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This paper extends the defaultable bond valuation model developed by

Cathcart and El-Jahel [1998].  The extended model incorporates a default barrier with

dynamics depending on the volatility and the drift of the signaling variable.  The level

of the barrier is adjusted by a free parameter.  We derive a closed-form solution of the

defaultable bond price as a function of a signaling variable and a short-term interest

rate, with time-dependent model parameters governing the dynamics of the signaling

variable and interest rate.  The numerical results calculated from the solution show

that the risk adjustable default barrier has material impact on the term structures of

credit spreads.  The model is capable of producing diverse shape of term structures of

credit spreads.  It provides new insight for future research on defaultable bonds

analysis and credit risk modeling.
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I. Introduction

There are generally two approaches to model the valuation of defaultable

bonds.  The first approach is the structure model which treats default risk equivalent

to a European put option on the corporate asset value and the corporate liability is the

option strike. Black and Scholes (1973) and Merton (1974) have been the pioneers in

this approach. In Merton’s framework, default occurs only at bond maturity when the

asset value is less than the liabilities due to the bond, and the firm is insolvent.  To

cope with the possibility of early default before bond maturity, Black and Cox (1976)

assume a bankruptcy-triggering level for the corporate assets whereby default can

occur at any time.  This trigger level is introduced by considering a safety covenant

that protects bondholders.  Longstaff and Schwartz (1995) extend the risky debt model

of Black and Cox to allow interest rate to follow the Ornstein-Uhlenbeck process1.

Default occurs when the corporate asset value is below a constant or deterministic

bankruptcy-triggering barrier.  Upon bankruptcy triggered by touching the barrier,

bondholders receive an exogenously given number of riskless bonds.

The second approach is the reduced-form models in which default time is a

stopping time of some given hazard rate process and the payoff upon default is

specified exogenously.  This approach has been considered by Artzner and Delbaen

[1992], Madan and Unal [1993], Jarrow, Lando, and Turnbull [1994], Jarrow and

Turnbull [1995], and Duffie and Singleton [1997].

A middle ground model between the structure model and the reduced-form

models is developed by Cathcart and El-Jahel [1998].  In the model, default occurs

when some signaling process hits some lower constant default barrier.  The model

assumes the signaling process for each firm that determines the occurrence of default

rather than the value of the assets of the firm.  When the signaling variable drops

below the default barrier, bondholders receive an exogenously specified number of

riskless bonds.  The underlying interest rate is assumed to follow a mean-reverting

square root process that is uncorrelated with the signaling process.  An analytical

defaultable bond price solution is derived from the model.  However, since the

solution is expressed as inverse Laplace transforms, numerical techniques need to be

employed to perform the transforms.  This may impose some numerical difficulties to

obtain numerical results.
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The main objective of this paper is to extend Cathcart and El-Jahel’s model in

which the bankruptcy-triggering barrier is defined as a drifted level governed by the

volatility and the drift of the signaling variable.  The contribution of the signaling

variable’s dynamics to the barrier’s dynamics is adjusted by a free parameter β.  When

the parameter β is equal to zero, the model is reduced to the case of a fixed default

barrier purposed by Cathcart and El-Jahel.  The model in this paper is therefore

characterised by a risk adjustable default barrier.  More realistic default scenarios can

be put into the valuation model through adjusting the parameter β.  In addition, we

derive a closed-form bond solution in terms of a cumulative normal distribution

function. Therefore, no sophisticated numerical technique is needed to compute the

solution.

Using the structure model, a moving bankruptcy-triggering barrier has been

considered by Briys and de Varenne [1997] and Schöbel [1999] as a fixed quantity

discounted at the riskless rate up to the maturity date of a risky corporate bond.  When

the asset value drops below this barrier, bondholders receive an exogenously specified

number of riskless bonds.  Therefore, the dynamics of the barrier follows the

stochasticity of the interest rate, that is specified as the Ornstein-Uhlenbeck process.

As a result, the model is characterised by a stochastic barrier and avoids the limitation

of having a constant default boundary as the Longstaff-Schwartz model.  However, it

is difficult to justify why the barrier just follows the dynamics of interest rates only.  It

is obvious to observe that the barrier goes downwards as the time to maturity of the

corporate bond increases.  Since the barrier denotes the threshold level at which

bankruptcy occurs, higher firm value volatility could imply a higher level of leverage

over time and thus higher probability of default.  Hui et al. [1999] develop a corporate

bond valuation model in which the bankruptcy-triggering barrier is defined as a drifted

firm value level governed by stochastic interest rates and instantaneous variance of the

corporate bond value.  The firm value volatility affects the level of the barrier over

time through the variance of the corporate bond function and its contribution to the

barrier’s dynamics is adjusted by a free parameter.

In the development of the model in this paper, the dynamics of the bankruptcy-

triggering barrier is also influenced by the dynamics of the signaling variable and is

risk adjustable through a free parameter.  The dynamics of the short-term interest rate

is assumed to follow the square root process.  When the signaling variable touches the
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barrier, bondholders receive an exogenously specified number of riskless bonds.  A

non-enforcement of the strict priority rule upon default can therefore be applied to the

payoffs to the bondholders.  We derive a closed-form of the bond price as a function

of signaling variable and interest rate explicitly.  In addition, the model parameters

such as volatility, drift and mean-level of the interest rate are time dependent in the

derivation.  The scheme of this paper is as follows.  In the following section we

develop the pricing model of discount defaultable bonds with a drifted default barrier,

and derive the closed-form pricing formula.  Numerical results of the term structures

of credit spreads calculated from the pricing formula are shown in section III.  In the

last section we shall summarise our investigation.

II. Valuation Model of Defaultable Bonds

In the valuation of defaultable bonds, we assume a continuous-time

framework, and let the short-term interest rate and the signal process be stochastic

variables.  The dynamics of the short-term interest rate r is drawn from the term

structure model of Cox, Ingersoll, and Ross (CIR) [1985], i.e. the square-root process:

( ) ( )[ ] rr dzrtdtrttdr )(σθκ +−= (1)

where the short-term interest rate is mean-reverting to long-run mean θ(t) at speed

κ(t), and the stochastic term has a standard deviation proportional to r .  The

signaling variable S is assumed to follow a lognormal diffusion process:

( ) ( ) SS SdztSdttdS σα += , (2)

where α(t) and σS(t) are the drift and the volatility of S respectively.  The Wiener

processes dzS and dzr are assumed to be uncorrelated.

The assumption of a signaling process for the occurrence of default is a middle

approach between structure and reduced-form models.  A signaling process can

capture factors that can affect the probability of default.  The use of a signaling

process is appropriate for entities such as sovereign issuers that issue defaultable debt

but do not have an identifiable collection of assets.  The time-dependent drift

assumption is used instead of the constant drift used by Cathcart and El-Jahel [1998].

The no-correlation assumption between the signaling process and the interest rates is

in line with most of the reduced-form models, where the hazard rate of default process
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is assumed to be uncorrelated with the interest rates.  The detailed discussion of the

above assumptions is found in Cathcart and El-Jahel [1998].

We let the price of a discount defaultable bond be P(S, r, t).  The partial

differential equation governing the bond is
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where λ is the market price of interest rate risk2.  The value of a defaultable bond is

obtained by solving equation (3) subject to the final payoff condition and the boundary

condition imposed by the default barrier.

A constant default barrier is considered by Cathcart and El-Jahel [1998].

However, it is reasonable to assume that the dynamics of the barrier depends on the

dynamics of the signaling variable.  We propose the barrier H(t) to have a drifted

dynamics which is determined by the drift and the volatility of the signaling variable.

It is specified as the form:

( )



















−−= tStH S

2
exp

2

0

σ
αβ , (4)

where S0 is the pre-defined value of the barrier and β is a real number parameter to

adjust the rate of the drift.  It is noted that when the parameter β is put to be zero, the

case of a fixed barrier is obtained, i.e. recovering Cathcart and El-Jahel’s model.  The

movement of the barrier can be interpreted as a mean drift (adjusted by β) arising

from the dynamics of S.  The barrier levels with different β at different time to

maturity are illustrated in Exhibit 1 for σS = 20% and α = 1%.

For the given parameters where the term ( )2/2
Sσα −  is less than zero, Exhibit

1 shows that the barrier level increases with the time to maturity for a positive β.  On

the other hand, given a negative β, the barrier level decreases with the time to

maturity.   It means that given an initial S0 as the pre-defined default level, the

probability of default increases with the value β when 2/2
Sσ  is higher than the drift

α.  Given the same β, the barrier moves away from S0 with time to maturity at a faster

rate when σS is higher.  This demonstrates the effect of σS on early default risk of a

defaultable bond.  For β = 1, the barrier basically moves with the mean drift of the

signaling variable.  The barrier dynamics incorporating the adjustable mean drift of
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the signaling variable is more realistic than the constant barrier specified in the

Cathcart and El-Jahel model.

When S breaches the barrier H(t), bankruptcy occurs before maturity at t = 0.

The payoffs to bondholders are specified by

( )trWFQtrHSP ,),,( == 0>t ; 1≤W , (5)

where Q(r, t) is the default-free bond function according to the CIR model and F is the

bond face value.  On the other hand, if S has never breached the barrier, the payoff to

bondholders at the bond maturity is

FtrSP == )0,,( ( )tHS > . (6)

The parameter W lets the payoffs upon default deviate from the absolute priority rule.

Therefore, for W = 1, the strict priority rule is enforced and shareholders receive

nothing.  For W being between zero and one, it implies the non-enforcement of the

strict priority rule.

The solution of Equation (3) subject to the boundary condition and the final

payoff condition of Equation (4), (5) and (6) is
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where

( ) ( )
t

tSS
d

S
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σ

σα 2//ln 2
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= ,

( ) ( )( )
t
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= ,

and N is a cumulative normal distribution function.  The detailed derivation of the

solution in Equation (7) is given in the Appendix.  It is easy to show from Equation

(7) that the defaultable bond price is equal to the recovery value ( )trWFQ ,  when S

breaches the barrier.  The credit spreads of defaultable bonds are calculated from

Equation (7) and illustrated in the following section.

III. Credit Spread Analysis

The credit spread Cs of a defaultable discount bond price P(S, r, T) with time

to maturity T and face value F is given as
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( ) ( )
( )TrFQ

TrSP

T
TrSC s ,

,,
ln

1
,, −= .            (8)

The term structures of credit spreads for a low risk defaultable bond, with S/S0 = 2.5

are illustrated in Exhibit 2 using different β from –1.0 to 2.0.  Other parameters used in

the calculations are σS = 0.2, σ2
r = 0.078, α = 0.01, r = 4%, θ = 9%, κ = 0.5 and W =

0.75.  Given these parameters, ( )2/2
Sσα −  is less than zero.  Exhibit 2 shows that the

credit spreads increase with positive β since the barrier level increases with time to

maturity.  This demonstrates that the levels of the default barrier with different β

imply different early default risk.  At the long end, the difference between the credit

spreads for β = -1.0 and β = 2.0 is about 20bp which is significant compared with the

average credit spread of 47bp between ten to twenty years time to maturity for β = -

1.0.  The credit spreads of the low risk defaultable bonds calculated here correspond

with empirical evidence found in Caouette et al. [1998] that reports an average yield

spread on AAA-rated bonds of 55bp with standard deviation of 22bp for the years

1985 -1996.  Although the credit spreads are different for different β, the shape of

their term structures is similar.

The term structures of credit spreads for a medium risk defaultable bond, with

S/S0 = 2.0 and W = 0.5, are illustrated in Exhibit 3.  The difference between the credit

spreads for β = -1.0 and β = 2.0 is on the average at 44bp.  Again this difference is

material compared with the credit spread of 164bp for β = -1.0 at ten years time to

maturity.  For time to maturity between five to twenty years, the credit spreads range

from 165bp to 210bp for β = 2.0, and from 142bp to 165bp for β = -1.0.  These

spreads correspond with BBB-rated bonds, which are reported by Caouette et al.

[1998] to have a credit spread of 140bp on the average with standard deviation of

37bp for the years 1985 - 1996.

For a high risk defaultable bond, with S/S0 = 1.5 and W = 0.5, the credit

spreads of different β are illustrated in Exhibit 4.  The difference between the credit

spreads for β = -1.0 and β = 2.0 is on the average at 111bp.  The difference is more

material in absolute terms compared with the previous two cases.  However, the

impact on the credit spreads from β = -1.0 to β = 2.0 in percentage terms is about 19%

to 26% (relative to the credit spread for β = 2.0 at ten years time to maturity) in



8

different S/S0 ratios.  This reflects that the dynamics of the default barrier gives almost

the same relative impact on different risky bonds’ default probabilities.

To study the impact of the volatility of the signaling variable on the credit

spreads, different figures of volatility, σS = 0.2, 0.25 and 0.3, are used to calculate the

model credit spreads with the following parameters: S/So = 2.0, σ2
r = 0.078, α = 0.01,

r = 4%, θ = 9%, κ = 0.5 and W = 0.5. The credit spreads are illustrated in Exhibits 5

and 6 for β = 0.0 and β = 1.0 respectively.  The results show that the volatility has

significant impact on the term structures.  The term structures change from upward-

sloping shape to humped shape with higher volatility.  The hump-shaped term

structures are usually observed in higher risk defaultable bonds.  Exhibits 5 and 6 also

show that the differences between the credit spreads with different volatility for β =

1.0 are more significant than that for β = 0.0.  The average difference between σS =

0.2 and 0.3 for β = 1.0 is 247bp, while the corresponding average difference for β =

0.0 is 179bp.  This finding is consistent with the barrier structure presented in

Equation 4, which moves above S0 at higher rates when σS is higher and β is positive.

The dynamics of the barrier increases the default probability and hence increases the

credit spreads.  For β = 0.0, the default barrier is constant and the default probability

only depends on the dynamics of the signaling variable.

In summary, the numerical results show that the dynamics of the default

barrier incorporating the volatility and the drift of the signaling variable has material

impact on credit spreads of defaultable bonds.  For ( )2/2
Sσα −  < 0, the credit spreads

increase with positive β and the magnitude of the increases is sensitive to the

volatility.  The term structures of credit spreads derived from the model are similar to

the term structures obtained in previous studies by Cathcart and El-Jahel [1998],

which match the empirical evidence3.

IV. Summary

This paper extends the defaultable bond valuation model developed by

Cathcart and El-Jahel [1998].  The extended model incorporates a default barrier with

dynamics depending on the volatility and the drift of the signaling variable.  Since the

volatility of the signaling variable affects the level of the default barrier over time,

more realistic default scenarios can be put into the valuation model through adjusting
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the barrier’s dynamics.  We derive a closed-form solution of the defaultable bond price

as a function of a signaling variable and a short-term interest rate, with time-

dependent model parameters governing the dynamics of the signaling variable and

interest rate.  The numerical results calculated from the solution show that the risk

adjustable default barrier has material impact on the term structures of credit spreads.

Given ( )2/2
Sσα −  < 0, the credit spreads increase with positive β and the magnitude

of the increases is sensitive to the volatility of the signaling variable.  This

demonstrates that the default barrier with different β imply different early default risk.

The model incorporating the risk adjustable default barrier, deviations from the

absolute priority rule, and time-dependent model parameters is capable of producing

diverse shape of term structures of credit spreads.  It provides new insight for future

research on defaultable bonds analysis and credit risk modelling.
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Appendix

In the model of Cathcart and El-Jahel, the price P of a defaultable bond, which

is a function of the value S of a signaling variable determining the occurrence of

default, the short-term interest rate r and the time to maturity t, is governed by the

partial differential equation
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To solve this partial differential equation, we first rewrite it in terms of the variable x

= InS as follows2:
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Since the variables x and r are separable, and the boundary conditions for r are: (a)

( )trxP ,,  is finite as ,0→r  and (b) ( ) 0,, =∞→ trxP , the price function ( )trxP ,,

can be expressed as the product ( ) ( )txFtrQ ,, , where ( )trQ ,  is the price of a riskless

bond function of the CIR model with explicitly time-dependent parameters, and

( )txF , satisfies the equation
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Assuming the natural boundary conditions for S, the solution of Equation (A.3)

is found to be

( ) ( ) ( )0,,, 0 yFtyxdyKtxF −= ∫
∞

∞−
(A.4)

where the kernel ( )tyxK ,0 −  is given by
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( ) ( )∫=
t

SdtB
0

2 .ττσ .

For the case of constant α  and Sσ , using an approach based upon the method

of images, we can straightforwardly incorporate an absorbing barrier with a drifted
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dynamics of the form ( ) ( )[ ]tStH So 2/exp 2σαβ −−=  into the model, where S0 is the

pre-defined signal value of the barrier and β  is a real adjustable parameter.  The

corresponding bond price ( )tryP ,,  is then given by

( ) ( ) ( ) ( ) ( )0,,
2

1
1exp;,,,,

0 2
ryPyyrtyyGydtryP

S

′











′−








−−′′= ∫

∞

σ
α

β

( ) ( ) ( )tyyKrtyyKrtyyG ,;,;,, ′+−′−=′

( ) ( )


























 −+′−−

Ψ
=′−

2

2

22 2

1

2

1
exp

2

,
, tyy

tt

tr
tyyK S

SS

σαβ
σπσ

( ) ( )

















 −

−
−=Ψ ttrQtr S

S

2
2

2

2

2

1

2

1
exp,, σα

σ
β

(A.7)

where ( )0/ln SSy =  and ( )./ln 0
' SSy =′   It should be noted that this solution

vanishes at the barrier; that is, it is the solution associated with the homogeneous

boundary condition only.  Nevertheless, it is an easy task to extend the solution to

satisfy the inhomogeneous boundary condition: ( ) ( )trQWStrSP ,,, 0=  at ( )tHS = , by

simply adding the trivial solution ( )trQWS ,0  of the pricing equation in Equation

(A.1).  Then, by requiring that the solution associated with the inhomogeneous

boundary condition obeys the prescribed final payoff condition, we can readily obtain

the desired defaultable bond function.
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Endnotes

This work is partially supported by the Direct Grant for Research from the Research

Grants Council of the Hong Kong Government.  The conclusions herein do not

represent the views of the Hong Kong Monetary Authority.
1 Interest rates following the Ornstein-Uhlenbeck process are studied by Shimko et al.

[1993] in valuation of corporate bonds without any default barrier.
2 Campbell [1986] shows that a constant market price of risk λ can be justified in a

market equilibrium with log-utility investors.  In the derivation, λ is absorbed into

the term κ(t)θ(t).
3 See Jones et al. [1984] and Sarig and Warga [1989].
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