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Ho and Lee introduced the first no-arbitrage model
of the evolution of the spot interest rate. Hull and
White extended this work to include mean reversion
of the spot interest rate. When writing about the
implementation of their model in discrete time, Hull
and White use a search process at each date and for-
ward induction to identify the level of interest rates
in a trinomial lattice. 

We derive an analytical solution for the level of
interest rates. We apply our analytical solution to an
example created by Hull and White.

V
asicek [1977] initiated an important
stream of research relating to the
evolution of interest rates. Cox,
Ingersoll, and Ross [1985] added an

equilibrium model of the evolution of inter-
est rates. While analytically tractable, these
models do not provide valuations consistent
with the absence of arbitrage.

Ho and Lee [1986] address this disad-
vantage with a no-arbitrage model that incor-
porates the market term and volatility structure
of interest rates. Heath, Jarrow, and Morton
[1992] extend the basic Ho-Lee model to
incorporate the entire structure of forward
rates; Ho and Lee assume interest rates are
normally distributed. Black, Derman, and Toy
[1990] and Black and Karasinski [1991] con-
tribute no-arbitrage models that assume inter-
est rates are lognormally distributed. This
group of models relies on numerical methods
for their implementation.

Hull and White (HW) [1990, 1993, 1994,
and 1996] extend the Ho and Lee approach 
by adding Vasicek’s idea of a mean-reverting
interest rate. In addition to their theoretical
modeling, HW [1996] propose a numerical
implementation of their model requiring a
search process at each date to identify the level
of interest rates. This, in turn, requires imple-
mentation through forward induction.

We complement HW’s work by deriv-
ing an analytical solution for the level of inter-
est rates and illustrate the solution by applying
it to an example used by HW [1996]. 

I. THE ANALYTICAL
IMPLEMENTATION

The HW model expresses the continuous-
time evolution of the instantaneous spot rate as:

(1)

In Equation (1), the spot interest rate at date
t is r(t ). The drift in the spot rate is composed
of two terms, a “pure” drift term µ(t), and a
mean reversion term, α[γ (t) – r (t)]. The mean
reversion term causes the interest rate to revert
to a time-varying “normal” value, γ (t), at the
instantaneous rate α. We write the instanta-
neous volatility of the spot interest rate, σ(t ),
in terms of a standard Wiener process for
which .1dz t N( ) (~ ,0  1) dt
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The discrete-time analogue of Equation (1) for the
change in the spot rate over the time interval ∆t, i.e., for
the time period [t, t + ∆t], is:2

(2)

where r(t) and σ(t) are the spot rate and the volatility of
the spot rate at time t for the time interval from t to t +
∆t ; α is a positive constant (< 1); ∆z(t) is a unit-normal
random variable:

(2-A)

(2-B)

and the time-varying normal rate of interest at date t is:

(2-C)

Without loss of generality, we can set t = 0 and 
∆t = 1, and rewrite the equation for the evolution of the
spot rate as:

(3)

This yields, for example, for date 1:

(4)
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The mean reversion effect causes the deviation of the spot
interest rate from the time-varying normal value at date
0, r(0) – γ(0), to decrease to k[r(0) – γ(0)] at date 1.

Similarly, the spot rate at date 2 is

At date 1, the time-varying normal rate is γ(1) = γ(0) +
µ(0), which gives r(1) – γ(1) = k[r(0) – γ(0)] +bσ(0)∆z(0).
Substituting this expression into the equation above, we
obtain 

(5)

and in general:

(6)

Equation (6) indicates that the spot rate is the sum
of a set of non-stochastic drift terms and a set of stochas-
tic terms; the latter are all normally distributed. Conse-
quently, the spot interest rates are normally distributed as
follows:
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and in general:

(7)

The inputs for an HW no-arbitrage interest rate
model in discrete time are 1) a set of known prices of pure
discount bonds that mature at dates 1, 2, 3, …, n, {P(1),
P(2), P(3), ..., P(n)}, and 2) the volatility (standard devi-
ation) of future one-period normally distributed spot
interest rates, {σ(0), σ(1), ..., σ(n – 1)}.3

An evolution of the spot interest rate that precludes
arbitrage must satisfy the local expectations condition
that all bonds, regardless of maturity, offer the same
expected rate of return in a given period under the equiv-
alent martingale probability (EMP) distribution, Q. This
is equivalent to the expectation that the discounted value
of each bond’s terminal payment is equal to its given
market (initial) value.4

Let the present value, at date t = 0, of a bond’s ter-
minal payment be given by p(n) = exp[–Σ

n – 1

j = 0 
r(j)]. There-

fore, the no-arbitrage conditions will be stated as 

and, in general: 

(8)

EQ
0[.] is the expectation at date 0 under the EMP distri-

bution Q, and f(j) is the forward rate for the interval
from j to j + 1.

From statistics, we know that if x is normally dis-
tributed, N(µ, σ2), then:5
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Therefore, for date t = 2:

Upon simplification:

or

Because ln P(2) = –f(0) – f(1) = –r(0) – f(1), upon substi-
tution in the equation above:

(10)

The expectation of the spot rate at date 1 is the forward
rate plus a term determined by the variance of the spot
rate, 1⁄2σ2[r(1)].

Taking the expectation of Equation (4), we have:6  

(11)

From Equations (10) and (11), we derive:

(12)

Thus, the drift term, µ(0), is equal to the sum of two
effects: 1) f (1) – r(0) is the difference between the forward
rate and the spot rate, i.e., the spot interest rate drifts up
or down toward the forward rate, and 2) 1⁄2σ2[r(1)] is a pos-
itive drift adjustment term (DAT) that is required to pre-
clude arbitrage.7

Let δ(t ) denote the DAT for date t. Then: 
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Now, we can work out the details for date t = 3.

Simplifying:

or

We know that lnP(3) = –f (0) – f(1) – f(2) = – r(0)
– f(1) –f(2). Upon substitution in the equation above:

(14)

The expectation at date t = 0 of the spot rate at date
2 is the forward rate plus a term determined by the vari-
ance: 1⁄2σ2[r(1) + r(2)] – 1⁄2σ2[r(1)]. 

Taking the expectation of Equation (5), we have:

(15)

From Equations (14) and (15) we derive:
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Substitute Equation (12) into the above to get:

(16)

The drift term, µ(1), is equal to the sum of two
effects: 1) f (2) – f (1) is the difference between the forward
rate at date 2 and the forward rate at date 1, and 2)
1⁄2σ2[r(1) + r(2)] – σ2[r(1)] is the positive DAT required to
preclude arbitrage.

Let δ(1) denote the DAT for date 1. Then:

(17)

If we add equations for δ(0) and δ(1) [Equations (13)
and (17)], we get

If we add equations for µ(0) and µ(1) [Equations (12)
and (16)], we get

which can be simplified to 

(18)

The results of the first two dates can be generalized
for the case of date t: 
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(19)

(20)

In addition:

(21)

(22)

Equations (19)–(22) give the necessary recursive
relations to evolve the HW no-arbitrage model of spot
interest rates. The inputs are the set of market prices of
(pure) discount bonds, a structure of volatilities for the spot
rates, and other parametric values.

Our discussion is general in the sense that it applies
equally well to implementation based on interest rate
trees and Monte Carlo simulation.8
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II. IMPLEMENTATION EXAMPLE

We illustrate implementation with reference to an
example developed by Hull and White [1996]. They
illustrate implementation of their model by pricing a
three-year put option on a zero-coupon bond that pays
$100 in nine years. The exercise price is $63; the volatil-
ity, s, is constant at 1% per year for all dates; and the speed
of reversion to the mean, α, is 0.10. Exhibit 1 displays the
prices and yields of the zero-coupon bonds.

The HW implemention uses a trinomial lattice with
upper and lower bounds. First, HW identify the step
sizes and the probabilities necessary to achieve the desired
volatility, around zero, of interest rates. Second, they find
the expected value of the interest rate at each date that is
consistent with the initial conditions. This requires the use
of search process and forward induction. We display HW’s
results in Exhibit 2. 

Our first task is to illustrate how to eliminate a
numerical search procedure and forward induction to
identify the mean value of the interest rates. Specifically,
given the initial one-period interest rate, 5.0928%, how
do we analytically derive the subsequent mean values of
6.5026%, 7.3393%, and 8.0538%?

Recall that:
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E X H I B I T 1
Initial Prices and Yields in the Hull and White Example

Maturity 1 2 3 4 5 6 7 8 9

Price $0.9503 $0.8906 $0.8277 $0.7639 $0.7065 $0.6536 $0.6010 $0.5573 $0.5139
Yield 5.093% 5.795% 6.305% 6.733% 6.948% 7.087% 7.274% 7.308% 7.397%
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from Equations (11), (15), and (19). Also:

(24-A)

(24-B)

(24-C)

from Equations (4), (5), and (6). The expressions for k and
b are given in Equations (2-A) and (2-B).

With this information, we can calculate the variances
of the sum of the spot rates:
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With this information, we can derive analytically the
values that HW derive through searches:
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E X H I B I T 2
Intermediate Calculations for Four-Epoch Trinomial Lattice—Hull-White Short Rate Example

Calibrating Variances in Lattice
Transition Probabilities Node Rates

Steps Pu Pm Pd i = 0 i = 1 i = 2 i = 3

2 0.8993 0.0110 0.0897 3.2979% 3.2979%
1 0.1236 0.6576 0.2188 1.6489% 1.6490% 1.6490%
0 0.1667 0.6667 0.1667 0.0000% 0.0000% 0.0000% 0.0000%

–1 0.2188 0.6576 0.1236 –1.6490% –1.6489% –1.6489%
–2 0.0897 0.0110 0.8993 –3.2979% –3.2979%

Calibrating Prices in Lattice
Transition Probabilities Node Rates

Steps Pu Pm Pd i = 0 i = 1 i = 2 i = 3

2 0.8993 0.0110 0.0897 10.6372% 11.3517%
1 0.1236 0.6576 0.2188 8.1515% 8.9883% 9.7028%
0 0.1667 0.6667 0.1667 5.0928% 6.5026% 7.3393% 8.0538%

–1 0.2188 0.6576 0.1236 4.8536% 5.6904% 6.4049%
-2 0.0897 0.0110 0.8993 4.0414% 4.7559%
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These results match those produced by HW’s search
method, as shown in Exhibit 2.

III. CONCLUSION

HW develop an attractive no-arbitrage model of the
evolution of the spot interest rate that incorporates mean
reversion. Their implementation of the model requires both
the use of a search method to identify the expected value
of the spot interest rate at each date and forward induction.
The analytical expression for the expected value of the
future spot rates that we derive eliminates need for the
search process.

Our implementation applies equally well to interest
rate binomial trees, trinomial lattices, and Monte Carlo
simulation implementation of the model, and it can be
adapted to incorporate additional complexities such as time-
varying volatility. 

ENDNOTES

1Hull and White [1996, p. 26] write the first term as α(θ (t)
– r)dt; therefore, a = α and θ (t) = µ(t) + αγ(t). We write the model
as we have because the derivation of µ(t) is a central result. 

2See Hull and White [1996, p. 29], Jamshidian [1989],
and Arnold [1974] for the use and development of the com-
ponents k and b used in this discrete-time expression. 

3For simplicity, we assume that γ(0) = r(0) for the
reminder of the article.

4We can illustrate the equivalence with respect to the
expected rate of return on the two-period bond from date zero
to date 1. EQ

0[
.] is the expectations operator under the equiv-

alent martingale probability distribution Q:

5See Mood, Graybill, and Boes [1974, p. 117] for a dis-
cussion of this result.

6Recall that for simplicity we have set γ(0) = r(0). 
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7Boyle [1978] was the first to point out this general
result.

8Monte Carlo implementation of the HW model may be
important for the valuation of path-dependent securities. At least
one derivatives firm values amortizing index swaps using Monte
Carlo implementation of the HW model.
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