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1 Introduction

In his 1995 article “Hedging Quantos, Differential Swaps and Ratios” F. Jamshidian
[12] prices a variety of contingent claims by means of explicitly given hedging strategies.
However, these strategies are presented somehow ad hoc without being derived in a
systematic manner from the structure of the contingent claim in question. Also, there
are no admissibility considerations for the given strategies. Therefore, recalling the
possibility of “suicide strategies” (cf. Harrison-Pliska [8]) the employed duplication
argument might lead to contradictions.

In this paper we will proceed in a different way. Instead of pricing by duplication we
will develop a price functional yielding the whole value process of the given contingent
claim. After that we determine the hedging strategy by use of Itô’s formula. This
method excludes “suicide effects” already from the start and provides a systematic
derivation of prices and portfolio strategies.

The outline of the paper is as follows: In Section 2 we present the basic model.
We recall some general results on pricing contingent claims in general semimartingale
models and in examine in detail the technique of “change of numéraire” introduced in El
Karoui-Geman-Rochet [6]. This technique will be combined with the multiplicative
Doob-Meyer decomposition to formulate our “general” approach to pricing and hedging
contingent claims.

Section 3 then provides some applications dealing with forwards, futures and swaps.
All of these examples are also treated in Jamshidian [12]. Under the assumption
of [12] that certain (co-)variation processes have deterministic final value, the method
of Section 2 allows us to derive the pricing formulas of [12] in a systematic manner.
As explicit examples we will treat forwards on ratios of equity indexes, or options on
forwards for which we recover a Black-Scholes-type valuation formula. Furthermore
we will treat quanto futures and simulate a dollar-denominated future by its pound-
denominated analogue. Finally, we will price and hedge continuous differential swaps
which allow an American investor to participate in the British interest rate without
bearing an exchange rate risk. In contrast to [12] our approach will involve the unbiased
expectation hypothesis and a Heath-Jarrow-Morton type dynamics of bond prices.

2 General Theory

Let us start with an informal description of the financial market. We assume that there
are the following primary assets:

• stocks whose price processes will be denoted by P = (Pt)0≤t≤T where T < ∞ is
the time horizon for our financial market.

• a continuum of zero coupon bonds paying one unit at their time of maturity. Their
price processes will be denoted by Bs = (Bs

t )0≤t≤s where 0 ≤ s ≤ T denotes
maturity. So we have Bs

s = 1 (0 ≤ s ≤ T ).
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• a money market account with interest rate process r = (rt)0≤t≤T such that investing
one unit at time 0 will produce a return of size

βt
∆
= exp

(∫ t

0
rs ds

)
(1)

up to time 0 ≤ t ≤ T .

Sometimes we may wish to consider two national financial markets (called the “Amer-
ican” and the “British” one). To distinguish the dollar- and pound-denominated assets
the corresponding processes are indexed by “$” and “£” respectively. Furthermore we
assume that at any time 0 ≤ t ≤ T one can change pounds into dollars and vice versa
according to the exchange rate of Xt dollars for one pound.

We suppose frictionless markets, i.e. unlimited short sales are possible and investors
can trade any friction of every asset at any time, even continuously. We will also neglect
transaction costs, dividends and taxes. In order to ensure that the gain from trade is well
defined as stochastic integral we assume that all price processes including the exchange
rate X are strictly positive, continuous semimartingales on a common stochastic basis
(Ω,F , IP, IF). The filtration IF = (Ft)0≤t≤T is supposed to satisfy the usual hypothesis of
right-continuity and completeness; F0 is IP-a.s. trivial. The interest rates r = (rt)0≤t≤T

are only assumed to form an adapted, B([0, T ]) ⊗FT -measurable stochastic process for
which the integral in (1) is well defined.

2.1 No Arbitrage and Martingale Measures

A basic assumption in the theory of financial markets is that there are no arbitrage
opportunities, i.e. there is no possibility of gaining money without bearing some risk.
The impact of this condition on models of stock prices has been studied for a long time
beginning with the seminal papers by Harrison-Kreps [7] and Harrison-Pliska [8].
These papers revealed a connection between the no arbitrage assumption and the exis-
tence of an equivalent martingale measure. Finally, F. Delbaen and W. Schacher-
mayer [5] have been able to show the following fairly general result:

Theorem 2.1 1 Given a bounded IRd-valued semimartingale S there is an equivalent
martingale measure for S if and only if S satisfies the condition “no free lunch with
vanishing risk” (NFLVR) 2. For a locally bounded S the condition (NFLVR) is equivalent
to the existence of an equivalent local martingale measure. 3

�

With exception of Section 3.3 on continuous differential swaps we will only consider a
finite number of all the assets described above. So let us fix a finite set S = {S1, . . . , Sd}

1see Delbaen-Schachermayer [5] for a proof
2For an exact definition of this condition see Delbaen-Schachermayer [5]. Informally it says

that even asymptotically there shall be no arbitrage-possibilities. Especially it implies the absence of
arbitrage.

3i.e. a measure under which discounted stock prices are at least local martingales
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of primary assets. Then the above theorem suggests to assume the existence of at least
one equivalent martingale measure IPβ for all discounted asset prices S/β (S ∈ S). Here
we index the martingale measure by β because we use the money market account as
numéraire.

As pointed out in the introduction we are going to deal with cross-currency deriva-
tives. So we will consider two national financial markets (called the “U.S.-American”
and the “British” one) with given finite sets of primary assets $S, £S. Clearly, from the
American point of view a foreign British asset can be considered as a “domestic Amer-
ican” one after its price has been converted into dollars. Thus, instead of considering
$S and £S, we can again consider just one set S ∆

= $S ∪ {X £S| £S ∈ £S} of primary
(“American”) assets. Another consequence of this observation is the following. Let
IP $β denote a martingale measure for the U.S.-market. Under the American martingale

measure IP $β not only the discounted primary American asset prices (e.g. $BT/ $β,
$P/ $β) have to be martingales, but also the discounted British asset prices converted
into dollar prices (e.g. X £BT/ $β, X £P/ $β, X £β/ $β). Clearly, a martingale measure
IP£β for the British market fulfills a symmetric property. Finally, a given British mar-
tingale measure can be converted into an American martingale measure in the following
manner:

Theorem 2.2 Let IP£β be a martingale measure for the British market. Then the
measure

dIP $β
∆
=

X0
$βT

XT
£βT

dIP£β(2)

is a martingale measure for the U.S.-market.

Proof: We only have to note that for any dollar-denomatied asset $S the process
X−1 $S/ £β has to be a IP£β-martingale and then use the transformation rule for condi-
tional expectations for a change of measure (see e.g. Karatzas-Shreve [14], Chapter
3, Lemma 5.3). �

2.2 Price Functionals

Martingale measures for S can be viewed as price functionals in the following way.
Let HT ≥ 0 be a contingent claim, i.e. an FT -measurable random variable. For any
martingale measure IPβ we define the IPβ-price at time 0 ≤ t ≤ T of HT by

IPβπT
t [HT ]

∆
= βtIEIPβ

[
HT

βT

| Ft

]
.(3)

Of course, it is by no means obvious why this definition should make sense: Why
should this give a reasonable price for a time T payment of size HT ? And what about
the dependency on the chosen martingale measure IPβ? Are there several prices for the
same contingent claim? So some clarification is needed. For this we have to formalize
the notions “portfolio strategy”, “gain from trade”, “selffinancing” and “admissible”.
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Definition 2.3 A portfolio strategy for the assets S = {S1, . . . , Sd} is an IF-predictable
process ξ = (ξ1

t , . . . , ξ
d
t )0≤t≤T satisfying∫ T

0
(ξis)

2 d[Si, Si]s < ∞ (i = 1, . . . , d) IP-a.s.

For such a strategy ξ the gain from trade is defined by the stochastic integral

G(ξ)t
∆
=

∫ t

0
ξ′s dSs (0 ≤ t ≤ T ).

A portfolio strategy ξ is called selffinancing if at any time 0 ≤ t ≤ T the actual wealth
of the position

V (ξ)t
∆
= ξ′tSt =

d∑
i=1

ξitS
i
t

results from some deterministic initial investment V (ξ)0 and the gains from trade:

V (ξ)t = V (ξ)0 + G(ξ)t (0 ≤ t ≤ T ).(4)

As already mentioned in the introduction we have to restrict the set of selffinancing
trading strategies to preclude arbitrage possibilities from continuous trading.

Definition 2.4 Let IPβ be an equivalent martingale measure for the assets S. We call
a selffinancing strategy admissible with respect to IPβ ( IPβ-admissible for short) if its
discounted wealth process V (ξ)/β is a true IPβ-martingale. A contingent claim HT is
called attainable with respect to IPβ if it coincides with the terminal value V (ξ)T of
some IPβ-admissible trading strategy ξ.

Now we are able to give a first argument why one might want to view (3) as definition
of a price functional:

Proposition 2.5 If a contingent claim HT is attained by some IPβ-admissible trading
strategy ξ then we have

IPβπ
T

t [HT ] = V (ξ)t (0 ≤ t ≤ T ),(5)

i.e. at any time 0 ≤ t ≤ T the IPβ-price for HT is exactly the wealth needed to start the
selffinancing trading strategy ξ at time t and to duplicate the desired payoff HT thereby.

Proof: Just notice that both V (ξ)/β and IPβπ
T
[HT ]/β are IPβ-martingales with the

same terminal value. �

From a mathematical point of view the duplication argument in Proposition 2.5
is not enough to guarantee that the IPβ-price in (3) does not depend on the specific
choice of the martingale measure IPβ. In fact, the claim HT might be duplicated by two
different selffinancing strategies ξ and ξ̄, which are both admissible, but with respect
to different martingale measures IPβ and IPβ. In this situation we can not conclude
V (ξ) = V (ξ̄) since the martingale property need not necessarily be preserved under a
change of martingale measure. This suggests to analyze the behaviour of contingent
claims under such a change of measure. This was done in Jacka [11] from where we
adopt the following
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Theorem 2.6 Let HT be a nonnegative (!) contingent claim, and let IPβ denote a fixed
martingale measure. Then the following conditions are equivalent:

(i) HT is attainable with respect to IPβ.

(ii) For any martingale measure IPβ satisfying

ess sup

{
dIPβ

dIPβ

∨ dIPβ

dIPβ

}
< ∞

we have
IPβπ

T

t [HT ] = IPβπ
T

t [HT ] (0 ≤ t ≤ T ).

(iii) For any martingale measure IPβ we have

IPβπ
T

t [HT ] ≥ IPβπ
T

t [HT ] (0 ≤ t ≤ T ).

If HT is simultaneously attainable with respect to two martingale measures IPβ and IPβ,
it follows that the corresponding price processes in the sense of (3) coincide.

Proof: The proof consists of a slight extension of Jacka [11], Theorems 3.1 and 3.4.
See Bank [1] for details on this extension. �

If HT is attainable with respect to some martingale measure IPβ and is nonnegative
then we can define the price process of HT as

πT
t [HT ]

∆
= IPβπ

T

t [HT ] = βtIEIPβ

[
HT

βT

| Ft

]
(0 ≤ t ≤ T ).(6)

By the above theorem, this definition solves the problems mentioned after the definition
of the IPβ-price functional (3), but only for nonnegative contingent claims. Some of
the contingent claims we are going to discuss later (e.g. forwards) do not satisfy this
property, and so we need one further extension of our definition of the price functional.

Definition 2.7 Assume that the contingent claim HT can be written as the difference
of two other contingent claims JT ≥ 0 and KT ≥ 0 where JT is attainable with respect to
some martingale measure IPβ and KT is attainable with respect to every (!) martingale
measure. Then we set

πT
t [HT ]

∆
= IPβπ

T

t [JT ] − IPβπ
T

t [KT ] (0 ≤ t ≤ T ).(7)

Contingent claims allowing a decomposition as above will be called attainable.

The following lemma explains to which extent this definition is independent of the
specific choice of the martingale measure and of the decomposition of HT .
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Lemma 2.8 Assume that HT satisfies the assumption of Definition 2.7 with respect
to some martingale measure IPβ. Let IPβ be any other martingale measure such that
HT can be written as the difference of two nonnegative claims J̄T , K̄T which are both
attainable under IPβ. Then we have

IPβπ
T

t [HT ] = IPβπ
T

t [HT ] (0 ≤ t ≤ T ).(8)

Proof: First we observe that with J̄T , K̄T and KT also 0 ≤ JT = J̄T − K̄T + KT

is attainable with respect to IPβ. Theorem 2.6 implies that then JT has the same Ft-
conditional expectation under IPβ as under IPβ. This and the analogous properties of
KT easily lead to equation (8). �

2.3 Change of Numéraire

Obviously, most of the notions (e.g. attainability, price functional) introduced so far
depend on the money market account as choice of numéraire. But often it will be
convenient to use other processes (e.g. bond prices) as numéraires as well. Thus we
would like to examine more closely to which extent the above notions really depend on
the specific choice of numéraire. To begin with we give

Definition 2.9 A numéraire is a strictly positive, continuous semimartingale N . In
analogy to the notion “martingale measure” we define a numéraire measure for N to be
any probability measure IPN ≈ IP such that S/N is a IPN -martingale for any primary
asset S ∈ S. The set of all those measures IPN will be denoted by PN . A numéraire N̄
is said to be compatible with another numéraire N if there is a numéraire measure IPN

for N such that N̄/N becomes a martingale under IPN .

Our main tool will be the following theorem which we adopt from El Karoui-
Geman-Rochet [6]:

Theorem 2.10 Let N̄ be a numéraire compatible with the numéraire N under the
numéraire measure IPN for N . Then we can define a numéraire measure for N̄ by

dIPN̄
∆
=

N0

N̄0

N̄T

NT

dIPN .(9)

Proof: This is an easy application of the transformation rule for conditional expecta-
tions (see e.g. Karatzas-Shreve [14], Chapter 3, Lemma 5.3). �

Definition 2.11 Let HT be a contingent claim which can be written as the difference
of two nonnegative contingent claims JT , KT satisfying:

(i) JT = V (ξ)T for some trading strategy ξ such that V (ξ)/N is a true martingale
under some IPN ∈ PN .

6



(ii) KT = V (η)T for some trading strategy η such that V (η)/N is a true martingale
under all IPN ∈ PN .

Then HT is called N -attainable and there is a well defined4 price functional

Nπ
T

t [HT ]
∆
=NtIEIPN

[
HT

NT

| Ft

] (
= Nπ

T

t [JT ] − Nπ
T

t [KT ]
)

(0 ≤ t ≤ T ).(10)

The resulting prices for N -attainable assets will be uniquely determined in the class
of numéraires compatible with β.

Theorem 2.12 Let N̄ be a numéraire compatible with the numéraire N under IPN ∈
PN . An asset HT is N-attainable if and only if it is N̄-attainable, and in that case the
price functionals defined in (10) coincide:

Nπ
T

t [HT ] = N̄πT
t [HT ] (0 ≤ t ≤ T ).(11)

Proof: Let ξ be a trading strategy so that V (ξ)/N is a true martingale under some
numéraire measure IPN . First we wish to show that V (ξ)/N̄ is a true martingale under
IPN̄ defined by (9). By the transformation rule for conditional expectations this is
equivalent to

V (ξ)t
N̄t

dIPN̄

dIPN

|Ft =
V (ξ)t
N̄t

N0

N̄0

N̄t

Nt

=
N0

N̄0

V (ξ)t
Nt

(0 ≤ t ≤ T )

being a martingale under IPN , which is true by assumption. Equation (11) follows easily
from V (ξ)T = HT for some admissible strategy and the martingale property of V (ξ)/N ,
V (ξ)/N̄ under IPN , IPN̄ respectively. �

The theorem implies that the “standard” numéraire β can be replaced by any other
numéraire N which is given by the price process of some attainable contingent claim.
More precisely, we have the following

Corollary 2.13 Let N be a numéraire compatible to β under some martingale mea-
sure IPβ in the sense of Section 2.2. Then the notions “attainability” of Definition 2.7
and “N-attainability” coincide, and for any attainable contingent claim HT we get the
valuation formula

πT
t [HT ] = NtIEIPN

[
HT

NT

|Ft

]
(0 ≤ t ≤ T )(12)

where πT
t [.] is defined by (6) and

dIPN
∆
=

1

N0

NT

βT

dIPβ.

�

4Note that the results in Jacka [11] are presented in terms of discounted price processes. Thus
Theorem 2.6 remains valid for any numéraire N replacing β.
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2.4 An Approach to Pricing and Hedging via “Change of
Numéraire”

In this section we describe the valuation method used in the following examples. This
method proceeds in four steps:

Let HT be some contingent claim defined in terms of some given primary assets
S = {S1, . . . , Sd}.

Step 1: We first express HT as a combination of terminal values of some continuous
processes X which are (local) martingales under a common class PN of numéraire
measures obtained by a suitable “change of numéraire”.

Step 2: The processes X obtained in Step 1 will be strictly positive and so they can
be expressed as stochastic exponentials5, i.e., X = X0E(X−1·X).6

Step 3: We calculate the conditional IPN -expectations of HT along the filtration IF
for some numéraire measure IPN ∈ PN ; this will give us the price process for HT

as explained in the preceding sections. In most cases7 the calculation is done as
follows. The expression for HT found in Step 1 will be multiplicative. It induces
an analogous combination of the (local) IPN -martingales. The resulting process is
then rewritten as the product of a local martingale and a predictable process of
finite total variation, i.e., we consider its “multiplicative Doob-Meyer decompo-
sition”. Then are introduced the rather restrictive assumptions that the process
of finite variation has a deterministic terminal value8, and that the corresponding
local martingale is a true martingale under some suitable measure IPN of the class
PN . This allows us to compute the conditional IPN -expectations directly from the
multiplicative Doob-Meyer decomposition.

Step 4: Having found the price process for HT we finally compute the hedging strategy
by Itô’s formula.

Remark 2.14 It is clear that the first three steps of the above scheme will lead to a
price process which does not depend on the particular choice of the martingale measure
IPN in Step 3. Thus, due to Theorem 2.6, the contingent claim HT will be attainable.
This is the main reason why Step 4 will always lead to a selffinancing hedging strategy.
This strategy will clearly be admissible by construction.

5For a semimartingale X the corresponding exponential E(X) is defined as the unique solution Y of
the SDE dYt = Yt− dXt, Y0 = 1. For continuous X we have E(X)t = exp(Xt− 1

2 [X,X]t) (cf. Protter
[15], Chapter II, p. 77). Later we will wish to “start” the exponential at a prescribed time 0 ≤ t0 ≤ T .
Therefore we introduce the notation

E(X)t0,t =
{

1 (0 ≤ t ≤ t0)
E(X)t/E(X)t0 (t0 ≤ t ≤ T ).

6Of course, “·” denotes stochastic integration.
7The only exception is Section 3.1.3 on “An Option on a Forward”.
8In the section on swaps we will even suppose that this process is completely deterministic.
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3 Examples

In this section we consider specific derivatives, e.g. forwards on ratios, quanto futures,
and continuous differential swaps, which were treated by Jamshidian [12]. Our purpose
is to show that all the results of [12] can be derived in a systematic manner using the
methodology proposed in Section 2.4.

3.1 Forwards

A forward contract is the obligation to purchase a specified good on a specific date (the
maturity date of the contract) at an exercise price agreed upon at the inception of the
contract. A forward contract is mandatorily exercisable; that is, once the purchaser has
entered into a forward contract, he is obliged to honour that contract, to acquire the
good at the agreed price (the forward price) upon maturity of the forward. This price
is determined such that the forward contract itself does not cost anything at the initial
time when the contract is entered.

3.1.1 A General Forward Price Formula

Let again S be a finite set of primary assets containing a bond BT with maturity T .

Theorem 3.1 9 Let HT ≥ 0 be an attainable contingent claim. Then the forward on
this underlying with the same maturity T must be priced by

FwdT
t [HT ]

∆
=

πT
t [HT ]

BT
t

(0 ≤ t ≤ T )(13)

in order to preclude arbitrage possibilities.

Proof: Let Ft denote the forward price at time t. By definition this should be deter-
mined such that the payoff HT − Ft of the forward contract at time T is worthless at
time t, i.e.

0 = πT
t [HT − Ft]

10 = πT
t [HT ] − Ftπ

T
t [1] = πT

t [HT ] − FtB
T
t .

Here the second equality holds because the time t forward price has to be known in this
moment. �

Formula (13) states the well-known connection between forwards and bonds of the
same maturity. This suggests to use BT as numéraire and thereby motivates the

9cf. Cox-Ingersoll-Ross [4], Proposition 1
10At time t one easily attains a time T payoff Ft by buying and holding a suitable amount of bonds

maturing at time T . Therefore, from time t on, the contingent claim Ft ≥ 0 is attainable under every
martingale measure and so by Lemma 2.7 the contingent claim HT − Ft has a well defined price.
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Corollary 3.2 11 Under the conditions of Theorem 3.1 we can rewrite equation (13) as

FwdT
t [HT ] = IEIP

BT
[HT | Ft] (0 ≤ t ≤ T )(14)

where IPBT is the numéraire measure induced as in (9) by any martingale measure IPβ

with respect to which HT is attainable. In particular, under IPBT the forward price
process FwdT [HT ] is a true martingale.

Proof: First we note that N
∆
= β and N̄

∆
=BT are a pair of compatible numéraires

under any martingale measure. By Corollary 2.13 we get

πT
t [HT ] = BT

t IEIP
BT

[
HT

BT
T

| Ft

]
(0 ≤ t ≤ T ).

This together with (13) and BT
T = 1 implies (14). �

Remark 3.3 So far we have considered situations where there are only some “classical”
primary assets (bonds, stocks, money market account). Now we are going to deal with
financial markets which in addition contain certain forward contracts. This means that
there are additional constraints on martingale measures. More precisely, under any
numéraire measure IPBT not only all processes S/BT (S ∈ S) have to be martingales,
but also the price processes of all forward contracts contained in the financial market.
This can be shown by the same arguments as in the proofs of Theorem 3.1 and its
corollary. Alternatively, one can interpret the addition of forwards as an extension of

the set of primary assets S by all processes S
∆
=FBT where F denotes the price process

of some forward contract to be added.
Due to their close relation to forward prices, numéraire measures for bonds are often

called forward measures.

3.1.2 Hedging Ratios

In this section we price a so called “ratio”. This is a forward contract whose terminal
price HT is given by the ratio of two primary asset prices PT , P̃T at maturity T , i.e.

HT
∆
=PT/P̃T . We will treat this first example in more detail in order to show how the

method of Section 2 works in the present context.

Step 1: Corollary 3.2 suggests to choose as numéraire measures the class PBT , since

we wish to price a forward contract. Letting F
∆
=P/BT and F̃

∆
= P̃ /BT denote the

forward price processes for P and P̃ respectively, we know that both F and F̃ are
martingales under every IPBT ∈ PBT . Moreover, we obviously have HT = FT/F̃T .

Step 2: We may write F = F0E (F−1·F ) and F̃ = F̃0E
(
F̃−1·F̃

)
.

11cf. Jamshidian [13]
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Step 3: Using Lemma 3.5 below we get the multiplicative decomposition

F

F̃
=

F0

F̃0

E
(
F−1·F − F̃−1·F̃

)
exp

(∫ .

0
d[F−1·F − F̃−1·F̃ , F̃−1·F̃ ]s

)
.

The E (. . .)-term is a local martingale because the same is true for F and F̃ , and
the last factor is of bounded variation. Now, if we assume that the local martingale
is even a true martingale under a suitable numéraire measure IPBT and if the above
process of bounded variation has a deterministic terminal value, we may compute
explicitly

IEIP
BT

[HT | Ft] =
Ft

F̃t

exp

(∫ T

t
d[F−1·F − F̃−1·F̃ , F̃−1·F̃ ]s

)
.(15)

Note that this does not depend on the particular choice of the measure IPBT as
long as the martingale property of the above stochastic exponential holds. In this
sense the forward price (14) is uniquely determined.

Step 4: An easy application of Itô’s formula yields the dynamics

dFwdT
t [HT ] = FwdT

t [HT ]

(
dFt

Ft

− dF̃t

F̃t

)
,

Thus, at time 0 ≤ t ≤ T one has to be long 1
Ft

FwdT
t [HT ] forwards on P and be

short 1
F̃t

FwdT
t [HT ] forwards on P̃ in order to hedge the ratio on P , P̃ .

All this gives us

Theorem 3.4 Let P and P̃ be two primary assets and let F
∆
=P/BT and F̃

∆
= P̃ /BT

denote the corresponding forward prices. Suppose there exists a numéraire measure IPBT

under which the stochastic exponential E(F−1·F − F̃−1·F̃ ) is a true martingale. Assume
furthermore that the quadratic covariation process

Ct
∆
= [F−1·F − F̃−1·F̃ , F̃−1·F̃ ]t (0 ≤ t ≤ T )

is deterministic at time T . Then there is a unique forward price for the ratio

HT
∆
=PT/P̃T given by

FwdT
t [HT ] =

Pt

P̃t

exp(CT − Ct) (0 ≤ t ≤ T )

and one can replicate the forward contract on HT by being long 1
Ft

FwdT
t [HT ] forwards

on P and short 1
F̃t

FwdT
t [HT ] forwards on P̃ at any time 0 ≤ t ≤ T .

�

In Step 3 above we used some arithmetic for exponentials which we summarize in
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Lemma 3.5 Let X and Y be two semimartingales starting at zero. Then we have

E(X)E(Y ) = E(X + Y + [X, Y ])

as well as
E(X)−1 = E(−X + [X,X]) = E(−X) exp([X,X]).

Proof: See Protter [15], Chapter II, p. 79. �

3.1.3 An Option on a Forward Contract

Let us now consider a European call option on a forward contract. The holder of such
an option has the right (not the duty) to buy at a prescribed time T (maturity of the
option) a certain forward contract maturing at some time τ ≥ T . The price to be paid
at time τ is prescribed as some fixed strike K. Thus the holder of the option can buy at
time T a forward contract which specifies the price K instead of the forward price F τ

T

determined by the market at time T . Clearly, the holder will exercise his option only
if F τ

T > K, because then he can realize a sure profit F τ
T − K > 0 at time τ by selling

at time T the delivered forward at the actual market price F τ
T . Therefore the option

represents a contingent claim promising the payment HT
∆
=Bτ

T (F τ
T − K)+ at time T .

Now we can use the previously developed theory to price this claim.
The forward contract refers to some underlying price process S, i.e. F τ

t =
Fwdτ

t [Sτ ] (0 ≤ t ≤ τ). By the general formula for forward prices (13), we have
F τ
t = St/B

τ
t (0 ≤ t ≤ τ). Now, granting for the moment that HT is attainable with

respect to some martingale measure IPβ
12, we may write

πT
t [HT ] = πT

t [(Bτ
TF

τ
T −Bτ

TK)+]

= βtIEIPβ

[
ST 1{Fτ

T
>K}

βT
| Ft

]
−KβtIEIPβ

[
Bτ

T 1{Fτ
T
>K}

βT
| Ft

]
= StIPS[F τ

T > K | Ft] −KBτ
t IPBτ [F τ

T > K | Ft]

(16)

where IPS and IPBτ are numéraire measures obtained from IPβ as in Corollary 2.13. This
application of change of numéraire can be found e.g. in El Karoui-Geman-Rochet
[6]. In order to compute the conditional distributions of F τ

T appearing in (16), we first
state

Lemma 3.6 Let X = (Xt)0≤t≤T be a continuous local martingale on some stochas-
tic basis (Ω,FT , IP

∗, IF). Assume further that its quadratic variation process [X,X] is
deterministic at time T . Then we have for 0 ≤ t ≤ T

IP∗[XT ∈ A | Ft] = NXt,[X,X]T−[X,X]t [A] (A ∈ B(IR)),

i.e. the terminal value of X conditioned on Ft is normally distributed with mean mt
∆
=Xt

and variance σ2
t

∆
= [X,X]T − [X,X]t.

12Later we will be able to justify this assumption by Theorem 2.6.
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Proof: For fixed λ ∈ IR let us consider the exponential E(λX). By Novikov’s criterion13

this exponential is a true IP∗-martingale under our assumption on [X,X]T . Thus we
have

E(λX)t = IEIP∗

[
exp

(
λXT − λ2

2
[X,X]T

)
| Ft

]
(0 ≤ t ≤ T )

and because [X,X]T is deterministic:

IEIP∗ [exp(λXT ) | Ft] = exp

(
λXt +

λ2

2
([X,X]T − [X,X]t)

)
.

So the conditional Laplace transform of XT coincides with the Laplace transform of a
normally distributed random variable with mean mt and variance σ2

t as above. �

Now we can calculate IPBτ [F τ
T > K | Ft] as follows. From Corollary 3.2 we know that

the forward price process F τ is a continuous martingale under any IPBτ ∈ PBτ . Thus the

process X
∆
= (F τ )−1·F τ is a continuous local IPBτ -martingale such that F τ = F τ

0 E(X).
Assuming that

[X,X]T =
∫ T

0

d[F τ , F τ ]s
(F τ

s )2
is deterministic(17)

Lemma 3.6 (with IP∗ ∆
= IPBτ ) yields

IPBτ [F τ
T > K | Ft] = IPBτ

[
XT > log(K/F τ

0 ) +
1

2
[X,X]T | Ft

]

= NXt,[X,X]T−[X,X]t

[(
log(K/F τ

0 ) +
1

2
[X,X]T ,+∞

)]

= N0,1

[(
K/F τ

t /K

σt

+
σt

2
,+∞

)]

= Φ

(
log(F τ

t /K)

σt

− σt

2

)
,

where

σ2
t

∆
= [X,X]T − [X,X]t =

∫ T

t

d[F τ , F τ ]s
(F τ

s )2
(18)

and Φ denotes the distribution function of the standard normal distribution N0,1.
To calculate IPS[F τ

T > K | Ft] we proceed similarly. By definition of IPS the pro-

cess (F τ )−1 = Bτ/S is a IPS-martingale. So Y
∆
=F τ ·(F τ )−1 is a continuous local IPS-

martingale such that (F τ )−1 = (F τ
0 )−1E(Y ) and

[Y, Y ]T =
∫ T

0
(F τ

s )2 d[(F τ )−1, (F τ )−1]s =
∫ T

0

d[F τ , F τ ]s
(F τ

s )2
= [X,X]T .

13see e.g. Karatzas-Shreve [14], Chapter 3, Proposition 5.12
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Thus the quadratic variation [Y, Y ]T is deterministic, too. Now, Lemma 3.6 (this time

with IP∗ ∆
= IPS) yields

IPS[F τ
T > K | Ft] = IPS[(F τ

T )−1 < K−1 | Ft]

= IPS

[
YT < log(F τ

0 /K) +
1

2
[Y, Y ]T | Ft

]

= NYt,[Y,Y ]T−[Y,Y ]t

[(
−∞, log(F τ

0 /K) +
1

2
[Y, Y ]T

)]

= Φ

(
log(F τ

t /K

σt

+
σt

2

)

with the same parameter σt as in (18).
We can now deduce that, in fact, HT has to be attainable under condition (17),

because the conditional probabilities appearing in (16) do not depend on the specific
choice of the martingale measure IPβ.

We summarize this in

Theorem 3.7 14 Let F τ be the price process of some forward maturing at time τ . Sup-
pose the quadratic variation ∫ T

0

d[F τ , F τ ]s
(F τ

s )2

is deterministic. Then an option HT
∆
=Bτ

T (F τ
T − K)+ on this forward with strike K

maturing at time T is worth

πT
t [HT ] = Bτ

t

{
F τ
t Φ

(
log(F τ

t /K)

σt

+
σt

2

)
−KΦ

(
log(F τ

t /K)

σt

− σt

2

)}
(19)

in 0 ≤ t < T where σt is defined by (18)15. Moreover, at each time 0 ≤ t0 < T it is
possible to duplicate the payoff of this option by purchasing πT

t0
[HT ]/Bτ

t0
bonds maturing

at τ and holding exactly Φ
(

log(F τ
t /K)

σt
+ σt

2

)
forward contracts in t0 ≤ t ≤ T .

Proof: We only have to derive the hedging strategy. For this we first note that it is
enough to duplicate a forward contract maturing at time τ ≥ T (!) with terminal price
(F τ

T −K)+. Indeed, having done this, one will realize the profit or loss Bτ
T{(F τ

T −K)+−
Fwdτ

t0
[(F τ

T −K)+]} at time T . Thus, additionally purchasing at time t0

Fwdτ
t0
[(F τ

T −K)+] = πτ
t0
[(F τ

T −K)+]/Bτ
t0

= πT
t0
[Bτ

T (F τ
T −K)+]/Bτ

t0

bonds maturing at time τ , one can perfectly hedge the contingent claim HT .
So we have to study the dynamics of the process Fwdτ [(F τ

T − K)+] in terms of
its underlying process F τ . Both of these processes are local martingales under every

14cf. Jamshidian [12], Section 9
15Without loss of generality we may suppose σt > 0 for 0 ≤ t < T because otherwise the model would

be degenerate, i.e. the process F τ would be constant from the first time σ becomes zero.
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numéraire measure IPBτ by Corollary 3.2 and Remark 3.3. It follows that calculating
dFwdτ [(F τ

T −K)+] one only has to pay attention to increments resulting from processes
of unbounded variation — the other increments will have to cancel out because of the
uniqueness of the Doob-Meyer decomposition. So in the following calculation we may
and will leave out increments of processes of bounded variation denoting them by “. . .”.
For convenience we set

h±(t)
∆
=

log(F τ
t /K)

σt

± σt

2
(0 ≤ t ≤ T ).

After all these preliminaries we can now calculate:

(i) dh± = dF τ

F τσ
+ . . .

(ii) d(Φ(h±)) = 1√
2π

exp(−h2
±/2) dh± + . . .

= 1√
2π

exp(−h2
±/2)

F τσ
dF τ + . . .

(iii) dFwdτ [(F τ
T −K)+]

= d(F τΦ(h+) −KΦ(h−))
= Φ(h+) dF τ + F τ d(Φ(h+)) −K d(Φ(h−)) + . . .

=

{
Φ(h+) + 1√

2πσ2

[
exp(−h2

+/2) − K

F τ
exp(−h2

−/2)
]

︸ ︷︷ ︸
= 0

}
dF τ + . . .

= Φ(h+) dF τ .
where the last equality follows from the definition of h± and the already noted
fact that increments of processes of bounded variation have to cancel out.

We see that in order to duplicate the forward with terminal value (F τ
T −K)+ one has

to hold Φ(h+(t)) forwards F τ in t0 ≤ t ≤ T . �

3.2 Futures

As an alternative to forwards one can use futures to fix prices of a certain good in ad-
vance. But while forwards impose payments only at time of maturity future contracts
guarantee prices via a continuous payment stream. In our (idealized) model the instan-
taneous payments of a future contract result from a stochastic process called the future
price process of the underlying. This process is specified by the following properties:

(i) The process of future prices F = (Ft)0≤t≤T is a continuous semimartingale. The
instantaneous payment resulting from a future over the time period [t, t + dt] is
given by the infinitesimal increment dFt of this semimartingale. More precisely,
we suppose that the net profit or loss V = (Vt)t0≤t≤T from a long position in one
future contract written at time t0 ≥ 0 follows the stochastic differential equation

Vt0 = 0, dVt = dFt + Vtrt dt (t0 ≤ t ≤ T )(20)

provided the holder uses his money market account for settlement.
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(ii) At time of maturity T the future price FT coincides with the price HT ∈ FT of
the underlying good at that time. For example, HT could be the price of some
primary asset at time T .

(iii) At any time 0 ≤ t ≤ T a future contract is worthless — changes in value of
the underlying are reflected by changes of the future price F which cause an
instantaneous settlement.

Of course, it is not clear at all that conditions (i)-(iii) give a complete characterization
of the future price process F . In fact — as we will see in Theorem 3.8 below — in
general one is only able to determine F uniquely in a complete financial market.

3.2.1 The Future Price Formula

Let us start with the construction of a price functional FutT [.] for future prices which
is similar to the forward price functional FwdT [.] of the preceding section.

Theorem 3.8 16 Let HT ≥ 0 be a contingent claim. Then the future price process
(FutTt [HT ])0≤t≤T with terminal value HT is given by

FutTt [HT ] = πT
t

[
exp

(∫ T

t
rs ds

)
HT

]
= IEIPβ

[HT | Ft] (0 ≤ t ≤ T )(21)

provided the above price is well defined, i.e. the contingent claim exp
(∫ T

0 rs ds
)
HT

is attainable with respect to some martingale measure IPβ. In particular, we see that
future prices — as soon as they are well defined — form a martingale under a suitable
martingale measure IPβ.

Proof: Let ξ = (ξt)t0≤t≤T be any trading strategy for futures starting at time 0 ≤ t0 ≤
T ; settlement shall be done by using the money market account. Let further denote
F = (Ft)0≤t≤T the price process of the considered future. Then by equation (20) the
resulting profit or loss V = (Vt)t0≤t≤T is governed by the SDE

Vt0 = 0, dVt = ξt dFt + Vtrt dt (t0 ≤ t ≤ T ).

Thus, under weak regularity conditions on ξ, we will have

Vt = exp
(∫ t

t0
rs ds

) {∫ t

t0
exp

(
−

∫ s

t0
ru du

)
ξs dFs

}
(t0 ≤ t ≤ T ).(22)

If we now choose ξt
∆
= exp

(
− ∫ t

t0
ru du

)
(t0 ≤ t ≤ T ), we get

VT = exp

(∫ T

t0
rs ds

)
(HT − Ft0),

16cf. Cox-Ingersoll-Ross [4], Proposition 2 and Jamshidian [13], Formula (1.3)
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since FT = HT by definition. So trading in futures allows us to create a payoff of the
above size VT without investing any initial capital. Therefore this payoff has to be
worthless at the beginning of the strategy, i.e. we must have

0 = πT
t0
[VT ] = πT

t0

[
exp

(∫ T

t0
rs ds

)
HT

]
− Ft0π

T
t0

[
exp

(∫ T

t0
rs ds

)]

implying (21). Here we have to ensure that πT
t0
[VT ] is well defined; this is done by

Lemma 2.7 and our condition on the contingent claim exp
(∫ T

0 rs ds
)
HT . �

Remark 3.9 In analogy to forwards the addition of futures to a financial market has
an impact on the set of martingale measures for the considered financial market: price
processes of primary futures have to be true martingales under any martingale measure
IP $β.

3.2.2 Pricing an American Future by its British Analogue

Let us consider the following situation: An American investor wishes to fix a future
price for a certain good. Unfortunately there is no such future on the American financial
market. Only the British market contains a future for that good, but, of course, it is
denominated in pounds. How can the investor use this British future for his purposes
without taking an exchange rate risk?

Let us assume that besides the above British future £F = ( £F t)0≤t≤T > 0
there exists an exchange rate future of the same maturity T with price process

FX ∆
= ( $Fut

T

t [XT ]0≤t≤T ) > 0. Recall that X = (Xt)0≤t≤T denotes the exchange
rate from pound to dollar. Inspired by Theorem 3.8, we will try to calculate
IEIP $β

[XT
£F T | Ft] (0 ≤ t ≤ T ) where IP $β denotes as usual an arbitrary American

martingale measure. By Theorem 2.2, each IP $β is related to a martingale measure IP£β

for the British market via

dIP $β =
X0

$βT

XT
£βT

dIP£β.

We have

IEIP $β
[XT

£F T | Ft]

=
Xt

£βt

$βt

IEIP£β

[(
FX $β

X £β

)
T

£F T |Ft

]

= FX
t

£F tIEIP£β


E

(
X £β

FX $β
·F

X $β

X £β

)
t,T

E
(

£F
−1· £F

)
t,T

|Ft




= FX
t

£F tIEIP£β


E

(
X £β

FX $β
·F

X $β

X £β
+ £F

−1· £F
)
t,T

· exp

(∫ T

t
d[(FX)−1·FX −X−1·X, £F

−1· £F ]s

)
|Ft

]
.(23)
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Note that FX has to be a IP $β-martingale by Remark 3.9. Thus FX $β
X £β

is a IP£β-

martingale. Since also £F is a IP£β-martingale, the above exponential has to be a local
martingale, at least. If we now assume that it is even a true IP£β-martingale, and if we

further suppose that the covariation [(FX)−1·FX −X−1·X, £F
−1· £F ]T is deterministic,

the above formula simplifies to

IEIP $β
[XT

£F T | Ft] = FX
t

£F t exp

(∫ T

t
d[(FX)−1·FX −X−1·X, £F

−1· £F ]s

)
.(24)

Thus we have

Theorem 3.10 17 Assume that the exponential

E
(
X £β

FX $β
·F

X $β

X £β
+ £F

−1· £F
)

is a true martingale under some martingale measure IP£β, and that the quadratic co-
variation

[(FX)−1·FX −X−1·X, £F
−1· £F ]T

is deterministic. Then the dollar- and the pound-denominated future price (denoted by
$F , £F respectively) on the same good maturing at time T are related by

$F t = FX
t

£F t exp

(∫ T

t
d[(FX)−1·FX −X−1·X, £F

−1· £F ]s

)
(0 ≤ t ≤ T ).(25)

Furthermore we can duplicate the dollar future by going long
$F t

Xt
£F t

British futures £F

and long
$Ft
£F t

exchange rate futures FX at time 0 ≤ t ≤ T , continually converting the
whole instantaneous profit or loss from this position into dollars.

Proof: We only have to check the trading strategy. We first observe that, to duplicate
a future, one only has to duplicate the instantaneous profits and losses given by its future
price process. Since we already have determined the only possible candidate by equation
(24), we only have to calculate its infinitesimal increment and try to express it in terms
of the instantaneous profit or loss of a position in £F -type futures and in exchange rate
futures. If we hold a British future and continually convert the instantaneous profit or
loss into dollars, then we produce infinitesimal dollar payments of size

Xt d
£F t + d[X, £F ]t (0 ≤ t ≤ T );

this is clear in discrete time, and in continuous time it follows by passage to the limit
as in, e.g., [1]. Applying Itô’s formula to the process of equation (24) we may calculate
its infinitesimal increment as

$F t

FX
t

dFX
t +

$F t

£F t

d £F t +
$F t

Xt
£F t

d[X, £F ]t (0 ≤ t ≤ T ).

Comparing this to the above equation we see that the proposed hedging strategy is
correct. �

17cf. Jamshidian [12], Section 4
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3.2.3 Quantos

Let us now consider a slightly different situation: There is a British future £F with

pound-denominated terminal price £F T
∆
=HT ≥ 0, but there is no dollar future for the

same terminal price in dollars. How can one use the given British future to simulate the
dollar-denominated one?

To this end we consider two martingale measures IP $β, IP£β related as in the previous
section and calculate

IEIP $β
[HT | Ft] =

Xt
£βt

$βt

IEIP£β

[(
$β

X £β

)
T

£F T | Ft

]

= £F tIEIP£β


E

(
X £β

$β
·

$β

X £β

)
t,T

E
(

£F
−1· £F

)
t,T

| Ft




= £F tIEIP£β


E

(
X £β

$β
·

$β

X £β
+ £F

−1· £F
)
t,T

· exp

(
−

∫ T

t

d[X, £F ]s
Xs

£F s

)
| Ft

]
.

In analogy to the previous section one can now prove

Theorem 3.11 18 Let £F (resp. $F ) denote the pound- (resp. dollar-) denominated
future price process with terminal value HT pounds (resp. dollars). Suppose that the
exponential

E
(
X £β

$β
·

$β

X £β
+ £F

−1· £F
)

is a true martingale under some martingale measure IP£β. Let us assume further that
the quadratic covariation ∫ T

0

d[X, £F ]s
Xs

£F s

is deterministic. Then we have

$F t = £F t exp

(
−

∫ T

t

d[X, £F ]s
Xs

£F s

)
,(26)

and one can replicate the dollar-denominated future by holding
$F t

Xt
£F t

pieces of its British
analogue continually converting all profits or losses into dollars.

�

18cf. Jamshidian [12], Section 5
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3.3 Swaps

As a last example from Jamshidian [12] we are going to derive a valuation formula
and a hedging strategy for continuous differential swaps. A differential swap expiring
at time T , say, between the British and the U.S. financial market, promises its holder
an infinitesimal dollar payment stream ( £rt − $rt) dt (0 ≤ t ≤ T ). More precisely: If
an investor enters a differential swap at time t0 his cumulative return (Vt0,t)t0≤t≤T from
this investment will develop satisfying

Vt0,t0 = 0, dVt0,t = Vt0,t
$rt dt + ( £rt − $rt) dt (t0 ≤ t ≤ T )(27)

provided he reinvests his funds in the U.S. money market. So at time 0 ≤ t ≤ T he will
have earned the amount

Vt0,t = exp
(∫ t

t0

$ru du
) {∫ t

t0
exp

(
−

∫ s

t0

$ru du
)

( £rs − $rs) ds
}
.(28)

Thus, the value of the above continuous differential swap has to coincide with the value
of a payment of size Vt0,T at time T . Therefore it is enough to price and hedge this
contingent claim. For this we first recall some well-known results on the relation between
interest rates and bonds.

3.3.1 Forward Rates and Bonds

Forward rates allow an investor to fix his interest rates in advance. This is done as
follows: At time t he agrees to invest a certain amount of his wealth over an infinitesimal
future time period [s, s+ ds] at interest rate rst ∈ Ft which is fixed at time t. Whatever
the true interest rate might be at time s, he will have the interest return rst ds on his
investment. The forward rate rst is determined so that — in analogy with the classical
forward contracts — the above agreement itself does not cost anything.

We assume that besides the “usual” stocks and bonds one can trade forward rates
for every future date 0 ≤ s ≤ T at any time 0 ≤ t ≤ s. Since both bonds and forward
rates allow to fix future interest rates — although in different ways — there has to
be some relation between them. Under weak regularity conditions this is given by the
well-known formulae

Bs
t = exp

(
−

∫ s

t
rut du

)
IP-a.s., resp. rst = − 1

Bs
t

∂

∂s
Bs

t IP ⊗ ds-a.e.(29)

So far we have always argued in terms of a given finite number of assets. From now on
we will consider the full continuum Bs (0 ≤ s ≤ T ) of bond price processes. From a
mathematical point of view, this causes many technical problems whose solution lies far
beyond the scope of this paper. For instance, we do not try to reduce the existence of an
equivalent martingale measure to the absence of arbitrage as in Theorem 2.1. Instead
we simply introduce the

Assumption 3.12 There is at least one equivalent martingale measure for all stocks
and the whole continuum of bonds.
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Under this standing assumption we have the well-known

Theorem 3.13 19 At time t ≥ 0 forward rates rst (t ≤ s ≤ T ) satisfy

rst = IEIPBs [rs | Ft] (t ≤ s ≤ T ) IP ⊗ ds-a.e.(30)

for IPBs ∈ PBs. In particular, for a.e. fixed maturity 0 ≤ s ≤ T the forward rates
(rst )0≤t≤s form a IPBs-martingale.

Proof: First we note that for any martingale measure IPβ and 0 ≤ t ≤ s ≤ T we have

Bs
t = IEIPβ

[
exp

(
−

∫ s

t
ru du

)
| Ft

]

= IEIPβ

[
1 +

∫ s

t

∂

∂τ

{
exp

(
−

∫ τ

t
ru du

)}
dτ | Ft

]

= 1 −
∫ s

t
IEIPβ

[
exp

(
−

∫ τ

t
ru du

)
rτ | Ft

]
dτ

= 1 −
∫ s

t
Bτ

t IEIPBτ [rτ | Ft] dτ

Now comparing this to

Bs
t = exp

(
−

∫ s

t
rut du

)

= 1 +
∫ s

t

∂

∂τ

{
exp

(
−

∫ τ

t
rut du

)}
dτ

= 1 −
∫ s

t
Bτ

t r
τ
t dτ

yields (30). �

Remark 3.14 By the above theorem, we may interpret the forward rates rst (0 ≤ t ≤ s)
as unbiased estimators for rs under any numéraire measure IPBs . For this reason the
above equality is often called “unbiased expectation hypothesis”.

In order to analyze the dynamics of bonds and forward rates we introduce the fol-
lowing Heath-Jarrow-Morton [9]-type assumption:

Assumption 3.15 There is a finite number I of continuous semimartingales M i (i =
1, . . . , I) such that for suitable bounded20, B([0, T ]) ⊗ P-measurable H i = (Hs,i

t ; 0 ≤
s, t ≤ T ) (i = 1, . . . , I) the dynamics of forward rates are given by

rst = rs0 +
∑
i

∫ t

0
Hs,i

u dM i
u (0 ≤ t ≤ s).(31)

19cf. e.g. Ingersoll [10], Chapter 18
20Of course, the boundedness-assumption is introduced only for convenience and can be relaxed

considerably.
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The dynamics of forward rates translates into the dynamics of bonds as follows:

Proposition 3.16 Under Assumption 3.15 bond prices are governed by the SDE

dBs
t

Bs
t

= rt dt−
∑

i

(∫ s
t H

v,i
t dv

)
dM i

t

+ 1
2

∑
i,j

(∫ s
t H

v,i
t dv

) (∫ s
t H

v,j
t dv

)
d[M i,M j]t.

(32)

Proof: First (29) implies

dBs
t = −Bs

t d
(∫ s

.
rv. dv

)
t
+

1

2
Bs

t d[
∫ s

.
rv. dv,

∫ s

.
rv. dv]t.

By Lemma 3.17 below, we may calculate the above stochastic differentials as

d
(∫ s

.
rv. dv

)
t
= −rtt dt +

∑
i

(∫ s

t
Hv,i

t dv
)
dM i

t

and

d[
∫ s

.
rv. dv,

∫ s

.
rv. dv]t =

∑
i,j

(∫ s

t
Hv,i

t dv
) (∫ s

t
Hv,j

t dv
)
d[M i,M j]t.

Employing these equations in the first one yields the result. �

The Fubini-type argument in the preceding proof will be used again in the sequel,
and so we state it explicitly:

Lemma 3.17 Let Y = (Yt)0≤t≤s be a process of the form

Yt =
∫ s

t
Zv

t dv (0 ≤ t ≤ s)

where {Zv = (Zv
t )0≤t≤v; 0 ≤ v ≤ s} is a family of semimartingales satisfying

Zv
t = Zv

0 +
∫ t

0
Hv

u dMu (0 ≤ t, v ≤ s)

for some continuous semimartingale M and some bounded B([0, T ]) ⊗ P-measurable
Hv

t = H(v, t, ω). Then the dynamics of Y can be read off

Yt =
∫ s

0
Zv

0 dv −
∫ t

0
Zu

u du +
∫ t

0

(∫ s

u
Hv

u dv
)
dMu (0 ≤ t ≤ s).(33)

Proof: Let λ denote the Lebesgue measure restricted on (0, s). We may write

Yt =
∫

1[0,v)(t)Z
v
t λ(dv) (0 ≤ t ≤ s).

20P denotes the σ-algebra of IF-predictable sets.
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Applying Itô’s formula to the integrand yields

1[0,v)(t)Z
v
t = 1[0,v)(0)Zv

0 +
∫ t

0
Zv

u− d1[0,v)(u) +
∫ t

0
1[0,v](u) dZv

u

= Zv
0 − Zv

v1[0,t](v) +
∫ t

0
1[0,v](u) dZv

u

Employing this in the first equation and using Theorem 46 in Chapter IV of Protter
[15] we have

Yt =
∫

Zv
0 λ(dv) −

∫
Zv

v1[0,t](v)λ(dv)(34)

+
∫ (∫ t

0
1[0,v](u)Hv

u dMu

)
λ(dv)

=
∫

Zv
0 λ(dv) −

∫
Zv

v1[0,t](v)λ(dv)

+
∫ t

0

(∫
1[0,v](u)Hv

u λ(dv)
)
dMu

=
∫ s

0
Zv

0 dv −
∫ t

0
Zu

u du +
∫ t

0

(∫ s

u
Hv

u dv
)
dMu

for 0 ≤ t ≤ s. �

3.3.2 Pricing Continuous Differential Swaps

After these preliminaries let us now price the contingent claim Vt0,T given by equation
(28). By Assumption 3.12 we have a martingale measure IP $β for the whole (U.S.-)
market including the continuum of American and (converted) British bonds.

Of course, we want to calculate

IP $βπ
T

t [Vt0,T ] = $βtIEIP $β

[
Vt0,T

$βT

| Ft

]

= IEIP $β

[
exp

(
−

∫ T

t

$ru du

)
Vt0,T | Ft

]

= Vt0,t +
∫ T

t
IEIP $β

[
exp

(
−

∫ s

t

$ru du
)

( £rs − $rs) | Ft

]
ds

= Vt0,t +
∫ T

t

$B
s

t IEIP $B
s [

£rs − $rs | Ft] ds

= Vt0,t +
∫ T

t

$B
s

t

(
IEIP $B

s [
£rs | Ft] − $r

s

t

)
ds

explicitly. For the last but one equality we performed a change of numéraire from $β
to $B

s
as in Theorem 2.10. For the last equality we used the unbiased expectation

hypothesis for $rs under IP $B
s (cf. Lemma 3.13).

So the only problem to solve is the calculation of IEIP $B
s [ £rs | Ft] (0 ≤ t ≤ s ≤ T ).

This will be done using the unbiased expectation hypothesis for the British market. We
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note that, in analogy to Theorem 2.2, from IP $B
s we get a numéraire measure IP£Bs for

the British market by

dIP $B
s

dIP£Bs
| Ft

∆
=

X0
$B

s

t

Xt
£Bs

t

= X0(F
s
t )−1 (0 ≤ t ≤ s ≤ T ).(35)

Here F s ∆
= (X £B

s
)/ $B

s
is obviously a IP $B

s-martingale (so its inverse becomes a IP£Bs-
martingale) which may be interpreted as forward exchange rate from pound to dollar
with maturity s. Thus

IEIP $B
s [

£rs | Ft] = F s
t IEIP£B

s

[
£rs(F

s
s )−1 | Ft

]
= IEIP£B

s

[
£r

s

sE
(
F s·(F s)−1

)
t,s

| Ft

]
.

The exponential is a local martingale with respect to IP£Bs . If we assume that it is a
true martingale, then, noting that the same is true for £r

s
(cf. Lemma 3.13), we get

IEIP $B
s [

£rs | Ft]

= IEIP£B
s

[(
£r

s

t +
∫ s

t
d( £r

s
)u

) (
1 +

∫ s

t
dE

(
F s·(F s)−1

)
t,u

)
| Ft

]

= £r
s

t + IEIP£B
s

[(∫ s

t
d( £r

s
)u

) (∫ s

t
dE

(
F s·(F s)−1

)
t,u

)
| Ft

]

= £r
s

t + IEIP£B
s

[∫ s

t
E

(
F s·(F s)−1

)
t,u

d
[

£r
s
, F s·(F s)−1

]
u
| Ft

]
.

If we suppose that the quadratic covariation process

[
£r

s
, F s·(F s)−1

]
u

= −
∫ u

0

d
[

£r
s
, F s

]
v

F s
v

(0 ≤ u ≤ s)

is deterministic, we may conclude by Fubini’s theorem

IEIP $B
s [

£rs | Ft] = £r
s

t −
∫ s

t

d
[

£r
s
, F s

]
u

F s
u

.

Finally, we get the following price process:

IP $βπ
T

t [Vt0,T ] = Vt0,t +




∫ T

t

$B
s

t


 £r

s

t −
∫ s

t

d
[

£r
s
, F s

]
u

F s
u

− $r
s

t


 ds




= Vt0,t +




∫ T

t

$B
s

t


 £r

s

t −
∫ s

t

d
[

£r
s
, F s

]
u

F s
u


 ds


 + $B

T

t − 1,(36)

where for the second equality we used the definition of dollar-forward rates.
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This implies the following IP $β-price process V = (Vt0)0≤t0≤T = (IP $βπ
T

t0
[Vt0,T ])0≤t0≤T

for our continuous differential swap:

Vt0 =




∫ T

t0

$B
s

t0


 £r

s

t0
−

∫ s

t0

d
[

£r
s
, F s

]
u

F s
u


 ds


 + $B

T

t0
− 1 (0 ≤ t0 ≤ T ).(37)

We summarize these results in

Proposition 3.18 Let IP $β be a martingale measure for the whole financial market in-
cluding the continuum of American and (converted) British bonds. From this martingale
measure we get by Theorem 2.10 a numéraire measure IP $B

s for each American bond
$B

s
(0 ≤ s ≤ T ). From each measure IP $B

s we can construct a numéraire measure
IP£Bs for the British market via formula (35).

Suppose for each 0 ≤ s ≤ T the exponential E (F s·(F s)−1) is a true IP $B
s-martingale

where F s ∆
=X £B

s
/ $B

s
. Assume furthermore the quadratic covariation process

[
£r

s
, F s·(F s)−1

]
u

= −
∫ u

0

d
[

£r
s
, F s

]
v

F s
v

(0 ≤ u ≤ s)

to be deterministic. Then we get the following IP $β-price process V = (Vt)0≤t≤T for our
continuous differential swap:

Vt =




∫ T

t

$B
s

t


 £r

s

t −
∫ s

t

d
[

£r
s
, F s

]
u

F s
u


 ds


 + $B

T

t − 1 (0 ≤ t ≤ T ).(38)

�

3.3.3 Hedging Continuous Differential Swaps

Let us now derive a hedging strategy against the above continuous differential swap. To
hedge a differential swap sold at time t0 one should try to duplicate the payoff Vt0,T with
maturity T which is defined by equation (28); see the beginning of Section 3.3. Starting
from formula (36) we will show below that the IP $β-price dynamics of this contingent
claim is given by

IP $βπ
T

t [Vt0,T ] = IP $βπ
T

t [Vt0,T ]

+
∫ t
t0

Vt0,u−1
$βu

d $βu

+
∫ t
t0
d( $B

T
)u

+
∫ T
t0

{∫ t
t0

1[0,s](u)( £r
s
u − csu) d(

$B
s
)u

}
ds

− ∫ t
t0

$B
T
u

Xu
£BT

u

d(X £B
T
)u

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$r

s
u

$B
s
u

Xu
£Bs

u
d(X £B

s
)u

}
ds

(39)
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provided forward rates satisfy Assumption 3.15. Here we set

cst
∆
=

∫ t

t0

d[ £r
s
, F s]u

F s
u

(t0 ≤ t ≤ s ≤ T ).

Recall that this covariation process is supposed to be deterministic.

Remark 3.19 In Section 2 we introduced the notion “portfolio strategy” for a financial
market containing only a finite number of assets. In an infinite dimensional market,
Björk-Di Masi-Kabanov-Runggaldier [2] suggests to interpret a strategy in a
continuum of bonds as a predictable measure-valued process. Since we do not wish to
discuss the corresponding theory of stochastic integrals in more detail21, in the sequel
we will tacitly assume the occurring integrals to be well defined.

Equation (39) suggests to consider the following strategy:

• invest Vt0,t − 1 dollar in the U.S. money market;

• hold one American bond of maturity T ;

• be long ( £r
s
t − cst) ds American bonds maturing at time s ∈ [t, T ];

• invest 1 dollar in the British money market account;

• go short
$B

T
t

Xt
£BT

t

British bonds of maturity T ;

• sell
$r

s
t

$B
s
t

Xt
£Bs

t
ds British zero-bonds maturing in s ∈ [t, T ].

In fact, this strategy is selffinancing and a perfect hedge for Vt0,T because on the one
hand, by definition, it duplicates the changes in value of this contingent claim and on
the other hand it uses precisely the wealth available, as one can easily see from the
following table:

Position in ... ... has dollar value

American money market Vt0,t − 1

dollar-denominated bonds

· maturing at time T $B
T

t

· maturing at time s ∈ [t, T ]
∫ T
t ( £r

s
u − csu)

$B
s

u ds

British money market 1

pound-denominated bonds

· maturing at time T − $B
T

u

· maturing at time s ∈ [t, T ] − ∫ T
t

$r
s

u
$B

s

u = $B
T

u − 1

whole portfolio Vt0,t − 1 + $B
T

t +
∫ T
t ( £r

s
t − cst)

$B
s

t ds = IP $βπ
T

t [Vt0,T ]

21see [2] for a rigorous treatment of this question
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Thus we have

Theorem 3.20 Under the assumptions of Proposition 3.18 and Assumption 3.15 one
can hedge a short position in a continuous differential swap using the above trading
strategy.

�

Remark 3.21 Note that we only priced the considered swap with respect to some fixed
martingale measure IP $β. Now, the above hedging strategy yields an argument, why one
might want to view the right side of (37) as the only arbitrage free price for this contin-
gent claim. Unfortunately, we have not introduced a concept of admissibility for strate-
gies in a continuum of bonds that would guarantee the duplication argument to produce
unique prices. Björk-Di Masi-Kabanov-Runggaldier [2] define a measure-valued
strategy to be admissible, if the resulting wealth process is nonnegative. Since the con-
tingent claim Vt0,T might be negative, this definition, unfortunately, does not fit into
our context. So we would need a definition of admissibility which is similar to the one
in Definition 2.4. But this would need an extension of Theorem 2.6 to the context of an
infinite financial market.

Let us now prove equation (39). This will be done using our Fubini-type Lemma 3.17
and Proposition 3.16 on the relation between forward rate- and bond price-dynamics.
First, applying Itô’s Lemma to the “ds”-integrand in formula (36) allows us to split
IP $βπ

T

t [Vt0,T ] into six summands:

IP $βπ
T

t [Vt0,T ] = Vt0,t + $B
T

t − 1 (It)

+
∫ T
t

$B
s

t0
( £r

s
t0
− cst0) ds (IIt)

+
∫ T
t

{∫ t
t0
( £r

s
u − csu) d(

$Bs)u
}
ds (IIIt)

+
∫ T
t

{∫ t
t0

$B
s

ud(
£r

s
)u

}
ds (IVt)

− ∫ T
t

{∫ t
t0

$B
s

u d(c
s)u

}
ds (Vt)

+
∫ T
t

{∫ t
t0
d[ $B

s
, £r

s
]u

}
ds (VIt).

Now we are going to determine one by one the dynamics of (It) - (VIt):

Lemma 3.22 Under Assumption 3.15 we have

• (It) = $B
T

t0
− 1

+
∫ t
t0

Vt0,u−1
$βu

d $βu +
∫ t
t0

£ru du +
∫ t
t0
d( $B

T
)u
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• (IIt) =
∫ T
t0

$B
s

t0
( £r

s
t0
− cst0) ds

− ∫ t
t0

$B
τ

t0
( £r

τ
t0
− cτt0) dτ

• (IIIt) = − ∫ t
t0

{∫ τ
t0
( £r

τ
u − cτu) d(

$B
τ
)u

}
dτ

+
∫ T
t0

{∫ t
t0

1[0,s](u)( £r
s
u − csu) d(

$B
s
)u

}
ds

• (IVt) = − ∫ t
t0

{∫ τ
t0

$B
τ

u d(
£r

τ
)u

}
dτ

+
∫ t
t0

£ru du

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

£Bs
u
d[ £r

s
, £B

s
]u

}
ds

− ∫ t
t0

$B
T
u

£BT
u

d( £B
T
)u

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$r

s
u

$B
s
u

£Bs
u

d( £B
s
)u

}
ds

• (Vt) =
∫ t
t0

{∫ τ
t0

$B
τ

u d(c
τ )u

}
dτ

+
∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

£Bs
u
d[ £r

s
, £B

s
]u

}
ds

− ∫ T
t0

{∫ t
t0

1[0,s](u)d[ £r
s
, $B

s
]u

}
ds

− ∫ t
t0

$B
T
u

Xu
£BT

u

d[ £B
T
, X]u

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$r

s
u

$B
s
u

Xu
£Bs

u
d[ £B

s
, X]u

}
ds

• (VIt) = − ∫ t
t0

{∫ τ
t0
d[ $B

τ
, £r

τ
]u dτ

}
+

∫ T
t0

{∫ t
t0

1[0,s](u)d[ £r
s
, $B

s
]u

}
ds

Proof:

(i) Recalling that Vt0,. solves differential equation (27) we may write

(It) = Vt0,t0 + $B
T

t0
− 1

+
∫ t
t0
Vt0,u

$ru du +
∫ t
t0
( £ru − $ru) du

+
∫ t
t0
d( $B

T
)u,

whence we obtain the stated equation for (It) by d $βt = $βt
$rt dt.
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(ii) The expression for (IIt) is trivial.

(iii) The above representation of (IIIt) can be proved by the same arguments leading
to formula (34).

(iv) Considering expression (IVt) we see that the “essential” part of its dynamics is
given by the “

∫
. . . d( £r

s
)u”-term. Since one cannot interpret this integral as a

gain from trade directly, we should try to express the “d( £r
s
)u”-increment by

increments of suitable bonds. This will be achieved using Lemma 3.17 and some
partial integrations. Using Assumption 3.15 we will first rewrite (IVt) such that
Lemma 3.17 can be applied:

(IVt) =
∑
i

∫ T

t

{∫ t

t0

$B
s

uH
s,i
u dM i

u

}
ds

= −
∫ t

t0

{∫ τ

t0

$B
τ

u d(
£r

τ
)u

}
dτ(40)

+
∑
i

∫ t

t0

{∫ T

u

$B
s

uH
s,i
u ds

}
dM i

u.

Partial integration yields

∫ T

u

$B
s

uH
s,i
u ds(41)

=
∫ T

u

$B
s

u

(
∂

∂s

∫ s

u
Hv,i dv

)
ds

= $B
T

u

(∫ T

u
Hv,i dv

)
−

∫ T

u

(
∂

∂s
$B

s

u

) (∫ s

u
Hv,i dv

)
ds,

such that we may rewrite the second term in (40) as difference between

(IV1
t )

∆
=

∑
i

∫ t

t0

$B
T

u

(∫ T

u
Hv,i

u dv

)
dM i

u

and

(IV2
t )

∆
=

∑
i

∫ t

t0

{∫ T

u

(
∂

∂s
Bs

u

) (∫ s

u
Hv,i

u dv
)
ds

}
dM i

u.

Now, considering formula (32) we obtain

(IV1
t ) =

∫ t
t0

$B
T

u
£ru du

− ∫ t
t0

$B
T
u

£BT
u

d( £B
T
)u

+ 1
2

∑
i,j

∫ t
t0

$B
T

u

(∫ T
u Hv,i dv

) (∫ T
u Hv,j dv

)
d[M i,M j]u.

(42)
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Proceeding analogously for (IV2
t ) gives

(IV2
t ) =

∑
i

∫ T
t0

{∫ t
t0

1[0,s](u)
(

∂
∂s

$B
s

u

)
· (

∫ s
u H

v,i
u dv) dM i

u} ds

=
∫ T
t0

{∫ t
t0

1[0,s](u)
(

∂
∂s

$B
s

u

)
£ru du

}
ds

− ∫ T
t0

{∫ t
t0

1[0,s](u)
( ∂
∂s

$B
s
u)

£Bs
u

d( £B
s
u)

}
ds

+ 1
2

∑
i,j

∫ T
t0

{∫ t
t0

1[0,s](u)
(

∂
∂s

$B
s

u

) (∫ T
u Hv,i dv

)
·

(∫ T
u Hv,j dv

)
d[M i,M j]u

}
ds

=
∫ t
t0

{∫ T
u

(
∂
∂s

$B
s

u

)
ds

}
£ru du

+
∫ T
t0

{∫ t
t0

1[0,s](u)
$rs $B

s
u

£Bs
u

d( £B
s
u)

}
ds

+ 1
2

∑
i,j

∫ t
t0

{∫ T
u

(
∂
∂s

$B
s

u

) (∫ T
u Hv,i dv

)
·

(∫ T
u Hv,j dv

)
ds

}
d[M i,M j]u.

We may simplify the first of these last summands to∫ t

t0

{∫ T

u

(
∂

∂s
$B

s

u

)
ds

}
£ru du =

∫ t

t0

{
$B

T

u − 1
}

£ru du

=
∫ t

t0

$B
T

u
£ru du−

∫ t

t0

£ru du.

Here the first integral cancels with the first term in the above representation of
(IV1

t ). Furthermore using partial integration and one more time (32) we have

1
2

∑
i,j

∫ t
t0

{∫ T
u

(
∂
∂s

$B
s

u

)
(
∫ s
u H

v,i dv)

· (
∫ s
u H

v,j dv) ds} d[M i,M j]u

= 1
2

∑
i,j

∫ t
t0

$B
T

u

(∫ T
u Hv,i

u dv
) (∫ T

u Hv,j
u dv

)
d[M i,M j]u

− ∑
i,j

∫ t
t0

{∫ T
u

$B
T

uH
s,i
u (

∫ s
u H

v,i
u dv) ds

}
d[M i,M j]u

= 1
2

∑
i,j

∫ t
t0

$B
T

u

(∫ T
u Hv,i

u dv
) (∫ T

u Hv,j
u dv

)
d[M i,M j]u

− ∑
i,j

∫ T
t0

{∫ t
t0

1[0,s](u) $B
s

uH
s,i
u (

∫ s
u H

v,j
u dv) d[M i,M j]u

}
ds

= 1
2

∑
i,j

∫ t
t0

$B
T

u

(∫ T
u Hv,i

u dv
) (∫ T

u Hv,j
u dv

)
d[M i,M j]u

+
∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

£Bs
u
d[ £r

s
, £B

s
]u

}
ds.

The first term in the last equation cancels with the last one in equation (42) and
so we receive the stated formula for (IVt).
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(v) By Lemma 3.17 we have for (Vt):

(Vt) =
∫ t
t0

{∫ τ
t0

$B
τ

u d(c
τ )u

}
dτ

+
∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

Xu
d[ £r

s
, X]u

}
ds

+
∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

£Bs
u
d[ £r

s
, £B

s
]u

}
ds

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

$B
s
u
d[ £r

s
, $B

s
]u

}
ds.

Here we only wish to adopt the second term:

∫ T
t0

{∫ t
t0

1[0,s](u)
$B

s
u

Xu
d[ £r

s
, X]u

}
ds

=
∑

i

∫ t
t0

1
Xu

{∫ T
u

$B
s

uH
s,i
u ds

}
d[M i, X]u

=
∑

i

∫ t
t0

1
Xu

{
$B

T

u

(∫ T
u Hv,i

u dv
)}

d[M i, X]u

− ∑
i

∫ t
t0

1
Xu

{∫ T
u

(
∂
∂s

$B
s

u

)
(
∫ s
u H

v,i
u dv)

}
d[M i, X]u

= − ∫ t
t0

$B
T
u

Xu
£BT

u

d[ £B
T
, X]u

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$r

s
u

$B
s
u

Xu
£Bs

u
d[ £B

s
, X]u

}
ds

where for the last but one equation we used (41) and the last equation follows
from our bond price dynamics (32). Employing this in the above equation for (Vt)
yields the stated formula.

(vi) Our formula for (VIt) can be proved analogously to the expression for (IIIt).

�

By Itô’s product rule, the “dτ”-integrands in (IIt) - (VIt) sum up to

−
∫ t

t0

$B
τ

τ (
£r

τ

τ − cττ ) dτ = −
∫ t

t0

£rτ dτ

canceling the second term in the above representation of (IVt). Furthermore the third
summand of (IVt) cancels with the second of (Vt) and the third of (Vt) with the second
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of (VIt). Finally, we get

IP $βπ
T

t [Vt0,T ] = IP $βπ
T

t0
[Vt0,T ]

+
∫ t
t0

Vt0,u−1
$βu

d $βu

+
∫ t
t0

£ru du

+
∫ t
t0
d( $B

T
)u

+
∫ T
t0

{∫ t
t0

1[0,s](u)( £r
s
u − csu) d(

$B
s
)u

}
ds

− ∫ t
t0

$B
T
u

£BT
u

d( £B
T
)u

− ∫ t
t0

$B
T
u

Xu
£BT

u

d[ £B
T
, X]u

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$r

s
u

$B
s
u

£Bs
u

d( £B
s
)u

}
ds

− ∫ T
t0

{∫ t
t0

1[0,s](u)
$r

s
u

$B
s
u

Xu
£Bs

u
d[ £B

s
, X]u

}
ds.

(43)

In order to derive a hedging strategy from this, we have to replace the “pound-
denominated” infinitesimal increments d( £B

s
) (t0 ≤ s ≤ T ) by some “dollar incre-

ments”. This can be achieved using

X d( £B
s
) + d[ £B

s
, X] = d(X £B

s
) − £B

s
dX (t0 ≤ s ≤ T ).

By this formula the fifth and sixth term in the above expression sum up to

−
∫ t

t0

$B
T

u

£BT
u

d( £B
T
)u −

∫ t

t0

$B
T

u

Xu
£BT

u

d[ £B
T
, X]u(44)

=
∫ t

t0

$B
T

u

Xu

dXu −
∫ t

t0

$B
T

u

Xu
£BT

u

d(X £B
T
)u.

For the same reason the last two summands give

−
∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u
£Bs

u

d( £B
s
)u

}
ds

−
∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu
£Bs

u

d[ £B
s
, X]u

}
ds

=
∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu

dXu

}
ds

−
∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu
£Bs

u

d(X £B
s
)u

}
ds.
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Here we may simplify the first term∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu

dXu

}
ds =

∫ t

t0

1

Xu

{∫ T

u

$r
s

u
$B

s

u ds

}
︸ ︷︷ ︸

=− $B
T
u+1

dXu

=
∫ t

t0
X−1

u dXu −
∫ t

t0

$B
T

u

Xu

dXu

such that the last two summands can be written as

−
∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u
£Bs

u

d( £B
s
)u

}
ds

−
∫ T

t0

{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu
£Bs

u

d[ £B
s
, X]u

}
ds

=
∫ t

t0
X−1

u dXu −
∫ t
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T

u

Xu

dXu

−
∫ T
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{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu
£Bs

u

d(X £B
s
)u

}
ds

=
∫ t

t0
(X £β)−1

u d(X £β)u −
∫ t

t0

£ru du−
∫ t

t0

$B
T

u

Xu

dXu

−
∫ T
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{∫ t

t0
1[0,s](u)

$r
s

u
$B

s

u

Xu
£Bs

u

d(X £B
s
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}
ds.

For the last equality we used

dXu = £β
−1

d(X £β) −Xu
£ru du.

The above “− ∫ t
t0

£rs ds”-term cancels with the third term in expression (43) and

− ∫ t
t0

$B
T
u

Xu
dXu with the first summand on the right side of equation (44). So we finally

get the desired formula

IP $βπ
T

t [Vt0,T ] = IP $βπ
T

t0
[Vt0,T ]

+
∫ t
t0

Vt0,u−1
$βu

d $βu

+
∫ t
t0
d( $B

T
)u

+
∫ T
t0

{∫ t
t0

1[0,s](u)( £r
s
u − csu) d(

$B
s
)u

}
ds

+
∫ t
t0

1
Xu

£βu
d(X £β)u

− ∫ t
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$B
T
u

Xu
£BT

u

d(X £B
T
)u

− ∫ T
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{∫ t
t0

1[0,s](u)
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s
u

$B
s
u

Xu
£Bs

u
d(X £B

s
)u

}
ds.
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