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Abstract  This paper addresses the problem of hedging a portfolio of fixed-income cash-
flows. We first briefly review the traditional duration hedging method, which is heavily used 
by practitioners. That approach is based on a series of very restrictive and simplistic 
assumptions, including the assumptions of a small and parallel shift in the yield curve. We 
know however that large variations can affect the yield-to-maturity curve and that three 
main factors (level, slope and curvature) have been found to drive the dynamics of the yield 
curve. This strongly suggests that duration hedging is inefficient in many circumstances. We 
first show how to relax the assumption of a small shift of the yield-to-maturity curve, by 
including a convexity component in the Taylor expansion of the value function of the bond. 
Then, we show how to relax the assumption of a parallel shift of the yield curve in a fairly 
general framework. In particular, we argue that principal component analysis of interest 
rates changes allows a portfolio manager to regroup risk in a natural way. We conclude by 
analyzing the performance of the various hedging techniques in a realistic situation, and we 
show that satisfying hedging results can be achieved by using a three-factor model for the 
yield curve. 
  



Keywords: interest rate risk, duration hedging, convexity hedging, principal components 
$durations, Nelson and Siegel $durations. 
 

1 Introduction 
  
A stock risk is usually proxied by its beta, which is a measure of the stock sensitivity to 
market movements. In the same vein, bond price risk is, most often, measured in terms of the 
bond interest rate sensitivity, or duration. These is a one-dimensional measure of the bond's 
sensitivity to interest rate movements. There is one complication, however: the value of a 
bond, or a bond portfolio, is affected by changes in interest rates of all possible maturities. In 
other words, there are more than one risk factor, and simple methods based upon a one-
dimensional measure of risk will not allow investors to properly manage interest rate risks.
  
In the world of equity investment, it has long been recognized that there may be more than 
one rewarded risk factors (see for example the seminal work by Fama and French (1992)). A 
variety of more general multi-factor models, economically justified either by equilibrium 
(Merton (1973) or arbitrage (Ross (1976)) arguments, have been applied for risk management 
and portfolio performance evaluation. In this paper, we survey the multi-factor models used 
for interest rate risk management. All these models have been designed to better account for 
the complex nature of interest rate risk. Because it is never easy to hedge the risk associated 
with too many sources of uncertainty, it is always desirable to try and reduce the number of 
risk factors, and identify a limited number of common factors. There are several ways in 
which that can be done and all of them are to some extent arbitrary. In that context, it is 
important to know the exact assumptions one has to make in the process, and try to evaluate 
the robustness of these assumptions with respect to the specific scenario an investor has in 
mind.  
We first briefly review the traditional duration hedging method, which is intensively used by 
practitioners. That approach is based on a series of very restrictive and simplistic 
assumptions, the assumptions of a small and parallel shift in the yield-to-maturity curve. We 
know however that large variations can affect the yield to maturity curve and that three 
main factors (level, slope and curvature) have been found to drive the dynamics of the yield 
curve (see Litterman and Scheinkman (1991)). This strongly suggests that duration hedging 
is inefficient in many circumstances. We first show how to relax the assumption of a small 
shift of the yield-to-maturity curve, by including a convexity term in the Taylor expansion of 
the value function of the bond. Then, we show how to relax the assumption of a parallel shift 
of the yield curve in a fairly general framework. In particular, we argue that principal 
component analysis of interest rates changes allows a portfolio manager to regroup risk in a 
natural way. We conclude by analyzing the performance of the various hedging techniques 
in a realistic situation, and we show that satisfying hedging results can be achieved by using 
a three-factor model for the yield curve. 
  

2 Qualifying Interest Rate Risk 
  
To illustrate the benefits and limits of each model, we consider a simple experiment. A 
portfolio manager aims at hedging the value of a fixed-income portfolio which delivers 
certain (or deterministic) cash-flows in the future, typically cash-flows from straight bonds 
with a fixed coupon rate. Even if these cash-flows are known in advance, the price of this 
bond changes in time, which leaves an investor exposed to a potentially significant capital 
loss. 



  
To fix the notation, we consider at date t a portfolio of fixed-income securities that delivers m 
certain cash-flows iF  at future dates it  for i=1,...,m. The price V of the bond (in % of the face 
value) can be written as the sum of the future cash-flows discounted with the appropriate 
zero-coupon rate with maturity corresponding to the maturity of the cash-flow 
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where ),( ittB  is the price at date t of a zero-coupon bond paying $1 at date it  (also called the 
discount factor) and ),( tttR i −  is the associated zero-coupon rate, starting at date t for a 
residual maturity of tti −  years. We see in equation (1) that the price tV  is a function of m 
interest rate variables ),( tttR i −  and of the time variable t. This suggests that the value of the 
bond is subject to a potentially large number m of risk factors. For example, a bond with 
annual cash-flows up to a 10-year maturity is affected by potential changes in 10 zero-
coupon rates. To hedge a position in this bond, we need to be hedged against a change of all 
of these 10 factor risks. 
  
In practice, it is not easy to hedge the risk of so many variables. We must create a global 
portfolio containing the portfolio to hedge in such a way that the portfolio is insensitive to all 
sources of risk (the m interest rate variables and the time variable t).1 One suitable way to 
simplify the hedging problematic is to reduce the number of risk variables. Our goal is to 
design an optimal strategy to select a minimum number of variables which can adequately 
describe the dynamics of the whole term structure. 
  

3 Hedging with Duration 
  
The whole idea behind duration hedging is to bypass the complication of a multi-
dimensional interest rate risk by identifying a single risk factor, the yield to maturity of the 
portfolio, which will serve as a «proxy» for the whole term structure. 
  
 
3.1 Using a One-Order Taylor Expansion 
  
 
The first step consists in writing the price of the portfolio tV  (in % of the face value) as a 
function of a single source of interest rate risk, its yield to maturity ty  (see equation (2)).  
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In this case, we see clearly that the interest rate risk is (imperfectly) summarized by changes 
of the yield to maturity ty . Of course, this can only be achieved by losing much generality 
and imposing important, rather arbitrary and simplifying assumptions. The yield to maturity 

                                                           
1 In this paper, we do not consider the change of value due to time because it is a deterministic term 
(for details about the time value of a bond, see Chance and Jordan [1996]). We only consider changes 
in value due to interest rate variations. 



is a complex average of the whole term structure, and it can be regarded as the term 
structure if and only if the term structure is flat. 
  
A second step involves the derivation of a Taylor expansion of the value of the portfolio V as 
an attempt to quantify the magnitude of value changes dV that are triggered by small 
changes dy in yield. We get an approximation of the absolute change in the value of the 
portfolio as 
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yield to maturity is known as the $duration of portfolio V, and o(y) a negligible term. 
  
Dividing equation (3) by V(y) we obtain an approximation of the relative change in value of 
the portfolio as  
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yVMD −=  is known as the modified duration of portfolio V. 

  
The $duration and the modified duration enable us to compute the absolute P&L and 
relative P&L of portfolio V for a small change y∆  of the yield to maturity  
 

yDurNLPAbsolute V ∆××≈ $&  
yMDLPRelative ∆×−≈&  

 
where VN  is the face value of the portfolio. 
  
 
3.2 How to Hedge in Practice ? 
  
 
We attempt to hedge a bond portfolio with face value VN , yield to maturity y and price 
denoted by V(y). The idea is to consider one hedging asset with face value HN , yield to 
maturity 1y  (a priori different from y) whose price is denoted by )( 1yH  and build a global 

portfolio with value *V  invested in the initial portfolio and some quantity φ  of the hedging 
instrument.  
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The goal is to make the global portfolio insensitive to small interest rate variations. Using 
equation (3) and assuming that the yield to maturity curve is only affected by parallel shifts 
so that 1dydy = , we obtain 
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which translates into  
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The optimal amount invested in the hedging asset is simply equal to the opposite of the ratio 
of the $duration of the bond portfolio to hedge by the $duration of the hedging instrument, 
when they have the same face value. 
  
Remark 1  When the yield curve is flat which means that 1yy = , we can also use the Macaulay 
Duration to construct the hedge of the instrument. In this particular case, the hedge ratio φ  given by 
equation (5) is also equal to  
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where the Macaulay duration D(V(y)) is defined as  
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In practice, it is preferable to use futures contracts or swaps instead of bonds to hedge a bond 
portfolio because of significantly lower costs and higher liquidity. For example, using futures 
as hedging instruments, the hedge ratio fφ  is equal to  
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where FN  is the size of the futures contract. CTDDur$  is the $duration of the cheapest to 
deliver as CF is the conversion factor. 
  
Using standard swaps, the hedge ratio sφ  is  
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where SN  is the nominal amount of the swap and SDur$  is the $duration of the fixed-
coupon bond contained in the swap.2  
 
Duration hedging is very simple. However, one should be aware that the method is based 
upon the following, very restrictive, assumptions:  
 
- It is explicitly assumed that the value of the portfolio could be approximated by its first 

order Taylor expansion. This assumption is all the more critical as the changes of the 
interest rates are larger. In other words, the method relies on the assumption of small 
yield to maturity changes. This is why the hedge portfolio should be re-adjusted 
reasonably often. 

- It is also assumed that the yield curve is only affected by parallel shifts. In other words, 
the interest rate risk is simply considered as a risk on the general level of interest rates. 

 
In what follows, we attempt to relax both assumptions to account for more realistic changes 
in the term structure of interest rates. 
 

4 Relaxing the Assumption of a Small Shift 
 
  
We have argued that $duration provides a convenient way to estimate the impact of a small 
change dy in yield on the value of a bond or a portfolio. 
 
  
4.1 Using a Second-Order Taylor Expansion 
  
Duration hedging only works for small yield changes, because the price of a bond as a 
function of yield is nonlinear. In other words, the $duration of a bond changes as the yield 
changes. When a portfolio manager expects a potentially large shift in the term structure, a 
convexity term should be introduced; the price approximation can be improved if one can 
account for such nonlinearity by explicitly introducing a convexity term. Let us take the 
following example to illustrate that point. 
  
Example 1  We consider a 10-year maturity and 6% annual coupon bond traded at par. Its modified 
duration and convexity are equal to 7.36 and 57.95, respectively. We assume that the yield to maturity 
goes suddenly from 6% to 8% and we re-price the bond after this large change: 
  
The new price of the bond, obtained by discounting its future cash-flows, is equal to 86.58$, and the 
exact change of value amounts to -$13.42 (=$86.58-$100). 
  
Using a first-order Taylor expansion, the change in value is approximated by -$14.72 (= -
$ 02.036.7100 ×× ); we overestimate the decrease in price by $1.30. 
  
We conclude that the first-order Taylor expansion gives a good approximation of the bond price change 
when the variation of its yield to maturity is small. 
  

                                                           
2 To see concrete examples of hedges constructed with futures contracts and swaps, we refer to 
Martellini, Priaulet and Priaulet (2003). 
 



If one is concerned about the impact of a larger move dy on a bond portfolio value, one needs 
to write (at least) a second-order version of the Taylor expansion  
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where the quantity V" also denoted $Conv(V(y)) is known as the $convexity of the bond V. 
  
Dividing equation (8) by V(y) we obtain an approximation of the relative change in value of 
the portfolio as  
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where RC(V(y)) is called the (relative) convexity of portfolio V. 
  
We now reconsider the previous example and approximate the bond price change by using 
equation (8). The bond price change is now approximated by -$13.56 (=-
14.72+( 2/02.095.57100 2×× ). We conclude that the second-order approximation is well 
suited for larger interest rate deviations. 
  
 
4.2 Hedging Method 
  
 
One needs to introduce two hedging assets with value denoted by 1H  and 2H , respectively, 
in order to hedge interest rate risk at the first and second order. The goal is to obtain a 
portfolio that is both $duration neutral and $convexity neutral. The optimal quantity 
( )21,φφ of these two assets to hold is then given by the solution to the following system of 
equations, at each date, assuming that 21 dydydy ==  
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5 Relaxing the Assumption of a Parallel Shift 
 
  
5.1 A Common Principle 
  
 
A major shortcoming of single-factor models is that they imply all possible zero-coupon rates 
are perfectly correlated, making bonds redundant assets. We know, however, that rates with 
different maturities do not always change in the same way. In particular, long term rates 
tend to be less volatile than short term rates. An empirical analysis of the dynamics of the 
interest rate term structure suggests that two or three factors account for most of the yield 
curve changes. They can be interpreted, respectively, as a level, slope and curvature factors 
(see below). This strongly suggests that a multi-factor approach should be used for pricing 
and hedging fixed-income securities. 
  
There are different ways to generalize the above method to account for non parallel 
deformations of the term structure. The common principle behind all techniques is the 
following. Let us express the value of the portfolio using the whole curve of zero-coupon 
rates, where we now make explicit the time-dependency of the variables  
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Hence, we consider tV  to be a function of the zero-coupon rates ),( tttR i −  , which will be 

denoted by i
tR  in this section for simplicity of exposition. The risk factor is the yield curve as 

a whole, a priori represented by m components, as opposed to a single variable, the yield to 
maturity y. The whole point is to narrow down this number of factors in a least arbitrary 
way. The starting point is, as usual, a (second-order) Taylor expansion of the value of the 
portfolio. We treat this as a function of different variables ),...,( 1 m

ttt RRVV =   
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If we merely consider the first-order terms, we get 
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Let us further assume that the investor is willing to use as many hedging assets jH  as there 
are different risk factors, which is m in that case. This assumption is quite restrictive because, 
as we have already said, it is not very convenient, and may prove to be very expensive, to 
use more than a few hedging assets, and will be relaxed below. The price of each of these 
hedging assets will obviously also be a function of the different rates i

tR . This is precisely 
why we may use them as hedging assets! We write for j=1,...,m 
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Then we construct our global hedge portfolio (for simplicity of exposition, we assume that 
the hedging assets and the portfolio to hedge have the same face value equal to $1) 
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such that, up to the first order  
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or equivalently  
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A sufficient and necessary condition to have 0* =tdV  up to a first order approximation for 

any set of (small) variations i
tdR  is to take for any i 
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Solving this linear system for j

tφ , j = 1, ..., m for each trading date gives the optimal hedging 
strategy. 
If we now denote  
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we finally have the following system 
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the solution of which is given by  
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if we further assume that the matrix '
tH  is invertible, which means that no hedging asset 

price may be a linear combination of the other m-1. 
  
Remark 2  It sometimes happens that the hedging assets value depends on risk factors slightly 
different from those affecting the hedged portfolio which is called correlation risk or cross-hedge risk. 
Let us assume for the sake of simplicity that there is only one risk factor which we denote tR . We 
write 
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where '

tR  is a priori (slightly) different from tR . Ex-ante one should always try to minimize that 
difference. Ex-post, the question is: once the hedging asset has been selected, what can be done a 
posteriori} to improve the hedge efficiency ? We have  
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In that case, the usual prescription  
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will fail to apply successfully because '

tdR  may be different from tdR , which is precisely what 
correlation risk} is all about. One may handle the situation in the following way. Let us first consider 
the convenient situation when one could express '

tR  as some function of tR   
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In that case, we have  
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Then  
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Hence, we may keep the usual prescription provided that we amend it in order to account for the 
sensitivity of one factor with respect to the other. Unfortunately, it is not generally possible to express 

'
tR  as some function of tR . However, a satisfying solution may be found using some statistical 

estimation of the function ( )tRf  . We may, for example, assume a simple linear relationship3  

                                                           
3 Because of cointegration and non-stationarity of series, it is better to consider a linear relation in variations 
rather than in level. We should write 
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where tε  is the usual error term, and the parameters are estimated using standard statistical tools. 
Then, taking the error term equal to zero, we get 
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Hence, we should amend the hedge ratio in the following way  
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Of course, the method is as accurate as the quality of the approximation (measured through the 
squared correlation factor). This will change the hedge strategy and improve the efficiency of the 
method in case a is significantly different from 1. 
  
In practice, one should consider a more realistic case, namely a situation in which the hedger 
does not want to use as many hedging assets as there are different risk factors. The principle 
is invariably to aggregate the risks in the most sensible way. There is actually a systematic 
method to do so using results from a Principal Components Analysis (PCA) of the interest 
rates variations, as will now be explained. This is the state-of-the-art technique for dynamic 
interest rate hedging. 
 
5.2 Regrouping Risk Factors Through a Principal Component Analysis 
  
The purpose of PCA is to explain the behavior of observed variables using a smaller set of 
unobserved implied variables. From a mathematical standpoint, it consists of transforming a 
set of m dependent variables into a reduced set of orthogonal variables which reproduce the 
original information present in the dependent structure. This tool can yield interesting 
results, especially for the pricing and risk management of correlated positions. Using PCA 
with historical zero-coupon rate curves (both from the Treasury and Interbank markets), it 
has been observed that the first three principal components of spot curve changes explain the 
main part of the returns variations on fixed-income securities over time. Table 1 summarizes 
the results of some studies on the topic of PCA of spot interest curves led both by academics 
and practitioners. These include studies by Barber and Copper (BC), Bühler and 
Zimmermann (BZ), D'Ecclesia and Zenios (DZ), Golub and Tilman (GT), Kärki and Reyes 
(KR), Lardic, Priaulet and Priaulet (LPP), Litterman and Scheinkman (LS), Martellini and 
Priaulet (MP). 
  

Table 1 - Some PCA Results 
 

Authors Country (Period) Range Factors % of Explanation4 
LS (1991) USA (1984-88) 6M-18Y 3 88.04/8.38/1.97 
DZ (1994) Italy (1988-92) 6M-7Y 3 93.91/5.49/0.42 
KR (1994) Germ./Switz./USA (1990-94) 3M-10Y 3 total : 97/98/98 

                                                           
4 For example «88.04/8.38/1.97» means that the first factor explains 88.04% of the yield curve deformations, the 
second 8.38%, and the third 1.97%. Sometimes, we also provide the total amount by adding up these terms. 



BC (1996) USA (1985-91) 1M-20Y 3 80.93/11.85/4.36 
BZ (1996) Germany 

Switzerland (1988-96) 
 

1M-10Y 
 

3 
71/18/4 
75/16/3 

GT (1997) JP Morgan Risk Metrics – 
09/30/96 

 
3M-30Y 

3 92.8/4.8/1.27 

MP (2000) France (1995-98) 1M-10Y 3 66.64/20.52/6.96 
 
 

LPP (2001) 

Belgium 
France 

Germany   
Italy 

UK (1998-2000) 
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These three factors, currently named level, slope and curvature, are believed to drive interest 
rate dynamics and can be formulated in terms of interest rate shocks, which can be used to 
compute principal components durations. 
  
We express the change ),(),1(),( kkk tRtRtdR θθθ −+=  of the zero-coupon rate ),( ktR θ  with 
maturity kθ  at date t such as 
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which amounts to individually applying a, say, 1% variation to each factor, and computing 
the absolute sensitivity of each zero-coupon yield curve with respect to that unit variation. 
These sensitivities are commonly called the principal component $durations. 
  

l
tC  is the value of the thl  factor at date t, and tkε  is the residual part of ),( ktdR θ  that is not 

explained by the factor model. 
  
One can easily see why this method has become popular. Its main achievement is that it 
allows for the reduction of the number of risk factors without losing much information, i.e., 
to proceed in the least possible arbitrary way. Since these three factors (parallel movement, 
slope oscillation, and curvature), regarded as risk factors, explain most of the variance in 
interest rate variation, we may now use not more than three hedging assets. We write now 
the changes of value of a fixed-income portfolio as 
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If we want to set the (first order) variations of the hedged portfolio *

tV  to zero for any 
possible evolution of the interest rates ),( ktdR θ , or equivalently for any possible evolution of 

the l
tC , a sufficient condition for this is to take for l = 1,2,3  
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that is neutral principal component $durations. 
  
Finally, at each possible date, we are left with three unknowns j

tφ  and three linear equations. 
The system may be represented in the following way. Let us introduce  
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We then have the following system 
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The solution is given by 
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In practice, we need to estimate the principal components $durations used at date t. They are 
derived from a PCA performed on a period prior to t, for example [t-3 months, t]. Hence, the 
result of the method is strongly sample-dependent. In fact and for estimation purposes, it is 
more convenient to use some functional specification for the zero-coupon yield curve that it 
is consistent with results from a PCA. 
  
5.3 Hedging Using a Three Factors Model of the Yield Curve 
  
The idea here consists of using a model for the zero-coupon rate function. We detail below 
the Nelson and Siegel and the Svensson (or extended Nelson and Siegel) models. One may 
also alternatively use the Vasicek (1977) model, the extended Vasicek model, or the CIR 
(1985) model, among many others.5 
  
 
5.3.1 Nelson-Siegel and Svensson Models 
  
Nelson and Siegel (1987) have suggested to model the continuously compounded zero-
coupon rate ),0( θCR  as  
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a form that was later extended by Svensson (1994) as  
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where 
),0( θCR  is the continuously compounded zero-coupon rate at time zero with maturity θ . 

0β  is the limit of ),0( θCR  as θ  goes to infinity. In practice, 0β  should be regarded as a long-
term interest rate.  

1β  is the limit of ),0(0 θβ CR−  as θ  goes to 0. In practice, 1β  should be regarded as the short 
to long term spread.  

2β  and 3β  are curvature parameters.  

1τ  and 2τ  are scale parameters that measures the rate at which the short-term and medium-
term components decay to zero. 
   
As shown by Svensson (1994) the extended form allows for more flexibility in yield curve 
estimation, in particular in the short-term end of the curve, because it allows for more 
complex shapes such as U-shaped and hump-shaped curves. The parameters 

3210 ,, ββββ and  are estimated daily by using an OLS optimization program, which consists, 
for a basket of bonds, in minimizing the sum of the squared spread between the market price 
and the theoretical price of the bond as obtained with the model. 

                                                           
5 See Martellini and Priaulet (2000) for details about these zero-coupon functions. 



  
We see that the evolution of the zero-coupon rate ),0( θCR  is entirely driven by the evolution 
of the beta parameters, the scale parameters being fixed. In an attempt to hedge a bond, for 
example, one should build a global portfolio with the bond and a hedging instrument, so 
that the portfolio achieves a neutral sensitivity to each of the beta parameters. Before the 
method can be implemented, one therefore needs to compute the sensitivities of any 
arbitrary portfolio of bonds to each of the beta parameters. 
  
Consider a bond which delivers principal or coupon and principal denoted iF  at dates iθ . Its 
price 0P  at date t=0 is given by the following formula 
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In the Nelson and Siegel (1987) and Svensson (1994) models, we can calculate at date t=0 the 
$durations ii PD β∂∂= /0  for i = 0,1,2,3 of the bond P to the parameters 3210 ,, ββββ and . 
They are given by the following formulas6 
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 (10) 

  
An example of calculation of the level, slope and curvature $durations is given in Martellini, 
Priaulet and Priaulet (2003).7 
  
7.2 Hedging Method 
  
The idea of the hedge in the Svensson (1994) model is to create a global portfolio with: 
  
- the bond portfolio to hedge whose price and face value are denoted by P and PN  
- four hedging instruments whose prices and face values are denoted by iG  and 

iGN  for i 
= 1,2,3 and 4. 

and to make it neutral to changes of parameters 3210 ,, ββββ and . 
  
We therefore look for the quantities 3210 ,, qandqqq  to invest, respectively, in the four 
hedging instruments 3210 ,, GandGGG  that satisfy the following linear system  
 

                                                           
6 Of course, $duration 3D is only obtained in the Svensson (1994) model. 
7 See also Barrett, Gosnell and Heuson (1995) and Willner (1996). 
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In the Nelson and Siegel (1987) model, we only have three hedging instruments because 
there are only three parameters. Then 04 =q , and the last equation of system (11) disappears. 
 
 
6 Comparative Analysis of Various Hedging Techniques 
  
 
We now analyze the hedging performance of three methods, the duration hedge, the 
duration/convexity hedge and the Nelson-Siegel $durations hedge in the context of a 
specific bond portfolio. 
At date t=0, the continuously compounded zero-coupon yield curve is described by the 
following set of parameters of the Nelson and Siegel model8  
 

0β  1β  2β  τ  
8% -3% -1% 3 

 
This corresponds to a standard increasing curve. We consider a bond portfolio whose 
features are summarized in Table 2. The price is expressed in % of the face value which is 
equal to $100,000,000. We compute the yield to maturity (YTM), the $duration, the 
$convexity, and the level, slope and curvature $durations of the bond portfolio as given by 
equation (10). 
  

Table 2 - Characteristics of the Bond Portfolio to Be Hedged 
 

Price YTM $Duration $Convexity Level 

0D  
Slope 

1D  
Curvature 

2D  
972.376 7.169% -5709.59 79662.17 -6118.91 -1820.02 -1243.28 

 
  
To hedge the bond portfolio, we use three plain vanilla 6-month Libor swaps whose features 
are summarized in Table 3. $duration, $convexity, level, slope and curvature $durations are 
those of the fixed coupon bond contained in the swap. The principal amount of the swaps is 
$1,000,000. They all have an initial price of zero. 
  

                                                           
8 Note that we can obtain the annualized compounded zero-coupon yield curve by using the 
following equation  

[ ] 1),(exp),( −= θθ tRtR C  

where ),( θtRC  is the continuously compounded zero-coupon rate at date t with maturity θ , and 
),( θtR  its annualized compounded equivalent. 



Table 3 - Characteristics of the Swap Instruments 
 

Maturity Swap Rate $Duration $Convexity Level 

0D  
Slope 

1D  
Curvature 

2D  
2 years 5.7451% -184.00 517.09 -194.55 -142.66 -41.66 
7 years 6.6717% -545.15 3809.39 -579.80 -242.66 -166.22 

15 years 7.2309% -897.66 11002.57 -948.31 -254.58 -206.69 
 

 
We consider that the bond portfolio and the swap instruments present the same default risk 
so that we are not concerned with that additional source of uncertainty, and we can use the 
same yield curve to price them. This curve is the one described above with the Nelson and 
Siegel parameters. 
  
To measure the performance of the three hedge methods, we assume 10 different movements 
for the yield curve. These 10 scenarios are obtained by assuming the following changes of the 
beta parameters in the Nelson and Siegel model: 
  
- small parallel shifts with %1.00 +=β  and %1.00 −=β .  
- large parallel shifts with %10 +=β  and %10 −=β . 
- decrease and increase of the spread short to long-term spread with %11 +=β  and 

%11 −=β . 
- curvature moves with %6.02 +=β  and %6.02 −=β .  
- flattening and steepening moves of the yield curve with ( %4.00 −=β , %2.11 +=β ) and 
( %4.00 +=β , %2.11 −=β ). 
  
The six last scenarios, which represent non-parallel shifts, are displayed in Figures 1, 2 and 3. 
 

4,00%

4,75%

5,50%

6,25%

7,00%

7,75%

0 5 10 15 20 25 30

Maturity

Z
er

o
-C

o
u

p
o

n
 R

at
e

Initial Curve

beta1 =+1%

beta1 = -1%

 



Figure 1 - New Yield Curve after an Increase and a Decrease of the Slope Factor ( %11 +=β ) 
and ( %11 −=β ) 
 

4,75%

5,50%

6,25%

7,00%

7,75%

0 5 10 15 20 25 30

Maturity

Z
er

o
-C

o
u

p
o

n
 R

at
e

Initial Curve

beta2 = +0,6%

beta2 = -0,6%

 
 
Figure 2 - New Yield Curve after an Increase and a Decrease of the Curvature Factor 
( %6.02 +=β ) and ( %6.02 −=β ) 
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Figure 3 - New Yield Curve after a Flattening Movement ( %4.00 −=β , %2.11 +=β ) and a 
Steepening Movement ( %4.00 +=β , %2.11 −=β ) 
  
Duration hedging is performed with the 7-year maturity swap using equation (7). We have 
to sell 1047 swaps. Duration/Convexity is performed with the 7- year and 15-year maturity 
swaps using equation (9). We have to buy 337 7-year maturity swaps and to sell 841 15-year 
maturity swaps. Nelson and Siegel $Durations hedge is performed with the three swaps 
using equation (11). We have to sell 407 2-year maturity swaps, to buy 219 7-year maturity 
swaps and to sell 696 15-year maturity swaps. Results are given in Table 4, where we display 
the change in value of the global portfolio (which aggregates the change in value on the bond 
portfolio and the hedging instruments) assuming that the yield curve scenario occurs 
instantaneously. This change of value can be regarded as the hedging error for the strategy. 
It would be exactly zero for a perfect hedge. 
  
Table 4 - Hedging Errors in $ of the Three Different Methods, Duration, Duration/Convexity 

and Nelson and Siegel $Durations 
 

Yield Curve Scenario No Hedge Duration Duration/Convexity Nelson-Siegel 
$Durations 

%1.00 +=β  -6,076,494 -25,627 -97,826 8,573 

%1.00 −=β  6,161,872 71,692 97,435 2,013 

%10 +=β  -57,176,627 1,605,853 -1,050,770 475,891 

%10 −=β  65,743,922 3,028,609 1,026,043 599,622 

%11 +=β  -17,982,901 7,103,063 -4,934,261 15,557 

%11 −=β  18,421,236 -7,311,245 5,001,463 -4,959 

%6.02 +=β  -7,410,125 2,972,451 -400,339 1,131 

%6.02 −=β  7,509,714 -2,991,594 381,400 -9,038 

%4.00 +=β , %2.11 −=β  -2,438,405 -8,665,316 5,661,669 90,991 

%4.00 −=β , %2.11 +=β  2,839,537 9,024,298 -5,474,877 94,636 

 
  
The value of the bond portfolio is equal to $972,375,756.9 With no hedge, we clearly see that 
the loss in portfolio value can be significant in all adverse scenarios. 
  
As expected, duration hedging appears to be effective only for small parallel shifts of the 
yield curve. The hedging error is positive for large parallel shifts because of the positive 
convexity of the portfolio. For non parallel shifts, the loss incurred by the global portfolio can 
be very significant. For example, the portfolio value drops by $7,311,245 in the pure slope 
scenario when %11 −=β , and $8,665,316 in the steepening scenario. 
  
As expected, duration/convexity hedge is better than duration hedge when large parallel 
shifts occur. On the other hand, it appears to be ineffective for all other scenarios, even if the 
hedging errors are still better (smaller) than those obtained with duration hedging. 
  

                                                           
9 Opposite results in terms of hedging errors would be obtained if the investor was short the 
bond portfolio. 



Finally, we see that the Nelson and Siegel $durations hedge is a very reliable method for all 
kinds of yield curve scenario. In all cases, the hedging error appears to be negligible when 
compared to the value of the bond portfolio to hedge. 
  

8 Conclusion 
 
  
This paper addresses the problem of hedging a portfolio of fixed-income cash-flows. Because 
there is ample empirical evidence that changes in the yield curve can be large and multi-
dimensional, we argue that simple duration hedging techniques achieve limited efficiency in 
most market conditions. We explain how to relax the assumptions of small and parallel shifts 
of the yield curve, implicit in duration hedging, and show that satisfying hedging results can 
be achieved by using instead a three-factor model for the yield curve. Besides, by 
implementing semi-hedged strategies, this model enables a portfolio manager to take specific 
bets on particular changes of the yield curve while being hedged against the others (see 
Martellini, Priaulet and Priaulet (2002) for such an implementation in the case of the butterfly 
strategy). 
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