed. Since the short
term interest rate was about 10% over the calibration period, this corresponds to the 15% relative
volatility of Figure 14.1, produced by the BDT model with zero reversion speed.
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Figures 14.2 and 14.3 depict the average mispricing and the mispricing of the R150 bond options
respectively. The average mispricing is an arithmetic average of the absolute value of the percentage
mispricing on each day. Not only is the mispricing rather volatile and extreme, but it evolves in
a fairly regular pattern which appears independent of possible effects of option expiry (This was
the most significant effect on mispricing in the results of the HW-extended Vasicek calibration). A
significant feature of Figure 14.3 is that the extreme mispricing occurs for the short and medium
term options. The long term option depicts the least volatile and most naturally evolving mispricing.
This allows the interpretation that the extreme mispricing is due to the very large time step of 30
days. The bond options trading in the South African market are all fairly short term, the longest
options have a term to expiry of at most 9 months. This means the pricing of the short and medium
term options of Figure 14.3 will be on very few time steps in the tree, making the results highly
inaccurate.

During the calibration using the 30-day tree I experienced problems with very short dated options.
Ten to fifteen days prior to expiry of the short options, the resulting BDT short term interest rate
volatility diverged, eventually blowing up in excess of 100%. For the purposes of the above graphs
I excluded these results.
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6.2. 5-day time step. Figure 14.4 depicts the results of the calibration using a 5-day tree.
We see that this is almost identical to Figure 14.1, with a short term interest rate volatility in the
region of 15%. When using the 5-day tree I did not need to exclude data for very short maturity
options since the resulting BDT short term interest rate volatilities remained well behaved prior to
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option expiry. The two spikes in the volatility obtained from the R150 bond options are just prior
to option expiry when there was some divergence of results.

The results in Figure 14.5 have been plotted on the same scale as those in Figure 14.2. This makes it
easy to appreciate the extent to which the level of average mispricing is diminished by using a more
granular tree structure. Using a 30-day time step, the mispricing is often in excess of 15% while on
the more granular tree the mispricing is almost always constrained under 10%. The evolution of the
mispricing in Figure 14.5 appears more gradual with less extreme spikes. In general the mispricing
is in the region of 5% and increases towards option expiry at the start of August 2000, November
2000 and February 2001.

Figure 14.6 shows the mispricing of various maturity options on the R153 resulting from calibration
with the 5-day tree. The short term option is consistently overpriced, the long term option consis-
tently underpriced, while the medium term option mispricing fluctuates between. These results are
consistent with those obtained for the calibration of the HW-extended Vasicek model. This implies
that much of the error introduced by the rough discretisation of the 30-day tree has been eliminated.
Although still fairly volatile, the mispricing here appears to be an improvement on that resulting
from the HW-extended Vasicek calibration (See Figures 13.2, 13.3, 13.5 and 13.6).

7. Concluding remarks

For accurate pricing within a discrete time framework, one would like as granular a lattice/tree
as possible. This implies a binomial tree with daily time steps for the implementation of the BDT
model. However, the binomial tree must be built out to bond maturity. For the case of the R150 and
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FIGURE 14.6. R153 mispricing: 5-day time step

R153 bonds this is February 2005 and August 2010 respectively. Within the calibration procedure
above, it is prohibitively slow to allow daily time steps. The optimisation procedure requires the
short term interest rate and bond price trees to be built for several values of short term interest
rate volatility until the optimal one is found. However, comparing the results of calibration using a
rough 30-day, time step tree and the more granular 5-day, time step tree, allows one to appreciate
the increased accuracy obtained by reducing time step size.

The results obtained from the calibration using a 5-day, time step tree appear quite encouraging.
The short term interest rate volatility and mispricing seem better behaved than those obtained for
the HW-extended Vasicek model. The latter is a continuous time model, hence it is not affected by
mispricing due to discretisation. This may lead one to believe that a logonormal short term interest
rate model is more appropriate for the South African market”. However, the choice of a suitable
model cannot be made simply on the grounds of the accuracy of in-sample vanilla security prices.
Different models represent various yield curve characteristics with varying degrees of accuracy.
Features perceived to be the most important to the valuation of a given contingent claim need
to be assessed and a suitable model chosen such that these characteristics are sufficiently well
represented. Both the HW-extended Vasicek and BDT models may prove to be useful for pricing
of more complicated contingent claims.

"Remember the HW-extended Vasicek model imposes a normal structure on the short term interest rate.



Conclusion

Interest rate modelling. Initial attempts to model the term structure of interest rates de-
veloped along the same lines as stock price models. These term structure models are based within
an economic setting where Brownian motions give rise to random shocks. Most models make the
assumption that the entire term structure is driven by the short term interest rate of interest. Some
models allow this short term interest rate to be driven by underlying economic variables, hence
introducing multiple factors. Other models introduce a second factor such a long interest rate or
short term interest rate volatility, modelling these two factors as mutually dependent processes.
The early models are concerned with determining an appropriate level of the term structure in
such a way that it is consistent with the underlying economic model. This makes it difficult to
incorporate information from an initial observed term structure and hence to reproduce the market
prices of securities.

A change of perspective introduced the need for a model to perfectly fit an initial term structure
and reproduce market observed prices of vanilla instruments. The focus shifted to calibrating model
parameters in such a way as to account for, rather than explain, the shape of the yield curve. This
has remained the driving force behind current research into term structure modelling. Given the
market observed prices of vanilla securities, practitioners need to price more exotic instruments in
a consistent manner.

Models allowing the instantaneous short term interest rate to be the single driving factor of the entire
yield curve are quite restrictive, in part because returns on bonds of all maturities are instantaneously
perfectly correlated. This is unrealistic and imposes restrictions on the resulting yield curve which
makes many market observed term structures difficult, if not impossible, to replicate.

The HJM framework introduces a new perspective to term structure modelling. By allowing the
instantaneous forward rate to be the fundamental variable, they are able to specify the entire term
structure at any one time. This is in contrast to models where the instantaneous short term interest
rate, a single point on the yield curve, is the fundamental variable.

However, the HJM approach still shares a fundamental problem with all its predecessors. The
state variables are in fact unobservable: instantaneous short and/or forward interest rates do not
trade in the market. Hence to calibrate these models one must perform a translation of unobservable
model variables to appropriately selected market proxies. Among others, this is one of the landmark
features of the approach taken by BJM, who develop a model which determines the stochastic process
followed by a market traded rate of interest: the discretely compounded LIBOR. This introduces
yet another dimension to term structure models since a trader may directly express her/his views
on movements in market traded quantities. The BJM model becomes a tool whereby a trader’s
views are directly translated into option prices.

The older more traditional models such as Vasicek and CIR still have a place in the financial
markets. Movements in market variables, that cannot be replicated within the model, will show up
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as anomalies and mispricing. This may lead users to perform a more detailed analysis of the causes
of such anomalies. Therefore, the qualitative insight they provide about the dynamics of the yield
curve can be beneficial for the understanding of more advanced models.

Calibration to South African markets. In the South African market, the choice of model is
largely driven by the availability (or otherwise) of reliable market data. Sophisticated models such
as HJIM and BJM require liquid markets in forward rates and contingent claims on these forward
rates, providing implied volatilities. Implementation of these models is rather complex, requiring
principle component analysis of the yield curve to extract its driving factors. The rather thin and
unsophisticated interest rate market in South Africa makes such an analysis quite difficult and the
results questionable.

The earlier models of Vasicek, CIR, (and their time dependent extensions introduced by HW), BDT
and HL have less rigorous data requirements. The user may calibrate to the yield curve only,
allowing the volatility to be a constant. These approaches seem more suitable for the South African
market.

I chose to calibrate the HW-extended Vasicek model since it provides analytical solutions for Eu-
ropean discount bond options and, making use of Jamshidian’s methodology, for European coupon
bond options. Although coupon bond options are traded in the OTC markets, implied volatilities
are obtainable. The BDT model is a natural choice for its ease of calibration and popularity among
practitioners. Its lognormal short term interest rate process provides an interesting comparison to
the normal structure imposed by the HW-extended Vasicek approach.

The results of the calibration exercise are not clear-cut. One cannot, on the basis of the results,
take preference to one model over the other. The fact that there is consistency in the short term
interest rate parameters produced by the two approaches, allows us to conclude that the results are
a correct characterisation of the yield curve. Ultimately, the choice of model depends on the exotic
contingent claim to be priced and how well its most important characteristics are represented by
the term structure model.
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