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Chapter 1

Introduction

The number of books on fixed income models is growing, yet it is difficult
to find a convenient textbook for a one-semester course like this. There are
several reasons for this:

• Until recently, many textbooks on mathematical finance have treated
stochastic interest rates as an appendix to the elementary arbitrage
pricing theory, which usually requires constant (zero) interest rates.

• Interest rate theory is not standardized yet: there is no well-accepted
“standard” general model such as the Black–Scholes model for equities.

• The very nature of fixed income instruments causes difficulties, other
than for stock derivatives, in implementing and calibrating models.
These issues should therefore not been left out.

I will frequently refer to the following books:

B[3]: Björk (98) [3]. A pedagogically well written introduction to mathe-
matical finance. Chapters 15–20 are on interest rates.

BM[6]: Brigo–Mercurio (01) [6]. This is a book on interest rate modelling
written by two quantitative analysts in financial institutions. Much
emphasis is on the practical implementation and calibration of selected
models.

JW[11]: James–Webber (00) [11]. An encyclopedic treatment of interest
rates and their related financial derivatives.
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8 CHAPTER 1. INTRODUCTION

J[12]: Jarrow (96) [12]. Introduction to fixed-income securities and interest
rate options. Discrete time only.

MR[16]: Musiela–Rutkowski (97) [16]. A comprehensive book on financial
mathematics with a large part (Part II) on interest rate modelling.
Much emphasis is on market pricing practice.

R[19]: Rebonato (98) [19]. Written by a practitionar. Much emphasis on
market practice for pricing and handling interest rate derivatives.

Z[22]: Zagst (02) [22]. A comprehensive textbook on mathematical finance,
interest rate modelling and risk management.

I did not intend to write an entire text but rather collect fragments of the
material that can be found in the above books and further references.



Chapter 2

Interest Rates and Related
Contracts

Literature: B[3](Chapter 15), BM[6](Chapter 1), and many more

2.1 Zero-Coupon Bonds

A dollar today is worth more than a dollar tomorrow. The time t value of
a dollar at time T ≥ t is expressed by the zero-coupon bond with maturity
T , P (t, T ), for briefty also T -bond . This is a contract which guarantees the
holder one dollar to be paid at the maturity date T .

1P(t,T)

t
| |

T

→ future cashflows can be discounted, such as coupon-bearing bonds

C1P (t, t1) + · · ·+ Cn−1P (t, tn−1) + (1 + Cn)P (t, T ).

In theory we will assume that

• there exists a frictionless market for T -bonds for every T > 0.

• P (T, T ) = 1 for all T .

• P (t, T ) is continuously differentiable in T .

9



10 CHAPTER 2. INTEREST RATES AND RELATED CONTRACTS

In reality this assumptions are not always satisfied: zero-coupon bonds are
not traded for all maturities, and P (T, T ) might be less than one if the issuer
of the T -bond defaults. Yet, this is a good starting point for doing the
mathematics. More realistic models will be introduced and discussed in the
sequel.

The third condition is purely technical and implies that the term structure
of zero-coupon bond prices T 7→ P (t, T ) is a smooth (decreasing) curve.

1 2 3 4 5 6 7 8 9 10
Years

0.2

0.4

0.6

0.8

1
US Treasury Bonds, March 2002

Note that t 7→ P (t, T ) is a stochastic process since bond prices P (t, T ) are
not known with certainty before t.

1 2 3 4 5 6 7 8 9 10
t

0.2

0.4

0.6

0.8

1

PHt,10L

A reasonable assumption would also be that P (t, T ) ≤ 1 (which is equiv-
alent to positivity of interest rates). However, already classical interest rate
models imply zero-coupon bond prices greater than 1. Therefore we leave
away this requirement.
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2.2 Interest Rates

The term structure of zero-coupon bond prices does not contain much visual
information (strictly speaking it does). A better measure is given by the
implied interest rates. There is a variety of them.

A prototypical forward rate agreement (FRA) is a contract involving three
time instants t < T < S: the current time t, the expiry time T > t, and the
maturity time S > T .

• At t: sell one T -bond and buy P (t,T )
P (t,S)

S-bonds = zero net investment.

• At T : pay one dollar.

• At S: obtain P (t,T )
P (t,S)

dollars.

The net effect is a forward investment of one dollar at time T yielding P (t,T )
P (t,S)

dollars at S with certainty.
We are led to the following definitions.

• The simple (simply-compounded) forward rate for [T, S] prevailing at t
is given by

1+(S−T )F (t; T, S) :=
P (t, T )

P (t, S)
⇔ F (t; T, S) =

1

S − T

(
P (t, T )

P (t, S)
− 1

)
.

• The simple spot rate for [t, T ] is

F (t, T ) := F (t; t, T ) =
1

T − t

(
1

P (t, T )
− 1

)
.

• The continuously compounded forward rate for [T, S] prevailing at t is
given by

eR(t;T,S)(S−T ) :=
P (t, T )

P (t, S)
⇔ R(t; T, S) = − log P (t, S)− log P (t, T )

S − T
.

• The continuously compounded spot rate for [T, S] is

R(t, T ) := R(t; t, T ) = − log P (t, T )

T − t
.
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• The instantaneous forward rate with maturity T prevailing at time t is
defined by

f(t, T ) := lim
S↓T

R(t; T, S) = −∂ log P (t, T )

∂T
. (2.1)

The function T 7→ f(t, T ) is called the forward curve at time t.

• The instantaneous short rate at time t is defined by

r(t) := f(t, t) = lim
T↓t

R(t, T ).

Notice that (2.1) together with the requirement P (T, T ) = 1 is equivalent to

P (t, T ) = exp

(
−

∫ T

t

f(t, u) du

)
.

2.2.1 Market Example: LIBOR

“Interbank rates” are rates at which deposits between banks are exchanged,
and at which swap transactions (see below) between banks occur. The most
important interbank rate usually considered as a reference for fixed income
contracts is the LIBOR (London InterBank Offered Rate)1 for a series of
possible maturities, ranging from overnight to 12 months. These rates are
quoted on a simple compounding basis. For example, the three-months for-
ward LIBOR for the period [T, T + 1/4] at time t is given by

L(t, T ) = F (t; T, T + 1/4).

2.2.2 Simple vs. Continuous Compounding

One dollar invested for one year at an interest rate of R per annum growths
to 1 + R. If the rate is compounded twice per year the terminal value is
(1 + R/2)2, etc. It is a mathematical fact that

(
1 +

R

m

)m

→ eR as m →∞.

1To be more precise: this is the rate at which high-credit financial institutions can
borrow in the interbank market.
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Moreover,

eR = 1 + R + o(R) for R small.

Example: e0.04 = 1.04081.
Since the exponential function has nicer analytic properties than power

functions, we often consider continuously compounded interest rates. This
makes the theory more tractable.

2.2.3 Forward vs. Future Rates

Can forward rates predict the future spot rates?
Consider a deterministic world. If markets are efficient (i.e. no arbitrage

= no riskless, systematic profit) we have necessarily

P (t, S) = P (t, T )P (T, S), ∀t ≤ T ≤ S. (2.2)

Proof. Suppose that P (t, S) > P (t, T )P (T, S) for some t ≤ T ≤ S. Then we
follow the strategy:

• At t: sell one S-bond, and buy P (T, S) T -bonds.

Net cost: −P (t, S) + P (t, T )P (T, S) < 0.

• At T : receive P (T, S) dollars and buy one S-bond.

• At S: pay one dollar, receive one dollar.

(Where do we use the assumption of a deterministic world?)
The net is a riskless gain of −P (t, S)+P (t, T )P (T, S) (×1/P (t, S)). This

is a pure arbitrage opportunity, which contradicts the assumption.
If P (t, S) < P (t, T )P (T, S) the same profit can be realized by changing

sign in the strategy.

Taking logarithm in (2.2) yields

∫ S

T

f(t, u) du =

∫ S

T

f(T, u) du, ∀t ≤ T ≤ S.

This is equivalent to

f(t, S) = f(T, S) = r(S), ∀t ≤ T ≤ S
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(as time goes by we walk along the forward curve: the forward curve is
shifted). In this case, the forward rate with maturity S prevailing at time
t ≤ S is exactly the future short rate at S.

The real world is not deterministic though. We will see that in general
the forward rate f(t, T ) is the conditional expectation of the short rate r(T )
under a particular probability measure (forward measure), depending on T .

Hence the forward rate is a biased estimator for the future short rate.
Forecasts of future short rates by forward rates have little or no predictive
power.

2.3 Bank Account and Short Rates

The return of a one dollar investment today (t = 0) over the period [0, ∆t]
is given by

1

P (0, ∆t)
= exp

(∫ ∆t

0

f(0, u) du

)
= 1 + r(0)∆t + o(∆t).

Instantaneous reinvestment in 2∆t-bonds yields

1

P (0, ∆t)

1

P (∆t, 2∆t)
= (1 + r(0)∆t)(1 + r(∆t)∆t) + o(∆t)

at time 2∆t, etc. This strategy of “rolling over”2 just maturing bonds leads
in the limit to the bank account (money-market account) B(t). Hence B(t)
is the asset which growths at time t instantaneously at short rate r(t)

B(t + ∆t) = B(t)(1 + r(t)∆t) + o(∆t).

For ∆t → 0 this converges to

dB(t) = r(t)B(t)dt

and with B(0) = 1 we obtain

B(t) = exp

(∫ t

0

r(s) ds

)
.

2This limiting process is made rigorous in [4].
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B is a risk-free asset insofar as its future value at time t + ∆t is known (up
to order ∆t) at time t. In stochastic terms we speak of a predictable process.
For the same reason we speak of r(t) as the risk-free rate of return over the
infinitesimal period [t, t + dt].

B is important for relating amounts of currencies available at different
times: in order to have one dollar in the bank account at time T we need to
have

B(t)

B(T )
= exp

(
−

∫ T

t

r(s) ds

)

dollars in the bank account at time t ≤ T . This discount factor is stochastic:
it is not known with certainty at time t. There is a close connection to the
deterministic (=known at time t) discount factor given by P (t, T ). Indeed,
we will see that the latter is the conditional expectation of the former under
the risk neutral probability measure.

Proxies for the Short Rate

→ JW[11](Chapter 3.5)

The short rate r(t) is a key interest rate in all models and fundamental
to no-arbitrage pricing. But it cannot be directly observed.

The overnight interest rate is not usually considered to be a good proxy
for the short rate, because the motives and needs driving overnight borrowers
are very different from those of borrowers who want money for a month or
more.

The overnight fed funds rate is nevertheless comparatively stable and
perhaps a fair proxy, but empirical studies suggest that it has low correlation
with other spot rates.

The best available proxy is given by one- or three-month spot rates since
they are very liquid.

2.4 Coupon Bonds, Swaps and Yields

In most bond markets, there is only a relatively small number of zero-coupon
bonds traded. Most bonds include coupons.
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2.4.1 Fixed Coupon Bonds

A fixed coupon bond is a contract specified by

• a number of future dates T1 < · · · < Tn (the coupon dates)

(Tn is the maturity of the bond),

• a sequence of (deterministic) coupons c1, . . . , cn,

• a nominal value N ,

such that the owner receives ci at time Ti, for i = 1, . . . , n, and N at terminal
time Tn. The price p(t) at time t ≤ T1 of this coupon bond is given by the
sum of discounted cashflows

p(t) =
n∑

i=1

P (t, Ti)ci + P (t, Tn)N.

Typically, it holds that Ti+1−Ti ≡ δ, and the coupons are given as a fixed
percentage of the nominal value: ci ≡ KδN , for some fixed interest rate K.
The above formula reduces to

p(t) =

(
Kδ

n∑
i=1

P (t, Ti) + P (t, Tn)

)
N.

2.4.2 Floating Rate Notes

There are versions of coupon bonds for which the value of the coupon is
not fixed at the time the bond is issued, but rather reset for every coupon
period. Most often the resetting is determined by some market interest rate
(e.g. LIBOR).

A floating rate note is specified by

• a number of future dates T0 < T1 < · · · < Tn,

• a nominal value N .

The deterministic coupon payments for the fixed coupon bond are now re-
placed by

ci = (Ti − Ti−1)F (Ti−1, Ti)N,
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where F (Ti−1, Ti) is the prevailing simple market interest rate, and we note
that F (Ti−1, Ti) is determined already at time Ti−1 (this is why here we have
T0 in addition to the coupon dates T1, . . . , Tn), but that the cash-flow ci is
at time Ti.

The value p(t) of this note at time t ≤ T0 is obtained as follows. Without
loss of generality we set N = 1. By definition of F (Ti−1, Ti) we then have

ci =
1

P (Ti−1, Ti)
− 1.

The time t value of −1 paid out at Ti is −P (t, Ti). The time t value of
1

P (Ti−1,Ti)
paid out at Ti is P (t, Ti−1):

• At t: buy a Ti−1-bond. Cost: P (t, Ti−1).

• At Ti−1: receive one dollar and buy 1/P (Ti−1, Ti) Ti-bonds. Zero net
investment.

• At Ti: receive 1/P (Ti−1, Ti) dollars.

The the time t value of ci therefore is

P (t, Ti−1)− P (t, Ti).

Summing up we obtain the (surprisingly easy) formula

p(t) = P (t, Tn) +
n∑

i=1

(P (t, Ti−1)− P (t, Ti)) = P (t, T0).

In particular, for t = T0: p(T0) = 1.

2.4.3 Interest Rate Swaps

An interest rate swap is a scheme where you exchange a payment stream
at a fixed rate of interest for a payment stream at a floating rate (typically
LIBOR).

There are many versions of interest rate swaps. A payer interest rate
swap settled in arrears is specified by

• a number of future dates T0 < T1 < · · · < Tn with Ti − Ti−1 ≡ δ

(Tn is the maturity of the swap),
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• a fixed rate K,

• a nominal value N .

Of course, the equidistance hypothesis is only for convenience of notation
and can easily be relaxed. Cashflows take place only at the coupon dates
T1, . . . , Tn. At Ti, the holder of the contract

• pays fixed KδN ,

• and receives floating F (Ti−1, Ti)δN .

The net cashflow at Ti is thus

(F (Ti−1, Ti)−K)δN,

and using the previous results we can compute the value at t ≤ T0 of this
cashflow as

N(P (t, Ti−1)− P (t, Ti)−KδP (t, Ti)). (2.3)

The total value Πp(t) of the swap at time t ≤ T0 is thus

Πp(t) = N

(
P (t, T0)− P (t, Tn)−Kδ

n∑
i=1

P (t, Ti)

)
.

A receiver interest rate swap settled in arrears is obtained by changing
the sign of the cashflows at times T1, . . . , Tn. Its value at time t ≤ T0 is thus

Πr(t) = −Πp(t).

The remaining question is how the “fair” fixed rate K is determined. The
forward swap rate Rswap(t) at time t ≤ T0 is the fixed rate K above which
gives Πp(t) = Πr(t) = 0. Hence

Rswap(t) =
P (t, T0)− P (t, Tn)

δ
∑n

i=1 P (t, Ti)
.

The following alternative representation of Rswap(t) is sometimes useful.
Since P (t, Ti−1)− P (t, Ti) = F (t; Ti−1, Ti)δP (t, Ti), we can rewrite (2.3) as

NδP (t, Ti) (F (t; Ti−1, Ti)−K) .
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Summing up yields

Πp(t) = Nδ

n∑
i=1

P (t, Ti) (F (t; Ti−1, Ti)−K) ,

and thus we can write the swap rate as weighted average of simple forward
rates

Rswap(t) =
n∑

i=1

wi(t)F (t; Ti−1, Ti),

with weights

wi(t) =
P (t, Ti)∑n

j=1 P (t, Tj)
.

These weights are random, but there seems to be empirical evidence that
the variability of wi(t) is small compared to that of F (t; Ti−1, Ti). This is
used for approximations of swaption (see below) price formulas in LIBOR
market models: the swap rate volatility is written as linear combination of
the forward LIBOR volatilities (“Rebonato’s formula” → BM[6], p.248).

Swaps were developed because different companies could borrow at dif-
ferent rates in different markets.

Example

→ JW[11](p.11)

• Company A: is borrowing fixed for five years at 5 1/2%, but could
borrow floating at LIBOR plus 1/2%.

• Company B: is borrowing floating at LIBOR plus 1%, but could borrow
fixed for five years at 6 1/2%.

By agreeing to swap streams of cashflows both companies could be better
off, and a mediating institution would also make money.

• Company A pays LIBOR to the intermediary in exchange for fixed at
5 3/16% (receiver swap).

• Company B pays the intermediary fixed at 5 5/16% in exchange for
LIBOR (payer swap).
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Net:

• Company A is now paying LIBOR plus 5/16% instead of LIBOR plus
1/2%.

• Company B is paying fixed at 6 5/16% instead of 6 1/2%.

• The intermediary receives fixed at 1/8%.

5 5/16 %5 3/16 %

LIBOR LIBOR LIBOR + 1%

5 1/2 %

Company A                            Intermediary                             Company B

Everyone seems to be better off. But there is implicit credit risk; this is
why Company B had higher borrowing rates in the first place. This risk has
been partly taken up by the intermediary, in return for the money it makes
on the spread.

2.4.4 Yield and Duration

For a zero-coupon bond P (t, T ) the zero-coupon yield is simply the continu-
ously compounded spot rate R(t, T ). That is,

P (t, T ) = e−R(t,T )(T−t).

Accordingly, the function T 7→ R(t, T ) is referred to as (zero-coupon) yield
curve.

The term “yield curve” is ambiguous. There is a variety of other ter-
minologies, such as zero-rate curve (Z[22]), zero-coupon curve (BM[6]). In
JW[11] the yield curve is is given by simple spot rates, and in BM[6] it is a
combination of simple spot rates (for maturities up to 1 year) and annually
compounded spot rates (for maturities greater than 1 year), etc.
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Now let p(t) be the time t market value of a fixed coupon bond with
coupon dates T1 < · · · < Tn, coupon payments c1, . . . , cn and nominal value
N (see Section 2.4.1). For simplicity we suppose that cn already contains N ,
that is,

p(t) =
n∑

i=1

P (t, Ti)ci, t ≤ T1.

Again we ask for the bond’s “internal rate of interest”; that is, the constant
(over the period [t, Tn]) continuously compounded rate which generates the
market value of the coupon bond: the (continuously compounded) yield-to-
maturity y(t) of this bond at time t ≤ T1 is defined as the unique solution
to

p(t) =
n∑

i=1

cie
−y(t)(Ti−t).

Remark 2.4.1. → R[19](p.21). It is argued by Schaefer (1977) that the
yield-to-maturity is an inadequate statistics for the bond market:

• coupon payments occurring at the same point in time are discounted by
different discount factors, but

• coupon payments at different points in time from the same bond are
discounted by the same rate.

To simplify the notation we assume now that t = 0, and write p = p(0),
y = y(0), etc. The Macaulay duration of the coupon bond is defined as

DMac :=

∑n
i=1 Ticie

−yTi

p
.
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The duration is thus a weighted average of the coupon dates T1, . . . , Tn, and
it provides us in a certain sense with the “mean time to coupon payment”.
As such it is an important concept for interest rate risk management: it acts
as a measure of the first order sensitivity of the bond price w.r.t. changes in
the yield-to-maturity (see Z[22](Chapter 6.1.3) for a thourough treatment).
This is shown by the obvious formula

dp

dy
=

d

dy

(
n∑

i=1

cie
−yTi

)
= −DMacp.

A first order sensitivity measure of the bond price w.r.t. parallel shifts of
the entire zero-coupon yield curve T 7→ R(0, T ) is given by the duration of
the bond

D :=

∑n
i=1 Ticie

−yiTi

p
=

n∑
i=1

ciP (0, Ti)

p
Ti,

with yi := R(0, Ti). In fact, we have

d

ds

(
n∑

i=1

cie
−(yi+s)Ti

)
|s=0 = −Dp.

Hence duration is essentially for bonds (w.r.t. parallel shift of the yield curve)
what delta is for stock options. The bond equivalent of the gamma is con-
vexity :

C :=
d2

ds2

(
n∑

i=1

cie
−(yi+s)Ti

)
|s=0 =

n∑
i=1

cie
−yiTi(Ti)

2.

2.5 Market Conventions

2.5.1 Day-count Conventions

Time is measured in years.
If t and T denote two dates expressed as day/month/year, it is not clear

what T − t should be. The market evaluates the year fraction between t and
T in different ways.

The day-count convention decides upon the time measurement between
two dates t and T .

Here are three examples of day-count conventions:
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• Actual/365: a year has 365 days, and the day-count convention for
T − t is given by

actual number of days between t and T

365
.

• Actual/360: as above but the year counts 360 days.

• 30/360: months count 30 and years 360 days. Let t = (d1,m1, y1) and
T = (d2,m2, y2). The day-count convention for T − t is given by

min(d2, 30) + (30− d1)
+

360
+

(m2 −m1 − 1)+

12
+ y2 − y1.

Example: The time between t=January 4, 2000 and T=July 4, 2002 is
given by

4 + (30− 4)

360
+

7− 1− 1

12
+ 2002− 2000 = 2.5.

When extracting information on interest rates from data, it is important
to realize for which day-count convention a specific interest rate is quoted.

→ BM[6](p.4), Z[22](Sect. 5.1)

2.5.2 Coupon Bonds

→ MR[16](Sect. 11.2), Z[22](Sect. 5.2), J[12](Chapter 2)
Coupon bonds issued in the American (European) markets typically have

semi-annual (annual) coupon payments.
Debt securities issued by the U.S. Treasury are divided into three classes:

• Bills: zero-coupon bonds with time to maturity less than one year.

• Notes: coupon bonds (semi-annual) with time to maturity between 2
and 10 years.

• Bonds: coupon bonds (semi-annual) with time to maturity between 10
and 30 years3.

3Recently, the issuance of 30 year treasury bonds has been stopped.



24 CHAPTER 2. INTEREST RATES AND RELATED CONTRACTS

In addition to bills, notes and bonds, Treasury securities called STRIPS
(separate trading of registered interest and principal of securities) have traded
since August 1985. These are the coupons or principal (=nominal) amounts
of Treasury bonds trading separately through the Federal Reserve’s book-
entry system. They are synthetically created zero-coupon bonds of longer
maturities than a year. They were created in response to investor demands.

2.5.3 Accrued Interest, Clean Price and Dirty Price

Remember that we had for the price of a coupon bond with coupon dates
T1, . . . , Tn and payments c1, . . . , cn the price formula

p(t) =
n∑

i=1

ciP (t, Ti), t ≤ T1.

For t ∈ (T1, T2] we have

p(t) =
n∑

i=2

ciP (t, Ti),

etc. Hence there are systematic discontinuities of the price trajectory at
t = T1, . . . , Tn which is due to the coupon payments. This is why prices are
differently quoted at the exchange.

The accrued interest at time t ∈ (Ti−1, Ti] is defined by

AI(i; t) := ci
t− Ti−1

Ti − Ti−1

(where now time differences are taken according to the day-count conven-
tion). The quoted price, or clean price, of the coupon bond at time t is

pclean(t) := p(t)− AI(i; t), t ∈ (Ti−1, Ti].

That is, whenever we buy a coupon bond quoted at a clean price of pclean(t)
at time t ∈ (Ti−1, Ti], the cash price, or dirty price, we have to pay is

p(t) = pclean(t) + AI(i; t).
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2.5.4 Yield-to-Maturity

The quoted (annual) yield-to-maturity ŷ(t) on a Treasury bond at time t = Ti

is defined by the relationship

pclean(Ti) =
n∑

j=i+1

rcN/2

(1 + ŷ(Ti)/2)j−i
+

N

(1 + ŷ(Ti)/2)n−i
,

and at t ∈ [Ti, Ti+1)

pclean(t) =
n∑

j=i+1

rcN/2

(1 + ŷ(t)/2)j−i−1+τ
+

N

(1 + ŷ(t)/2)n−i−1+τ
,

where rc is the (annualized) coupon rate, N the nominal amount and

τ =
Ti+1 − t

Ti+1 − Ti

is again given by the day-count convention, and we assume here that

Ti+1 − Ti ≡ 1/2 (semi-annual coupons).

2.6 Caps and Floors

→ BM[6](Sect. 1.6), Z[22](Sect. 5.6.2)

Caps

A caplet with reset date T and settlement date T + δ pays the holder the
difference between a simple market rate F (T, T + δ) (e.g. LIBOR) and the
strike rate κ. Its cashflow at time T + δ is

δ(F (T, T + δ)− κ)+.

A cap is a strip of caplets. It thus consists of

• a number of future dates T0 < T1 < · · · < Tn with Ti − Ti−1 ≡ δ

(Tn is the maturity of the cap),

• a cap rate κ.
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Cashflows take place at the dates T1, . . . , Tn. At Ti the holder of the cap
receives

δ(F (Ti−1, Ti)− κ)+. (2.4)

Let t ≤ T0. We write

Cpl(i; t), i = 1, . . . , n,

for the time t price of the ith caplet with reset date Ti−1 and settlement date
Ti, and

Cp(t) =
n∑

i=1

Cpl(i; t)

for the time t price of the cap.
A cap gives the holder a protection against rising interest rates. It guar-

antees that the interest to be paid on a floating rate loan never exceeds the
predetermined cap rate κ.

It can be shown (→ exercise) that the cashflow (2.4) at time Ti is the
equivalent to (1 + δκ) times the cashflow at date Ti−1 of a put option on a
Ti-bond with strike price 1/(1 + δκ) and maturity Ti−1, that is,

(1 + δκ)

(
1

1 + δκ
− P (Ti−1, Ti)

)+

.

This is an important fact because many interest rate models have explicit
formulae for bond option values, which means that caps can be priced very
easily in those models.

Floors

A floor is the converse to a cap. It protects against low rates. A floor is a
strip of floorlets , the cashflow of which is – with the same notation as above
– at time Ti

δ(κ− F (Ti−1, Ti))
+.

Write Fll(i; t) for the price of the ith floorlet and

Fl(t) =
n∑

i=1

Fll(i; t)

for the price of the floor.
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Caps, Floors and Swaps

Caps and floors are strongly related to swaps. Indeed, one can show the
parity relation (→ exercise)

Cp(t)− Fl(t) = Πp(t),

where Πp(t) is the value at t of a payer swap with rate κ, nominal one and
the same tenor structure as the cap and floor.

Let t = 0. The cap/floor is said to be at-the-money (ATM) if

κ = Rswap(0) =
P (0, T0)− P (0, Tn)

δ
∑n

i=1 P (0, Ti)
,

the forward swap rate. The cap (floor) is in-the-money (ITM) if κ < Rswap(0)
(κ > Rswap(0)), and out-of-the-money (OTM) if κ > Rswap(0) (κ < Rswap(0)).

Black’s Formula

It is market practice to price a cap/floor according to Black’s formula. Let
t ≤ T0. Black’s formula for the value of the ith caplet is

Cpl(i; t) = δP (t, Ti) (F (t; Ti−1, Ti)Φ(d1(i; t))− κΦ(d2(i; t))) ,

where

d1,2(i; t) :=
log

(
F (t;Ti−1,Ti)

κ

)
± 1

2
σ(t)2(Ti−1 − t)

σ(t)
√

Ti−1 − t

(Φ stands for the standard Gaussian cumulative distribution function), and
σ(t) is the cap volatility (it is the same for all caplets).

Correspondingly, Black’s formula for the value of the ith floorlet is

Fll(i; t) = δP (t, Ti) (κΦ(−d2(i; t))− F (t; Ti−1, Ti)Φ(−d1(i; t))) .

Cap/floor prices are quoted in the market in term of their implied volatil-
ities. Typically, we have t = 0, and T0 and δ = Ti−Ti−1 being equal to three
months.

An example of a US dollar ATM market cap volatility curve is shown in
Table 2.1 and Figure 2.1 (→ JW[11](p.49)).

It is a challenge for any market realistic interest rate model to match the
given volatility curve.
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Table 2.1: US dollar ATM cap volatilities, 23 July 1999

Maturity ATM vols
(in years) (in %)

1 14.1
2 17.4
3 18.5
4 18.8
5 18.9
6 18.7
7 18.4
8 18.2

10 17.7
12 17.0
15 16.5
20 14.7
30 12.4

Figure 2.1: US dollar ATM cap volatilities, 23 July 1999
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2.7 Swaptions

A European payer (receiver) swaption with strike rate K is an option giving
the right to enter a payer (receiver) swap with fixed rate K at a given future
date, the swaption maturity . Usually, the swaption maturity coincides with
the first reset date of the underlying swap. The underlying swap lenght
Tn − T0 is called the tenor of the swaption.

Recall that the value of a payer swaption with fixed rate K at its first
reset date, T0, is

Πp(T0, K) = N

n∑
i=1

P (T0, Ti)δ(F (T0; Ti−1, Ti)−K).

Hence the payoff of the swaption with strike rate K at maturity T0 is

N

(
n∑

i=1

P (T0, Ti)δ(F (T0; Ti−1, Ti)−K)

)+

. (2.5)

Notice that, contrary to the cap case, this payoff cannot be decomposed
into more elementary payoffs. This is a fundamental difference between
caps/floors and swaptions. Here the correlation between different forward
rates will enter the valuation procedure.

Since Πp(T0, Rswap(T0)) = 0, one can show (→ exercise) that the payoff
(2.5) of the payer swaption at time T0 can also be written as

Nδ(Rswap(T0)−K)+

n∑
i=1

P (T0, Ti),

and for the receiver swaption

Nδ(K −Rswap(T0))
+

n∑
i=1

P (T0, Ti).

Accordingly, at time t ≤ T0, the payer (receiver) swaption with strike rate
K is said to be ATM , ITM , OTM , if

K = Rswap(t), K < (>)Rswap(t), K > (<)Rswap(t),

respectively.
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Black’s Formula

Black’s formula for the price at time t ≤ T0 of the payer (Swptp(t)) and
receiver (Swptr(t)) swaption is

Swptp(t) = Nδ (Rswap(t)Φ(d1(t))−KΦ(d2(t)))
n∑

i=1

P (t, Ti),

Swptr(t) = Nδ (KΦ(−d2(t))−Rswap(t)Φ(−d1(t)))
n∑

i=1

P (t, Ti),

with

d1,2(t) :=
log

(
Rswap(t)

K

)
± 1

2
σ(t)2(T0 − t)

σ(t)
√

T0 − t
,

and σ(t) is the prevailing Black’s swaption volatility.
Swaption prices are quoted in terms of implied volatilities in matrix form.

An x × y-swaption is the swaption with maturity in x years and whose un-
derlying swap is y years long.

A typical example of implied swaption volatilities is shown in Table 2.2
and Figure 2.2 (→ BM[6](p.253)).

An interest model for swaptions valuation must fit the given today’s
volatility surface.
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Table 2.2: Black’s implied volatilities (in %) of ATM swaptions on May 16,
2000. Maturities are 1,2,3,4,5,7,10 years, swaps lengths from 1 to 10 years.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
1y 16.4 15.8 14.6 13.8 13.3 12.9 12.6 12.3 12.0 11.7
2y 17.7 15.6 14.1 13.1 12.7 12.4 12.2 11.9 11.7 11.4
3y 17.6 15.5 13.9 12.7 12.3 12.1 11.9 11.7 11.5 11.3
4y 16.9 14.6 12.9 11.9 11.6 11.4 11.3 11.1 11.0 10.8
5y 15.8 13.9 12.4 11.5 11.1 10.9 10.8 10.7 10.5 10.4
7y 14.5 12.9 11.6 10.8 10.4 10.3 10.1 9.9 9.8 9.6

10y 13.5 11.5 10.4 9.8 9.4 9.3 9.1 8.8 8.6 8.4

Figure 2.2: Black’s implied volatilities (in %) of ATM swaptions on May 16,
2000.
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Chapter 3

Some Statistics of the Yield
Curve

3.1 Principal Component Analysis (PCA)

→ JW[11](Chapter 16.2), [18]

• Let x(1), . . . , x(N) be a sample of a random n× 1 vector x.

• Form the empirical n× n covariance matrix Σ̂,

Σ̂ij =

∑N
k=1(xi(k)− µ[xi])(xj(k)− µ[xj])

N − 1

=

∑N
k=1 xi(k)xi(k)−Nµ[xi]µ[xj]

N − 1
,

where

µ[xi] :=
1

N

N∑

k=1

xi(k) (mean of xi).

We assume that Σ̂ is non-degenerate (otherwise we can express an xi

as linear combination of the other xjs).

• There exists a unique orthogonal matrix A = (p1, . . . , pn) (that is,
A−1 = AT and Aij = pj;i) consisting of orthonormal n× 1 Eigenvectors

pi of Σ̂ such that
Σ̂ = ALAT ,

33
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where L = diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn > 0 (the Eigenvalues
of Σ̂).

• Define z := AT x. Then

Cov[zi, zj] =
n∑

k,l=1

AT
ikCov[xk, xl]A

T
jl =

(
AT Σ̂A

)
ij

= λiδij.

Hence the zis are uncorrelated.

• The principal components (PCs) are the n× 1 vectors p1, . . . , pn:

x = Az = z1p1 + · · · znpn.

The importance of component pi is determined by the size of the cor-
responding Eigenvalue, λi, which indicates the amount of variance ex-
plained by pi. The key statistics is the proportion

λi∑n
j=1 λj

,

the explained variance by pi.

• Normalization: let w̃ := (L1/2)−1z, where L1/2 := diag(
√

λ1, . . . ,
√

λn),
and w = w̃ − µ[w̃] (µ[w̃]=mean of w̃). Then

µ[w] = 0, Cov[wi, wj] = Cov[w̃i, w̃j] = δij,

and

x = µ[x] + AL1/2w = µ[x] +
n∑

j=1

pj

√
λjwj.

In components

xi = µ[xi] +
n∑

j=1

Aij

√
λjwj.

• Sometimes the following view is useful (→ R[19](Chapter 3)): set

σi := V ar[xi]
1/2 =

(
Σ̂ii

)1/2

=

(
n∑

j=1

A2
ijλj

)1/2

vi :=
xi − µ[xi]

σi

=

∑n
j=1 Aij

√
λjwj

σi

, i = 1, . . . , n.
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Then we have µ[vi] = 0, µ[v2
i ] = 1 and

xi = µ[xi] + σivi.

It can be appropriate to assume a parametric functional form (→ re-
duction of parameters) of the correlation structure of x,

Corr[xi, xj] = Cov[vi, vj] =
Σ̂ij

σiσj

=

∑n
k=1 AikAjkλk

σiσj

= ρ(π; i, j),

where π is some low-dimensional parameter (this is adapted to the
calibration of market models → BM[6](Chapter 6.9)).

3.2 PCA of the Yield Curve

Now let x = (x1, . . . , xn)T be the increments of the forward curve, say

xi = R(t + ∆t; t + ∆t + τi−1, t + ∆t + τi)−R(t; t + τi−1, t + τi),

for some maturity spectrum 0 = τ0 < · · · < τn.
PCA typically leads to the following picture (→ R[19]p.61): UK market

in the years 1989-1992 (the original maturity spectrum has been divided into
eight distinct buckets, i.e. n = 8).

The first three principal components are

p1 =




0.329
0.354
0.365
0.367
0.364
0.361
0.358
0.352




, p2 =




−0.722
−0.368
−0.121
0.044
0.161
0.291
0.316
0.343




, p3 =




0.490
−0.204
−0.455
−0.461
−0.176
0.176
0.268
0.404




.

• The first PC is roughly flat (parallel shift → average rate),

• the second PC is upward sloping (tilt → slope),

• the third PC hump-shaped (flex → curvature).
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Figure 3.1: First Three PCs.
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Table 3.1: Explained Variance of the Principal Components (PCs).

PC Explained
Variance (%)

1 92.17
2 6.93
3 0.61
4 0.24
5 0.03
6–8 0.01

The first three PCs explain more than 99 % of the variance of x (→ Table 3.1).

PCA of the yield curve goes back to the seminal paper by Litterman and
Scheinkman (88) [?] (Prof. J. Scheinkman is at the Department of Economics,
Princeton University).

3.3 Correlation

→ R[19](p.58)

A typical example of correlation among forward rates is provided by
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Brown and Schaefer (1994). The data is from the US Treasury yield curve
1987–1994. The following matrix (→ Figure 3.2)




1 0.87 0.74 0.69 0.64 0.6
1 0.96 0.93 0.9 0.85

1 0.99 0.95 0.92
1 0.97 0.93

1 0.95
1




shows the correlation for changes of forward rates of maturities

0, 0.5, 1, 1.5, 2, 3 years.

Figure 3.2: Correlation between the short rate and instantaneous forward
rates for the US Treasury curve 1987–1994

0.5 1 1.5 2 2.5 3

0.6

0.7

0.8

0.9

1

→ Decorrelation occurs quickly.

→ Exponentially decaying correlation structure is plausible.
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Chapter 4

Estimating the Yield Curve

4.1 A Bootstrapping Example

→ JW[11](p.129–136)
This is a naive bootstrapping method of fitting to a money market yield

curve. The idea is to build up the yield curve

from shorter maturities to longer maturities.

We take Yen data from 9 January, 1996 (→ JW[11](Section 5.4)). The
spot date t0 is 11 January, 1996. The day-count convention is Actual/360,

δ(T, S) =
actual number of days between T and S

360
.

Table 4.1: Yen data, 9 January 1996.

LIBOR (%) Futures Swaps (%)
o/n 0.49 20 Mar 96 99.34 2y 1.14
1w 0.50 19 Jun 96 99.25 3y 1.60
1m 0.53 18 Sep 96 99.10 4y 2.04
2m 0.55 18 Dec 96 98.90 5y 2.43
3m 0.56 7y 3.01

10y 3.36

39
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• The first column contains the LIBOR (=simple spot rates) F (t0, Si) for
maturities

{S1, . . . , S5} = {12/1/96, 18/1/96, 13/2/96, 11/3/96, 11/4/96}
hence for 1, 7, 33, 60 and 91 days to maturity, respectively. The zero-
coupon bonds are

P (t0, Si) =
1

1 + F (t0, Si) δ(t0, Si)
.

• The futures are quoted as

futures price for settlement day Ti = 100(1− FF (t0; Ti, Ti+1)),

where FF (t0; Ti, Ti+1) is the futures rate for period [Ti, Ti+1] prevailing
at t0, and

{T1, . . . , T5} = {20/3/96, 19/6/96, 18/9/96, 18/12/96, 19/3/97},
hence δ(Ti, Ti+1) ≡ 91/360.

We treat futures rates as if they were simple forward rates, that is, we
set

F (t0; Ti, Ti+1) = FF (t0; Ti, Ti+1).

To calculate zero-coupon bond from futures prices we need P (t0, T1).
We use geometric interpoliation

P (t0, T1) = P (t0, S4)
q P (t0, S5)

1−q,

which is equivalent to using linear interpolation of continuously com-
pounded spot rates

R(t0, T1) = q R(t0, S4) + (1− q) R(t0, S5),

where

q =
δ(T1, S5)

δ(S4, S5)
=

22

31
= 0.709677.

Then we use the relation

P (t0, Ti+1) =
P (t0, Ti)

1 + δ(Ti, Ti+1) F (t0; Ti, Ti+1)

to derive P (t0, T2), . . . , P (t0, T5).
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• Yen swaps have semi-annual cashflows at dates

{U1, . . . , U20} =





11/7/96, 13/1/97,
11/7/97, 12/1/98,
13/7/98, 11/1/99,
12/7/99, 11/1/00,
11/7/00, 11/1/01,
11/7/01, 11/1/02,
11/7/02, 13/1/03,
11/7/03, 12/1/04,
12/7/04, 11/1, 05,
11/7/05, 11/1/06





.

For a swap with maturity Un the swap rate at t0 is given by

Rswap(t0, Un) =
1− P (t0, Un)∑n

i=1 δ(Ui−1, Ui) P (t0, Ui)
, (U0 := t0).

From the data we have Rswap(t0, Ui) for i = 4, 6, 8, 10, 14, 20.

We obtain P (t0, U1), P (t0, U2) (and hence Rswap(t0, U1), Rswap(t0, U2))
by linear interpolation of the continuously compounded spot rates

R(t0, U1) =
69

91
R(t0, T2) +

22

91
R(t0, T3)

R(t0, U2) =
65

91
R(t0, T4) +

26

91
R(t0, T5).

All remaining swap rates are obtained by linear interpolation. For
maturity U3 this is

Rswap(t0, U3) =
1

2
(Rswap(t0, U2) + Rswap(t0, U4)).

We have (→ exercise)

P (t0, Un) =
1−Rswap(t0, Un)

∑n−1
i=1 δ(Ui−1, Ui) P (t0, Ui)

1 + Rswap(t0, Un)δ(Un−1, Un)
.

This gives P (t0, Un) for n = 3, . . . , 20.
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Figure 4.1: Zero-coupon bond curve
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In Figure 4.1 is the implied zero-coupon bond price curve

P (t0, ti), i = 0, . . . , 29

(we have 29 points and set P (t0, t0) = 1).
The spot and forward rate curves are in Figure 4.2. Spot and forward

rates are continuously compounded

R(t0, ti) = − log P (t0, ti)

δ(t0, ti)

R(t0, ti, ti+1) = − log P (t0, ti+1)− log P (t0, ti)

δ(ti, ti+1)
, i = 1, . . . , 29.

The forward curve, reflecting the derivative of T 7→ − log P (t0, T ), is very
unsmooth and sensitive to slight variations (errors) in prices.

Figure 4.3 shows the spot rate curves from LIBOR, futures and swaps. It
is evident that the three curves are not coincident to a common underlying
curve. Our naive method made no attempt to meld the three curves together.

→ The entire yield curve is constructed from relatively few instruments. The
method exactly reconstructs market prices (this is desirable for interest
rate option traders). But it produces an unstable, non-smooth forward
curve.
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Figure 4.2: Spot rates (lower curve), forward rates (upper curve)
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Figure 4.3: Comparison of money market curves
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→ Another method would be to estimate a smooth yield curve parametri-
cally from the market rates (for fund managers, long term strategies).

The main difficulties with our method are:

• Futures rates are treated as forward rates. In reality futures rates are
greater than forward rates. The amount by which the futures rate is
above the forward rate is called the convexity adjustment, which is
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model dependend. An example is

forward rate = futures rate− 1

2
σ2τ 2,

where τ is the time to maturity of the futures contract, and σ is the
volatility parameter.

• LIBOR rates beyond the “stup date” T1 = 20/3/96 (that is, at S5 =
11/4/96) are ignored once P (t0, T1) is found. In general, the segments
of LIBOR, futures and swap markets overlap.

• Swap rates are inappropriately interpolated. The linear interpolation
produces a “sawtooth” in the forward rate curve. However, in some
markets intermediate swaps are indeed priced as if their prices were
found by linear interpolation.

4.2 General Case

The general problem of finding today’s (t0) term structure of zero-coupon
bond prices (or the discount function)

x 7→ D(x) := P (t0, t0 + x)

can be formulated as
p = C · d + ε,

where p is a vector of n market prices, C the related cashflow matrix, and
d = (D(x1), . . . , D(xN)) with cashflow dates t0 < T1 < · · · < TN ,

Ti − t0 = xi,

and ε a vector of pricing errors. Reasons for including errors are

• prices are never exactly simultaneous,

• round-off errors in the quotes (bid-ask spreads, etc),

• liquidity effects,

• tax effects (high coupons, low coupons),

• allows for smoothing.
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4.2.1 Bond Markets

Data:

• vector of quoted/market bond prices p = (p1, . . . , pn),

• dates of all cashflows t0 < T1 < · · · < TN ,

• bond i with cashflows (coupon and principal payments) ci,j at time Tj

(may be zero), forming the n×N cashflow matrix

C = (ci,j) 1≤i≤n
1≤j≤N

.

Example (→ JW[11], p.426): UK government bond (gilt) market, Septem-
ber 4, 1996, selection of nine gilts. The coupon payments are semiannual.
The spot date is 4/9/96, and the day-count convention is actual/365.

Table 4.2: Market prices for UK gilts, 4/9/96.

coupon next maturity dirty price
(%) coupon date (pi)

bond 1 10 15/11/96 15/11/96 103.82
bond 2 9.75 19/01/97 19/01/98 106.04
bond 3 12.25 26/09/96 26/03/99 118.44
bond 4 9 03/03/97 03/03/00 106.28
bond 5 7 06/11/96 06/11/01 101.15
bond 6 9.75 27/02/97 27/08/02 111.06
bond 7 8.5 07/12/96 07/12/05 106.24
bond 8 7.75 08/03/97 08/09/06 98.49
bond 9 9 13/10/96 13/10/08 110.87

Hence n = 9 and N = 1 + 3 + 6 + 7 + 11 + 12 + 19 + 20 + 25 = 104,

T1 = 26/09/96, T2 = 13/10/96, T3 = 06/11/97, . . . .
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No bonds have cashflows at the same date. The 9× 104 cashflow matrix is

C =




0 0 0 105 0 0 0 0 0 0 . . .
0 0 0 0 0 4.875 0 0 0 0 . . .

6.125 0 0 0 0 0 0 0 0 6.125 . . .
0 0 0 0 0 0 0 4.5 0 0 . . .
0 0 3.5 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 4.875 0 0 0 . . .
0 0 0 0 4.25 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 3.875 0 . . .
0 4.5 0 0 0 0 0 0 0 0 . . .




4.2.2 Money Markets

Money market data can be put into the same price–cashflow form as above.

LIBOR (rate L, maturity T ): p = 1 and c = 1 + (T − t0)L at T .

FRA (forward rate F for [T, S]): p = 0, c1 = −1 at T1 = T , c2 = 1+(S−T )F
at T2 = S.

Swap (receiver, swap rate K, tenor t0 ≤ T0 < · · · < Tn, Ti − Ti−1 ≡ δ):
since

0 = −D(T0 − t0) + δK

n∑
j=1

D(Tj − t0) + (1 + δK)D(Tn − t0),

• if T0 = t0: p = 1, c1 = · · · = cn−1 = δK, cn = 1 + δK,

• if T0 > t0: p = 0, c0 = −1, c1 = · · · = cn−1 = δK, cn = 1 + δK.

→ at t0: LIBOR and swaps have notional price 1, FRAs and forward swaps
have notional price 0.

Example (→ JW[11], p.428): US money market on October 6, 1997.
The day-count convention is Actual/360. The spot date t0 is 8/10/97.

LIBOR is for o/n (1/365), 1m (33/360), and 3m (92/360).
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Futures are three month rates (δ = 91/360). We take them as forward
rates. That is, the quote of the futures contract with maturity date (settle-
ment day) T is

100(1− F (t0; T, T + δ)).

Swaps are annual (δ = 1). The first payment date is 8/10/98.

Table 4.3: US money market, October 6, 1997.

Period Rate Maturity Date
LIBOR o/n 5.59375 9/10/97

1m 5.625 10/11/97
3m 5.71875 8/1/98

Futures Oct-97 94.27 15/10/97
Nov-97 94.26 19/11/97
Dec-97 94.24 17/12/97
Mar-98 94.23 18/3/98
Jun-98 94.18 17/6/98
Sep-98 94.12 16/9/98
Dec-98 94 16/12/98

Swaps 2 6.01253
3 6.10823
4 6.16
5 6.22
7 6.32
10 6.42
15 6.56
20 6.56
30 6.56

Here n = 3 + 7 + 9 = 19, N = 3 + 14 + 30 = 47, T1 = 9/10/97,
T2 = 15/10/97 (first future), T3 = 10/11/97, . . . . The first 14 columns of
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the 19× 47 cashflow matrix C are

c11 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 c23 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c36 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 c47 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 c58 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 c69 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 c7,10 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 c8,11 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 c9,13 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 c10,14

0 0 0 0 0 0 0 0 0 0 0 c11,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c12,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c13,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c14,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c15,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c16,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c17,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c18,12 0 0
0 0 0 0 0 0 0 0 0 0 0 c19,12 0 0

with

c11 = 1.00016, c23 = 1.00516, c36 = 1.01461,
c47 = 1.01448, c58 = 1.01451, c69 = 1.01456, c7,10 = 1.01459,

c8,11 = 1.01471, c9,13 = 1.01486, c10,14 = 1.01517
c11,12 = 0.060125, c12,12 = 0.061082, c13,12 = 0.0616,

c14,12 = 0.0622, c15,12 = 0.0632, c16,12 = 0.0642,

c17,12 = c18,12 = c19,12 = 0.0656.

4.2.3 Problems

Typically, we have n ¿ N . Moreover, many entries of C are zero (different
cashflow dates). This makes ordinary least square (OLS) regression

min
d∈RN

{‖ε‖2 | ε = p− C · d} (⇒ CT p = CT Cd∗)

unfeasible.
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One could chose the data set such that cashflows are at same points in
time (say four dates each year) and the cashflow matrix C is not entirely full
of zeros (Carleton–Cooper (1976)). Still regression only yields values D(xi)
at the payment dates t0 + xi

→ interpolation technics necessary.

But there is nothing to regularize the discount factors (discount factors of
similar maturity can be very different). As a result this leads to a ragged
spot rate (yield) curve, and even worse for forward rates.

4.2.4 Parametrized Curve Families

Reduction of parameters and smooth yield curves can be achieved by using
parametrized families of smooth curves

D(x) = D(x; z) = exp

(
−

∫ x

0

φ(u; z) du

)
, z ∈ Z,

with state space Z ⊂ Rm.
For regularity reasons (see below) it is best to estimate the forward curve

R+ 3 x 7→ f(t0, t0 + x) = φ(x) = φ(x; z).

This leads to a nonlinear optimization problem

min
z∈Z

‖p− C · d(z)‖ ,

with

di(z) = exp

(
−

∫ xi

0

φ(u; z) du

)

for some payment tenor 0 < x1 < · · · < xN .

Linear Families

Fix a set of basis functions ψ1, . . . , ψm (preferably with compact support),
and let

φ(x; z) = z1ψ1(x) + · · ·+ zmψm(x).
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Cubic B-splines A cubic spline is a piecewise cubic polynomial that is
everywhere twice differentiable. It interpolates values at m + 1 knot points
ξ0 < · · · < ξm. Its general form is

σ(x) =
3∑

i=0

aix
i +

m−1∑
j=1

bj(x− ξj)
3
+,

hence it has m + 3 parameters {a0, . . . , a4, b1, . . . , bm−1} (a kth degree spline
has m + k parameters). The spline is uniquely characterized by specification
of σ′ or σ′′ at ξ0 and ξm.

Introduce six extra knot points

ξ−3 < ξ−2 < ξ−1 < ξ0 < · · · < ξm < ξm+1 < ξm+2 < ξm+3.

A basis for the cubic splines on [ξ0, ξm] is given by the m + 3 B-splines

ψk(x) =
k+4∑

j=k

(
k+4∏

i=k,i6=j

1

ξi − ξj

)
(x− ξj)

3
+, k = −3, . . . ,m− 1.

The B-spline ψk is zero outside [ξk, ξk+4].

Figure 4.4: B-spline with knot points {0, 1, 6, 8, 11}.
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Estimating the Discount Function B-splines can also be used to esti-
mate the discount function directly (Steeley (1991)),

D(x; z) = z1ψ1(x) + · · ·+ zmψm(x).

With

d(z) =




D(x1; z)
...

D(xN ; z)


 =




ψ1(x1) · · · ψm(x1)
...

...
ψ1(xN) · · · ψm(xN)


 ·




z1
...

zm


 =: Ψ · z

this leads to the linear optimization problem

min
z∈Rm

‖p− CΨz‖.

If the n × m matrix A := CΨ has full rank m, the unique unconstrained
solution is

z∗ = (AT A)−1AT p.

A reasonable constraint would be

D(0; z) = ψ1(0)z1 + · · ·+ ψm(0)zm = 1.

Example We take the UK government bond market data from the last
section (Table 4.2). The maximum time to maturity, x104, is 12.11 [years].
Notice that the first bond is a zero-coupon bond. Its exact yield is

y = −365

72
log

103.822

105
= − 1

0.197
log 0.989 = 0.0572.

• As a basis we use the 8 (resp. first 7) B-splines with the 12 knot points

{−20,−5,−2, 0, 1, 6, 8, 11, 15, 20, 25, 30}
(see Figure 4.5).

The estimation with all 8 B-splines leads to

min
z∈R8

‖p− CΨz‖ = ‖p− CΨz∗‖ = 0.23
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Figure 4.5: B-splines with knots {−20,−5,−2, 0, 1, 6, 8, 11, 15, 20, 25, 30}.
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with

z∗ =




13.8641
11.4665
8.49629
7.69741
6.98066
6.23383
−4.9717
855.074




,

and the discount function, yield curve (cont. comp. spot rates), and for-
ward curve (cont. comp. 3-monthly forward rates) shown in Figure 4.7.

The estimation with only the first 7 B-splines leads to

min
z∈R7

‖p− CΨz‖ = ‖p− CΨz∗‖ = 0.32

with

z∗ =




17.8019
11.3603
8.57992
7.56562
7.28853
5.38766
4.9919




,
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and the discount function, yield curve (cont. comp. spot rates), and
forward curve (cont. comp. 3-month forward rates) shown in Figure 4.8.

• Next we use only 5 B-splines with the 9 knot points

{−10,−5,−2, 0, 4, 15, 20, 25, 30}

(see Figure 4.6).

Figure 4.6: Five B-splines with knot points {−10,−5,−2, 0, 4, 15, 20, 25, 30}.
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The estimation with this 5 B-splines leads to

min
z∈R5

‖p− CΨz‖ = ‖p− CΨz∗‖ = 0.39

with

z∗ =




15.652
19.4385
12.9886
7.40296
6.23152




,

and the discount function, yield curve (cont. comp. spot rates), and for-
ward curve (cont. comp. 3-monthly forward rates) shown in Figure 4.9.
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Figure 4.7: Discount function, yield and forward curves for estimation with
8 B-splines. The dot is the exact yield of the first bond.
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Figure 4.8: Discount function, yield and forward curves for estimation with
7 B-splines. The dot is the exact yield of the first bond.
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Figure 4.9: Discount function, yield and forward curves for estimation with
5 B-splines. The dot is the exact yield of the first bond.
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Discussion

• In general, splines can produce bad fits.

• Estimating the discount function leads to unstable and non-smooth
yield and forward curves. Problems mostly at short and long term
maturities.

• Splines are not useful for extrapolating to long term maturities.

• There is a trade-off between the quality (or regularity) and the correct-
ness of the fit. The curves in Figures 4.8 and 4.9 are more regular than
those in Figure 4.7, but their correctness criteria (0.32 and 0.39) are
worse than for the fit with 8 B-splines (0.23).

• The B-spline fits are extremely sensitive to the number and location of
the knot points.

→ Need criterions asserting smooth yield and forward curves that do not
fluctuate too much and flatten towards the long end.

→ Direct estimation of the yield or forward curve.

→ Optimal selection of number and location of knot points for splines.

→ Smoothing splines.

Smoothing Splines The least squares criterion

min
z
‖p− C · d(z)‖2

has to be replaced/extended by criterions for the smoothness of the yield or
forward curve.

Example: Lorimier (95). In her PhD thesis 1995, Sabine Lorimier sug-
gests a spline method where the number and location of the knots are deter-
mined by the observed data itself.

For ease of notation we set t0 = 0 (today). The data is given by N
observed zero-coupon bonds P (0, T1), . . . , P (0, TN) at 0 < T1 < · · · < TN ≡
T , and consequently the N yields

Y1, . . . , YN , P (0, Ti) = exp(−TiYi).



58 CHAPTER 4. ESTIMATING THE YIELD CURVE

Let f(u) denote the forward curve. The fitting requirement now is for the
forward curve ∫ Ti

0

f(u) du + εi/
√

α = TiYi, (4.1)

with an arbitrary constant α > 0. The aim is to minimize ‖ε‖2 as well as the
smoothness criterion ∫ T

0

(f ′(u))2 du. (4.2)

Introduce the Sobolev space

H = {g | g′ ∈ L2[0, T ]}

with scalar product

〈g, h〉H = g(0)h(0) +

∫ T

0

g′(u)h′(u) du,

and the nonlinear functional on H

F (f) :=

[∫ T

0

(f ′(u))2 du + α

N∑
i=1

(
YiTi −

∫ Ti

0

f(u) du

)2
]

.

The optimization problem then is

min
f∈H

F (f). (*)

The parameter α tunes the trade-off between smoothness and correctness of
the fit.

Theorem 4.2.1. Problem (*) has a unique solution f , which is a second
order spline characterized by

f(u) = f(0) +
N∑

k=1

akhk(u) (4.3)

where hk ∈ C1[0, T ] is a second order polynomial on [0, Tk] with

h′k(u) = (Tk − u)+, hk(0) = Tk, k = 1, . . . , N, (4.4)
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and f(0) and ak solve the linear system of equations

N∑

k=1

akTk = 0, (4.5)

α

(
YkTk − f(0)Tk −

N∑

l=1

al〈hl, hk〉H
)

= ak, k = 1, . . . , N. (4.6)

Proof. Integration by parts yields

∫ Tk

0

g(u) du = Tkg(Tk)−
∫ Tk

0

ug′(u) du

= Tkg(0) + Tk

∫ Tk

0

g′(u) du−
∫ Tk

0

ug′(u) du

= Tkg(0) +

∫ T

0

(Tk − u)+g′(u) du = 〈hk, g〉H ,

for all g ∈ H. In particular,

∫ Tk

0

hl du = 〈hl, hk〉H .

A (local) minimizer f of F satisfies

d

dε
F (f + εg)|ε=0 = 0

or equivalently

∫ T

0

f ′g′ du = α

N∑

k=1

(
YkTk −

∫ Tk

0

f du

) ∫ Tk

0

g du, ∀g ∈ H. (4.7)

In particular, for all g ∈ H with 〈g, hk〉H = 0 we obtain

〈f − f(0), g〉H =

∫ T

0

f ′(u)g′(u) du = 0.

Hence
f − f(0) ∈ span{h1, . . . , hN}
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what proves (4.3), (4.4) and (4.5) (set u = 0). Hence we have

∫ T

0

f ′(u)g′(u) du =
N∑

k=1

ak

(
−Tkg(0) +

∫ Tk

0

g(u) du

)
=

N∑

k=1

ak

∫ Tk

0

g(u) du,

and (4.7) can be rewritten as

N∑

k=1

(
ak − α

(
YkTk − f(0)Tk −

N∑

l=1

al〈hl, hk〉H
)) ∫ Tk

0

g(u) du = 0

for all g ∈ H. This is true if and only if (4.6) holds.
Thus we have shown that (4.7) is equivalent to (4.3)–(4.6).
Next we show that (4.7) is a sufficient condition for f to be a global

minimizer of F . Let g ∈ H, then

F (g) =

∫ T

0

((g′ − f ′) + f ′)2
du + α

N∑

k=1

(
YkTk −

∫ Tk

0

g du

)2

(4.7)
= F (f) +

∫ T

0

(g′ − f ′)2 du + α

N∑

k=1

(∫ Tk

0

f du−
∫ Tk

0

g du

)2

≥ F (f),

where we used (4.7) with g − f ∈ H.
It remains to show that f exists and is unique; that is, that the linear sys-

tem (4.5)–(4.6) has a unique solution (f(0), a1, . . . , aN). The corresponding
(N + 1)× (N + 1) matrix is

A =




0 T1 T2 · · · TN

αT1 α〈h1, h1〉H + 1 α〈h1, h2〉H · · · α〈h1, hN〉H
...

...
. . . . . .

...
αTN α〈hN , h1〉H α〈hN , h2〉H · · · α〈hN , hN〉H + 1


 . (4.8)

Let λ = (λ0, . . . , λN)T ∈ RN+1 such that Aλ = 0, that is,

N∑

k=1

Tkλk = 0

αTkλ0 + α

N∑

l=1

〈hk, hl〉Hλl + λk = 0, k = 1, . . . , N.
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Multiplying the latter equation with λk and summing up yields

α

∥∥∥∥∥
N∑

k=1

λkhk

∥∥∥∥∥

2

H

+
N∑

k=1

λ2
k = 0.

Hence λ = 0, whence A is non-singular.

The role of α is as follows:

• If α → 0 then by (4.3) and (4.6) we have f(u) ≡ f(0), a constant
function. That is, maximal regularity

∫ T

0

(f ′(u))2 du = 0

but no fitting of data, see (4.1).

• If α →∞ then (4.7) implies that

∫ Tk

0

f(u) du = YkTk, k = 1, . . . , N, (4.9)

a perfect fit. That is, f minimizes (4.2) subject to the constraints (4.9).

To estimate the forward curve from N zero-coupon bonds—that is, yields
Y = (Y1, . . . , YN)T —one has to solve the linear system

A ·
(

f(0)
a

)
=

(
0
Y

)
(see (4.8)).

Of course, if coupon bond prices are given, then the above method has
to be modified and becomes nonlinear. With p ∈ Rn denoting the market
price vector and ckl the cashflows at dates Tl, k = 1, . . . , n, l = 1, . . . , N , this
reads

min
f∈H





∫ T

0

(f ′)2 du + α

n∑

k=1

(
log pk − log

[
N∑

l=1

ckl exp

[
−

∫ Tl

0

f du

]])2


 .

If the coupon payments are small compared to the nominal (=1), then this
problem has a unique solution. This and much more is carried out in Lorim-
ier’s thesis.
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Exponential-Polynomial Families

Exponential-polynomial functions

p1(x)e−α1x + · · ·+ pn(x)e−αnx (pi=polynomial of degree ni)

form non-linear families of functions. Popular examples are:

Nelson–Siegel (87) [17] There are 4 parameters z1, . . . , z4 and

φNS(x; z) = z1 + (z2 + z3x)e−z4x.

Svensson (94) [21] (Prof. L. E. O. Svensson is at the Economics Depart-
ment, Princeton University) This is an extension of Nelson–Siegel, in-
cluding 6 parameters z1, . . . , z6,

φS(x; z) = z1 + (z2 + z3x)e−z4x + z5e
−z6x.

Figure 4.10: Nelson–Siegel curves for z1 = 7.69, z2 = −4.13, z4 = 0.5 and 7
different values for z3 = 1.76, 0.77, −0.22, −1.21, −2.2, −3.19, −4.18.

5 10 15 20

2

4

6

8

Table 4.4 is taken from a document of the Bank for International Settle-
ments (BIS) 1999 [2].
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Table 4.4: Overview of estimation procedures by several central banks. BIS
1999 [2]. NS is for Nelson–Siegel, S for Svensson, wp for weighted prices.

Central Bank Method Minimized Error

Belgium S or NS wp
Canada S sp
Finland NS wp
France S or NS wp

Germany S yields
Italy NS wp
Japan smoothing prices

splines
Norway S yields
Spain S wp

Sweden S yields
UK S yields
USA smoothing bills: wp

splines bonds: prices

Criteria for Curve Families

• Flexibility (do the curves fit a wide range of term structures?)

• Number of factors not too large (curse of dimensionality).

• Regularity (smooth yield or forward curves that flatten out towards the
long end).

• Consistency: do the curve families go well with interest rate models?
→ this point will be exploited in the sequel.
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Chapter 5

Why Yield Curve Models?

→ R[19](Chapter 5)
Why modelling the entire term structure of interest rates? There is no

need when pricing a single European call option on a bond.

But: the payoffs even of “plain-vanilla” fixed income products such as caps,
floors, swaptions consist of a sequence of cashflows at T1, . . . , Tn, where
n may be 20 (e.g. a 10y swap with semi-annual payments) or more.

→ The valuation of such products requires the modelling of the entire covari-
ance structure. Historical estimation of such large covariance matrices
is statistically not tractable anymore.

→ Need strong structure to be imposed on the co-movements of financial
quantities of interest.

→ Specify the dynamics of a small number of variables (e.g. PCA).

→ Correlation structure among observable quantities can now be obtained
analytically or numerically.

→ Simultaneous pricing of different options and hedging instruments in a
consistent framework.

This is exactly what interest rate (curve) models offer:

• reduction of fitting degrees of freedom → makes problem manageable.

=⇒ It is practically and intellectually rewarding to consider no-arbitrage
conditions in much broader generality.
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Chapter 6

No-Arbitrage Pricing

This chapter briefly recalls the basics about pricing and hedging in a Brown-
ian motion driven market. Reference is B[3], MR[16](Chapter 10), and many
more.

6.1 Self-Financing Portfolios

The stochastic basis is a probability space (Ω,F ,P), a d-dimensional Brow-
nian motion W = (W1, . . . , Wd), and the filtration (Ft)t≥0 generated by W .
We shall assume that F = F∞ = ∨t≥0Ft, and do not a priori fix a finite
time horizon. This is not a restriction since always one can set a stochastic
process to be zero after a finite time T if this were the ultimate time horizon
(as in the Black–Scholes model).

The background for stochastic analysis can be found in many textbooks,
such as [13], [?], [20], etc. From time to time we recall some of the funda-
mental results without proof.

Financial Market We consider a financial market with n traded assets,
following strictly positive Itô processes

dSi(t) = Si(t)µi(t) dt +
d∑

j=1

Si(t)σij(t) dWj(t), Si > 0, i = 1, . . . , n

and the risk-free asset

dS0(t) = r(t)S0(t) dt, S0(0) = 1
(
⇔ S0(t) = e

R t
0 r(s) ds

)
.
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The drift µ = (µ1, . . . , µn), volatility σ = (σij), and short rates r are assumed
to form adapted processes which meet the required integrability conditions
such that all of the above (stochastic) integrals are well-defined.

Remark 6.1.1. It is always understood that for a random variable “X ≥ 0”
means “X ≥ 0 a.s.” (that is, P[X ≥ 0] = 1), etc.

Theorem 6.1.2 (Stochastic Integrals). Let h = (h1, . . . , hd) be a mea-
surable adapted process. If

∫ t

0

‖h(s)‖2 ds < ∞ for all t > 0

(the class of such processes is denoted by L) one can define the stochastic
integral

(h ·W )t ≡
∫ t

0

h(s) dW (s) ≡
d∑

j=1

∫ t

0

hj(s) dWj(s).

If moreover

E
[∫ ∞

0

‖h(s)‖2 ds

]
< ∞

(the class of such processes is denoted by L2) then h ·W is a martingale and
the Itô isometry holds

E

[(∫ t

0

h(s) dW (s)

)2
]

= E
[∫ t

0

‖h(s)‖2 ds

]
.

Self-financing Portfolios A portfolio, or trading strategy , is any adapted
process

φ = (φ0, . . . , φn).

Its corresponding value process is

V (t) = V (t; φ) :=
n∑

i=0

φi(t)Si(t).

The portfolio φ is called self-financing (for S) if the stochastic integrals

∫ t

0

φi(u) dSi(u), i = 0, . . . , n
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are well defined and

dV (t; φ) =
n∑

i=0

φi(t) dSi(t).

Numeraires All prices are interpreted as being given in terms of a nu-
meraire, which typically is a local currency such as US dollars. But we may
and will express from time to time the prices in terms of other numeraires,
such as Sp for some 0 ≤ p ≤ n. The discounted price process vector

Z(t) :=
S(t)

Sp(t)

implies the discounted value process

Ṽ (t; φ) :=
n∑

i=0

φi(t)Zi(t) =
V (t; φ)

Sp(t)
.

Up to integrability, the self-financing property does not depend on the choice
of the numeraire.

Lemma 6.1.3. Suppose that a portfolio φ satisfies the integrability conditions
for S and Z. Then φ is self-financing for S if and only if it is self-financing
for Z, in particular

dṼ (t; φ) =
n∑

i=0

φi(t) dZi(t) =
n∑

i=0
i 6=p

φi(t) dZi(t). (6.1)

Since Zp is constant, the number of terms in (6.1) reduces to n.
Often (but not always) we chose S0 as the numeraire.

6.2 Arbitrage and Martingale Measures

Contingent Claims Related to any option (such as a cap, floor, swaption,
etc) is an uncertain future payoff, say at date T , hence an FT -measurable
random variable X (a contingent (T -)claim). Two main problems now are:

• What is a “fair” price for a contingent claim X?

• How can one hedge against the financial risk involved in trading con-
tingent claims?
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Arbitrage An arbitrage portfolio is a self-financing portfolio φ with value
process satisfying

V (0) = 0 and V (T ) ≥ 0 and P[V (T ) > 0] > 0

for some T > 0. If no arbitrage portfolios exist for any T > 0 we say the
model is arbitrage-free.

An example of arbitrage is the following.

Lemma 6.2.1. Suppose there exists a self-financing portfolio with value pro-
cess

dU(t) = k(t)U(t) dt,

for some measurable adapted process k. If the market is arbitrage-free then
necessarily

r = k, dt⊗ dP-a.s.

Proof. Indeed, after discounting with S0 we obtain

Ũ(t) :=
U(t)

S0(t)
= U(0) exp

(∫ t

0

(k(s)− r(s)) ds

)
.

Then (→ exercise)
ψ(t) := 1{k(t)>r(t)}

yields a self-financing strategy with discounted value process

Ṽ (t) =

∫ t

0

ψ(s) dŨ(s) =

∫ t

0

(
1{k(s)>r(s)}(k(s)− r(s))Ũ(s)

)
ds ≥ 0.

Hence absence of arbitrage requires

0 = E[Ṽ (T )] =

∫

N

(
1{k(t,ω)>r(t,ω)}(k(t, ω)− r(t, ω))Ũ(t, ω)

)

︸ ︷︷ ︸
>0 on N

dt⊗ dP

where
N := {(t, ω) | k(t, ω) > r(t, ω)}

is a measurable subset of [0, T ]×Ω. But this can only hold if N is a dt⊗dP-
nullset. Using the same arguments with changed signs proves the lemma.
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Martingale Measures We now investigate when a given model is arbi-
trage-free. To simplify things in the sequel

• we fix S0 as a numeraire, and

• Ṽ will express the discounted value process V/S0.

But the following can be made valid for any choice of numeraire.
An equivalent probability measure Q ∼ P is called an equivalent (local)

martingale measure (E(L)MM) if the discounted price processes

Zi = Si/S0 are Q-(local) martingales.

Theorem 6.2.2 (Girsanov’s Change of Measure Theorem). Let Q ∼ P
be an equivalent probability measure. Then there exists γ ∈ L such that the
density process dQ/dP is the stochastic exponential E(γ ·W ) of γ ·W

dQ
dP
|Ft = Et (γ ·W ) := exp

(∫ t

0

γ(s) dW (s)− 1

2

∫ t

0

‖γ(s)‖2 ds

)
. (6.2)

Moreover, the process

W̃ (t) := W (t)−
∫ t

0

γ(s) ds (6.3)

is a Q-Brownian motion.
Conversely, if γ ∈ L is such that E (γ ·W ) is a uniformly integrable

martingale with E∞(γ ·W ) > 0 — sufficient is the Novikov condition

E
[
exp

(
1

2

∫ ∞

0

‖γ(s)‖2 ds

)]
< ∞ (6.4)

(see [20, Proposition (1.26), Chapter IV]) — then (6.2) defines an equivalent
probability measure Q ∼ P.

Market Price of Risk Let Q be an ELMM and γ (the stochastic logarithm
of the density process) and W̃ given by (6.2) and (6.3). Integration by parts
yields the Z-dynamics

dZi(t) = Zi(t) (µi(t)− r(t)) dt + Zi(t)σi(t) dW (t)

= Zi(t) (µi(t)− r(t) + σi(t) · γ(t)) dt + Zi(t)σi(t) dW̃ (t).
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Hence necessarily γ satisfies

µi − r + σi · γ = 0 dt⊗ dQ-a.s. for all i = 1, . . . , n. (6.5)

If σ is non-degenerate (in particular d ≤ n and rank[σ] = d) then γ is
uniquely specified by

−γ = σ−1 · (µ− r1)

where 1 := (1, . . . , 1)T , and vice versa. This is why −γ is called the market
price of risk .

Conversely, if (6.5) has a solution γ ∈ L such that E(γ ·W ) is a uniformly
integrable martingale (the Novikov condition (6.4) is sufficient) then (6.2)
defines an ELMM Q. If γ is unique then Q is the unique ELMM.

Notice that, by Itô’s formula, Zi can be written as stochastic exponential

Zi = E(σi · W̃ ).

Hence if σi satisfies the Novikov condition (6.4) for all i = 1, . . . , n then the
ELMM Q is in fact an EMM.

Admissible Strategies In the presence of local martingales one has to be
alert to pitfalls. For example it is possible to construct a local martingale M
with M(0) = 0 and M(1) = 1. Even worse, M can be chosen to be of the
form

M(t) =

∫ t

0

φ(s) dW (s)

(Dudley’s Representation Theorem), which looks like the (discounted) value
process of a self-financing strategy. This would certainly be a money-making
machine, say arbitrage. In the same way “suicide strategies” (e.g. M(0) = 1
and M(1) = 0) can be constructed. To rule out such examples we have to
impose additional constraints on the choice of strategies. There are several
ways to do so. Here are two typical examples:

A self-financing strategy φ is admissible if

1. Ṽ (t; φ) ≥ −a for some a ∈ R, OR

2. Ṽ (t; φ) is a true Q-martingale, for some ELMM Q.

Condition 1 is more universal (it does not depend on a particular Q) and
implies that V (t; φ) is a Q-supermartingale for every ELMM Q. Yet, “suicide
strategies” remain (however, they do not introduce arbitrage).

Both conditions 1 and 2, however, are sensitive with respect to the choice
of numeraire!
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The Fundamental Theorem of Asset Pricing The existence of an
ELMM rules out arbitrage.

Lemma 6.2.3. Suppose there exists an ELMM Q. Then the model is arbi-
trage-free, in the sense that there exists no admissible (either Condition 1 or
2) arbitrage strategy.

Proof. Indeed, let Ṽ be the discounted value process of an admissible strat-
egy, with Ṽ (0) = 0 and Ṽ (T ) ≥ 0. Since Ṽ is a Q-supermartingale in any
case (for some ELMM Q), we have

0 ≤ EQ[Ṽ (T )] ≤ Ṽ (0) = 0,

whence Ṽ (T ) = 0.

It is folklore (Delbaen and Schachermayer 1994, etc) that also the converse
holds true: if arbitrage is defined in the right way (“No Free Lunch with
Vanishing Risk”), then its absence implies the existence of an ELMM Q.
This is called the Fundamental Theorem of Asset Pricing .

It has become a custom (and we will follow this tradition) to consider the
existence of an ELMM as synonym for the absence of arbitrage:

absence of arbitrage = existence of an ELMM;

→ the existence of an ELMM is now a standing assumption.

6.3 Hedging and Pricing

Attainable Claims A contingent claim X due at T is attainable if the
exists an admissible strategy φ which replicates/hedges X; that is,

V (T ; φ) = X.

A simple example: suppose S1 is the price process of the T -bond. Then
the contingent claim X = 1 due at T is attainable by an obvious buy and
hold strategy with value process V (t) = S1(t).
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Complete Markets The main problem is to determine which claims are
attainable. This is most conveniently carried out in terms of discounted
prices.

Suppose that σ is non-degenerate; that is

d ≤ n and rank[σ] = d, (6.6)

and that the unique market price of risk −γ given by (6.5) yields a uniformly
integrable martingale E(γ ·W ) and hence a unique ELMM Q.

Lemma 6.3.1. Then the model is complete in the sense that any contingent
claim X with

X/S0(T ) ∈ L1(FT ;Q) (6.7)

is attainable.

Proof. Define the Q-martingale

Y (t) := EQ [X/S0(T ) | Ft] , t ∈ [0, T ].

Then
Y (t)D(t) = D(t)EQ[Y (T ) | Ft]

Bayes
= E[Y (T )D(T ) | Ft],

with the density process D(t) = dQ/dP|Ft = Et(γ ·W ). Hence Y D is a P-
martingale and by the representation theorem 6.3.3 we can find ψ ∈ L such
that

Y (t)D(t) = Y (0) +

∫ t

0

ψ(s) dW (s).

Applying Itô’s formula yields

d

(
1

D

)
= − 1

D
γ dW +

1

D
‖γ‖2 dt,

and

dY = d

(
(Y D)

1

D

)
= Y D d

(
1

D

)
+

1

D
d(Y D) + d

〈
Y D,

1

D

〉

=

(
1

D
ψ − Y γ

)
dW −

(
1

D
ψ − Y γ

)
· γ dt

=

(
1

D
ψ − Y γ

)

︸ ︷︷ ︸
=:ψ̃

dW̃ .
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Now define

φi =
((σ−1)T ψ̃)i

Zi

, (6.8)

then it follows that
n∑

i=1

φi dZi =
n∑

i=1

φiZiσi dW̃ = (σ−1)T ψ̃ · σ dW̃ = ψ̃ · σ−1σ dW̃ = ψ̃ dW̃ = dY.

Hence φ yields an admissible strategy with discounted value process satisfying

Ṽ (T ; φ) = Y (T ) = EQ [X/S0(T )] +
n∑

i=1

∫ T

0

φi(s) dZi(s) = X/S0(T ). (6.9)

Hence non-degeneracy of σ (see (6.6) and (6.8)) implies uniqueness of Q
and completeness of the model. These conditions are in fact equivalent (see
for example MR[16](Chapter 10)).

Theorem 6.3.2 (Completeness). The following are equivalent:

1. the model is complete;

2. σ is non-degenerate, see (6.6);

3. there exists a unique ELMM Q.

Theorem 6.3.3 (Representation Theorem). Every P-local martingale
M has a continuous version and there exists ψ ∈ L such that

M(t) = M(0) +

∫ t

0

ψ(s) dW (s).

(This theorem requires the filtration (Ft) to be generated by W .)

Pricing In the above complete model the fair price prevailing at t ≤ T of
a T -claim X which satisfies (6.7) is given by (6.9)

V (t, φ) = S0(t)Ṽ (t; φ) = S0(t)EQ [X/S0(T ) | Ft] . (6.10)

We shall often encounter complete models. However, models can be gener-
ically incomplete (as real markets are), and then the pricing becomes a dif-
ficult issue. The literature on incomplete markets is huge, and the topic
beyond the scope of this course.
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State-price Density It is a custom (e.g. for short rate models) to exoge-
nously specify a particular ELMM Q (or equivalently, the market price of
risk) and then price a T -claim X satisfying (6.7) according to (6.10)

price of X at t =: Y (t) = S0(t)EQ [X/S0(T ) | Ft] .

This is a consistent pricing rule in the sense that the enlarged market

Y, S0, . . . , Sn

is still arbitrage-free (why?).
Now define

π(t) :=
1

S0(t)

dQ
dP
|Ft .

By Bayes formula we then have

Y (t) = S0(t)EQ [X/S0(T ) | Ft] = S0(t)
E

[
X

S0(T )
dQ
dP |FT

| Ft

]

dQ
dP |Ft

=
E [Xπ(T ) | Ft]

π(t)
,

and, in particular, for the price at t = 0

Y (0) = E[Xπ(T )].

This is why π is called the state-price density process.
The price of a T -bond for example is (if 1/S0(T ) ∈ L1(Q), → exercise)

P (t, T ) = E
[
π(T )

π(t)
| Ft

]
= EQ

[
S0(t)

S0(T )
| Ft

]
.

Also one can check (→ exercise) that if Q is an EMM then

Siπ are P-martingales.



Chapter 7

Short Rate Models

→ B[3](Chapters 16–17), MR[16](Chapter 12), etc

7.1 Generalities

Short rate models are the classical interest rate models. As in the last sec-
tion we fix a stochastic basis (Ω,F ,P), where P is considered as objective
probability measure. The filtration (Ft)t≥0 is generated by a d-dimensional
Brownian motion W .

We assume that

• the short rates follow an Itô process

dr(t) = b(t) dt + σ(t) dW (t)

determining the savings account B(t) = exp
(∫ t

0
r(s) ds

)
,

• all zero-coupon bond prices (P (t, T ))t∈[0,T ] are adapted processes (with
P (T, T ) = 1 as usual),

• no-arbitrage: there exists an EMM Q, such that

P (t, T )

B(t)
, t ∈ [0, T ],

is a Q-martingale for all T > 0.
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According to the last chapter, the existence of an ELMM for all T -bonds
excludes arbitrage among every finite selection of zero-coupon bonds, say
P (t, T1), . . . , P (t, Tn). To be more general one would have to consider strate-
gies involving a continuum of bonds. This can be done (see [4] or Mike
Tehranchi’s PhD thesis 2002) but is beyond the scope of this course.

For convenience we require Q to be an EMM (and not merely an ELMM)
because then we have

P (t, T ) = EQ
[
e−

R T
t r(s) ds | Ft

]
(7.1)

(compare this to the last section). Let −γ denote the corresponding market
price of risk

Et(γ ·W ) =
dQ
dP
|Ft

and W̃ = W − ∫
γ dt the implied Q-Brownian motion.

Proposition 7.1.1. Under the above assumptions, the process r satisfies
under Q

dr(t) = (b(t) + σ(t) · γ(t)) dt + σ(t) dW̃ (t). (7.2)

Moreover, for any T > 0 there exists an adapted Rd-valued process σγ(t, T ),
t ∈ [0, T ], such that

dP (t, T )

P (t, T )
= r(t) dt + σγ(t, T ) dW̃ (t) (7.3)

and hence
P (t, T )

B(t)
= P (0, T )Et

(
σγ · W̃

)
.

Proof. Exercise (proceed as in the Completeness Lemma 6.3.1).

It follows from (7.3) that the T -bond price satisfies under the objective
probability measure P

dP (t, T )

P (t, T )
= (r(t)− γ(t) · σγ(t, T )) dt + σγ dW (t).

This illustrates again the role of the market price of risk −γ as the excess of
instantaneous return over r(t) in units of volatility.
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In a general equilibrium framework, the market price of risk is given
endogenously (as it is carried out in the seminal paper by Cox, Ingersoll and
Ross (85) [7]). Since our arguments refer only to the absence of arbitrage
between primary securities (bonds) and derivatives, we are unable to identify
the market price of risk. In other words, we started by specifying the P-
dynamics of the short rates, and hence the savings account B(t). However,
the savings account alone cannot be used to replicate bond payoffs: the
model is incomplete. According to the Completeness Theorem 6.3.2, this is
also reflected by the non-uniqueness of the EMM (the market price of risk).
A priori, Q can be any equivalent probability measure Q ∼ P.

A short rate model is not fully determined without the exogenous
specification of the market price of risk.

It is custom (and we follow this tradition) to postulate the Q-dynamics
(Q being the EMM) of r which implies the Q-dynamics of all bond prices
by (7.1), see also (7.3). All contingent claims can be priced by taking Q-
expectations of their discounted payoffs. The market price of risk (and hence
the objective measure P) can be inferred by statistical methods from histor-
ical observations of price movements.

7.2 Diffusion Short Rate Models

We fix a stochastic basis (Ω,F , (Ft)t≥0,Q), where now Q is considered as
martingale measure. We let W denote a d-dimensional (Q,Ft)-Brownian
motion.

Let Z ⊂ R be a closed interval, and b and σ continuous functions on
R+ × Z. We assume that for any ρ ∈ Z the stochastic differential equation
(SDE)

dr(t) = b(t, r(t)) dt + σ(t, r(t)) dW (t) (7.4)

admits a unique Z-valued solution r = rρ with

r(t) = ρ +

∫ t

0

b(u, r(u)) du +

∫ t

0

σ(u, r(u)) dW (u)

and such that

exp

(
−

∫ T

t

r(u) du

)
∈ L1(Q) (7.5)
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for all 0 ≤ t ≤ T . Notice that (7.5) is always satisfied if Z ⊂ R+.
Sufficient for the existence and uniqueness is Lipschitz continuity of b(t, r)

and σ(t, r) in r, uniformly in t. If d = 1 then Hölder continuity of order 1/2
of σ in r, uniformly in t, is enough. A good reference for SDEs is the book
of Karatzas and Shreve [13] on Brownian motion and stochastic calculus.

Condition (7.5) allows us to define the T -bond prices

P (t, T ) = EQ
[
exp

(
−

∫ T

t

r(u) du

)
| Ft

]
.

It turns out that P (t, T ) can be written as a function of r(t), t and T . This is
a general property of certain functionals of Markov process, usually referred
to as Feynman–Kac formula. In the following we write

a(t, r) :=
‖σ(t, r)‖2

2

for the diffusion term of r(t).

Lemma 7.2.1. Let T > 0 and Φ be a continuous function on Z, and assume
that F = F (t, r) ∈ C1,2([0, T ]×Z) is a solution to the boundary value problem
on [0, T ]×Z

{
∂tF (t, r) + b(t, r)∂rF (t, r) + a(t, r)∂2

rF (t, r)− rF (t, r) = 0

F (T, r) = Φ(r).
(7.6)

Then

M(t) = F (t, r(t))e−
R t
0 r(u) du, t ∈ [0, T ],

is a local martingale. If in addition either

1. ∂rF (t, r(t))e−
R t
0 r(u) duσ(t, r(t)) ∈ L2[0, T ], or

2. M is uniformly bounded,

then M is a true martingale, and

F (t, r(t)) = EQ
[
exp

(
−

∫ T

t

r(u) du

)
Φ(r(T )) | Ft

]
, t ≤ T. (7.7)
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Proof. We can apply Itô’s formula to M and obtain

dM(t) =
(
∂tF (t, r(t)) + b(t, r(t))∂rF (t, r(t))

+ a(t, r)∂2
rF (t, r(t))− r(t)F (t, r(t))

)
e−

R t
0 r(u) du dt

+ ∂rF (t, r(t))e−
R t
0 r(u) duσ(t, r(t)) dW (t)

= ∂rF (t, r(t))e−
R t
0 r(u) duσ(t, r(t)) dW (t).

Hence M is a local martingale.
It is now clear that either Condition 1 or 2 imply that M is a true mar-

tingale. Since

M(T ) = Φ(r(T ))e−
R T
0 r(u) du

we get

F (t, r(t))e−
R t
0 r(u) du = M(t) = EQ

[
exp

(
−

∫ T

0

r(u) du

)
Φ(r(T )) | Ft

]
.

Multiplying with e
R t
0 r(u) du yields the claim.

We call (7.6) the term structure equation for Φ. Its solution F gives the
price of the T -claim Φ(r(T )). In particular, for Φ ≡ 1 we get the T -bond
price P (t, T ) as a function of t, r(t) (and T )

P (t, T ) = F (t, r(t); T ).

Remark 7.2.2. Strictly speaking, we have only shown that if a smooth solu-
tion F of (7.6) exists and satisfies some additional properties (Condition 1
or 2) then the time t price of the claim Φ(r(T )) (which is the right hand side
of (7.7)) equals F (t, r(t)). One can also show the converse that the expecta-
tion on the right hand side of (7.7) conditional on r(t) = r can be written as
F (t, r) where F solves the term structure equation (7.6) but usually only in a
weak sense, which in particular means that F may not be in C1,2([0, T ]×Z).
This is general Markov theory and we will not prove this here.

In any case, we have found a pricing algorithm. Is it computationally
efficient? Solving PDEs numerically in more than three dimensions causes
difficulties. PDEs in less than three space dimensions are numerically feasi-
ble, and the dimension of Z is one. The nuisance is that we have to solve a
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PDE for every single zero-coupon bond price function F (·, ·; T ), T > 0. From
that we might want to derive the yield or even forward curve. If we do not
impose further structural assumptions we may run into regularity problems.
Hence

short rate models that admit closed form solutions to the term
structure equation (7.6), at least for Φ ≡ 1, are favorable.

7.2.1 Examples

This is a (far from complete) list of the most popular short rate models. For
all examples we have d = 1. If not otherwise stated, the parameters are
real-valued.

1. Vasicek (1977): Z = R,

dr(t) = (b + βr(t)) dt + σ dW (t),

2. Cox–Ingersoll–Ross (CIR, 1985): Z = R+, b ≥ 0,

dr(t) = (b + βr(t)) dt + σ
√

r(t) dW (t),

3. Dothan (1978): Z = R+,

dr(t) = βr(t) dt + σr(t) dW (t),

4. Black–Derman–Toy (1990): Z = R+,

dr(t) = β(t)r(t) dt + σ(t)r(t) dW (t),

5. Black–Karasinski (1991): Z = R+, `(t) = log r(t),

d`(t) = (b(t) + β(t)`(t)) dt + σ(t) dW (t),

6. Ho–Lee (1986): Z = R,

dr(t) = b(t) dt + σ dW (t),

7. Hull–White (extended Vasicek, 1990): Z = R,

dr(t) = (b(t) + β(t)r(t)) dt + σ(t) dW (t),

8. Hull–White (extended CIR, 1990): Z = R+, b(t) ≥ 0,

dr(t) = (b(t) + β(t)r(t)) dt + σ(t)
√

r(t) dW (t).
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7.3 Inverting the Yield Curve

Once the short rate model is chosen, the initial term structure

T 7→ P (0, T ) = F (0, r(0); T )

and hence the initial yield and forward curve are fully specified by the term
structure equation (7.6).

Conversely, one may want to invert the term structure equation (7.6) to
match a given initial yield curve. Say we have chosen the Vasicek model.
Then the implied T -bond price is a function of the current short rate level
and the three model parameters b, β and σ

P (0, T ) = F (0, r(0); T, b, β, σ).

But F (0, r(0); T, b, β, σ) is just a parametrized curve family with three degrees
of freedom. It turns out that it is often too restrictive and will provide a poor
fit of the current data in terms of accuracy (least squares criterion).

Therefore the class of time-inhomogeneous short rate models (such as the
Hull–White extensions) was introduced. By letting the parameters depend on
time one gains infinite degree of freedom and hence a perfect fit of any given
curve. Usually, the functions b(t) etc are fully determined by the empirical
initial yield curve.

7.4 Affine Term Structures

Short rate models that admit closed form expressions for the implied bond
prices F (t, r; T ) are favorable.

The most tractable models are those where bond prices are of the form

F (t, r; T ) = exp(−A(t, T )−B(t, T )r),

for some smooth functions A and B. Such models are said to provide an
affine term structure (ATS). Notice that F (T, r; T ) = 1 implies

A(T, T ) = B(T, T ) = 0.

The nice thing about ATS models is that they can be completely character-
ized.
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Proposition 7.4.1. The short rate model (7.4) provides an ATS only if its
diffusion and drift terms are of the form

a(t, r) = a(t) + α(t)r and b(t, r) = b(t) + β(t)r, (7.8)

for some continuous functions a, α, b, β. The functions A and B in turn
satisfy the system

∂tA(t, T ) = a(t)B2(t, T )− b(t)B(t, T ), A(T, T ) = 0, (7.9)

∂tB(t, T ) = α(t)B2(t, T )− β(t)B(t, T )− 1, B(T, T ) = 0. (7.10)

Proof. We insert F (t, r; T ) = exp(−A(t, T )−B(t, T )r) in the term structure
equation (7.6) and obtain

a(t, r)B2(t, T )− b(t, r)B(t, T ) = ∂tA(t, T ) + (∂tB(t, T ) + 1)r. (7.11)

The functions B(t, ·) and B2(t, ·) are linearly independent since otherwise
B(t, ·) ≡ B(t, t) = 0, which trivially would lead to be above results with
a(t) = α(t) ≡ 0. Hence we can find T1 > T2 > t such that the matrix

(
B2(t, T1) −B(t, T1)
B2(t, T2) −B(t, T2)

)

is invertible. Hence we can solve (7.11) for a(t, r) and b(t, r), which yields
(7.8). Replace a(t, r) and b(t, r) by (7.8), so the left hand side of (7.11) reads

a(t)B2(t, T )− b(t)B(t, T ) +
(
α(t)B2(t, T )− β(t)B(t, T )

)
r.

Terms containing r must match. This proves the claim.

The functions a, α, b, β in (7.8) can be further specified. They have to be
such that a(t, r) ≥ 0 and r(t) does not leave the state space Z. In fact, it can
be shown that every ATS model can be transformed via affine transformation
into one of the two cases

1. Z = R: necessarily α(t) = 0 and a(t) ≥ 0, and b, β are arbitrary. This
is the (Hull–White extension of the) Vasicek model.

2. Z = R+: necessarily a(t) = 0, α(t) ≥ 0 and b(t) ≥ 0 (otherwise the
process would cross zero), and β is arbitrary. This is the (Hull–White
extension of the) CIR model.

Looking at the list in Section 7.2.1 we see that all short rate models except
the Dothan, Black–Derman–Toy and Black–Karasinski models have an ATS.
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7.5 Some Standard Models

We discuss some of the most common short rate models.
→ B[3](Section 17.4), BM[6](Chapter 3)

7.5.1 Vasicek Model

The solution to
dr = (b + βr) dt + σ dW

is explicitly given by (→ exercise)

r(t) = r(0)eβt +
b

β

(
eβt − 1

)
+ σeβt

∫ t

0

e−βs dW (s).

It follows that r(t) is a Gaussian process with mean

E [r(t)] = r(0)eβt +
b

β

(
eβt − 1

)

and variance

V ar[r(t)] = σ2e2βt

∫ t

0

e−2βs ds =
σ2

2β

(
e2βt − 1

)
.

Hence
Q[r(t) < 0] > 0,

which is not satisfactory (although this probability is usually very small).
Vasicek assumed the market price of risk to be constant, so that also the

objective P-dynamics of r(t) is of the above form.
If β < 0 then r(t) is mean-reverting with mean reversion level b/|β|, see

Figure 7.1, and r(t) converges to a Gaussian random variable with mean
b/|β| and variance σ2/(2|β|), for t →∞.

Equations (7.9)–(7.10) become

∂tA(t, T ) =
σ2

2
B2(t, T )− bB(t, T ), A(T, T ) = 0,

∂tB(t, T ) = −βB(t, T )− 1, B(T, T ) = 0.

The explicit solution is

B(t, T ) =
1

β

(
eβ(T−t) − 1

)



86 CHAPTER 7. SHORT RATE MODELS

Figure 7.1: Vasicek short rate process for β = −0.86, b/|β| = 0.09 (mean
reversion level), σ = 0.0148 and r(0) = 0.08.
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and A is given as ordinary integral

A(t, T ) = A(T, T )−
∫ T

t

∂sA(s, T ) ds

= −σ2

2

∫ T

t

B2(s, T ) ds + b

∫ T

t

B(s, T ) ds

=
σ2

(
4eβ(T−t) − e2β(T−t) − 2β(T − t)− 3

)

4β3
+ b

eβ(T−t) − 1− β(T − t)

β2
.

We recall that zero-coupon bond prices are given in closed form by

P (t, T ) = exp (−A(t, T )−B(t, T )r(t)) .

It is possible to derive closed form expression also for bond options (see
Section 7.6).

7.5.2 Cox–Ingersoll–Ross Model

It is worth to mention that, for b ≥ 0,

dr(t) = (b + βr(t)) dt + σ
√

r(t) dW (t), r(0) ≥ 0,
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has a unique strong solution r ≥ 0, for every r(0) ≥ 0. This also holds when
the coefficients depend continuously on t, as it is the case for the Hull–White
extension. Even more, if b ≥ σ2/2 then r > 0 whenever r(0) > 0.

The ATS equation (7.10) now becomes non-linear

∂tB(t, T ) =
σ2

2
B2(t, T )− βB(t, T )− 1, B(T, T ) = 0.

This is called a Riccati equation. It is good news that the explicit solution is
known

B(t, T ) =
2
(
eγ(T−t) − 1

)

(γ − β) (eγ(T−t) − 1) + 2γ

where γ :=
√

β2 + 2σ2. Integration yields

A(t, T ) = −2b

σ2
log

(
2γe(γ−β)(T−t)/2

(γ − β) (eγ(T−t) − 1) + 2γ

)
.

Hence also in the CIR model we have closed form expressions for the bond
prices. Moreover, it can be shown that also bond option prices are explicit(!)
Together with the fact that it yields positive interest rates, this is mainly the
reason why the CIR model is so popular.

7.5.3 Dothan Model

Dothan (78) starts from a drift-less geometric Brownian motion under the
objective probability measure P

dr(t) = σr(t) dW P(t).

The market price of risk is chosen to be constant, which yields

dr(t) = βr(t) dt + σr(t) dW (t)

as Q-dynamics. This is easily integrated

r(t) = r(s) exp
((

β − σ2/2
)
(t− s) + σ(W (t)−W (s))

)
, s ≤ t.

Thus the Fs-conditional distribution of r(t) is lognormal with mean and
variance (→ exercise)

E[r(t) | Fs] = r(s)eβ(t−s)

V ar[r(t) | Fs] = r2(s)e2β(t−s)
(
eσ2(t−s) − 1

)
.
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The Dothan and all lognormal short rate models (Black–Derman–Toy and
Black–Karasinski) yield positive interest rates. But no closed form expres-
sions for bond prices or options are available (with one exception: Dothan
admits an “semi-explicit” expression for the bond prices, see BM[6]).

A major drawback of lognormal models is the explosion of the bank ac-
count. Let ∆t be small, then

E[B(∆t)] = E
[
exp

(∫ ∆t

0

r(s) ds

)]
≈ E

[
exp

(
r(0) + r(∆t)

2
∆t

)]
.

We face an expectation of the type

E[exp(exp(Y ))]

where Y is Gaussian distributed. But such an expectation is infinite. This
means that in arbitrarily small time the bank account growths to infinity in
average. Similarly, one shows that the price of a Eurodollar future is infinite
for all lognormal models.

The idea of lognormal rates is taken up later by Sandmann and Son-
dermann (1997) and many others, which finally led to the so called market
models with lognormal LIBOR or swap rates.

7.5.4 Ho–Lee Model

For the Ho–Lee model

dr(t) = b(t) dt + σ dW (t)

the ATS equations (7.9)–(7.10) become

∂tA(t, T ) =
σ2

2
B2(t, T )− b(t)B(t, T ), A(T, T ) = 0,

∂tB(t, T ) = −1, B(T, T ) = 0.

Hence

B(t, T ) = T − t,

A(t, T ) = −σ2

6
(T − t)3 +

∫ T

t

b(s)(T − s) ds.
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The forward curve is thus

f(t, T ) = ∂T A(t, T ) + ∂T B(t, T )r(t) = −σ2

2
(T − t)2 +

∫ T

t

b(s) ds + r(t).

Let f ∗(0, T ) be the observed (estimated) initial forward curve. Then

b(s) = ∂sf
∗(0, s) + σ2s.

gives a perfect fit of f ∗(0, T ). Plugging this back into the ATS yields

f(t, T ) = f ∗(0, T )− f ∗(0, t) + σ2t(T − t) + r(t).

We can also integrate this expression to get

P (t, T ) = e−
R T

t f∗(0,s) ds+f∗(0,t)(T−t)−σ2

2
t(T−t)2−(T−t)r(t).

It is interesting to see that

r(t) = r(0) +

∫ t

0

b(s) ds + σW (t) = f ∗(0, t) +
σ2t2

2
+ σW (t).

That is, r(t) fluctuates along the modified initial forward curve, and we have

f ∗(0, t) = E[r(t)]− σ2t2

2
.

7.5.5 Hull–White Model

The Hull–White (1990) extensions of Vasicek and CIR can be fitted to the
initial yield and volatility curve. However, this flexibility has its price: the
model cannot be handled analytically in general. We therefore restrict ourself
to the following extension of the Vasicek model that was analyzed by Hull
and White 1994

dr(t) = (b(t) + βr(t)) dt + σ dW (t).

In this model we choose the constants β and σ to obtain a nice volatility
structure whereas b(t) is chosen in order to match the initial yield curve.

Equation (7.10) for B(t, T ) is just as in the Vasicek model

∂tB(t, T ) = −βB(t, T )− 1, B(T, T ) = 0
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with explicit solution

B(t, T ) =
1

β

(
eβ(T−t) − 1

)
.

Equation (7.9) for A(t, T ) now reads

A(t, T ) = −σ2

2

∫ T

t

B2(s, T ) ds +

∫ T

t

b(s)B(s, T ) ds

We consider the initial forward curve (notice that ∂T B(s, T ) = −∂sB(s, T ))

f ∗(0, T ) = ∂T A(0, T ) + ∂T B(0, T )r(0)

=
σ2

2

∫ T

0

∂sB
2(s, T ) ds +

∫ T

0

b(s)∂T B(s, T ) + ∂T B(0, T )r(0)

= − σ2

2β2

(
eβT − 1

)2

︸ ︷︷ ︸
=:g(T )

+

∫ T

0

b(s)eβ(T−s) ds + eβT r(0)

︸ ︷︷ ︸
=:φ(T )

.

The function φ satisfies

∂T φ(T ) = βφ(T ) + b(T ), φ(0) = r(0).

It follows that

b(T ) = ∂T φ(T )− βφ(T )

= ∂T (f ∗(0, T ) + g(T ))− β(f ∗(0, T ) + g(T )).

Plugging in and performing performing some calculations eventually yields

f(t, T ) = f ∗(0, T )− eβ(T−t)f ∗(0, t)− σ2

2β2

(
eβ(T−t) − 1

) (
eβ(T−t) − eβ(T+t)

)

+ eβ(T−t)r(t).

7.6 Option Pricing in Affine Models

We show how to price bond options in the affine framework. The discussion
is informal, we do not worry about integrability conditions. The procedure
has to be carried out rigorously from case to case.
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Let r(t) be a diffusion short rate model with drift

b(t) + β(t)r,

diffusion term
a(t) + α(t)r

and ATS
P (t, T ) = e−A(t,T )−B(t,T )r(t).

Let λ ∈ C, and φ and ψ be given as solutions to

∂tφ(t, T, λ) = a(t)ψ2(t, T, λ)− b(t)ψ(t, T, λ)

φ(T, T, λ) = 0

∂tψ(t, T, λ) = α(t)ψ2(t, T, λ)− β(t)ψ(t, T, λ)− 1

ψ(T, T, λ) = λ.

This looks much like the ATS equations (7.9)–(7.10), and indeed, by plugging
the right hand side below in the term structure equation (7.6), one sees that

E
[
e−

R T
t r(s) dse−λr(T ) | Ft

]
= e−φ(t,T,λ)−ψ(t,T,λ)r(t).

In fact, we have

φ(t, T, 0) = A(t, T ) and ψ(t, T, 0) = B(t, T ).

Now let t = 0 (for simplicity only). Since discounted zero-coupon bond prices
are martingales we obtain for T ≤ S (→ exercise)

E
[
e−

R S
0 r(s) dse−λr(T )

]
= E

[
e−

R T
0 r(s) dse−A(T,S)−B(T,S)r(T )e−λr(T )

]

= e−A(T,S)E
[
e−

R T
0 r(s) dse−(λ+B(T,S))r(T )

]

= e−A(T,S)−φ(0,T,λ+B(T,S))−ψ(0,T,λ+B(T,S))r(0).

But
dQS

dQ
=

e−
R S
0 r(s) ds

P (0, S)

defines an equivalent probability measure QS ∼ Q on FS, the so called S-
forward measure. Hence we have shown that the (extended) Laplace trans-
form of r(T ) with respect to QS is

EQS

[
e−λr(T )

]
= eA(0,S)−A(T,S)−φ(0,T,λ+B(T,S))+(B(0,S)−ψ(0,T,λ+B(T,S)))r(0).
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By Laplace (or Fourier) inversion, one gets the distribution of r(T ) under
QS. In some cases (e.g. Vasicek or CIR) this distribution is explicitly known
(e.g. Gaussian or chi-square). In general, this is done numerically.

We now consider a European call option on a S-bond with expiry date
T < S and strike price K. Its price today (t = 0) is

π = E
[
e−

R T
0 r(s) ds

(
e−A(T,S)−B(T,S)r(T ) −K

)+
]
.

The payoff can be decomposed according to

(
e−A(T,S)−B(T,S)r(T ) −K

)+
= e−A(T,S)−B(T,S)r(T )1{r(T )≤r∗} −K1{r(T )≤r∗}

where

r∗ = r∗(T, S, K) := −A(T, S) + log K

B(T, S)
.

Hence

π = E
[
e−

R S
0 r(s) ds1{r(T )≤r∗}

]
−KE

[
e−

R T
0 r(s) ds1{r(T )≤r∗}

]

= P (0, S)QS[r(T ) ≤ r∗]−KP (0, T )QT [r(T ) ≤ r∗].

The pricing of the option boils down to the computation of the probability
of the event {r(T ) ≤ r∗} under the S- and T -forward measure.

7.6.1 Example: Vasicek Model (a, b, β const, α = 0).

We obtain (→ exercise)

π = P (0, S)Φ

(
r∗ − `1(T, S, r(0))√

`2(T )

)
−KP (0, T )Φ

(
r∗ − `1(T, T, r(0))√

`2(T )

)

where

`1(T, S, r) :=
1

β2

(
β

(
eβT (b + βr)− b

)− a
(
2− eβ(S−T ) − 2eβT + eβ(S+T )

))

`2(T ) :=
a

β

(
e2βT − 1

)

and Φ(x) is the cumulative standard Gaussian distribution function.
A similar closed form expression is available for the price of a put option,

and hence an explicit price formula for caps. For β = −0.86, b/|β| = 0.09
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(mean reversion level), σ = 0.0148 and r(0) = 0.08, as in Figure 7.1, one gets
the ATM cap prices and Black volatilities shown in Table 7.1 and Figure 7.2
(→ exercise). In contrast to Figure 2.1, the Vasicek model cannot produce
humped volatility curves.

Table 7.1: Vasicek ATM cap prices and Black volatilities.

Maturity ATM prices ATM vols

1 0.00215686 0.129734
2 0.00567477 0.106348
3 0.00907115 0.0915455
4 0.0121906 0.0815358
5 0.01503 0.0743607
6 0.017613 0.0689651
7 0.0199647 0.0647515
8 0.0221081 0.0613624
10 0.025847 0.0562337
12 0.028963 0.0525296
15 0.0326962 0.0485755
20 0.0370565 0.0443967
30 0.0416089 0.0402203

Figure 7.2: Vasicek ATM cap Black volatilities.
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Chapter 8

Heath–Jarrow–Morton (HJM)
Methodology

→ original article by Heath, Jarrow and Morton (HJM, 1992) [9].
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Chapter 9

Forward Measures

We consider the HJM setup (Chapter 8) and directly focus on the (unique)
EMM Q ∼ P under which all discounted bond price processes

P (t, T )

B(t)
, t ∈ [0, T ],

are strictly positive martingales.

9.1 T -Bond as Numeraire

Fix T > 0. Since

1

P (0, T )B(T )
> 0 and EQ

[
1

P (0, T )B(T )

]
= 1

we can define an equivalent probability measure QT ∼ Q on FT by

dQT

dQ
=

1

P (0, T )B(T )
.

For t ≤ T we have

dQT

dQ
|Ft = EQ

[
dQT

dQ
| Ft

]
=

P (t, T )

P (0, T )B(t)
.

This probability measure has already been introduced in Section 7.6. It is
called the T -forward measure.

97
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Lemma 9.1.1. For any S > 0,

P (t, S)

P (t, T )
, t ∈ [0, S ∧ T ],

is a QT -martingale.

Proof. Let s ≤ t ≤ S ∧ T . Bayes’ rule gives

EQT

[
P (t, S)

P (t, T )
| Fs

]
=
EQ

[
P (t,T )

P (0,T )B(t)
P (t,S)
P (t,T )

| Fs

]

P (s,T )
P (0,T )B(s)

=

P (s,S)
B(s)

P (s,T )
B(s)

=
P (s, S)

P (s, T )
.

We thus have an entire collection of EMMs now! Each QT corresponds to
a different numeraire, namely the T -bond. Since Q is related to the risk-free
asset, one usually calls Q the risk neutral measure.

T -forward measures give simpler pricing formulas. Indeed, let X be a
T -claim such that

X

B(T )
∈ L1(Q,FT ). (9.1)

Its fair price at time t ≤ T is then given by

π(t) = EQ
[
e−

R T
t r(s) dsX | Ft

]
.

To compute π(t) we have to know the joint distribution of exp
[
− ∫ T

t
r(s) ds

]

and X, and integrate with respect to that distribution. Thus we have to
compute a double integral, which in most cases turns out to be rather hard
work. If B(T )/B(t) and X were independent under Q (which is not realistic!
it holds, for instance, if r is deterministic) we would have

π(t) = P (t, T )EQ [X | Ft] ,

a much nicer formula, since

• we only have to compute the single integral EQ[X | Ft];
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• the bond price P (t, T ) can be observed at time t and does not have to
be computed.

The good news is that the above formula holds — not under Q though, but
under QT :

Proposition 9.1.2. Let X be a T -claim such that (9.1) holds. Then

EQT [|X|] < ∞ (9.2)

and
π(t) = P (t, T )EQT [X | Ft] . (9.3)

Proof. Bayes’s rule yields

EQT [|X|] = EQ
[ |X|
P (0, T )B(T )

]
< ∞ (by (9.1)),

whence (9.2). And

π(t) = P (0, T )B(t)EQ
[

X

P (0, T )B(T )
| Ft

]

= P (0, T )B(t)
P (t, T )

P (0, T )B(t)
EQT [X | Ft]

= P (t, T )EQT [X | Ft] ,

which proves (9.3).

9.2 An Expectation Hypothesis

Under the forward measure the expectation hypothesis holds. That is, the
expression of the forward rates f(t, T ) as conditional expectation of the future
short rate r(T ).

To see that, we write W for the driving Q-Brownian motion. The forward
rates then follow the dynamics

f(t, T ) = f(0, T ) +

∫ t

0

(
σ(s, T ) ·

∫ T

s

σ(s, u) du

)
ds +

∫ t

0

σ(s, T ) dW (s).

(9.4)



100 CHAPTER 9. FORWARD MEASURES

The Q-dynamics of the discounted bond price process is

P (t, T )

B(t)
= P (0, T ) +

∫ t

0

P (s, T )

B(s)

(
−

∫ T

s

σ(s, u) du

)
dW (s). (9.5)

This equation has a unique solution

P (t, T )

B(t)
= P (0, T )Et

((
−

∫ T

·
σ(·, u) du

)
·W

)
.

We thus have

dQT

dQ
|Ft = Et

((
−

∫ T

·
σ(·, u) du

)
·W

)
. (9.6)

Girsanov’s theorem applies and

W T (t) = W (t) +

∫ t

0

(∫ T

s

σ(s, u) du

)
ds, t ∈ [0, T ],

is a QT -Brownian motion. Equation (9.4) now reads

f(t, T ) = f(0, T ) +

∫ t

0

σ(s, T ) dW T (s).

Hence, if

EQT

[∫ T

0

‖σ(s, T )‖2 ds

]
< ∞

then

(f(t, T ))t∈[0,T ] is a QT -martingale.

Summarizing we have thus proved

Lemma 9.2.1. Under the above assumptions, the expectation hypothesis
holds under the forward measures

f(t, T ) = EQT [r(T ) | Ft] .
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9.3 Option Pricing in Gaussian HJM Models

We consider a European call option on an S-bond with expiry date T < S
and strike price K. Its price at time t = 0 (for simplicity only) is

π = EQ
[
e−

R T
0 r(s) ds (P (T, S)−K)+

]
.

We proceed as in Section 7.6 and decompose

π = EQ
[
B(T )−1P (T, S) 1(P (T, S) ≥ K)

]−KEQ
[
B(T )−1 1(P (T, S) ≥ K)

]

= P (0, S)QS [P (T, S) ≥ K]−KP (0, T )QT [P (T, S) ≥ K] .

This option pricing formula holds in general.
We already know that

dP (t, T )

P (t, T )
= r(t) dt + v(t, T ) dW (t)

and hence

P (t, T ) = P (0, T ) exp

[∫ t

0

v(s, T ) dW (s) +

∫ t

0

(
r(s)− 1

2
‖v(s, T )‖2

)
ds

]

where

v(t, T ) := −
∫ T

t

σ(t, u) du. (9.7)

We also know that
(

P (t,T )
P (t,S)

)
t∈[0,T ]

is a QS-martingale and
(

P (t,S)
P (t,T )

)
t∈[0,T ]

is a

QT -martingale. In fact (→ exercise)

P (t, T )

P (t, S)
=

P (0, T )

P (0, S)

× exp

[∫ t

0

σT,S(s) dW (s)− 1

2

∫ t

0

(‖v(s, T )‖2 − ‖v(s, S)‖2
)
ds

]

=
P (0, T )

P (0, S)
exp

[∫ t

0

σT,S(s) dW S(s)− 1

2

∫ t

0

‖σT,S(s)‖2 ds

]

where

σT,S(s) := v(s, T )− v(s, S) =

∫ S

T

σ(s, u) du, (9.8)
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and

P (t, S)

P (t, T )
=

P (0, S)

P (0, T )

× exp

[
−

∫ t

0

σT,S(s) dW (s)− 1

2

∫ t

0

(‖v(s, S)‖2 − ‖v(s, T )‖2
)
ds

]

=
P (0, S)

P (0, T )
exp

[
−

∫ t

0

σT,S(s) dW T (s)− 1

2

∫ t

0

‖σT,S(s)‖2 ds

]
.

Now observe that

QS[P (T, S) ≥ K] = QS

[
P (T, T )

P (T, S)
≤ 1

K

]

QT [P (T, S) ≥ K] = QT

[
P (T, S)

P (T, T )
≥ K

]
.

This suggests to look at those models for which σT,S is deterministic, and

hence P (T,T )
P (T,S)

and P (T,S)
P (T,T )

are log-normally distributed under the respective
forward measures.

We thus assume that σ(t, T ) = (σ1(t, T ), . . . , σd(t, T )) are determinis-
tic functions of t and T , and hence forward rates f(t, T ) are Gaussian dis-
tributed.

We obtain the following closed form option price formula.

Proposition 9.3.1. Under the above Gaussian assumption, the option price
is

π = P (0, S)Φ[d1]−KP (0, T )Φ[d2],

where

d1,2 =
log

[
P (0,S)

KP (0,T )

]
± 1

2

∫ T

0
‖σT,S(s)‖2 ds

√∫ T

0
‖σT,S(s)‖2 ds

,

σT,S(s) is given in (9.8) and Φ is the standard Gaussian CDF.

Proof. It is enough to observe that

log P (T,T )
P (T,S)

− log P (0,T )
P (0,S)

+ 1
2

∫ T

0
‖σT,S(s)‖2 ds

√∫ T

0
‖σT,S(s)‖2 ds
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and
log P (T,S)

P (T,T )
− log P (0,S)

P (0,T )
+ 1

2

∫ T

0
‖σT,S(s)‖2 ds

√∫ T

0
‖σT,S(s)‖2 ds

are standard Gaussian distributed under QS and QT , respectively.

Of course, the Vasicek option price formula from Section 7.6.1 can now
be obtained as a corollary of Proposition 9.3.1 (→ exercise).
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Chapter 10

Forwards and Futures

→ B[3](Chapter 20), or Hull (2002) [10]
We discuss two common types of term contracts: forwards, which are

mainly traded OTC, and futures, which are actively traded on many ex-
changes.

The underlying is in both cases a T -claim Y , for some fixed future date T .
This can be an exchange rate, an interest rate, a commodity such as copper,
any traded or non-traded asset, an index, etc.

10.1 Forward Contracts

A forward contract on Y , contracted at t, with time of delivery T > t, and
with the forward price f(t; T,Y) is defined by the following payment scheme:

• at T , the holder of the contract (long position) pays f(t; T,Y) and
receives Y from the underwriter (short position);

• at t, the forward price is chosen such that the present value of the
forward contract is zero, thus

EQ
[
e−

R T
t r(s) ds (Y − f(t; T,Y)) | Ft

]
= 0.

This is equivalent to

f(t; T,Y) =
1

P (t, T )
EQ

[
e−

R T
t r(s) dsY | Ft

]

= EQT [Y | Ft] .

105
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Examples The forward price at t of

1. a dollar delivered at T is 1;

2. an S-bond delivered at T ≤ S is P (t,S)
P (t,T )

;

3. any traded asset S delivered at T is S(t)
P (t,T )

.

The forward price f(s; T,Y) has to be distinguished from the (spot) price
at time s of the forward contract entered at time t ≤ s, which is

EQ
[
e−

R T
s r(u) du (Y − f(t; T,Y)) | Fs

]

= EQ
[
e−

R T
s r(u) duY | Fs

]
− P (t, T )f(t; T,Y).

10.2 Futures Contracts

A futures contract on Y with time of delivery T is defined as follows:

• at every t ≤ T , there is a market quoted futures price F (t; T,Y), which
makes the futures contract on Y , if entered at t, equal to zero;

• at T , the holder of the contract (long position) pays F (T ; T,Y) and
receives Y from the underwriter (short position);

• during any time interval (s, t] the holder of the contract receives (or
pays, if negative) the amount F (t; T,Y) − F (s; T,Y) (this is called
marking to market).

So there is a continuous cash-flow between the two parties of a futures con-
tract. They are required to keep a certain amount of money as a safety
margin.

The volumes in which futures are traded are huge. One of the reasons
for this is that in many markets it is difficult to trade (hedge) directly in the
underlying object. This might be an index which includes many different
(illiquid) instruments, or a commodity such as copper, gas or electricity,
etc. Holding a (short position in a) futures does not force you to physically
deliver the underlying object (if you exit the contract before delivery date),
and selling short makes it possible to hedge against the underlying.
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Suppose Y ∈ L1(Q). Then the futures price process is given by the
Q-martingale

F (t; T,Y) = EQ [Y | Ft] . (10.1)

Often, this is just how futures prices are defined . We now give a heuristic
argument for (10.1) based on the above characterization of a futures contract.

First, our model economy is driven by Brownian motion and changes in
a continuous way. Hence there is no reason to believe that futures prices
evolve discontinuously, and we may assume that

F (t) = F (t; T,Y) is a continuous semimartingale (or Itô process).

Now suppose we enter the futures contract at time t < T . We face a con-
tinuum of cashflows in the interval (t, T ]. Indeed, let t = t0 < · · · < tN = t
be a partition of [t, T ]. The present value of the corresponding cashflows
F (ti)− F (ti−1) at ti, i = 1, . . . , N , is given by EQ[Σ | Ft] where

Σ :=
N∑

i=1

1

B(ti)
(F (ti)− F (ti−1)) .

But the futures contract has present value zero, hence

EQ[Σ | Ft] = 0.

This has to hold for any partition (ti). We can rewrite Σ as

N∑
i=1

1

B(ti−1)
(F (ti)− F (ti−1)) +

N∑
i=1

(
1

B(ti)
− 1

B(ti−1)

)
(F (ti)− F (ti−1)) .

If we let the partition become finer and finer this expression converges in
probability towards

∫ T

t

1

B(s)
dF (s) +

∫ T

t

d

〈
1

B
,F

〉

s

=

∫ T

t

1

B(s)
dF (s),

since the quadratic variation of 1/B (finite variation) and F (continuous) is
zero. Under the appropriate integrability assumptions (uniform integrability)
we conclude that

EQ
[∫ T

t

1

B(s)
dF (s) | Ft

]
= 0,
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and that

M(t) =

∫ t

0

1

B(s)
dF (s) = EQ

[∫ T

0

1

B(s)
dF (s) | Ft

]
, t ∈ [0, T ],

is a Q-martingale. If, moreover

EQ
[∫ T

0

1

B(s)2
d〈M,M〉s

]
= EQ [〈F, F 〉T ] < ∞

then

F (t) =

∫ t

0

1

B(s)
dM(s), t ∈ [0, T ],

is a Q-martingale, which implies (10.1).

10.3 Interest Rate Futures

→ Z[22](Section 5.4)
Interest rate futures contracts may be divided into futures on short term

instruments and futures on coupon bonds. We only consider an example
from the first group.

Eurodollars are deposits of US dollars in institutions outside of the US.
LIBOR is the interbank rate of interest for Eurodollar loans. The Eurodollar
futures contract is tied to the LIBOR. It was introduced by the International
Money Market (IMM) of the Chicago Mercantile Exchange (CME) in 1981,
and is designed to protect its owner from fluctuations in the 3-months (=1/4
years) LIBOR. The maturity (delivery) months are March, June, September
and December.

Fix a maturity date T and let L(T ) denote the 3-months LIBOR for the
period [T, T + 1/4], prevailing at T . The market quote of the Eurodollar
futures contract on L(T ) at time t ≤ T is

1− LF (t, T ) [100 per cent]

where LF (t, T ) is the corresponding futures rate (compare with the example
in Section 4.2.2). As t tends to T , LF (t, T ) tends to L(T ). The futures price,
used for the marking to market, is defined by

F (t; T, L(T )) = 1− 1

4
LF (t, T ) [Mio. dollars].
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Consequently, a change of 1 basis point (0.01%) in the futures rate LF (t, T )
leads to a cashflow of

106 × 10−4 × 1

4
= 25 [dollars].

We also see that the final price F (T ; T, L(T )) = 1 − 1
4
L(T ) = Y is not

P (T, T + 1/4) = 1− 1
4
L(T )P (T, T + 1/4) as one might suppose. In fact, the

underlying Y is a synthetic value. At maturity there is no physical delivery.
Instead, settlement is made in cash.

On the other hand, since

1− 1

4
LF (t, T ) = F (t; T, L(T ))

= EQ [F (T ; T, L(T )) | Ft] = 1− 1

4
EQ [L(T ) | Ft] ,

we obtain an explicit formula for the futures rate

LF (t, T ) = EQ [L(T ) | Ft] .

10.4 Forward vs. Futures in a Gaussian Setup

Let S be the price process of a traded asset. Hence the Q-dynamics of S is
of the form

dS(t)

S(t)
= r(t) dt + ρ(t) dW (t),

for some volatility process ρ. Fix a delivery date T . The forward and futures
prices of S for delivery at T are

f(t; T, S(T )) =
S(t)

P (t, T )
, F (t; T, S(T )) = EQ[S(T ) | Ft].

Under Gaussian assumption we can establish the relationship between the
two prices.

Proposition 10.4.1. Suppose ρ(t) and v(t, T ) are deterministic functions
in t, where

v(t, T ) = −
∫ T

t

σ(t, u) du
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is the volatility of the T -bond (see (9.7)). Then

F (t; T, S(T )) = f(t; T, S(T )) exp

(∫ T

t

(v(s, T )− ρ(s)) · v(s, T ) ds

)

for t ≤ T .

Hence, if the instantaneous correlation of dS(t) and dP (t, T ) is negative

d〈S, P (·, T )〉t
dt

= S(t)P (t, T )ρ(t) · v(t, T ) ≤ 0

then the futures price dominates the forward price.

Proof. Write µ(s) := v(s, T )− ρ(s). It is clear that

f(t; T, S(T )) =
S(0)

P (0, T )
exp

(
−

∫ t

0

µ(s) dW (s)− 1

2

∫ t

0

‖µ(s)‖2 ds

)

× exp

(∫ t

0

µ(s) · v(s, T ) ds

)
,

and hence

f(T ; T, S(T )) = f(t; T, S(T )) exp

(
−

∫ T

t

µ(s) dW (s)− 1

2

∫ T

t

‖µ(s)‖2 ds

)

× exp

(∫ T

t

µ(s) · v(s, T ) ds

)
.

By assumption µ(s) is deterministic. Consequently,

EQ
[
exp

(
−

∫ T

t

µ(s) dW (s)− 1

2

∫ T

t

‖µ(s)‖2 ds

)
| Ft

]
= 1

and

F (t; T, S(T )) = EQ[f(T ; T, S(T )) | Ft]

= f(t; T, S(T )) exp

(∫ T

t

µ(s) · v(s, T ) ds

)
,

as desired.
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Similarly, one can show (→ exercise)

Lemma 10.4.2. In a Gaussian HJM framework (σ(t, T ) deterministic) we
have the following relations (convexity adjustments) between instantaneous
and simple futures and forward rates

f(t, T ) = EQ[r(T ) | Ft]−
∫ T

t

(
σ(s, T ) ·

∫ T

s

σ(s, u) du

)
ds,

F (t; T, S) = EQ[F (T, S) | Ft]

− P (t, T )

(S − T )P (t, S)

(
e
R T

t (
R S

T σ(s,v) dv·R S
s σ(s,u) du)ds − 1

)

for t ≤ T < S.

Hence, if
σ(s, v) · σ(s, u) ≥ 0 for all s ≤ min(u, v)

then futures rates are always greater than the corresponding forward rates.
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Chapter 11

Multi-Factor Models

We have seen that every time-homogeneous diffusion short rate model r(t)
induces forward rates of the form

f(t, T ) = H(T − t, r(t)),

for some deterministic function H. This a one-factor model, since the driving
(Markovian) factor, r(t), is one-dimensional. This is too restrictive from two
points of view:

• statistically: the evolution of the entire yield curve is explained by
a single variable. The infinitesimal increments of all bond prices are
perfectly correlated

d〈P (·, T ), P (·, S)〉t√
d〈P (·, T ), P (·, T )〉t

√
d〈P (·, S), P (·, S)〉t

=

∫ T

t
σ(t, u)du

∫ S

t
σ(t, u)du∫ T

t
σ(t, u)du

∫ S

t
σ(t, u)du

= 1.

• analytically: the family of attainable forward curves

H = {H(·, r) | r ∈ R}
is only one-dimensional.

To gain more flexibility, we now allow for multiple factors. Fix m ≥ 1
and a closed set Z ⊂ Rm (state space). A (m-)factor model is an interest
rate model of the form

f(t, T ) = H(T − t, Z(t))

113
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where H is a deterministic function and Z (state process) is a Z-valued
diffusion process,

dZ(t) = b(Z(t)) dt + ρ(Z(t)) dW (t)

Z(0) = z0.

Here W is a d-dimensional Brownian motion defined on a filtered probability
space (Ω,F , (Ft),Q), satisfying the usual conditions. We assume that

(A1) H ∈ C1,2(R+ ×Z);

(A2) b : Z → Rm and ρ : Z → Rm×d are continuous functions;

(A3) the above SDE has a unique Z-valued solution Z = Zz0 , for every
z0 ∈ Z;

(A4) Q is the risk neutral local martingale measure for the induced bond
prices

P (t, T ) = Π(T − t, Zz0(t)),

for all z0 ∈ Z, where

Π(x, z) := exp

(
−

∫ x

0

H(s, z) ds

)
.

Notice that the short rates are now given by r(t) = H(0, Z(t)). Hence the
assumption (A4) is equivalent to

(A4’) (
Π(T − t, Zz0(t))

e
R t
0 H(0,Zz0 (s)) ds

)

t∈[0,T ]

is a Q-local martingale, for all z0 ∈ Z.

Time-inhomogeneous models are included in the above setup. Simply set
Z1(t) = t (that is, b1 ≡ 1 and ρ1j ≡ 0 for j = 1, . . . , d).
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11.1 No-Arbitrage Condition

Since the function (x, z) 7→ H(x, z) is in C1,2(R+ × Z) we can apply Itô’s
formula and obtain

df(t, T ) =
(
− ∂xH(T − t, Z(t)) +

m∑
i=1

bi(Z(t))∂zi
H(T − t, Z(t))

+
1

2

m∑
i,j=1

aij(Z(t))∂zi
∂zj

H(T − t, Z(t))
)

dt

+
m∑

i=1

d∑
j=1

∂zi
H(T − t, Z(t))ρij(Z(t)) dWj(t),

where

a(z) := ρ(z)ρT (z). (11.1)

Hence the induced forward rate model is of the HJM type with

σj(t, T ) =
m∑

i=1

∂zi
H(T − t, Z(t))ρij(Z(t)), j = 1, . . . , d.

The HJM drift condition now reads

− ∂xH(T − t, Z(t)) +
m∑

i=1

bi(Z(t))∂zi
H(T − t, Z(t))

+
1

2

m∑
i,j=1

aij(Z(t))∂zi
∂zj

H(T − t, Z(t))

=
d∑

j=1

m∑

k,l=1

ρkj(Z(t))ρlj(Z(t))∂zi
H(T − t, Z(t))

∫ T

t

∂zi
H(u− t, Z(t)) du

=
m∑

k,l=1

akl(Z(t))∂zi
H(T − t, Z(t))

∫ T

t

∂zi
H(u− t, Z(t)) du.

This has to hold a.s. for all t ≤ T and initial points z0 = Z(0). Letting t → 0
we thus get the following result.
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Proposition 11.1.1 (Consistency Condition). Under the above assump-
tions (A1)–(A3), there is equivalence between (A4) and

∂xH(x, z) =
m∑

i=1

bi(z)∂zi
H(x, z)

+
m∑

i,j=1

aij(z)

(
1

2
∂zi

∂zj
H(x, z)− ∂zi

H(x, z)

∫ x

0

∂zi
H(u, z) du

)

(11.2)
for all (x, z) ∈ R+ ×Z, where a is defined in (11.1).

Remark 11.1.2. Notice that, by symmetry, the last expression in (11.2) can
be written as

m∑
i,j=1

aij(z)∂zi
H(x, z)

∫ x

0

∂zi
H(u, z) du

=
1

2
∂x

m∑
i,j=1

aij(z)

(∫ x

0

∂zi
H(u, z) du

∫ x

0

∂zj
H(u, z) du

)
.

There are two ways to approach equation (11.2). First, one takes b and
ρ (and hence a) as given and looks for a solution H for the PDE (11.2). Or,
one takes H as given (an estimation method for the yield curve) and tries
to find b and a such that (11.2) is satisfied for all (x, z). This is an inverse
problem. It turns out that the latter approach is quite restrictive on possible
choices of b and a.

Proposition 11.1.3. Suppose that the functions

∂zi
H(·, z) and

1

2
∂zi

∂zj
H(·, z)− ∂zi

H(·, z)

∫ ·

0

∂zi
H(u, z) du,

for 1 ≤ i ≤ j ≤ m, are linearly independent for all z in some dense subset
D ⊂ Z. Then b and a are uniquely determined by H.

Proof. Set M = m + m(m + 1)/2, the number of unknown functions bk and
akl = alk. Let z ∈ D. Then there exists a sequence 0 ≤ x1 < · · · < xM such
that the M ×M -matrix with k-th row vector built by

∂zi
H(xk, z) and

1

2
∂zi

∂zj
H(xk, z)− ∂zi

H(·, z)

∫ xk

0

∂zi
H(u, z) du,
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for 1 ≤ i ≤ j ≤ m, is invertible. Thus, b(z) and a(z) are uniquely determined
by (11.2). This holds for each z ∈ D. By continuity of b and a hence for all
z ∈ Z.

Remark 11.1.4. Suppose that the the parametrized curve family

H = {H(·, z) | z ∈ Z}

is used for daily estimation of the forward curve in terms of the state vari-
able z. Then the above proposition tells us that, under the stated assumption,
any Q-diffusion model Z for z is fully determined by H.

If Ft = FW
t is the Brownian filtration, then the diffusion coefficient, a(z),

of Z is not affected by any Girsanov transformation. Consequently, statistical
calibration is only possible for the drift of the model (or equivalently, for
the market price of risk), since the observations of z are made under the
objective measure P ∼ Q, where dQ/dP is left unspecified by our consistency
considerations.

11.2 Affine Term Structures

We first look at the simplest, namely the affine case:

H(x, z) = g0(x) + g1(x)z1 + · · · gm(x)zm.

Here the second order z-derivatives vanish, and (11.2) reduces to

∂xg0(x) +
m∑

i=1

zi∂xgi(x) =
m∑

i=1

bi(z)gi(x)− 1

2
∂x

(
m∑

i,j=1

aij(z)Gi(x)Gj(x)

)
,

(11.3)
where

Gi(x) :=

∫ x

0

gi(u) du.

Integrating (11.3) yields

g0(x)−g0(0)+
m∑

i=1

zi(gi(x)−gi(0)) =
m∑

i=1

bi(z)Gi(x)− 1

2

m∑
i,j=1

aij(z)Gi(x)Gj(x).

(11.4)
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Now if
G1, . . . , Gm, G1G1, G1G2, . . . , GmGm

are linearly independent functions, we can invert and solve the linear equation
(11.4) for b and a. Since the left hand side is affine is z, we obtain that also
b and a are affine

bi(z) = bi +
m∑

j=1

βijzj

aij(z) = aij +
m∑

k=1

αk;ijzk,

for some constant vectors and matrices b, β, a and αk. Plugging this back
into (11.4) and matching constant terms and terms containing zks we obtain
a system of Riccati equations

∂xG0(x) = g0(0) +
m∑

i=1

biGi(x)− 1

2

m∑
i,j=1

aijGi(x)Gj(x) (11.5)

∂xGk(x) = gk(0) +
m∑

i=1

βkiGi(x)− 1

2

m∑
i,j=1

αk;ijGi(x)Gj(x), (11.6)

with initial conditions G0(0) = · · · = Gm(0) = 0. This extends what we have
found in Section 7.4 for the one-factor case.

Notice that we have the freedom to choose g0(0), . . . , gm(0), which are
related to the short rates by

r(t) = f(t, t) = g0(0) + g1(0)Z1(t) + · · ·+ gm(0)Zm(t).

A typical choice is g1(0) = 1 and all the other gi(0) = 0, whence Z1(t) is the
(non-Markovian) short rate process.

11.3 Polynomial Term Structures

We extend the ATS setup and consider polynomial term structures (PTS)

H(x, z) =
n∑

|i|=0

gi(x) (Zt)
i, (11.7)
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where we use the multi-index notation i = (i1, . . . , im), |i| = i1 + · · ·+ im and
zi = zi1

1 · · · zim
m . Here n denotes the degree of the PTS; that is, there exists

an index i with |i| = n and gi 6= 0.
Thus for n = 1 we are back to the ATS case.
For n = 2 we have a quadratic term structure (QTS), which has also been

studied in the literature.
Do we gain something by looking at n = 3 and higher degree PTS models?

The answer is no. In fact, we now shall show the amazing result that n > 2
is not consistent with (11.2).

For µ ∈ {1, . . . , n} and k ∈ {1, . . . ,m} we write (µ)k for the multi-
index with µ at the k-th position and zeros elsewhere. Let i1, i2, . . . , iN be a
numbering of the set of multi-indices

I = {i = (i1, . . . , im) | |i| ≤ n}, where N := |I| =
n∑

|i|=0

1.

As above, we denote the integral of gi by

Gi(x) :=

∫ x

0

gi(u) du.

Theorem 11.3.1 (Maximal Degree Problem I). Suppose that Giµ and
GiµGiν are linearly independent functions, 1 ≤ µ ≤ ν ≤ N , and that ρ 6≡ 0.

Then necessarily n ∈ {1, 2}. Moreover, b(z) and a(z) are polynomials in
z with deg b(z) ≤ 1 in any case (QTS and ATS), and deg a(z) = 0 if n = 2
(QTS) and deg a(z) ≤ 1 if n = 1 (ATS).

Proof. Define the functions

Bi(z) := bk(z)
∂zi

∂zk

+
1

2

m∑

k,l=1

akl(z)
∂2zi

∂zk∂zl

(11.8)

Aij(z) = Aji(z) :=
1

2

m∑

k,l=1

akl(z)
∂zi

∂zk

∂zj

∂zl

. (11.9)

Equation (11.2) can be rewritten

N∑
µ=1

(
giµ(x)− giµ(0)

)
ziµ =

N∑
µ=1

Giµ(x)Biµ(z)−
N∑

µ,ν=1

Giµ(x)Giν (x)Aiµiν (z).

(11.10)
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By assumption we can solve this linear equation for B and A, and thus
Bi(z) and Aij(z) are polynomials in z of order less than or equal n. In
particular, we have

B(1)k
(z) = bk(z),

2A(1)k(1)l
(z) = akl(z), k, l ∈ {1, . . . , m}, (11.11)

hence b(z) and a(z) are polynomials in z with deg b(z), deg a(z) ≤ n. An
easy calculation shows that

2A(n)k(n)k
(z) = akk(z)n2z2n−2

k , k ∈ {1, . . . , m}. (11.12)

We may assume that akk 6≡ 0, since ρ 6≡ 0. But then the right hand side
of (11.12) cannot be a polynomial in z of order less than or equal n unless
n ≤ 2. This proves the first part of the theorem.

If n = 1 there is nothing more to prove. Now let n = 2. Notice that by
definition

degµ akl(z) ≤ (degµ akk(z) + degµ all(z))/2,

where degµ denotes the degree of dependence on the single component zµ.
Equation (11.12) yields degk akk(z) = 0. Hence degl akl(z) ≤ 1. Consider

2A(1)k+(1)l,(1)k+(1)l
(z) = akk(z)z2

l + 2akl(z)zkzl + all(z)z2
k, k, l ∈ {1, . . . , m}.

From the preceding arguments it is now clear that also degl akk(z) = 0, and
hence deg a(z) = 0. We finally have

B(1)k+(1)l
(z) = bk(z)zl + bl(z)zk + akl(z), k, l ∈ {1, . . . , m},

from which we conclude that deg b(z) ≤ 1.

We can relax the hypothesis on G in Theorem 11.3.1 if from now on we
make the following standing assumptions: Z ⊂ Rm is a cone, and b and ρ
satisfy a linear growth condition

‖b(z)‖+ ‖ρ(z)‖ ≤ C(1 + ‖z‖), ∀z ∈ Z, (11.13)

for some constant C ∈ R+.
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Theorem 11.3.2 (Maximal Degree Problem II). Suppose that

〈a(z)v, v〉 ≥ k(z)‖v‖2, ∀v ∈ Rm, (11.14)

for some function k : Z → R+ with

lim inf
z∈Z,‖z‖→∞

k(z) > 0. (11.15)

Then necessarily n ∈ {1, 2}.
Conditions (11.14) and (11.15) say that a(z) becomes uniformly elliptic

for ‖z‖ large enough.

Proof. We shall make use of the basic inequality

|zi| ≤ ‖z‖|i|, ∀z ∈ Rm. (11.16)

This is immediate, since

|zi|
‖z‖|i| =

( |z1|
‖z‖

)i1

· · ·
( |zm|
‖z‖

)im

≤ 1, ∀z ∈ Rm \ {0}.

Now define

Γk(x, z) :=
N∑

µ=1

Giµ(x)
∂ziµ

∂zk

(11.17)

Λkl(x, z) = Λlk(x, z) :=
N∑

µ=1

Giµ(x)
∂2ziµ

∂zk∂zl

. (11.18)

Then (11.2) can be rewritten as (integration)

n∑

|i|=0

(gi(x)− gi(0)) zi =
m∑

k=1

bk(z)Γk(x, z)

+
1

2

m∑

k,l=1

akl(z) (Λkl(x, z)− Γk(x, z)Γl(x, z)) ,

(11.19)
Suppose now that n > 2. We have from (11.17)

Γk(x, z) =
∑

|i|=n

Gi(x)ikz
i−(1)k + · · · =: Pk(x, z) + · · · ,
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where Pk(x, z) is a homogeneous polynomial in z of order n − 1, and · · ·
stands for lower order terms in z. By assumptions there exist x ∈ R+ and
k ∈ {1, . . . , m} such that Pk(x, ·) 6= 0. Choose z∗ ∈ Z\{0} with Pk(x, z∗) 6= 0
and set zα := αz∗, for α > 0. Then we have zα ∈ Z and

Γk(x, zα) = αn−1Pk(x, z∗) + · · · ,

where · · · denotes lower order terms in α. Consequently,

lim
α→∞

Γk(x, zα)

‖zα‖n−1
=

Pk(x, z∗)
‖z∗‖n−1

6= 0. (11.20)

Combining (11.14) and (11.15) with (11.20) we conclude that

L := lim inf
α→∞

1

‖zα‖2n−2
〈a(zα)Γ(x, zα), Γ(x, zα)〉

≥ lim inf
α→∞

k(zα)
‖Γ(x, zα)‖2

‖zα‖2n−2
> 0. (11.21)

On the other hand, by (11.19),

L ≤
n∑

|i|=0

|gi(x)− gi(0)| |zi
α|

‖zα‖2n−2

+
‖b(zα)‖
‖zα‖

‖Γ(x, zα)‖
‖zα‖2n−3

+
1

2

‖a(zα)‖
‖zα‖2

‖Λ(x, zα)‖
‖zα‖2n−4

,

for all α > 0. In view of (11.17), (11.18), (11.13) and (11.16), the right hand
side converges to zero for α →∞. This contradicts (11.21), hence n ≤ 2.

11.4 Exponential-Polynomial Families

We consider the Nelson–Siegel and Svensson families. For a discussion of
general exponential-polynomial families see [8].

11.4.1 Nelson–Siegel Family

Recall the form of the Nelson–Siegel curves

GNS(x, z) = z1 + (z2 + z3x)e−z4x.
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Proposition 11.4.1. There is no non-trivial diffusion process Z that is con-
sistent with the Nelson–Siegel family. In fact, the unique solution to (11.2)
is

a(z) = 0, b1(z) = b4(z) = 0, b2(z) = z3 − z2z4, b3(z) = −z3z4.

The corresponding state process is

Z1(t) ≡ z1,

Z2(t) = (z2 + z3t) e−z4t,

Z3(t) = z3e
−z4t,

Z4(t) ≡ z4,

where Z(0) = (z1, . . . , z4) denotes the initial point.

Proof. Exercise.

11.4.2 Svensson Family

Here the forward curve is

GS(x, z) = z1 + (z2 + z3x)e−z5x + z4xe−z6x.

Proposition 11.4.2. The only non-trivial HJM model that is consistent with
the Svensson family is the Hull–White extended Vasicek short rate model

dr(t) =
(
z1z5 + z3e

−z5t + z4z
−2z5t − z5r(t)

)
dt +

√
z4z5e

−z5t dW ∗(t),

where (z1, . . . , z5) are given by the initial forward curve

f(0, x) = z1 + (z2 + z3x)e−z5x + z4xe−2z5x

and W ∗ is some Brownian motion. The form of the corresponding state
process Z is given in the proof below.

Proof. The consistency equation (11.2) becomes

q1(x) + q2(x)e−z5x + q3(x)e−z6x

+ q4(x)e−2z5x + q5(x)e−(z5+z6)x + q6(x)e−2z6x = 0, (11.22)
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for some polynomials q1, . . . , q6. Indeed, we assume for the moment that

z5 6= z6, z5 + z6 6= 0 and zi 6= 0 for all i = 1, . . . , 6. (11.23)

Then the terms involved in (11.2) are

∂xGS(x, z) = (−z2z5 + z3 − z3z5x)e−z5x + (z4 − z4z6x)e−z6x,

∇zGS(x, z) =




1
e−z5x

xe−z5x

xe−z6x

(−z2x− z3x
2)e−z5x

−z4x
2e−z6x




,

∂zi
∂zj

GS(x, z) = 0 for 1 ≤ i, j ≤ 4,

∇z∂z5GS(x, z) =




0
−xe−z5x

−x2e−z5x

0
(z2x

2 + z3x
3)e−z5x

0




, ∇z∂z6GS(x, z) =




0
0
0

−x2e−z6x

0
z4x

3e−z6x




,

∫ x

0

∇zGS(u, z) du =




x
− 1

z5
e−z5x + 1

z5(
− x

z5
− 1

z2
5

)
e−z5x + 1

z2
5(

− x
z6
− 1

z2
6

)
e−z6x + 1

z2
6(

z3

z5
x2 +

(
z2

z5
+ 2z3

z2
5

)
x + z2

z2
5

+ 2z3

z3
5

)
e−z5x − z2

z2
5
− z3

z3
5(

z4

z6
x2 + 2z4

z2
6
x + 2z4

z3
6

)
e−z6x − z4

z3
6




.

Straightforward calculations lead to

q1(x) = −a11(z)x + · · · ,

q2(x) = a55(z)
z2
3

z5

x4 + · · · ,

q3(x) = a66(z)
z2
4

z6

x4 + · · · ,

deg q4, deg q5 deg q6 ≤ 3,
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where · · · stands for lower order terms in x. Because of (11.23) we conclude
that

a11(z) = a55(z) = a66(z) = 0.

But a is a positive semi-definite symmetric matrix. Hence

a1j(z) = aj1(z) = a5j(z) = aj5(z) = a6j(z) = aj6(z) = 0 ∀j = 1 . . . , 6.

Taking this into account, expression (11.22) simplifies considerably. We are
left with

q1(x) = b1(z),

deg q2(x), deg q3 ≤ 1,

q4(x) = a33(z)
1

z5

x2 + · · · ,

q5(x) = a34(z)

(
1

z5

+
1

z6

)
x2 + · · · ,

q6(x) = a44(z)
1

z6

x2 + · · · .

Because of (11.23) we know that the exponents −2z5, −(z5 + z6) and −2z6

are mutually different. Hence

b1(z) = a3j(z) = aj3(z) = a4j(z) = aj4(z) = 0 ∀j = 1, . . . 6.

Only a22(z) is left as strictly positive candidate among the components of
a(z). The remaining terms are

q2(x) = (b3(z) + z3z5)x + b2(z)− z3 − a22(z)

z5

+ z2z5,

q3(x) = (b4(z) + z4z6)x− z4,

q4(x) = a22(z)
1

z5

,

while q1 = q5 = q6 = 0.
If 2z5 6= z6 then also a22(z) = 0. If 2z5 = z6 then the condition q3 + q4 =

q2 = 0 leads to

a22(z) = z4z5,

b2(z) = z3 + z4 − 25z2,

b3(z) = −z5z3,

b4(z) = −2z5z4.
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We derived the above results under the assumption (11.23). But the set
of z where (11.23) holds is dense Z. By continuity of a(z) and b(z) in z, the
above results thus extend for all z ∈ Z. In particular, all Zi’s but Z2 are
deterministic; Z1, Z5 and Z6 are even constant.

Thus, since
a(z) = 0 if 2z5 6= z6,

we only have a non-trivial process Z if

Z6(t) ≡ 2Z5(t) ≡ 2Z5(0).

In that case we have, writing shortly zi = Zi(0),

Z1(t) ≡ z1,

Z3(t) = z3e
−z5t,

Z4(t) = z4z
−2z5t

and

dZ2(t) =
(
z3e

−z5t + z4z
−2z5t − z5Z2(t)

)
dt +

d∑
j=1

ρ2j(t) dWj(t),

where ρ2j(t) (not necessarily deterministic) are such that

d∑
j=1

ρ2
2j(t) = a22(Z(t)) = z4z5e

−2z5t.

By Lévy’s characterization theorem we have that

W ∗(t) :=
d∑

j=1

∫ t

0

ρ2j(s)√
z4z5e−z5s

dWj(s)

is a real-valued standard Brownian motion (→ exercise). Hence the corre-
sponding short rate process

r(t) = GS(0, Z(t)) = z1 + Z2(t)

satisfies

dr(t) =
(
z1z5 + z3e

−z5t + z4z
−2z5t − z5r(t)

)
dt +

√
z4z5e

−z5t dW ∗(t).



Chapter 12

Market Models

Instantaneous forward rates are not always easy to estimate, as we have seen.
One may want to model other rates, such as LIBOR, directly. There has been
some effort in the years after the publication of HJM [9] in 1992 to develop
arbitrage-free models of other than instantaneous, continuously compounded
rates. The breakthrough came 1997 with the publications of Brace–Gatarek–
Musiela [5] (BGM), who succeeded to find a HJM type model inducing log-
normal LIBOR rates, and Jamshidian [?], who developed a framework for
arbitrage-free LIBOR and swap rate models not based on HJM. The principal
idea of both approaches is to chose a different numeraire than the risk-free
account (the latter does not even necessarily have to exist). Both approaches
lead to Black’s formula for either caps (LIBOR models) or swaptions (swap
rate models). Because of this they are usually referred to as “market models”.

To start with we consider the HJM setup, as in Chapter 9. Recall that,
for a fixed δ (typically 1/4 = 3 months), the forward δ-period LIBOR for the
future date T prevailing at time t is the simple forward rate

L(t, T ) = F (t; T, T + δ) =
1

δ

(
P (t, T )

P (t, T + δ)
− 1

)
.

We have seen in Chapter 9 that P (t, T )/P (t, T + δ) is a martingale for the
(T + δ)-forward measure QT+δ. In particular (see (9.8))

d

(
P (t, T )

P (t, T + δ)

)
=

P (t, T )

P (t, T + δ)
σT,T+δ(t) dW T+δ(t).
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Hence

dL(t, T ) =
1

δ
d

(
P (t, T )

P (t, T + δ)

)
=

1

δ

P (t, T )

P (t, T + δ)
σT,T+δ(t) dW T+δ(t)

=
1

δ
(δL(t, T ) + 1)σT,T+δ(t) dW T+δ(t).

Now suppose there exists a deterministic Rd-valued function λ(t, T ) such
that

σT,T+δ(t) =
δL(t, T )

δL(t, T ) + 1
λ(t, T ). (12.1)

Plugging this in the above formula, we get

dL(t, T ) = L(t, T )λ(t, T ) dW T+δ(t),

which is equivalent to

L(t, T ) = L(s, T ) exp

(∫ t

s

λ(u, T ) dW T+δ(u)− 1

2

∫ t

s

‖λ(u, T )‖2 du

)
,

for s ≤ t ≤ T . Hence the QT+δ-distribution of log L(T, T ) conditional on Ft

is Gaussian with mean

log L(t, T )− 1

2

∫ T

t

‖λ(s, T )‖2 ds

and variance ∫ T

t

‖λ(s, T )‖2 ds.

The time t price of a caplet with reset date T , settlement date T + δ and
strike rate κ is thus

EQ
[
e−

R T+δ
0 r(s) dsδ(L(T, T )− κ)+ | Ft

]

= P (t, T + δ)EQT+δ

[
δ(L(T, T )− κ)+ | Ft

]

= δP (t, T + δ) (L(t, T )Φ(d1(t, T ))− κΦ(d2(t, T ))) ,

where

d1,2(t, T ) :=
log

(
L(t,T )

κ

)
± 1

2

∫ T

t
‖λ(s, T )‖2 ds

(∫ T

t
‖λ(s, T )‖2 ds

) 1
2

,
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and Φ is the standard Gaussian CDF. This is just Black’s formula for the
caplet price with σ(t)2 set equal to

1

T − t

∫ T

t

‖λ(s, T )‖2 ds,

as introduced in Section 2.6!
We have thus shown that any HJM model satisfying (12.1) yields Black’s

formula for caplet prices. But do such HJM models exist? The answer is yes,
but the construction and proof are not easy. The idea is to rewrite (12.1),
using the definition of σT,T+δ(t), as (→ exercise)

∫ T+δ

T

σ(t, u) du =
(
1− e−

R T+δ
T f(t,u) du

)
λ(t, T ).

Differentiating in T gives

σ(t, T + δ)

= σ(t, T ) + (f(t, T + δ)− f(t, T ))e−
R T+δ

T f(t,u) duλ(t, T )

+
(
1− e−

R T+δ
T f(t,u) du

)
∂T λ(t, T ).

This is a recurrence relation that can be solved by forward induction, once
σ(t, ·) is determined on [0, δ) (typically, σ(t, T ) = 0 for T ∈ [0, δ)). This
gives a complicated dependence of σ on the forward curve. Now it has to be
proved that the corresponding HJM equations for the forward rates have a
unique and well-behaved solution. This all has been carried out by BGM [5],
see also [8, Section 5.6].

12.1 Models of Forward LIBOR Rates

→ MR[16](Chapter 14), Z[22](Section 4.7)
There is a more direct approach to LIBOR models without making ref-

erence to continuously compounded forward and short rates. In a sense,
we place ourselves outside of the HJM framework (although HJM is often
implicitly adopted). Instead of the risk neutral martingale measure we will
work under forward measures; the numeraires accordingly being bond price
processes.
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12.1.1 Discrete-tenor Case

We fix a finite time horizon TM = Mδ, for some M ∈ N, and a probability
space

(Ω,F , (Ft)t∈[0,TM ],QTM ),

where Ft = FW TM

t is the filtration generated by a d-dimensional Brownian
motion W TM (t), t ∈ [0, TM ]. The notation already suggests that QTM will
play the role of the TM -forward measure. Write

Tm := mδ, m = 0, . . . , M.

We are going to construct a model for the forward LIBOR rates with matu-
rities T1, . . . , TM−1. We take as given:

• for every m ≤ M − 1, an Rd-valued, bounded, deterministic function
λ(t, Tm), t ∈ [0, Tm], which represents the volatility of L(t, Tm);

• an initial strictly positive and decreasing discrete term structure

P (0, Tm), m = 0, . . . , M,

and hence strictly positive initial forward LIBOR rates

L(0, Tm) =
1

δ

(
P (0, Tm)

P (0, Tm+1)
− 1

)
, m = 0, . . . , M − 1.

We proceed by backward induction and postulate first that

dL(t, TM−1) = L(t, TM−1)λ(t, TM−1) dW TM (t), t ∈ [0, TM−1],

L(0, TM−1) =
1

δ

(
P (0, TM−1)

P (0, TM)
− 1

)

which is of course equivalent to

L(t, TM−1) =
1

δ

(
P (0, TM−1)

P (0, TM)
− 1

)
Et

(
λ(·, TM−1) ·W TM

)
.

Now define the bounded (why?) Rd-valued process

σTM−1,TM
(t) :=

δL(t, TM−1)

δL(t, TM−1) + 1
λ(t, TM−1), t ∈ [0, TM−1],



12.1. MODELS OF FORWARD LIBOR RATES 131

compare with (12.1).
This induces an equivalent probability measure QTM−1 ∼ QTM on FTM−1

via
dQTM−1

dQTM
= ETM−1

(
σTM−1,TM

·W TM
)
,

and by Girsanov’s theorem

W TM−1(t) := W TM (t)−
∫ t

0

σTM−1,TM
(s) ds, t ∈ [0, TM−1],

is a QTM−1-Brownian motion.
Hence we can postulate

dL(t, TM−2) = L(t, TM−2)λ(t, TM−2) dW TM−1(t), t ∈ [0, TM−2],

L(0, TM−2) =
1

δ

(
P (0, TM−2)

P (0, TM−1)
− 1

)
,

that is,

L(t, TM−2) =
1

δ

(
P (0, TM−2)

P (0, TM−1)
− 1

)
Et

(
λ(·, TM−2) ·W TM−1

)
,

and define the bounded Rd-valued process

σTM−2,TM−1
(t) :=

δL(t, TM−2)

δL(t, TM−2) + 1
λ(t, TM−2), t ∈ [0, TM−2],

yielding an equivalent probability measure QTM−2 ∼ QTM−1 on FTM−2
via

dQTM−2

dQTM−1
= ETM−2

(
σTM−2,TM−1

·W TM−1
)
,

and the QTM−2-Brownian motion

W TM−2(t) := W TM−1(t)−
∫ t

0

σTM−2,TM−1
(s) ds, t ∈ [0, TM−2].

Repeating this procedure leads to a family of log-normal martingales
(L(t, Tm))t∈[0,Tm] under their respective measures QTm .
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Bond Prices

What about bond prices? For all m = 1, . . . , M , we then can define the
forward price process

P (t, Tm−1)

P (t, Tm)
:= δL(t, Tm−1) + 1, t ∈ [0, Tm−1].

Since

d

(
P (t, Tm−1)

P (t, Tm)

)
= δ dL(t, Tm−1) = δL(t, Tm−1)λ(t, Tm−1) dW Tm(t)

=
P (t, Tm−1)

P (t, Tm)
σTm−1,Tm(t) dW Tm(t)

we get that

P (t, Tm−1)

P (t, Tm)
=

P (0, Tm−1)

P (0, Tm)
Et

(
σTm−1,Tm ·W Tm

)
, t ∈ [0, Tm−1],

which is a QTm-martingale.

From this we can derive, for 0 ≤ i < j ≤ m,

P (Ti, Tj) =

j∏
m=i+1

P (Ti, Tm)

P (Ti, Tm−1)
=

j∏
m=i+1

1

δL(Ti, Tm−1) + 1
. (12.2)

However, it is not possible to uniquely determine the continuous time dynam-
ics of a bond price P (t, Tm) in the discrete-tenor model of forward LIBOR
rates. The knowledge of forward LIBOR rates for all maturities T ∈ [0, TM−1]
is necessary.

LIBOR Dynamics under Different Measures

We are interested in finding the dynamics of L(t, Tm) under any of the forward
measures QTk .
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Lemma 12.1.1. Let 0 ≤ m ≤ M − 1 and 0 ≤ k ≤ M . Then the dynamics
of L(t, Tm) under QTk is given according to the three cases

k < m + 1 :
dL(t, Tm)

L(t, Tm)
= λ(t, Tm) ·

m∑

l=k

σTl,Tl+1
(t) dt + λ(t, Tm) dW Tk(t);

k = m + 1 :
dL(t, Tm)

L(t, Tm)
= λ(t, Tm) dW Tm+1(t);

k > m + 1 :
dL(t, Tm)

L(t, Tm)
= −λ(t, Tm) ·

k−1∑

l=m+1

σTl,Tl+1
(t)dt + λ(t, Tm)dW Tk(t),

for t ∈ [0, Tk ∧ Tm].

Proof. This follows from the equality

W Ti(t) = W Tj(t)−
j−1∑

l=i

∫ t

0

σTl,Tl+1
(s) ds, t ∈ [0, Ti],

for all 1 ≤ i < j ≤ M .

Derivative Pricing

Here is a useful formula, which can be combined with (12.2).

Lemma 12.1.2. Let X ∈ L1(QTm) be a Tm-contingent claim, m ≤ M . Then
its price π(t) at t ≤ Tm is given by

π(t) = P (t, Tm)EQTm [X | Ft]

= P (t, Tn)EQTn

[
X

P (Tm, Tn)
| Ft

]
,

for all m < n ≤ M (strictly speaking, this formula makes sense only for
t = Tj, 0 ≤ j ≤ m, since we know P (t, Tn) only for such t).

Proof. Notice that

dQTk

dQTk+1
|Ft = Et

(
σTk,Tk+1

·W Tk+1
)

=
P (0, Tk+1)

P (0, Tk)

P (t, Tk)

P (t, Tk+1)
, t ∈ [0, Tk].
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Hence

dQTm

dQTn
|Ft =

n−1∏

k=m

dQTk

dQTk+1
|Ft =

n−1∏

k=m

P (0, Tk+1)

P (0, Tk)

P (t, Tk)

P (t, Tk+1)

=
P (0, Tn)

P (0, Tm)

P (t, Tm)

P (t, Tn)
.

Bayes’ rule now yields the assertion, since the first equality was derived in
Proposition 9.1.2 (strictly speaking, we assumed there the existence of a sav-
ings account. But even if there is no risk neutral but only forward measures,
the reasoning in Section 9.1 makes it clear that (9.3) is the arbitrage-free
price of X).

Swaptions

Consider a payer swaption with nominal 1, strike rate K, maturity Tµ and
underlying tenor Tµ, Tµ+1, . . . , Tν (Tµ is the first reset date and Tν the ma-
turity of the underlying swap), for some positive integers µ < ν ≤ M . Its
payoff at maturity is

δ

(
ν−1∑
m=µ

P (Tµ, Tm)(L(Tµ, Tm)−K)

)+

.

The swaption price at t = 0 (for simplicity) therefore

π(0) = δP (0, Tµ)EQTµ




(
ν−1∑
m=µ

P (Tµ, Tm)(L(Tµ, Tm)−K)

)+

 .

To compute π(0) we thus need to know the joint distribution of

L(Tµ, Tµ), L(Tµ, Tµ+1), . . . , L(Tµ, Tν−1)

under the measure QTµ . This cannot be done analytically anymore, so one
has to resort to numerical procedures.

We sketch here the Monte Carlo method. Notice that by Lemma 12.1.1,
Itô’s formula and the definition of σTl,Tl+1

(t) we have

d log L(t, Tm) =

(
λ(t, Tm) ·

m∑

l=µ

δL(t, Tl)

δL(t, Tl) + 1
λ(t, Tl)− 1

2
‖λ(t, Tm)‖2

)
dt

+ λ(t, Tm) dW Tµ(t),
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for t ∈ [0, Tµ] and m = µ, . . . , ν − 1. Write α(t, Tm) for the above drift term,
and let ti = i

n
Tµ, i = 0, . . . , n, n ∈ N large enough, be a partition of [0, Tµ].

Then we can approximate

log L(ti+1, Tm) = log L(ti, Tm) +

∫ ti+1

ti

α(s, Tm) ds +

∫ ti+1

ti

λ(s, Tm) dW Tµ(s)

≈ log L(ti, Tm) + α(ti, Tm)
1

n
+ ζm(i),

where

ζm(i) :=

∫ ti+1

ti

λ(s, Tm) dW Tµ(s),

such that ζ(i) = (ζµ(i), . . . , ζν−1(i)), i = 0, . . . , n− 1, are independent Gaus-
sian (ν − µ)-vectors with mean zero and covariance matrix

Cov[ζk(i), ζl(i)] =

∫ ti+1

ti

λ(s, Tk) · λ(s, Tl) ds,

which can easily be simulated.

Forward Swap Measure

We consider the above payer swap with reset dates Tµ, . . . , Tν−1 and cashflow
dates Tµ+1, . . . , Tν (= maturity of the swap). The corresponding forward
swap rate at time t ≤ Tµ is

Rswap(t) =
P (t, Tµ)− P (t, Tν)

δ
∑ν

k=µ+1 P (t, Tk)
=

1− P (t,Tν)
P (t,Tµ)

δ
∑ν

k=µ+1
P (t,Tk)
P (t,Tµ)

. (12.3)

Since for any 0 ≤ l < m ≤ M

P (t, Tl)

P (t, Tm)
=

P (t, Tl)

P (t, Tl+1)
· · · P (t, Tm−1)

P (t, Tm)
=

m−1∏

i=l

(1 + δL(t, Ti)) ,

Rswap(t) is given in terms of the above constructed LIBOR rates.
Define the positive QTµ-martingale

D(t) :=
ν∑

k=µ+1

P (t, Tk)

P (t, Tµ)
, t ∈ [0, Tµ].
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This induces an equivalent probability measure Qswap ∼ QTµ , the forward
swap measure, on FTµ by

dQswap

dQTµ
=

D(Tµ)

D(0)
.

Lemma 12.1.3. The forward swap rate process Rswap(t), t ∈ [0, Tµ], is a
Qswap-martingale.

Proof. Let 0 ≤ m ≤ M and 0 ≤ s ≤ t ≤ Tm ∧ Tµ. Then

EQswap

[
P (t, Tm)

P (t, Tµ)D(t)
| Fs

]
=

1

D(s)
EQTµ

[
P (t, Tm)

P (t, Tµ)D(t)
D(t) | Fs

]

=
1

D(s)

P (s, Tm)

P (s, Tµ)
.

Now the lemma follows (set m = 0, µ) by (12.3).

The payoff at maturity of the above swaption can be written as

δD(Tµ) (Rswap(T0)−K)+ .

Hence the price is

π(0) = δP (0, Tµ)EQTµ

[
D(Tµ) (Rswap(T0)−K)+]

= δP (0, Tµ)D(0)EQswap

[
(Rswap(T0)−K)+]

= δ

ν∑

k=µ+1

P (0, Tk)EQswap

[
(Rswap(T0)−K)+]

.

Lemma 12.1.3 tells us that Rswap is a positive Qswap-martingale and hence of
the form

dRswap(t) = Rswap(t)ρ
swap(t) dW swap(t), t ∈ [0, Tµ],

for some Qswap-Brownian motion W swap and some swap volatility process
ρswap. Hence, under the hypothesis

(H) ρswap(t) is deterministic,
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we would have that log Rswap(Tµ) is Gaussian distributed under Qswap with
mean

log Rswap(0)− 1

2

∫ Tµ

0

‖ρswap(t)‖2 dt

and variance ∫ Tµ

0

‖ρswap(t)‖2 dt.

The swaption price would then be

π(0) = δ

ν∑

k=µ+1

P (0, Tk) (Rswap(0)Φ(d1)−KΦ(d2)) ,

with

d1,2 :=
log

(
Rswap(0)

K

)
± 1

2

∫ Tµ

0
‖ρswap(t)‖2 dt

(∫ Tµ

0
‖ρswap(t)‖2 dt

) 1
2

.

This is Black’s formula with volatility σ2 given by

1

Tµ

∫ Tµ

0

‖ρswap(t)‖2 dt.

However, one can show that ρswap cannot be deterministic in our log-
normal LIBOR setup. So hypothesis (H) does not hold. For swaption pricing
it would be natural to model the forward swap rates directly and postulate
that they are log-normal under the forward swap measures. This approach
has been carried out by Jamshidian [?] and others. It could be shown, how-
ever, that then the forward LIBOR rate volatility cannot be deterministic.
So either one gets Black’s formula for caps or for swaptions, but not simulta-
neously for both. Put in other words, when we insist on log-normal forward
LIBOR rates then swaption prices have to be approximated. One possibility
is to use Monte Carlo methods. Another way (among many others) is now
sketched below.

We have seen in Section 2.4.3 that the forward swap rate can be written
as weighted sum of forward LIBOR rates

Rswap(t) =
ν∑

m=µ+1

wm(t)L(t, Tm−1),
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with weights

wm(t) =
P (t, Tm)

D(t)P (t, Tµ)
=

1
1+δL(t,Tµ)

· · · 1
1+δL(t,Tm−1)∑ν

j=µ+1
1

1+δL(t,Tµ)
· · · 1

1+δL(t,Tj−1)

.

According to empirical studies, the variability of the wm’s is small compared
to the variability of the forward LIBOR rates. We thus approximate wm(t)
by its deterministic initial value wm(0). So that

Rswap(t) ≈
ν∑

m=µ+1

wm(0)L(t, Tm−1),

and hence, under the Tµ-forward measure QTµ

dRswap(t) ≈ (· · · ) dt +
ν∑

m=µ+1

wm(0)L(t, Tm−1)λ(t, Tm−1) dW Tµ , t ∈ [0, Tµ].

We obtain for the forward swap volatility

‖ρswap(t)‖2 =
d 〈log Rswap, log Rswap〉t

dt

≈
ν∑

k,l=µ+1

wk(0)wl(0)L(t, Tk−1)L(t, Tl−1)λ(t, Tk−1) · λ(t, Tl−1)

R2
swap(t)

.

In a further approximation we replace all random variables by their time 0
values, such that the quadratic variation of log Rswap(t) becomes approxima-
tively deterministic

‖ρswap(t)‖2 ≈
ν∑

k,l=µ+1

wk(0)wl(0)L(0, Tk−1)L(0, Tl−1)λ(t, Tk−1) · λ(t, Tl−1)

R2
swap(0)

.

Denote the square root of the right hand side by ρ̃swap(t), and define the
Qswap-Brownian motion (Lévy’s characterization theorem)

W ∗(t) :=

∫ t

0

d∑
j=1

ρswap
j (s)

‖ρswap(s)‖ dW swap
j (s), t ∈ [0, Tµ].
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Then we have

dRswap(t) = Rswap(t)‖ρswap(t)‖ dW ∗(t)

≈ Rswap(t)ρ̃
swap(t) dW ∗(t).

Hence we can approximate the swaption price in our log-normal forward
LIBOR model by Black’s swaption price formula where σ2 is to be replaced
by

1

Tµ

∫ Tµ

0

ν∑

k,l=µ+1

wk(0)wl(0)L(0, Tk−1)L(0, Tl−1)λ(t, Tk−1) · λ(t, Tl−1)

R2
swap(0)

dt.

This is “Rebonato’s formula”, since it originally appears in his book R[19].
The goodness of this approximation has been tested numerically by several
authors, see BM[6](Chapter 8). They conclude that “the approximation is
satisfactory in general”.

Implied Savings Account

Given the LIBOR L(Ti, Ti) for period [Ti, Ti+1], for all i = 0, . . . , M − 1, we
can define the discrete-time, implied savings account process

B∗(0) := 1,

B∗(Tm) := (1 + δL(Tm−1, Tm−1))B
∗(Tm−1), m = 1, . . . , M,

that is,

B∗(Tn) = B∗(Tm)
n−1∏

k=m

1

P (Tk, Tk+1)
, m < n ≤ M.

Hence B∗(Tm) can be interpreted as the cash amount accumulated up to time
Tm by rolling over a series of zero-coupon bonds with the shortest maturities
available.

By construction, B∗ is a strictly increasing and predictable process with
respect to the discrete-time filtration (FTm), that is,

B∗(Tm) is FTm−1-measurable, for all m = 1, . . . , M .

Lemma 12.1.4. For all 0 ≤ m ≤ M we have

EQTM [B∗(TM) | FTm ] =
B∗(Tm)

P (Tm, TM)
.
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Proof. Exercise.

Lemma 12.1.4 yields in particular

EQTM [B∗(TM)P (0, TM)] = 1 and B∗(TM)P (0, TM) > 0,

so that we can define the equivalent probability measure Q∗ ∼ QTM on FTM

by
dQ∗

dQTM
= B∗(TM)P (0, TM).

Q∗ can be interpreted as risk neutral martingale measure since

P (Tk, Tl) = EQ∗
[
B∗(Tk)

B∗(Tl)
| FTk

]
, 0 ≤ k ≤ l ≤ M. (12.4)

Indeed, in view of Lemma 12.1.4 we have for m ≤ M

dQ∗

dQTM
|FTm

= B∗(Tm)
P (0, TM)

P (Tm, TM)
.

Hence (Bayes again)

EQ∗
[
B∗(Tk)

B∗(Tl)
| FTk

]
=
EQTM

[
B∗(Tk)
B∗(Tl)

B∗(Tl)
P (Tl,TM )

| FTk

]

B∗(Tk)
P (Tk,TM )

= P (Tk, Tl),

which proves (12.4). Put in other words, (12.4) shows that for any 0 ≤ l ≤ M
the discrete-time process

(
P (Tk, Tl)

B∗(Tk)

)

k=0,...,l

is a Q∗-martingale with respect to (FTk
).

12.1.2 Continuous-tenor Case

We now specify the continuum of all forward LIBOR rates L(t, T ), for T ∈
[0, TM−1]. Given the discrete-tenor skeleton constructed in the previous sec-
tion, it is enough to fill the gaps between the Tjs. Each forward LIBOR rate
L(t, T ) will follow a lognormal process under the forward measure for the
date T + δ.

The stochastic basis is the same as before. In addition, we now need a
continuum of initial dates:
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• for every T ∈ [0, TM−1], an Rd-valued, bounded, deterministic function
λ(t, T ), t ∈ [0, T ], which represents the volatility of L(t, T );

• an initial strictly positive and decreasing term structure

P (0, T ), T ∈ [0, TM ],

and hence an initial strictly positive forward LIBOR curve

L(0, T ) =
1

δ

(
P (0, T )

P (0, T + δ)
− 1

)
, T ∈ [0, TM−1].

First, we construct a discrete-tenor model for L(t, Tm), m = 0, . . . , M−1,
as in the previous section.

Second, we focus on the forward measures for dates T ∈ [TM−1, TM ]. We
do not have to take into account forward LIBOR rates for these dates, since
they are not defined there. However, we are given the values of the implied
savings account B∗(TM−1) and B∗(TM) and the probability measure Q∗. By
monotonicity there exists a unique deterministic increasing function

α : [TM−1, TM ] → [0, 1]

with α(TM−1) = 0 and α(TM) = 1, such that

log B∗(T ) := (1− α(T )) log B∗(TM−1) + α(T ) log B∗(TM)

satisfies

P (0, T ) = EQ∗
[

1

B∗(T )

]
, ∀T ∈ [TM−1, TM ].

Let T ∈ [TM−1, TM ]. Since (→ exercise) B∗(T ) is FT -measurable, strictly
positive and

EQ∗
[

1

B∗(T )P (0, T )

]
= 1

we can define the T -forward measure QT ∼ Q∗ on FT by

dQT

dQ∗
=

1

B∗(T )P (0, T )
.

Then we have

dQT

dQTM
=

dQT

dQ∗
dQ∗

dQTM
=

B∗(TM)P (0, TM)

B∗(T )P (0, T )
.
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By the representation theorem for QTM -martingales there exists a unique
σT,TM

∈ L such that (→ exercise)

dQT

dQTM
|Ft = EQTM

[
B∗(TM)P (0, TM)

B∗(T )P (0, T )
| Ft

]

= exp

(∫ t

0

σT,TM
(s) dW TM (s)− 1

2

∫ t

0

‖σT,TM
(s)‖2 ds

)

= Et

(
σT,TM

·W TM
)
,

for t ∈ [0, T ]. Girsanov’s theorem tells us that

W T (t) := W TM (t)−
∫ t

0

σT,TM
(s) ds, t ∈ [0, T ],

is a QT -Brownian motion.
Third, since T ∈ [TM−1, TM ] was arbitrary, we can now define the forward

LIBOR process L(t, T ) for any T ∈ [TM−2, TM−1] as

dL(t, T ) = L(t, T )λ(t, T ) dW T+δ(t),

L(0, T ) =
1

δ

(
P (0, T )

P (0, T + δ)
− 1

)
.

This in turn defines the positive and bounded process

σT,T+δ(t) :=
δL(t, T )

δL(t, T ) + 1
λ(t, T ), t ∈ [0, T ],

for any T ∈ [TM−2, TM−1]. The forward measures for T ∈ [TM−2, TM−1] are
now given by

dQT

dQT+δ
= ET

(
σT,T+δ ·W T+δ

)
.

Hence we have (→ exercise)

dQT

dQTM
|Ft =

dQT

dQT+δ
|Ft

dQT+δ

dQTM
|Ft

= Et

(
σT,T+δ ·W T+δ

) Et

(
σT+δ,TM

·W TM
)

= Et

(
σT,TM

·W TM
)
, t ∈ [0, T ],
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for any T ∈ [TM−2, TM−1], where

σT,TM
:= σT,T+δ + σT+δ,TM

.

Proceeding by backward induction yields the forward measure QT and
QT -Brownian motion W T for all T ∈ [0, TM ], and forward LIBOR rates
L(t, T ) for all T ∈ [0, TM−1].

This way, we obtain the zero-coupon bond prices for all maturities. In-
deed, for any 0 ≤ T ≤ S ≤ TM , it is reasonable to define (why?) the forward
price process

P (t, S)

P (t, T )
:=

P (0, S)

P (0, T )

dQS

dQT
|Ft

=
P (0, S)

P (0, T )

dQS

dQTM
|Ft

dQTM

dQT
|Ft

=
P (0, S)

P (0, T )
Et

(−σT,S ·W T
)
, t ∈ [0, T ],

where (→ exercise)
σT,S := σT,TM

− σS,TM
.

In particular, for t = T we get

P (T, S) =
P (0, S)

P (0, T )
ET

(−σT,S ·W T
)
.

Notice that now P (T, S) may be greater than 1, unless S−T = mδ for some
integer m. Hence even though all δ-period forward LIBOR rates L(t, T ) are
positive, there may be negative interest rates for other than δ periods.
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Chapter 13

Default Risk

→ [?, Chapter 2], [1], etc.
So far bond price processes P (t, T ) had the property that P (T, T ) = 1.

That is, the payoff was certain, there was no risk of default of the issuer. This
may be the case for treasury bonds. Corporate bonds however may bear a
substantial risk of default. Investors should be adequately compensated by
a risk premium, which is reflected by a higher yield on the bond.

For the modelling of credit risk we have to consider the following risk
elements:

• Default probabilities: probability that the debtor will default on its
obligations to repay its debt.

• Recovery rates: proportion of value delivered after default has occurred.

• Transition probabilities: between credit ratings (credit migration).

Usually one has to model objective (for the rating) and risk-neutral (for the
pricing) probabilities.

13.1 Transition and Default Probabilities

There are three main approaches to the modelling of transition and default
probabilities:

• Historical method: rating agencies determine default and transition
probabilities by counting defaults that actually occurred in the past
for different rating classes.

145
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• Structural approach: models the value of a firm’s assets. Default is
when this value hits a certain lower bound. Goes back to Merton
(1974) [15].

• Intensity based method: default is specified exogenously by a stopping
time with given intensity process.

We briefly discuss the first two approaches in this section. The intensity
based method is treated in more detail in Section 13.2 below.

13.1.1 Historical Method

Rating agencies provide timely, objective information and credit analysis of
obligors. Usually they operate without government mandate and are inde-
pendent of any investment banking firm or similar organization. Among
the biggest US agencies are Moody’s Investors Service and Standard&Poor’s
(S&P).

After issuance and assignment of the initial obligor’s rating, the rating
agency regularly checks and adjusts the rating. If there is a tendency observ-
able that may affect the rating, the obligor is set on the Rating Review List
(Moody’s) or the Credit Watch List (S&P). The number of Moody’s rated
obligors has increased from 912 in 1960 to 3841 in 1997.

The formal definition of default and transition rates is the following.

Definition 13.1.1. 1. The historical one-year default rate, based on the
time frame [Y0, Y1], for an R-rated issuer is

dR :=

∑Y1

y=Y0
MR(y)

∑Y1

y=Y0
NR(y)

,

where NR(y) is the number of issuers with rating R at beginning of year
y, and MR(y) is the number of issuers with rating R at beginning of
year y which defaulted in that year.

2. The historical one-year transition rate from rating R to R′, based on
the time frame [Y0, Y1], is

trR,R′ :=

∑Y1

y=Y0
MR,R′(y)

∑Y1

y=Y0
NR(y)

,
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Table 13.1: Rating symbols.

S&P Moody’s Interpretation
Investment-grade ratings

AAA Aaa Highest quality, extremely strong
AA+ Aa1
AA Aa2 High quality
AA- Aa3
A+ A1
A A2 Strong payment capacity
A- A3

BBB+ Baa1
BBB Baa2 Adequate payment capacity
BBB- Baa3

Speculative-grade ratings
BB+ Ba1 Likely to fulfill obligations
BB Ba2 ongoing uncertainty
BB- Ba3
B+ B1
B B2 High risk obligations
B- B3

CCC+ Caa1
CCC Caa2 Current vulnerability to default
CCC- Caa3
CC
C Ca In bankruptcy or default
D or other marked shortcoming

where NR(y) is as above, and MR,R′(y) is the number of issuers with
rating R at beginning of year y and R′ at the end of that year.

Transition rates are gathered in a transition matrix as shown in Ta-
ble 13.2.

The historical method has several shortcomings:

• It neglects the default rate volatility. Transition and default probabili-
ties are dynamic and vary over time, depending on economic conditions.
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Table 13.2: S&P’s one-year transition and default rates, based on the
time frame [1980,2000] (Standard&Poor’s, Ratings Performance 2000,
see http://financialcounsel.com/Articles/Investment/ARTINV0000069-
2000Ratings.pdf).

Rating at end of year (R′)
Initial AAA AA A BBB BB B CCC D

rating (R)
AAA 93.66 5.83 0.40 0.09 0.03 0.00 0.00 0.00
AA 0.66 91.72 6.94 0.49 0.06 0.09 0.02 0.01
A 0.07 2.25 91.76 5.18 0.49 0.20 0.01 0.04

BBB 0.03 0.26 4.83 89.24 4.44 0.81 0.16 0.24
BB 0.03 0.06 0.44 6.66 83.23 7.46 1.05 1.08
B 0.00 0.10 0.32 0.46 5.72 83.62 3.84 5.94

CCC 0.15 0.00 0.29 0.88 1.91 10.28 61.23 25.26

• It neglects cross-country differences and business cycle effects.

• Rating agencies react too slow to change ratings. There is a systematic
overestimation of trR,R and dR, and hence underestimation of trR,R′ for
some R 6= R′.

13.1.2 Structural Approach

Merton [15] proposed a simple capital structure of a firm consisting of equity
and one type of zero coupon debt with promised terminal constant payoff
X > 0 at maturity T . The obligor (=the firm) defaults by T if the total
market value of its assets V (T ) at T is less than its liabilities X. Thus the
probability of default by time T conditional on the information available at
t ≤ T is

pd(t, T ) = P [V (T ) < X | Ft] ,

with respect to some stochastic basis (Ω,F , (Ft)t∈[0,T ],P). The dynamics of
V (t) is modelled as geometric Brownian motion

dV (t)

V (t)
= µ dt + σ dW (t), t ∈ [0, T ],
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that is

V (T ) = V (t) exp

(
σ(W (T )−W (t)) +

(
µ− 1

2
σ2

)
(T − t)

)
, t ∈ [0, T ].

Then we have

pd(t, T ) = Φ


 log

(
X

V (t)

)
− (

µ− 1
2
σ2

)
(T − t)

σ
√

T − t


 , t ∈ [0, T ].

If the firm value process V (t) is continuous, as in the Merton approach,
the instantaneous probability of default (∂+

T pd(t, T )|T=t) is zero. To include
“unexpected” defaults one has to consider firm value processes with jumps.
Zhou (1997) models V (t) as jump-diffusion process

V (T ) = V (t)




N(T )∏

j=N(t)+1

eZj


 e

�
µ−σ2

2

�
(T−t)+σ(W (T )−W (t))

,

where N(t) is a Poisson process with intensity λ and Z1, Z2, . . . is a sequence
of i.i.d. Gaussian N (m, ρ2) distributed random variables. It is assumed that
W , N and Zj are mutually independent. A dynamic description of V is

V (t) = V (0) +

∫ t

0

V (s) (µ ds + σ dW (s)) +

N(t)∑
j=1

V (τj−)
(
eZj − 1

)
,

where τ1, τ2, . . . are the jump times of N .

It is clear that the distribution of log V (T ) conditional on Ft and N(T )−
N(t) = n is Gaussian with mean

log V (t) + mn +

(
µ− σ2

2

)
(T − t)

and variance

nρ2 + σ2(T − t).
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Hence the conditional default probability

pd(t, T ) = P [log V (T ) < log X | Ft]

=
∞∑

n=0

P [log V (T ) < log X | Ft, N(T )−N(t) = n]P [N(T )−N(t) = n]

=
∞∑

n=0

Φ


 log

(
X

V (t)

)
−mn−

(
µ− σ2

2

)
(T − t)

√
nρ2 + σ2(T − t)


 e−λ(T−t) (λ(T − t))n

n!

First passage time models make this approach more realistic by admitting
default at any time Td ∈ [0, T ], and not just at maturity T . That means,
bankruptcy occurs if the firm value V (t) hits a specified stochastic boundary
X(t), such that

Td = inf{t | V (t) ≤ X(t)}.
In this case the conditional default probability is

pd(t, T ) = P [Td ≤ T | Ft] , t ∈ [0, T ],

which can be determined by Monte Carlo simulation.

13.2 Intensity Based Method

Default is often a complicated event. The precise conditions under which
it must occur (such as hitting a barrier) are easily misspecified. The above
structural approach has the additional deficiency that it is usually difficult
to determine and trace a firm’s value process.

In this section we focus directly on describing the evolution of the default
probabilities pd(t, T ) without defining the exact default event. Formally, we
fix a probability space (Ω,F ,P). The flow of the complete market information
is represented by a filtration (Ft) satisfying the usual conditions. The default
time Td is assumed to be an (Ft)-stopping time, hence the right-continuous
default process

H(t) := 1{Td≤t}

is (Ft)-adapted. The Ft-conditional default probability is now

pd(t, T ) = E [H(T ) | Ft] , t ∈ [0, T ].
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Obviously, H is a uniformly integrable submartingale. By the Doob–Meyer
decomposition ([13, Theorem 1.4.10]) there exists a unique (Ft)-predictable1

increasing process A(t) such that

M(t) := H(t)− A(t)

is a (uniformly integrable) martingale (notice that A(t) = A(t ∧ Td)). Hence

pd(t, T ) = 1{Td≤t} + E [A(T )− A(t) | Ft] .

This formula is the best we can hope for in general.
We proceed in several steps towards an explicit expression for pd(t, T ) by

making more and more restrictive assumptions (D1)–(D4).

(D1) There exists a strict sub-filtration (Gt) ⊂ (Ft) (partial market infor-
mation) and a (Gt)-adapted process Λ such that

A(t) = Λ(t ∧ Td) and Ft = Gt ∨Ht,

where Ht := σ(H(s) | s ≤ t) and Gt ∨ Ht stands for the smallest
σ-algebra containing Gt and Ht.

A market participant with access to the partial market information Gt cannot
observe whether default has occurred by time t (Td ≤ t) or not (Td > t). In
other words, Td is not a stopping time for (Gt). This nicely reflects the
aforementioned difficulties to determine the exact default event in practice.

Intuitively speaking, events in Ft are Gt-observable given that Td > t.
The formal statement is as follows.

Lemma 13.2.1. Let t ∈ R+. For every A ∈ Ft there exists B ∈ Gt such that

A ∩ {Td > t} = B ∩ {Td > t}. (13.1)

Proof. Let

F∗
t := {A ∈ Ft | ∃B ∈ Gt with property (13.1)} .

1The (Ft)-predictable σ-algebra on R+ × Ω is generated by all left-continuous (Ft)-
adapted processes; or equivalently, by the sets {0}×B where B ∈ F0 and (s, t]×B where
s < t and B ∈ Fs.
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Clearly Gt ⊂ F∗
t . Simply take B = A. Moreover Ht ⊂ F∗

t . Indeed, for every
A ∈ Ht the intersection A ∩ {Td > t} is either ∅ or {Td > t}, so we can take
for B either ∅ or Ω.

Since F∗
t is a σ-algebra (→ exercise) and Ft is defined to be the smallest

σ-algebra containing Gt and Ht, we conclude that Ft ⊂ F∗
t . This proves the

lemma.

(D2) The default probability by t as seen by a Gt-informed observer satisfies

0 < P [Td ≤ t | Gt] < 1.

Hence we can define the positive (Gt)-adapted hazard process Γ by

e−Γ(t) := P [Td > t | Gt] .

Notice that X(t) := P [Td > t | Gt] is a (Gt)-supermartingale and E[X(t)] is
right-continuous in t (→ exercise). Hence X(t), and thus Γ(t), admits a
right-continuous modification, see e.g. [13, Theorem I.3.13]. We show below
(Lemma 13.2.4) the rather surprising fact that if Γ is regular enough then it
coincides with Λ on [0, Td].

A consequence of the next lemma is that for any Ft-measurable random
variable Y there exists an Gt-measurable random variable Ỹ such that Y = Ỹ
on {Td > t}.
Lemma 13.2.2. Let t ∈ R+ and Y a random variable. Then

E
[
1{Td>t}Y | Ft

]
= 1{Td>t}e

Γ(t)E
[
1{Td>t}Y | Gt

]
. (13.2)

Proof. Let A ∈ Ft. By Lemma 13.2.1 there exists a B ∈ Gt with (13.1), and
so 1A1{Td>t} = 1B1{Td>t}. Hence, by the very definition of the Gt-conditional
expectation,

∫

A

1{Td>t}Y P [Td > t | Gt] dP =

∫

B

1{Td>t}Y P [Td > t | Gt] dP

=

∫

B

E
[
1{Td>t}Y | Gt

]
P [Td > t | Gt] dP

=

∫

B

1{Td>t}E
[
1{Td>t}Y | Gt

]
dP

=

∫

A

1{Td>t}E
[
1{Td>t}Y | Gt

]
dP.
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This implies

E
[
1{Td>t}Y P [Td > t | Gt] | Ft

]
= 1{Td>t}E

[
1{Td>t}Y | Gt

]
,

which proves the lemma.

As a consequence of the preceding lemmas we may now formulate the
following results, which contain an expression for the aforementioned default
probabilities.

Lemma 13.2.3. For any t ≤ T we have

P [Td > T | Ft] = 1{Td>t}E
[
eΓ(t)−Γ(T ) | Gt

]
, (13.3)

P [t < Td ≤ T | Ft] = 1{Td>t}E
[
1− eΓ(t)−Γ(T ) | Gt

]
. (13.4)

Moreover, the processes

L(t) := 1{Td>t}e
Γ(t) = (1−H(t))eΓ(t)

is an (Ft)-martingale.

Proof. Let t ≤ T . Then 1{Td>T} = 1{Td>t}1{Td>T}. Using this and (13.2) we
derive

P [Td > T | Ft] = E
[
1{Td>t}1{Td>T} | Ft

]

= 1{Td>t}e
Γ(t)E

[
1{Td>T} | Gt

]

= 1{Td>t}e
Γ(t)E

[
E

[
1{Td>T} | GT

] | Gt

]

= 1{Td>t}e
Γ(t)E

[
e−Γ(T ) | Gt

]
,

which proves (13.3). Equation (13.4) follows since

1{t<Td≤T} = 1{Td>t} − 1{Td>T}.

For the second statement it is enough to consider

E [L(T ) | Ft] = E
[
1{Td>t}1{Td>T}e

Γ(T ) | Ft

]

= 1{Td>t}e
Γ(t)E

[
1{Td>T}e

Γ(T ) | Gt

]
= L(t),

since by definition of Γ

E
[
1{Td>T}e

Γ(T ) | Gt

]
= E

[
E

[
1{Td>T} | GT

]
eΓ(T ) | Gt

]
= 1.
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(D3) There exists a positive, measurable, (Gt)-adapted process λ such that

Γ(t) =

∫ t

0

λ(s) ds.

Taking (formally) the right-hand T -derivative at T = t in (13.4) gives λ(t).
Hence we refer to λ(t) as default intensity.

Here is the announced result for Γ.

Lemma 13.2.4. The process

N(t) := H(t)−
∫ t

0

λ(s)1{Td>s} ds

is an (Ft)-martingale. Hence, by the uniqueness of the predictable Doob–
Meyer decomposition, we have

Λ(t ∧ Td) =

∫ t

0

λ(s)1{Td>s} ds = Γ(t ∧ Td).

Proof. Let t ≤ T . In view of (13.3) we have

E [N(T ) | Ft] = 1− E [
1{Td>T} | Ft

]−
∫ t

0

λ(s)1{Td>s} ds

−
∫ T

t

E
[
λ(s)1{Td>s} | Ft

]
ds

= 1− 1{Td>t}E
[
e−

R T
t λ(u) du | Gt

]
−

∫ t

0

λ(s)1{Td>s} ds

−
∫ T

t

1{Td>t}e
R t
0 λ(u) duE

[
λ(s)1{Td>s} | Gt

]
ds

︸ ︷︷ ︸
=:I

.

We have further

I =

∫ T

t

1{Td>t}e
R t
0 λ(u) duE

[
λ(s)E

[
1{Td>s} | Gs

] | Gt

]
ds

= 1{Td>t}E
[∫ T

t

λ(s)e−
R s

t λ(u) du ds | Gt

]

= 1{Td>t}E
[
1− e−

R T
t λ(u) du | Gt

]
,
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hence

E [N(T ) | Ft] = 1− 1{Td>t} −
∫ t

0

λ(s)1{Td>s} ds = N(t).

The next and last assumption leads the way to implement a default risk
model.

(D4) P [Td > t | G∞] = P [Td > t | Gt] ∀t ∈ R+.

It can be shown that (D4) is equivalent to the hypothesis

(H) Every square integrable (Gt)-martingale is an (Ft)-martingale.

For more details we refer to [1, Chapter 6]. For the next lemma we only
assume (D1), (D2) and (D4).

Lemma 13.2.5. Suppose Γ is continuous. Then φ := Γ(Td) is an exponential
random variable with parameter 1 and independent of G∞. Moreover,

Td = inf {t | Γ(t) ≥ φ} .

Proof. By assumption,

P [Td > t | G∞] = e−Γ(t).

Hence Γ(t) is non-decreasing and continuous. We can define its right inverse

C(s) := inf{t | Γ(t) > s}.

Then Γ(t) > s ⇔ t > C(s) and Γ(C(s)) = s, so

P [Γ(Td) > s | G∞] = P [Td > C(s) | G∞] = e−Γ(C(s)) = e−s.

This proves that φ = Γ(Td) is an exponential random variable with parameter
1 and independent of G∞. Moreover,

Td = inf{t | Γ(t) ≥ Γ(Td)} = inf{t | Γ(t) ≥ φ}.
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13.2.1 Construction of Intensity Based Models

The construction of a model that satisfies (D1)–(D4) is straightforward.
We start with a filtration (Gt) satisfying the usual conditions and

G∞ = σ(Gt | t ∈ R+) ⊂ F .

Let λ(t) be a positive, measurable, (Gt)-adapted process with the property
∫ t

0

λ(s) ds < ∞ a.s. for all t ∈ R+.

We then fix an exponential random variable φ with parameter 1 and inde-
pendent of G∞, and define the random time

Td := inf

{
t |

∫ t

0

λ(s) ds ≥ φ

}

with values in (0,∞]. Consequently, we have for t ≤ T

P [Td > T | Gt] = P
[
φ >

∫ T

0

λ(u) du | Gt

]

= E
[
P

[
φ >

∫ T

0

λ(u) du | GT

]
| Gt

]

= E
[
e−

R T
0 λ(u) du | Gt

]
,

by the independence of φ and GT (this is a basic lemma for conditional
expectations). And it is an easy exercise to show that

0 < P [Td > t | Gt] = e−
R t
0 λ(u) du < 1 and φ =

∫ Td

0

λ(u) du.

We finally define Ft := Gt ∨Ht, where Ht = σ(H(s) | s ≤ t). Conditions
(D1)–(D3) are obviously satisfied for

Λ(t) = Γ(t) :=

∫ t

0

λ(s) ds.

As for (D4) we notice that

P [Td > t | G∞] = P
[
φ >

∫ t

0

λ(u) du | G∞
]

= e−
R t
0 λ(u) du = P [Td > t | Gt] .
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13.2.2 Computation of Default Probabilities

When it comes to computations of the default probabilities (13.3) we need a
tractable model for the intensity process λ. But the right-hand side of (13.3)
looks just like what we had for the risk-neutral valuation of zero-coupon
bonds in terms of a given short rate process (Chapter 7). Notice that λ ≥ 0
is essential. An obvious and popular choice for λ is thus a square root (or
affine) process. So let W be a (Gt)-Brownian motion, b ≥ 0, β ∈ R and σ > 0
some constants, and let

dλ(t) = (b + βλ(t)) dt + σ
√

λ(t) dW (t), λ(0) ≥ 0. (13.5)

The proof of the following lemma is left as an exercise.

Lemma 13.2.6. For the intensity process (13.5) the conditional default prob-
ability is

pd(t, T ) = P [Td ≤ T | Ft] =

{
1− e−A(T−t)−B(T−t)λ(t), if Td > t

0, else,

where

A(u) := −2b

σ2
log

(
2γe(γ−β)u/2

(γ − β) (eγu − 1) + 2γ

)
,

B(u) :=
2 (eγu − 1)

(γ − β) (eγu − 1) + 2γ
,

γ :=
√

β2 + 2σ2.

13.2.3 Pricing Default Risk

The stochastic setup is as above. In addition, we suppose now that we are
given a risk-neutral probability measure Q ∼ P and a measurable, (Gt)-
adapted short rate process r(t). Moreover, we assume that there exists a
positive, measurable, (Gt)-adapted process λQ such that

ΓQ(t) :=

∫ t

0

λQ(s) ds < ∞ a.s. for all t ∈ R+,

and (D1)–(D3) are satisfied for Q, ΛQ := ΓQ and ΓQ replacing P, Λ and
Γ, respectively (unfortunately, these conditions are not preserved under an
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equivalent change of measure in general). So that Lemmas 13.2.1–13.2.4
apply.

We will determine the price C(t, T ) of a corporate zero-coupon bond with
maturity T , which may default. As for the recovery we fix a constant recovery
rate δ ∈ (0, 1) and distinguish three cases:

• Zero recovery: the cashflow at T is 1{Td>T}.

• Partial recovery at maturity: the cashflow at T is 1{Td>T} + δ1{Td≤T}.

• Partial recovery at default: the cashflow is

{
1 at T if Td > T ,

δ at Td if Td ≤ T .

Zero-Recovery

The arbitrage price of C(t, T ) is

C(t, T ) = EQ
[
e−

R T
t r(s) ds1{Td>T} | Ft

]
.

In view of Lemma 13.2.2 this is

C(t, T ) = 1{Td>t}e
R t
0 λQ(s) dsEQ

[
e−

R T
t r(s) ds1{Td>T} | Gt

]

= 1{Td>t}e
R t
0 λQ(s) dsEQ

[
e−

R T
t r(s) dsEQ

[
1{Td>T} | GT

] | Gt

]

= 1{Td>t}EQ
[
e−

R T
t (r(s)+λQ(s))ds | Gt

]
.

(13.6)

Notice that this is a very nice formula. Pricing a corporate bond boils down
to the pricing of a non-defaultable zero-coupon bond with the short rate
process replaced by

r(s) + λQ(s) ≥ r(s).

A tractable (hence affine) model is easily found. For the short rates we chose
CIR: let W be a (Q,Gt)-Brownian motion, b ≥ 0, β ∈ R, σ > 0 constant
parameters and

dr(t) = (b + βr(t)) dt + σ
√

r(t) dW (t), r(0) ≥ 0. (13.7)

For the intensity process we chose the affine combination

λQ(t) = c0 + c1r(t), (13.8)

for two constants c0, c1 ≥ 0.
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Lemma 13.2.7. For the above affine model we have

C(t, T ) = 1{Td>t}e
−A(T−t)−B(T−t)r(t),

where

A(u) := c0u− 2b

σ2
log

(
2γe(γ−β)u/2

(γ − β) (eγu − 1) + 2γ

)
,

B(u) :=
2 (eγu − 1)

(γ − β) (eγu − 1) + 2γ
(1 + c1),

γ :=
√

β2 + 2(1 + c1)σ2.

Proof. Exercise.

A special case is c1 = 0 (constant intensity). Here we have

C(t, T ) = 1{Td>t}e
−c0(T−t)P (t, T ),

where P (t, T ) is the CIR price of a default-free zero-coupon bond.

Partial Recovery at Maturity

This is an easy modification of the preceding case since

1{Td>T} + δ1{Td≤T} = (1− δ) 1{Td>T} + δ.

In view of (13.6) hence

C(t, T ) = (1− δ) 1{Td>t}EQ
[
e−

R T
t (r(s)+λQ(s))ds | Gt

]
+ δP (t, T ),

where P (t, T ) stands for the price of the default-free zero-coupon bond.

Partial Recovery at Default

A straightforward modification of the proofs of Lemmas 13.2.1 and 13.2.2
shows that

EQ
[
1{Td>t}Y | G∞ ∨Ht

]
= 1{Td>t}e

R t
0 λQ(s) dsEQ

[
1{Td>t}Y | G∞

]
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for every random variable Y . Combining this with Section 13.2.1 we obtain
for t ≤ u

Q[t < Td ≤ u | G∞ ∨Ht] = 1{Td>t}e
R t
0 λQ(s) dsEQ

[
1{t<Td≤u} | G∞

]

= 1{Td>t}e
R t
0 λQ(s) ds

(
e−

R t
0 λQ(s) ds − e−

R u
0 λQ(s) ds

)

= 1{Td>t}
(
1− e−

R u
t λQ(s) ds

)
,

which is the regular conditional distribution of Td conditional on {Td > t}
and G∞ ∨Ht. Differentiation in with respect to u yields its density function

1{Td>t}λQ(u)e−
R u

t λQ(s) ds1{t≤u}.

Hence the arbitrage price of the recovery at default given that t < Td ≤ T
is given by

π(t) = EQ
[
e−

R Td
t r(s) dsδ1{t<Td≤T} | Ft

]

= EQ
[
EQ

[
e−

R Td
t r(s) dsδ1{t<Td≤T} | G∞ ∨Ht

]
| Ft

]

= δ1{Td>t}EQ
[∫ T

t

e−
R u

t r(s) dsλQ(u)e−
R u

t λQ(s) ds du | Ft

]

= δ1{Td>t}

∫ T

t

EQ
[
λQ(u)e−

R u
t (r(s)+λQ(s)) ds | Ft

]
du.

For the above affine model (13.7)–(13.8) this expression can be made more
explicit (→ exercise). As a result, the price of the corporate bond bond price
with recovery at default is

C(t, T ) = C0(t, T ) + π(t),

where C0(t, T ) is the bond price with zero recovery.
The above calculations and an extension to stochastic recovery go back

to Lando [14].

13.2.4 Measure Change

We consider an equivalent change of measure and derive the behavior of the
compensator process for the stopping time Td. Again, we take the above
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stochastic setup and let (D1)–(D3) hold. So that

M(t) = H(t)−
∫ t

0

λ(s)1{Td>s} ds

is a (P,Ft)-martingale. Now let µ be a positive (Gt)-predictable process such
that

ΛQ(t) :=

∫ t

0

µ(s)λ(s) ds < ∞ a.s. for all t ∈ R+.

We will construct an equivalent probability measure Q ∼ P such that

ΛQ(t ∧ Td)

is the (Q,Ft)-compensator of H. This does not, however, imply that ΛQ(t)
is the (Q,Gt)-hazard process ΓQ(t) = − logQ[Td > t | Gt] of Td in general.
A counterexample has been constructed by Kusuoka [?], see also [1, Section
7.3].

The following analysis involves stochastic calculus for cadlag processes of
finite variation (FV), which in a sense is simpler than for Brownian motion
since it is a pathwise calculus. We recall the integration by parts formula for
two right-continuous FV functions f and g

f(t)g(t) = f(0)g(0) +

∫ t

0

f(s−) dg(s) +

∫ t

0

g(s−) df(s) + [f, g](t),

where
[f, g](t) =

∑
0<s≤t

∆f(s)∆g(s), ∆f(s) := f(s)− f(s−).

Lemma 13.2.8. The process

D(t) := C(t)V (t)

with

C(t) := exp

(∫ t

0

(1− µ(s))λ(s)1{Td>s} ds

)

V (t) :=
(
1{Td>t} + µ(Td)1{Td≤t}

)
=

{
1, t < Td

µ(Td), t ≥ Td
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satisfies

D(t) = 1 +

∫ t

0

D(s−) (µ(s)− 1) dM(s)

and is thus a positive P-local martingale.

Proof. Notice that [C, V ] = 0 and

V (t) = 1 +

∫ t

0

(µ(s)− 1) dH(s) = 1 +

∫ t

0

V (s−) (µ(s)− 1) dH(s).

Hence

D(t) = 1 +

∫ t

0

C(s−) dV (s) +

∫ t

0

V (s−) dC(s)

= 1 +

∫ t

0

C(s−)V (s−) (µ(s)− 1) dH(s)

+

∫ t

0

C(s)V (s−)(1− µ(s))λ(s)1{Td>s} ds

= 1 +

∫ t

0

D(s−) (µ(s)− 1) dM(s).

Since D(s−) is locally bounded and ΛQ(t) < ∞ we conclude that D is a
P-local martingale.

Lemma 13.2.9. Let T ∈ R+. Suppose E[D(T )] = 1 (hence (D(t))t∈[0,T ] is a
martingale), so that we can define an equivalent probability measure Q ∼ P
on FT by

dQ
dP

= D(T ).

Then the process

MQ(t) := H(t)− ΛQ(t ∧ Td), t ∈ [0, T ], (13.9)

is a Q-martingale.

Proof. It is enough to show that MQ is a Q-local martingale. Indeed, ΛQ
is an increasing continuous (and hence predictable) process, (13.9) therefore
the unique Doob–Meyer decomposition of H under Q. Since H is uniformly
integrable, so is MQ ([13, Theorem 1.4.10]).
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From Bayes’ rule we know that MQ is a Q-local martingale if and only if
DMQ is a P-local martingale. Notice that

[D, MQ](t) = ∆D(Td)1{Td≥t} = D(Td−) (µ(Td)− 1) 1{Td≥t}

=

∫ t

0

D(s−) (µ(s)− 1) dH(s).

Integration by parts gives

DMQ(t) =

∫ t

0

D(s−) dMQ(s) +

∫ t

0

MQ(s−) dD(s) + [D,MQ](t)

=

∫ t

0

D(s−) dH(s)−
∫ t

0

D(s−)µ(s)λ(s)1{Td>s} ds

+

∫ t

0

MQ(s−) dD(s) +

∫ t

0

D(s−) (µ(s)− 1) dH(s)

=

∫ t

0

MQ(s−) dD(s) +

∫ t

0

D(s−)µ(s) dM(s),

which proves the claim.

Pricing by the “Martingale Approach”

We remark again that ΛQ is different from ΓQ in general, so that the methods
from Section 13.2.3 do not apply for the above situation. Yet, there is a way
to derive the pricing formulas from Section 13.2.3 under Assumption (D4)
for Q. The detailed analysis can be found in [1, Section 8.3].
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