Present Value (PV) & Future Value (FV)

NOTATION

- $t = time$
- $T =$ number of time periods
- \bullet C = cash-flow
- $r =$ interest rate per period
- $RA = regular annuity (at the end of t, loan payments)$
- AD = annuity due (at the beginning of t, rent)
- $g =$ growth rate

Relationship between Present Value *(PV)* **& Future Value** *(FV)*

$$
FV = PV(I + r)^{T} \Leftrightarrow PV = \frac{FV}{(I+r)^{T}}
$$

FV calculates C at the end of T PV discounts all C at the beginning of T

Example 1:

A player was offered 2 options on his 3-year contract. (a) SEK 2 m. at the end of every year (i.e. year 0, year 1 and year 2). (b) SEK 1.5 m. at the end of year 0 and SEK 5 m. at the end of year 2. Which option is best if $r = 10\%$?

- (a) $FV = 2(1,1)^2 + 2(1,1) + 2 = 2,42 + 2,2 + 2 = 6,62$ m.
- (b) $FV = 1, 5(1,1)^2 + 5 = 1,815 + 5 = 6,815$ m.
- (b) is best because *FV* is higher.

Present Value *(PV)* **& Future Value** *(FV)* **of Annuity**

Example 2:

Triss highest profit one can earn is SEK 25,000 / month, over 25 years (i.e. 300,000 per year). If $r = 8$ %, what is the value of that cash-flow today?

$$
PV = \frac{C}{(1+r)} + \frac{C}{(1+r)^2} + ... + \frac{C}{(1+r)^T}
$$
 (1)

Rewrite (1) as:

$$
PV = \frac{C}{(1+r)}\left[I + \frac{1}{(1+r)} + \frac{1}{(1+r)^2} + \dots + \frac{1}{(1+r)^{T-1}}I\right] \tag{2}
$$

Set
$$
\alpha = \frac{C}{(1+r)}
$$
 and $x = \frac{1}{(1+r)}$ i (2)
\n $PV = \alpha[1 + x + x^2 + ... + x^{T-1}]$ (3)

Multiply (3) by *x*

$$
xPV = \alpha [x + x^2 + x^3 + \dots + x^T]
$$
 (4)

Subtract (4) from (3)

$$
PV - xPV = \alpha[1 - x^T] \implies PV (1 - x) = \alpha[1 - x^T] \implies
$$

$$
PV = \alpha \left[\frac{1 - x^T}{1 - x} \right]
$$
 (5)

Substitute α and x by their simplifications in (2)

$$
PV = \frac{C}{(1+r)} \left[\frac{1 - 1/(1+r)^{T}}{1 - 1/(1+r)} \right] = \frac{C}{(1+r)} \left[\frac{1 - (1+r)^{-T}}{1 - (1+r)^{-1}} \right] =
$$

\n
$$
C \left[\frac{1 - (1+r)^{-T}}{(1+r) - (1+r)^{T}(1+r)^{-1}} \right] = C \left[\frac{1 - (1+r)^{-T}}{(1+r) - 1} \right] =
$$

\n
$$
C \left[\frac{1 - (1+r)^{-T}}{r} \right] \Rightarrow PV = C \left[\frac{1}{r} - \frac{1}{r(1+r)^{T}} \right]
$$
(6)
\nExample 2: PV = 300000 $\left[\frac{1}{0.08} - \frac{1}{0.08(1.08)^{25}} \right] = 3202432$

If $T \to \infty \implies PV = \frac{C}{T}$ $\frac{C}{r}$; it is called "**Perpetuity**" If payments take place **at the beginning of** the period, we multiply (6) by $(1 + r)$; it is called "**Annuity Due**". ---

From (6) and relationship $FV = PV(1 + r)^T$, we can estimate *FV*.

$$
FV = C \left[\frac{I}{r} - \frac{I}{r(I+r)^{T}} \right] (I+r)^{T} = C \left[\frac{(I+r)^{T}}{r} - \frac{(I+r)^{T}}{r(I+r)^{T}} \right] \Rightarrow
$$

$$
FV = C \left[\frac{(I+r)^{T}}{r} - \frac{I}{r} \right]
$$
(7)

Example 3:

An options trader plans to buy a Ferrari in 5 years. The future price of Ferrari in 5 years is estimated to cost SEK 1.2 m. How much must he save per year if $r = 10\%$?

$$
1200000 = C\left[\frac{(1,1)^5}{0,1} - \frac{1}{0,1}\right] \Rightarrow C = 196557 \text{ kr.}
$$

Present Value *(PV)* **and Future Value** *(FV)* **of growing Annuity**

Example 4: A player was offered 2 options on his 10-year contract. (a) SEK 1 m. which will grow by 5 % every year. (b) cash of SEK 7 m. now. Which option is best if $r = 10\%$?

T

$$
PV = \frac{C}{(1+r)} + \frac{C(1+g)}{(1+r)^2} + \dots + \frac{C(1+g)^{T-1}}{(1+r)^T}
$$
 (1)

Rewrite (1) as:

$$
PV = \frac{C}{(1+r)}\left[I + \frac{(1+g)}{(1+r)} + \dots + \frac{(1+g)^{T-1}}{(1+r)^{T-1}}I\right]
$$
(2)

Set
$$
\alpha = \frac{C}{(1+r)}
$$
 and $x = \frac{1+g}{1+r}$ i (2)
\n $PV = \alpha[1 + x + x^2 + ... + x^{T-1}]$ (3)

Multiply (3) by *x*

$$
xPV = \alpha/x + x^2 + x^3 + \dots + x^T J
$$
 (4)

Subtract (4) from (3)

$$
PV - xPV = \alpha[1 - x^T] \implies PV (1 - x) = \alpha[1 - x^T] \implies
$$

$$
PV = \alpha \left[\frac{1 - x^T}{1 - x} \right]
$$
 (5)

Substitute α and x by their simplifications in (2)

$$
PV = \frac{C}{(1+r)} \left[\frac{I - \left[(1+g)/(1+r) \right]^T}{1 - (1+g)/(1+r)} \right] = C \left[\frac{I - (1+g)^T/(1+r)^T}{(1+r) - (1+g)} \right]
$$

$$
\Rightarrow PV = C \left[\frac{I}{(r-g)} - \frac{I}{(r-g)} \frac{(1+g)^T}{(1+r)^T} \right], \text{ for } r > g \tag{6}
$$

Example 4:

$$
PV = 1000000 \left[\frac{1}{(0.1 - 0.05)} - \frac{1}{(0.1 - 0.05)} \frac{(1.05)^{10}}{(1.1)^{10}} \right] = SEK 7.44 \, \text{m}.
$$

(a) is best, because *PV* is higher than 7 m.

If
$$
T \to \infty \implies PV = \frac{C}{r - g}
$$
; it is called "Growing perpetuity"
.................

From (6) and relationship $FV = PV(1 + r)^T$, we can estimate *FV*.

$$
FV = C \left[\frac{1}{(r-g)} - \frac{1}{(r-g)} \frac{(1+g)^T}{(1+r)^T} \right] (1+r)^T \implies
$$

$$
FV = C \left[\frac{(1+r)^T}{r-g} - \frac{(1+g)^T}{r-g} \right] \tag{7}
$$

Compounding and Effective interest rate

Example 5:

Estimate FV of $C = SEK 1000$ (just one cash-flow), after 10 years if the annual interest rate is $r = 8 \%$.

(i) If the interest rate is calculated once per year

$$
FV = PV(I + r)T = 1000(1,08)10 = SEK 2,158.9
$$

(ii) If the interest rate is calculated once per month

$$
FV = PV \left(I + \frac{r}{I2} \right)^{12T} = 1000 \left(I + \frac{0.08}{I2} \right)^{120} = \text{SEK } 2,219.6
$$

(iii) If the interest rate is calculated continuously

$$
FV = PVe^{rT} = 1000(2,71828)^{0,8} = 2,225.5
$$

$$
e = \lim_{n \to \infty} \left[I + \frac{1}{n} \right]^n = 2,71828...(the base of natural logarithms)
$$

$$
n \to \infty
$$

Effective interest rate $= e^{r} - 1$

For instance, for an annual interest rate of 8 %, the effective interest rate is:

$$
2,71828^{0,08} - 1 = 8,329\%
$$