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Abstract

This paper points out that the fundamental partial differential equation (PDE)

implies that the drifts of the underlying processes are irrelevant, regardless whether the

state factors are tradable or not. Since the simple boundary condition for default-free

discount bonds can be satisfied by a linear discount function, the variances and covariances

of the underlying processes are also irrelevant. This paper proves that the linear solution is

unique, which indicates that the bond market has an unconditionally arbitrage-free

equilibrium. The unique linear solution, namely, the Exponential Polynomial (EP) model,

is equivalent to the Exponential Spline model of Vasicek and Fong (1982) without spline

fitting. The empirical results support the model.

JEL Classification: G12.
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A Unique Unconditionally Arbitrage-Free Solution to
the Term Structure of Interest Rates

The term structure of interest rates can be defined as a discount function of a

vector of state factors, P x s t s t( , , ),  ≥ , which describes the prices of default-free discount

bonds of all possible maturities. Under the usual perfect-market assumptions, absence of

riskless arbitrage requires the discount function to satisfy a fundamental partial differential

equation (PDE), which has been derived by many authors, such as Langetieg (1980), Cox,

Ingersoll, and Ross (CIR) (1981) and (1985). The fundamental PDE is unspecified

because it does not require identification of the underlying state factors, and the

coefficients of the PDE are neither specified nor restricted by the arbitrage argument.

Because the absence of arbitrage simply requires the existence of the market prices

of risk, the drifts of the underlying processes are irrelevant, regardless whether the

underlying factors are tradable or not. Bond pricing has a unique advantage over option

pricing because the boundary condition, 1),(),,( =≡ ssPssxP , is so simple that it can be

satisfied by a linear discount function. Hence, the variances and covariances of the

underlying processes are also irrelevant. Moreover, since the boundary condition simply

stipulates bond issuer to pay the face value of the bond at maturity, regardless of the

economic conditions, the underlying factors can be specified after the solution is found.

Hence, the bond market should have an unconditionally arbitrage-free equilibrium, which

is completely independent of the identity of the underlying factors and their stochastic

processes.
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This paper proves that the unconditionally arbitrage-free equilibrium is unique,

because the linear solution to the unspecified PDE and the boundary condition is unique.

The unique solution is a linear combination of some exponential functions, which is

referred to as the Exponential Polynomial (EP) model, because it is equivalent to the

component function of the Exponential Spline model of Vasicek and Fong (1982) defined

on a subinterval of the maturity range. In other words, the EP model is equivalent to the

Vasicek-Fong model without spline fitting, i.e., with the subinterval stretched to the entire

maturity range [ , )0 ∞ .

Intuitively, the EP model represents a term structure space that is linearly spanned

by its state factors on an exponential basis that consists of a number of distinct exponential

functions. Since the boundary condition does not contractually specify any state factor, the

state factors are, in fact, defined relatively to a given exponential basis. The stochastic

processes of the state factors can be objectively identified by empirical studies because

they are unrestricted by the solution. As long as the basis is time invariant, the term

structure shift is guaranteed arbitrage-free within the linear space. Using the monthly US

treasury security data in the CRSP Bond File, our empirical investigation supports the

existence of a time-invariant basis.

The traditional methodology has misinterpreted the unspecified first-order

coefficients of the fundamental PDE. Many authors thought that, since the underlying

factors are not tradable, there could be extra freedom to manipulate the components of

first-order coefficients, i.e., the drifts and the market prices of risk. They failed to realize

that a solution to such a specified, i.e., restricted, PDE would force the bond market

equilibrium to be conditional on some imaginary constraints.
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Vasicek (1977) first designated the instantaneous interest rate (spot rate) as a state

factor. The existing single-factor models, such as Vasicek (1977) and CIR (1985), force

the bond market equilibrium to be conditional on the spot rate following their

corresponding processes. Since the spot rate is just the limiting value of the derivative of

the discount function, it is by definition a function of the underlying factors in a

multi-factor setting. Hence, any assumed spot rate process is equivalent to a severe

constraint imposed on the underlying factors. As a result, the existing two-factor models

are just marginal extensions of the single-factor models, because the second factor is only

part of the spot rate process. For example, the two-factor model of Richard (1978) has

simply decomposed the nominal spot rate into the real spot rate and inflation rate. For

another example, the second factor in Longstaff and Schwartz (1992) is just the volatility

of the spot rate. Brennan and Schwartz (1979) wanted to introduce the long rate as the

second factor, but could not find a closed form solution.

Since there is no reason why the bond market equilibrium should be conditional on

some imaginary spot rate process, it is not surprising that none of the existing solutions

fits the observed term structure. As further solutions seem unlikely, many academics have

turned to the new arbitrage-pricing methodology proposed by Ho and Lee (1986), and

Heath, Jarrow, and Morton (HJM 1992). HJM (1992) criticized the traditional

methodology for manipulating the drifts and market prices of risk. They removed the spot

rate constraint and allowed multiple factors that do not necessarily have specific economic

meanings. However, by “taking the current term structure as given”, this methodology

has, in fact, presumed that the current bond market equilibrium cannot be represented by

any equilibrium model.
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The new methodology argues that the directly imposed stochastic structure of

forward rates can be consistent with the current term structure because its parameters can

be calibrated from the taken-as-given current term structure. However, calibration is

always possible regardless of the specification of the stochastic structure. This

methodology argues that, under certain conditions, especially if the drift function follows a

peculiar form, there exists a unique equivalent martingale probability measure. However,

whether a P-measure has a unique equivalent Q-measure is strictly within the context of

the Girsanov Theorem on changing the probability measure, which cannot justify the

arbitrariness of the exogenous specification of the stochastic structure, or the P-measure.

Essentially, HJM (1992) attempted to drop out the market prices of risk by changing the

probability measure. However, it is the drifts that are irrelevant.

From a more general perspective, arbitrage pricing in a perfect market is a high

standard for asset pricing, because otherwise any pricing scheme may be easily justified as

arbitrage-free by certain constraints, whether realistic or imaginary. Since the bond

market, at least the US treasury security market, is already reasonably efficient and will be

more efficient, we have already assumed away all realistic market imperfections, such as

transactions costs, taxes, and restrictions on short sales. Hence, there is no reason why the

arbitrage equilibrium of the bond market should be forced to be conditional on some

imaginary constraints.

The rest of the paper is organized as follows. Section I reviews the derivation of

the PDE and discusses the methodological problems in the existing solutions. Section II

derives the unique linear EP solution. Section III discusses parameter specification and

empirical estimation. Section IV presents empirical results, and Section V concludes.
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I. The Fundamental Partial Differential Equation

This section reviews the derivation of Langetieg (1980) because its expression is

easy to follow. The CIR (1981) derivation is similar except that it presumes the existence

of the instantaneous interest rate.

Suppose the discount function can be described by a state-factor function,

P x t s t( ( ), , ) , which describes the discount bond prices at time t with terminal payoff $1 at

their respective maturity dates s t≥ . If the state vector, x t x t x tn( ) [ ( ), , ( )]= 1 L , follows a

joint Ito process,

dx x t t dt x t t dz i ni i i i= + =µ σ( ( ), ) ( ( ), ) , , ,  1 L , (1)

the instantaneous change of the bond price can be expressed by Ito’s formula as:
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Notice that both the identity of the underlying factors and the coefficients of their

stochastic processes are unspecified.

Let P  be a vector of n + 2  bond prices of different maturities, the above equation

can be expressed in vector form as

d dt dzt i x i
i

n

i
P P P= +

=
∑σ

1

   . (3)

Assume the bond market is perfect in the usual sense, such as the bonds are perfectly

divisible and tradable continuously without transactions costs, taxes, and restrictions on

short sales. In such a market, any bond portfolio, represented by vector w, that requires
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zero investment ( w'P = 0 ) and bears zero risk ( w ix i
' ,P = ∀0  ), must earn exactly zero

return ( w d w t' 'P P= = 0). Hence, the n + 2  vectors, 
ixt PPP  and , , , must be linearly

dependent. The mathematical definition of linear dependency simply means that there exist

2+n  scalars, not all zero, such that the linear combination of the 2+n  vectors is a zero

vector.

Since there can be at most 1+n  independent scalars, the linearity can be

expressed, without loss of generality, as

φ φ σ0
1

P P P= +
=
∑t i i x
i

n

i
. (4)

The 1+n  scalars, nittxi ,,1 ,0  ),),(( L=φ , can be arbitrary functions of the state factors

and the current time t, but not the maturity date s. Hence, the well-known fundamental

PDE for bond pricing with arbitrary maturity is just an arbitrary row of equation (4),

which can be re-arranged to
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It is clear that the PDE is a logical result of the perfect-market assumptions. The arbitrage

argument is just the mathematical definition of linear dependency, which is valid regardless

of the specification of the underlying factors and their stochastic processes.

The scalar function )),((0 ttxφ  deserves a close examination. Langetieg (p. 80)

stated that, “Assuming there is a riskless instantaneous interest rate, denoted by r, then

φ0 = r ”. In CIR (1981), this scalar is denoted by r from the very beginning because the
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authors have presumed the existence of the instantaneous interest rate. However, there is

no reason to assume the existence of the instantaneous interest rate, because the term

structure discount function has already described the pricing of default-free discount

bonds of all maturities. By definition, the instantaneous interest rate is nothing more than

the limiting value of the default-free discount function:

r x t
P x t s t

t s t

( , )
( ( ), , )

=
=

∂
∂

 

 
. (6)

It exists because any bond can, at least theoretically, be traded up to the moment of its

maturity. Like any bond price of arbitrary maturity is a function of the underlying factors,

so is the instantaneous interest rate.

The scalars functions, φ i x t t i n( ( ), ), , ,  = 1 L , are well known as the market prices

of risk for the state factors. Langetieg (p. 80) stated that, “If an underlying stochastic

factor xi  is tradable, then iiii x σφµφ /)( 0−= . When xi  is not tradable, then φ i  must be

empirically estimated or theoretically specified”. This is a fatal misinterpretation of the

PDE, because the only correct interpretation should be that the solution to the PDE

should not be dependent on the drifts of the underlying processes. Notice that the market

price of risk )),(( ttxiφ is part of the first-order coefficient for factor i, which can be

denoted as a single coefficient function,

η µ φ σi i i ix t t x t t x t t x t t( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )= − . (7)

If the factor is tradable, the first-order coefficient is uniquely determined as ii x0φη = ,

hence, iiii x σφµφ /)( 0−=  regardless the functional form of the drift. In this case, we say

that the drift is irrelevant, because whatever it might be, it will be complemented by the
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market price of risk to meet the unique first-order coefficient ii x0φη = . When the

underlying factor is not tradable, the first-order coefficient )),(( ttxiη  should be

determined from solving the unspecified PDE. If a solution is found, the first-order

coefficient is obviously determined from the solution process. Whatever the drift might be,

the market price of risk would complement the drift to meet the first-order coefficient,

exactly like the case where the factor is tradable. Hence, the drifts of the underlying

processes are irrelevant under any circumstance.

The traditional methodology thought that the nontradable factors of the term

structure offered some extra freedom for manipulating the components of the first-order

coefficients. For example, Langetieg (1980) arbitrarily assumed the state factors following

a jointly elastic random walk, and the corresponding market prices of risk being constant,

without even slightest knowledge of the state factors. There is, of course, no hope to find

any meaningful solution from such an arbitrarily specified, i.e., restricted, PDE.

Other authors thought that, by exogenously designating some seemingly

meaningful economic factors, the drifts and the market prices could still be manipulated.

Unfortunately, nothing seems eligible except for the instantaneous interest rate (spot rate).

The presumption of the existence of the instantaneous interest rate has led Vasicek (1977)

and CIR (1985) to manipulate the spot rate process and the market price of risk, and

found two well-known single-factor closed-form solutions. Unfortunately, these

celebrated solutions have also marked the beginning of the end of the traditional

methodology. Since the spot rate is a function of the underlying factors in a multi-factor

case, any assumption on the spot rate process is equivalent to a constraint on the

underlying factors. This constraint is apparently so severe that the second factor in the
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existing two-factor closed-form solutions, such as Richard (1978) and Longstaff and

Schwartz (1992), has been nothing but part of the spot rate process, as mentioned early.

In option pricing, since the nonlinear option boundary cannot be satisfied by any

linear solution, the volatility of the underlying asset is relevant. However, bond pricing has

a unique advantage over option pricing, because its simple boundary condition can be

satisfied by a linear discount function. Since the linearity implies that all the variances and

covariances of the underlying processes are irrelevant, and the drifts are already irrelevant,

the existence of a linear solution indicates the existence of an unconditionally

arbitrage-free equilibrium in the bond market. Unlike the case of option pricing where the

underlying asset is contractually specified in the option boundary as a state factor, the

bond boundary does not specify any state factor. Hence, there is no reason to imagine

some stochastic processes of unknown factors in order to force some nonlinear solutions.

The next section proves that the linear solution not only exists, but is also unique.

II. The Unique Unconditionally Arbitrage-free Solution

The existing solutions have all been time-homogenous in the sense that

) ),(()),((),),(( TtxPtstxPtstxP =−=  with T s t= − ≥ 0 , (8)

because the dependency of a bond price on the current time can be implicit in its

dependency on the current state vector )(tx , and its dependency on the maturity date s is

only implicit in its dependency on its term to maturity T. We will simplify all the notations

by the time homogeneity and denote the current state vector as x rather than )(tx

whenever the context is clear.

Since a linear solution is, by definition,
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it can be found from solving the linear part of the fundamental PDE,
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Note that TPtP ∂−∂=∂∂ /  / . Because the boundary condition is independent of x, a

linear discount function that satisfies the boundary must be of the following form:
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where the “prime” denotes the partial derivatives with respect to T. Substituting (11) to

(13) into PDE (10) and re-arranging yields

{ } { } 0 )(')()(  )(')(])()([ 000
1

0 =+−−−∑
=

ThThxTgxTgxxx
n

i
iiiii φφη , (14)

where the notations for the coefficients are simplified by the time-homogeneity of the

discount function.
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If discount function (11) satisfies (14) regardless the values of the state vector x,

the braced terms in (14) must be all individually zero. However, if the last braced term is

equal to zero,

{ }φ0 0 0 0( ) ( ) ' ( )x h T h T+ =  , (15)

the solution, TxeTh )(
0

0)( φ−= , clearly contains the state vector. The coefficient function

)(0 xφ  cannot be constant because it is the instantaneous interest rate.

The only possibility left is for functions )(Tgi  to contain separable element )(0 Th .

This can be expressed, without loss of generality1, as

niThThTg ii ,,1     ),()()( 0 L=−= , (16)

where no restrictions are imposed on )(Thi  except that 1)0( =ih . Substituting (16) into

(14) and re-arranging yields
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By setting the ith term to zero,

[ ( ) ( ) ] ( ) ' ( )η φi i i i ix x x h T x h T− − =0 0 , (18)

it can be re-arranged to

d h T dT x x x xi i i iln ( ) / [ ( ) ( ) ] /= −η φ 0 . (19)

The solution to (19), subject to 1)0( =ih , can be found uniquely as

                                               
1 The ith component of the linear discount function may be specified more generally as
x g T x h T h Ti i i i( ) [ ( ) ( )]= −α β 0 . As linearity implies that α  and β  cannot be functions of x, and

time-homogeneity implies that α  and β  cannot be functions of t, α  and β  can only be arbitrary
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T
i

ieTh λ−=)( , (20)

where

iiii xxxx /])()([ 0φηλ −−= . (21)

Hence, iλ  is constant if and only if the first-order coefficient is

iii xxx  ])([)( 0 λφη −= . (22)

As a natural result, the first-order coefficient is uniquely determined from solving the

unspecified PDE. By equation (7), the market price of risk for factor i has a unique

expression:

[ ] )(/)()()( 0 xxxxxx iiiiii σφλµφ −+= , (23)

regardless the specification of the underlying process.

Similarly, )(0 Th  can be solved from setting the last braced term to zero:

h T e T
0

0( ) = −λ , (24)
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By equations (22) and (25), 0λ is constant if and only if the coefficient function φ0( )x  is

φ λ λ λ0 0 0
1

( ) ( )x xi i
i

n

= + −
=
∑ . (26)

By substituting (20) and (24) into (11), the unique unconditionally arbitrage-free

solution can be formally expressed as

                                                                                                                                           
constants. Hence, x h T h T x h T h Ti i i i[ ( ) ( )] [( / ) ( ) ( )]α β β α β− = −0 0 . By scaling xi  and h Ti ( ) , this
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( )P x s t x e x eii

n s t
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i( , ) ( ) ( )− = − +

=
− − − −

=
∑ ∑1

1
1

0λ λ   , (27)

which is a linear combination of some exponential functions. We refer this solution as the

Exponential Polynomial (EP) discount function, because it can be recognized as the

component function of the Exponential Spline model of Vasicek and Fong (1982) defined

on a subinterval of the maturity range. In other words, the EP solution is equivalent to the

Vasicek-Fong spline model without spline fitting, i.e., with the subinterval stretched to the

entire maturity range ),0[ ∞∈T .

As mentioned early, there is no need to assume the existence of the instantaneous

interest rate or to set exogenously the coefficient r=0φ . Instead, the solution should

justify that its limiting value is identical to the coefficient function φ0( )x . From equation

(27), it is straightforward to verify that the instantaneous interest rate is, indeed, equal to

φ0( )x :

r x
P x s t

t
x x

s t
i i

i

n

( )
( , )

( ) ( )≡
−

= + − =
= =

∑∂
∂

λ λ λ φ
 

 0 0
1

0 . (28)

It is interesting to notice that the derived expression of the instantaneous interest rate from

the EP solution coincides with the presumed spot rate expression in Langetieg (1980):

r w w xi i
i

n

= +
=
∑0

1

. (29)

The yield function can be found from the following transformation,

y x s t
P x s t

s t
s t( , )

ln ( , )
,− = −

−
−

>  , (30)

                                                                                                                                           
specification is equivalent equation (16).
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with the instantaneous interest rate given by (28). The time-homogeneity of the discount

function allows the forward function to be found from any of the following

transformations:

x i
. (31)

III. Empirical Estimation of the EP Model

In order for (27) to be a legitimate discount function, all the exponential

parameters must be strictly positive. Intuitively, a set of distinct exponential parameters

defines an exponential basis, upon which the EP model represents a term structure space

that is linearly spanned by its state factors. Hence, the state factors are, in fact, defined

relatively to a given basis. If the bond market equilibrium is unique, there should exist a

unique basis. However, since the boundary condition does not contractually specify any

state factor and parameter, the basis may have to be identified by trial-and-error. For

example, it could be first exogenously designed, then empirically tested, then modified and

tested. Fortunately, the EP model allows sufficient flexibility for the basis design, because

it does not impose any restriction on the stochastic processes of the state factors. The

exponential parameters cannot be estimated simultaneously with the state factors because

the latter are defined relatively to the former. In order for the state factors to be well

defined, the basis should be sufficiently stable, i.e., the exponential parameters should

remain as time invariant as possible. Hence, these parameters have to be exogenously

specified.
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Assume, without loss of generality, that 0λ  is the smallest exponential parameter.

As s → ∞ , since the EP discount function approaches

( )     as   1),( )(

1
0 ∞→−→− −−

=∑ sextsxP tsn

i i
λ , (32)

0λ  is the asymptotic forward rate, or the long rate. Although not directly observable, the

long rate may reflect the general level of interest rates, thus, it may not be kept constant. If

the long rate is sufficiently stochastic, the EP model may be inconsistent with its claimed

no-arbitrage property, because the long rate risk cannot be hedged unless the bond

portfolio has zero duration. Hence, we have to hope that the long rate is smooth enough

to be treated as a time-varying parameter. In the existing literature, the long rate has

always been designated as either a parameter (e.g.,Vasicek (1977)) or a combination of

parameters (e.g., CIR (1985) and Longstaff and Schwartz (1992)).

For simplicity of notation, we denoted the long rate as R. To minimize the

potential inconsistency of the EP model with its no-arbitrage claim, we specify all the

exponential parameters as fixed multiples of the long rate:

λ λ0 1 1= = + =R a R i ni i, ( ) , ,  ,   L , (33)

where a i ni , , , = 1 L  are constant parameters. This specification is similar to Vasicek and

Fong (1982), in which iai = . Under this specification, the state factors are measured on a

basis that is indexed by the long rate R. For example, the instantaneous interest rate

expression in (28) becomes

r x t R t R x t R t a x ti i
i

n

i i
i

n

( ( )) ( ) ( ) ( ) ( ) ( )= + − = +








= =
∑ ∑λ

1 1

1 . (34)

This specification allows the EP model to be transformed to
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( )P x s t x e x eii
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n
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by changing variables

$ , $t Rt s Rs= = and  . (36)

It can be easily verified that P x s t( , $, $)  satisfies the following equation:

[ ( ) ]
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∂
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. (37)

If R t( )  is sufficiently smooth such that 2)ˆ ( td  can be ignored, the instantaneous price

change can be expressed by the first-order Taylor series,

dP
P

t
d t

P

x
dx

i
i

i

n

= +
=

∑∂
∂

∂
∂

 

 
 

 

 $
$

1

. (38)

By the same arbitrage argument and vector notations as in the previous section, equations

(37) and (38) imply that any bond portfolio that requires zero investment ( w'P = 0 ) and

bears zero risk ( w ix i
' ,P = ∀0  ) would earn exactly zero return ( w d w t' ' $P P= = 0 ) over

the transformed time interval d t $ .

Notice that (32) implies a restriction to the sum of the state factors as

xii

n

=∑ <
1

1  , (39)

because the discount function must be strictly positive. Theoretically, there is an implicit

domain for the state vector x, relative to a given basis, such that the EP forward function

(31) is nonnegative. Empirically, we have found that (39) is almost sufficient to ensure the

forward function nonnegative, if the basis is reasonably designed.
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In our empirical investigation with the CRSP Bond File, we have found that the

cross-sectional estimation can take up to eight factors without overfitting. The constant

parameters in equation (33) are presented in Table 1 by a descending order:

Table 1
Fixed Parameters

a1 a2 a3 a4 a5 a6 a7 a8

50 40 30 20 10 5 2 1

In the Vasicek and Fong (1982) model, these parameters, in ascending order, are 1, 2, 3,

4, ..., etc.. We have found that the Vasicek-Fong parameters often cause multicollinearity,

because the component exponential functions are not sufficiently distinct among

themselves. Hence, we have deliberately chosen these parameters as far apart from each

other as possible. We have attempted different selection of the parameters, but could not

find any significant difference in the performance of the EP model, so long as the

parameters are set sufficiently apart. As mentioned above, there may exist a unique

time-invariant basis, but we do not know how to identify it, at least for now. Hence, our

objective in the current empirical investigation is limited to verifying the existence of a

relatively time-invariant basis. We hope an optimal basis can be identified in future

research.

The estimation of the EP model is identical to that of the Vasicek and Fong (1982)

model. Let B t s ck k k( , , )  denote the observed price of the kth bond at t for maturity at sk ,

which has $1 face value, and an annual coupon rate kc  with semiannual interest payments.

Let Ak  be its accrued interest. Similarly to equation (7) of Vasicek and Fong (1982), the
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linearity of the EP discount function allows the relationship between the observed price

and the present value of the cash flows of the bond to be expressed as

B A x B x Bk k i
i

n

k i k
i

i

n

k+ = −






 + +

= =
∑ ∑1

1

0

1

ε , (40)

where Bk
0  is the present value of the cash flows of the bond discounted by the rate R , and

Bk
i  is the present value of the bond discounted by the rate λ i , etc., and ε k  is the pricing

error. For a cross-sectional sample of m treasury securities, equation (40) can be arranged

to an Ordinary Least Squares (OLS) regression as

( ) ( ) , , , ,B A B x B B k mk k k i k
i

i

n

k k+ − = − + =
=
∑0

1

0 1 2ε      L . (41)

McCulloch (1971) introduced the spline method because the observed

cross-sectional samples of treasury securities usually contain far more short-term securities

than the long-term ones. To accommodate the data structure, he suggested dividing the

maturity range into subintervals, such that the number of securities in each subinterval is

roughly the same. By dividing the maturity, he applied the same spline function, e.g., a

cubic function, to all the subintervals. Since each spline function is defined only on a

subinterval, every pair of adjacent spline functions have to be carefully connected to

ensure continuity and differentiability at the knot. Vasicek and Fong (1982) replaced the

polynomial spline function of McCulloch by exponential polynomial spline function, but

still followed the spline method. Since the spline discount function is artificially continuous

and differentiable at the knots, the resulting forward function often exhibits extreme

instability at the knots, as shown in Shea (1984) and (1985). Unfortunately, nobody has

ever questioned whether this purely technical design is consistent with no-arbitrage. Now
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we know that these linear spline discount function models cannot be consistent with

no-arbitrage, because the EP model is a unique linear solution.

The EP model takes care the technical concern of McCulloch naturally. Notice that

all the component exponential functions are effective at the short end of the maturity

range. Since the exponential functions with larger parameters decay rapidly with maturity,

there are less and less effective exponential functions for longer-term treasury securities as

maturity increases. Hence, the number of effective exponential functions fits naturally with

the distribution of the number of treasury securities over the observable maturity range.

IV. Empirical Results

A. Data

From the CRSP (Center for Research in Security Prices) Bond File, we extracted

the price data of US Treasury bills, notes and bonds that are non-callable and without

special tax status from January 1960 to December 1991. Every monthly sample consists of

the bid and ask quotes of the treasury securities at 3:30 p.m. Eastern Time on the last

business day of the month. The bid-ask average is used for the term structure estimation.

The yields (yield-to-maturity) in the CRSP file are also used for comparison with the

estimated yield function.

B. Dimensionality

The dimension of the EP model is primarily determined by the maturity range of

the bonds in each sample, with the January 1973 sample as a dividing point, because the

20-year treasury bond first appeared there. Prior to January 1973, since the maturity range
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is much shorter, most of the samples require only five factors, and some require six. After

January 1973, all the samples can take eight factors without overfitting, except for the

period between February 1977 and December 1979, during which the number of factors

have to be reduced to seven in order to fit the short end of the term structure accurately.

For computational convenience, we have always maintained the eight-factor basis.

If significant multicollinearity is encountered in a sample, as indicated by significantly large

absolute values of xi , we know the dimension of the EP model is too high, so we impose

x8 0= , which is equivalent to eliminating the last column, ( )B Bk k
8 0− . If the

multicollinearity is still significant, the second last column can be further eliminated, and so

on, until multicollinearity disappears. Because the dimensionality is strictly related to the

maturity range, we have arranged the exponential parameters in a descending order, as

shown in Table 1, in order for the exponential function with the slowest rate of decay to

be first eliminated.

C. Stability of the Long Rate

For each cross-sectional sample of bond prices, the long rate R is determined by a loop,

within which the OLS Regression (41) is invoked for each trial value R. Each iteration

finds the estimates of x , and the root mean squared errors (RMSE) of the sample. Since

the short-term treasury securities are effectively zero-coupon securities, their yields in the

CRSP file should coincide with the estimated yield function in absence of pricing errors.

Because the pricing errors of the short-term securities contribute very little to the overall

sample RMSE, the accuracy of the estimation, especially in the short maturity range,

cannot rely solely on the sample RMSE. Towards the end of the looping, the short term
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RMSE (SRMSE), i.e., the root mean squared errors of the securities with maturities less

than one year, is used to guide the fine-tuning of R. The estimation experience shows that

constraint (39) could be violated if R is too low. When R cannot be lowered further, the

number of factors has to be adjusted. At the end of the estimation, the forward function up

to 50 years maturity is computed. If any part of the forward function is negative, the

number of factors and/or the long rate needs adjusted.

The numerical value of R is found sensitive to changing the number of factors. For

example, R was 10.2% for the January 1977 sample, which required eight factors.

Between February 1977 and December 1979, because the number of factor dropped to

seven, R dropped to around 5% level. When the number of factors came back to eight in

the sample of January 1980, R jumped back to 12.5%. As a result, the non-observable

long rate parameter R can reflect the general level of interest rate only if the basis is

constant. Despite the occasional change in the basis, the eight-factor basis has dominated

most of the samples since 1973, and has not changed after January 1980.

As mentioned early, the EP model remains consistent with no-arbitrage as long as

the long rate is sufficiently smooth. Figure 1 plots the time-series of the long rate and the

histogram of the first difference of the long rate against the normal distribution. It shows

that the long rate usually changes very little on monthly basis, except for a few sudden

shifts that are caused by changing the dimension of the EP model. Hence, it is reasonable

to treat the long rate as a time-varying parameter rather than a stochastic variable. Notice

that the last sharp decline in December 1985 is not caused by the dimensionality. It

appears to reflect some structural shift of the bond market, because the long rate has since

remained around that lower level.
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D. Goodness of fit

Figure 2 plots the sample RMSE and SRMSE for general assessment of the

goodness of fit. The SRMSE’s are generally less than 0.2 cent per $1 face value cross all

the samples. In contrast, the RMSE’s are much larger. The sample of October 29, 1982

has the highest RMSE of 1.17 cents per $1 face value. According to Elton and Green

(1998), the pricing errors in the CRSP Bond File are generally attributable to

nonsynchronous trading, especially for those illiquid bonds. Using high quality daily data

provided by GovPX Inc., they find that the tax/coupon effects are much less significant

than found by some previous studies. Since the main objective of this empirical

investigation is to check if the basis is time invariant, we have ignored the tax/coupon

effects.

It is difficult to compare the goodness of fit of the EP model with other models,

because most of the empirical studies do not report the goodness of fit on individual

samples. So far we have only found two comparable studies that have used the same data

and reported results on individual samples. One study by Jordan (1984) reported SERB

(standard error of regression before tax adjustment, which is equivalent to RMSE) on

selected individual samples of the CRSP Bond File between 1970 and 1979 in his Table

IV, based on the cubic spline of McCulloch (1975) with various tax adjustments. Table 2

compares Jordan’s SERB with our RMSE for these samples, which shows that the EP

model is more accurate than the cubic spline model. Another comparable study by

Coleman, Fisher, and Ibbotson (CFI 1992) proposed a piecewise linear forward function

model with various specifications and tax adjustments. For selected CRSP Bond File
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samples, they reported a range of RMSE’s resulted from different estimation methods in

their Exhibit 5A. Table 3 compares my RMSE with their best RMSE. Even without tax

adjustment, the EP model is clearly comparable with CFI’s results.

Table 2
Comparison of Goodness of Fit with Jordan (1984)

The SERB is the standard error of regression before tax adjustment reported in Table IV
of Jordan (1984). The RMSE is my root mean squared error equivalent to the SERB.

Year Month SERB RMSE
1975   1 0.46 0.203

  4 0.69 0.585
  7 0.61 0.584
10 0.74 0.304

1976   1 0.57 0.452
  4 0.75 0.285
  7 0.56 0.372
10 0.74 0.368

1977   1 0.91 0.461
  4 0.77 0.367
  7 1.04 0.315
10 0.93 0.218

1978   1 0.86 0.252
  4 0.72 0.198
  7 1.11 0.131
10 1.23 0.220

1979   1 1.03 0.179
  4 1.09 0.324
  7 0.76 0.250
10 1.14 0.251

Table 3
Comparison of goodness of fit with CFI (1992)

Sample CFI’s Best RMSE RMSE of EP Model
Dec. 31, 1979 0.52 0.386
Dec. 30, 1983 0.43 0.352
Nov. 30, 1984 0.31 0.423
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Figures 3 to 6 present some specific examples for more intuitive understanding of

the goodness of fit. Figure 3 illustrates the ability of the EP model to fit a complicated

yield curve on October 31, 1974. It can be seen that the yield curve fits the yields of the

short term securities accurately and smoothly, and naturally reaches to the instantaneous

nominal interest rate at the zero maturity. Note that the estimation is to minimize the

pricing errors rather than the yield errors. The pricing errors are shown in the lower chart.

The values of the state factors are reported at the bottom of the figure. Note that the yield

curve in the upper chart is transformed from the estimated discount function according to

equation (30). The yields are from the CRSP Bond File. They are depicted for comparison

purposes. Although the yield curve should coincide with the yields of the zero-coupon

securities in absence of pricing errors, it needs not fit the yields, i.e., yield-to-maturity, of

the coupon bonds, especially the long term coupon bonds. This is more apparent in

Figures 5 and 6.

Figure 4 illustrates the estimation of the April 30, 1975 sample, which is the same

sample estimated by Shea (1984) and (1985), using the cubic spline of McCulloch (1975)

and exponential spline of Vasicek and Fong (1982), respectively. In both estimations, Shea

showed that the forward rate curve dropped to negative after the 20-year maturity. The

EP model has never encountered such instability. This result is consistent with Ferguson

and Raymar (1998), who found that the Vasicek-Fong component discount function

(without spline) is not only sufficient for the term structure estimation but also far more

stable than with spline.

Figure 5 illustrates the most erroneous sample of October 29, 1982 among the 384

samples. Notice that the EP model fits the short end extremely accurately, and the pricing
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errors for the medium and longer term securities are distributed quite symmetrically. The

widely dispersed yields of the treasury securities indicate that the major source of the

RMSE is data error, but data error has not impaired the ability of the EP model to find a

smooth yield curve. Figure 6 illustrates the sample of October 31, 1989, in which the

yields of the short and medium term securities exhibit significant dispersion. Once again,

the data error has not impaired the estimation.

V. Conclusion

Arbitrage pricing in an ideally perfect market is a high standard for asset pricing,

because otherwise any pricing scheme may be easily justified as arbitrage-free by certain

constraints, whether realistic or imaginary. Since all possible realistic constraints have been

assumed away by the perfect-market assumptions, there is no reason why the bond market

equilibrium should be conditional on some imaginary constraints. By taking advantage of

the simple boundary, this paper has proved that the fundamental PDE has a unique

unconditionally arbitrage-free solution, which is an exponential polynomial (EP) discount

function.

While the functional form of the solution is unique, the exponential basis is still

unknown. Since the EP model does not impose any restriction on the state factors and

their stochastic processes the basis can be exogenously specified, then empirically tested.

In this paper we have designed and tested a basis, which is found sufficient stable over a

long period of time. We hope a better basis can be identified with more frequent and better

quality data in future research.
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The traditional methodology has misunderstood the unspecified first-order

coefficients of the fundamental PDE. Many authors have thought that the components of

the first-order coefficients, i.e., the drifts and the market prices of risk, can be exogenously

and separately manipulated, as long as the underlying state factors are not tradable. In fact,

since absence of arbitrage is equivalent to the existence of the market prices of risk, it is

the drifts that are always irrelevant, regardless whether the state factors are tradable or

not. When the state factors are tradable, the first-order coefficients are known, so the

drifts are clearly irrelevant. When the state factors are not tradable, the first-order

coefficients should be determined from solving the fundamental PDE, so the drifts are also

irrelevant.

By arbitrarily selecting the state factors and manipulating both the drifts and the

market prices of risk, the traditional methodology has imposed many unreasonable

constraints on the bond market equilibrium. Although a few special solutions have been

found in the past, none of them is able to fit the observed term structure. The exogenously

specified spot rate process has actually blocked further search for multi-factor solutions,

because it has imposed a severe constraint on the underlying factors.

HJM (1992) criticized the traditional methodology for exogenously and separately

specifying both the drifts and the market prices of risk, but did not realize the irrelevancy

of the drifts. They observed that the market prices of risk can be “dropped out” in the

“inversion of the term structure”. Hence they attempted to drop out the market prices of

risk by manipulating the drift, which was shooting a wrong target. In order to fit the

Girsanov Theorem, HJM (1992) directly imposed a stochastic structure of the forward

rates, then relied on certain conditions, especially a peculiar form of the drift function, to



27

justify the existence of a unique equivalent martingale probability measure. However,

whether a P-measure has a unique equivalent Q-measure has nothing to with whether the

arbitrary specification of the stochastic structure is correct. Since there is neither

restriction nor guidance on the specification of the stochastic structure, there can be

infinite alternatives to specify the stochastic structure. For example, even within a

framework of one or two factors, Amin and Morton (1994) have specified and tested six

alternative specifications. It does not make any economic sense to have so many unique

equivalent martingale probability measures.

The new methodology claims itself as consistent with the currently observed term

structure, because the parameters of the stochastic structure can be calibrated from the

taken-as-given current term structure. However, calibration is always possible regardless

of the specification of the stochastic structure. Unless the stochastic structure itself and the

Brownian Motion assumption on its associated random factors are both correct, the

calibrated stochastic structure is neither stable nor reliable. It is very difficult to imagine

that, for an exogenously specified stochastic structure of the forward rates, the associated

random factors could happen to be not only pure Brownian Motions, but also

independent.
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Figure 1. Time series plot of the long rate parameter R, and the distribution of the first
difference dR R Rt t= − −1  against the normal distribution.
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Figure 2. Sample RMSE and short term RMSE. The Short Term RMSE is the root mean
squared errors of the treasury securities with maturity less than one year.
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Figure 3. Term structure of October 31, 1974.
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Figure 4. Term structure of April 30, 1975.
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Figure 5. Term structure of October 29, 1982.
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Figure 6. Term structure of October 31, 1989.


