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An Analytical Implementation of the Hull and White Model 
 

Abstract 
 
 Ho and Lee introduced the first no-arbitrage model of the evolution of the spot interest 
rate. Hull and White extended this work to include mean reversion of the spot interest rate. When 
writing about the implementation of their model in discrete time, they have employed a search 
process at each date and forward induction to identify the level of interest rates in a trinomial 
lattice. We derive an analytical solution for the level of interest rates. We apply analytical 
solution to an example created by Hull and White.
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An Analytical Implementation of the Hull and White Model 
 
 Vasicek [1977] initiated an important stream of research relating to the evolution of 

interest rates. Cox, Ingersoll, and Ross (1985) added an equilibrium model of the evolution of 

interest rates. While analytically tractable these models do not provide valuations consistent with 

the absence of arbitrage. 

 Ho and Lee [1986] address this disadvantage with a no-arbitrage model that incorporates 

the market term and volatility structure of interest rates. Heath, Jarrow and Morton [1992] extend 

the basic Ho-Lee model to incorporate the entire structure of forward rates; Ho and Lee assume 

interest rates are normally distributed. Black, Derman, and Toy [1990] and Black and Karasinski 

[1991] contribute no-arbitrage models that assume interest rates are log-normally distributed. 

This group of models relies on numerical methods for their implementation. 

 Hull and White (HW) [1990, 1993, 1994, and 1996] extend the Ho and Lee approach by 

adding Vasicek’s idea of a mean-reverting interest rate. In addition to their theoretical modeling, 

HW propose (1996) a numerical implementation of their model requiring a search process at 

each date to identify the level of interest rates. This, in turn, requires implementation through 

forward induction. We complement HW’s work by deriving an analytical solution for the level 

of interest rates and illustrate the solution by applying it to an example used by HW (1996).  

I. The Analytical Implementation 

 The HW model expresses the continuous time evolution of the instantaneous spot rate as:  

 ( ){ }( ) ( ) ( ) ( ) ( ) ( ).dr t t t r t dt t dz tµ α γ σ= + − +  (1) 

In equation (1) the spot interest rate at date t is r(t). The drift in the spot rate is composed of two 

terms, a “pure” drift term ( )tµ , plus a mean reversion term, ( )( ) ( )t r tα γ − . The mean reversion 

term causes the interest rate to revert to a time-varying “normal” value, ( )tγ , at the instantaneous 
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rate α . We write the instantaneous volatility of the spot interest rate, ( )tσ , in terms of a standard 

Wiener process for which ( ) ~ (0,1)dz t N .1  

 The discrete-time analogue of equation (1) for the change in the spot rate over the time-

interval t∆ , i.e., for the time-period [ ],t t t+ ∆ , is2 

 ( ) ( ) ( ) ( )( ) ( ) ( )( ) 1 ,r t t k t r t t b t t z tµ γ σ ∆ = + − − ∆ + ∆ ∆   (2) 

where ( )r t  and ( )tσ  are respectively the spot rate and volatility of the spot rate at time t for the 

time-interval from t to t t+ ∆ ; α  is a positive constant (< 1); ( )z t∆  is a unit normal random 

variable: 

 ,tk e α− ∆=  (2-A) 

 

1
2 21

,
2

te
b

α

α

− ∆ −
=  

 
 (2-B) 

and the time-varying normal rate of interest at date t is  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

0

1 1 2 2 1 0 .
t

j

t t t t t t jγ γ µ γ µ µ γ µ
−

=

= − + − = − + − + − = + ∑  (2-C) 

 Without loss of generality, we can set 0 and 1t t= ∆ =  and rewrite equation of the 

evolution of the spot rate as 

 ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )0 1 0 0 1 (0) (0) 0 0 .r r r k r b zµ γ σ∆ ≡ − = + − − + ∆  (3) 

This yields, for example, for date 1 

                                                        
1 Hull and White (1996, p.26) write the first term as ( )( )a t r dtθ − ; therefore, a α=  and 

( ) ( ) ( )t t tθ µ α γ= + . We write the model as we have because the derivation of ( )tµ  is a central result.  
2 See Hull and White (1996, p. 29), Jamshidian (1989) and Arnold (1974) for the use and development of the 
components k and b used in this discrete time expression.  
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( ) ( ) ( ) ( )[ ] ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ] ( ) ( )

1 0 0 1 (0) (0) 0 0

0 0 0 0 0 0 0 0

0 0 (0) (0) 0 0 .

r r k r b z

r r k kr b z

k r b z

µ γ σ

µ γ γ σ

γ µ γ σ

= + + − − + ∆

= + + − − + + ∆

= + + − + ∆

 (4) 

The mean reversion effect causes the deviation of the spot interest rate from the time-varying 

normal value at date 0, ( ) ( )0 0r γ− , to decrease to ( ) ( )0 0k r γ −   at date 1. 

 Similarly, the spot rate at date 2 is 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2 1 1 1 1 1 1 1

1 1 1 1 1 1 .

r r k r b z

k r b z

µ γ σ

γ µ γ σ

 = + + − − + ∆ 
 = + + − + ∆ 

 

At date 1, the time-varying normal rate is ( ) ( ) ( )1 0 0γ γ µ= +  which gives ( ) ( )1 1r γ− =  

( ) ( ) ( ) ( )0 0 0 0k r b zγ σ − + ∆  . Substituting this expression into the above equation, we obtain  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

2 0 0 1 0 0 1 1 1 1

0 0 1 0 0 0 0 1 1 ,

r k k r b z b z

k r k b z b z

γ µ µ γ σ σ

γ µ µ γ σ σ

= + + + − + ∆ + ∆  

= + + + − + ∆ + ∆  
 (5) 

and in general, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1

0 0

0 0 0 .
t t

t t j

j j

r t j k r k b j z jγ µ γ σ
− −

− −

= =

= + + − + ∆  ∑ ∑  (6) 

 Equation (6) indicates that the spot rate is the sum of a set of non-stochastic drift terms and 

a set of stochastic terms; the latter are all normally distributed. Consequently, the spot interest 

rates are normally distributed as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )( )( )21 ~ 0 0 0 0 , 1 .r N k r rγ µ γ σ + + −   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )2 22 ~ 0 0 1 0 0 , 1 2 .r N k r r rγ µ µ γ σ + + + − +   

and in general, 

 ( ) ( ) ( ) ( ) ( ) ( )
1

2

0 1

~ 0 1 0 0 , .
t t

t

j j

r t N j k r r jγ µ γ σ
−

= =

  
 + − + −      

∑ ∑  (7) 
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 The inputs for a HW no-arbitrage interest rate model in discrete time are 1) a set of known 

prices of pure discount bonds that mature at dates 1, 2, 3, …, n, ( ) ( ) ( ) ( ){ }1 , 2 , 3 , ...,P P P P n , 

and 2) the volatility (standard deviation) of future one-period normally distributed spot interest 

rates, ( ) ( ) ( ){ }0 , 1 , ..., 1nσ σ σ − .3  

 An evolution of the spot interest that precludes arbitrage must satisfy the local expectations 

condition that all bonds, regardless of maturity, offer the same expected rate of return in a given 

period under the equivalent martingale probability (EMP) distribution, Q . This is equivalent to 

the expectation of the discounted value of each bond’s terminal payment being equal to its given 

market (initial) value.4 

 Let the present value, at date t = 0, of a bond’s terminal payment be given by 

( ) ( )
1

0

exp
n

j

p n r j
−

=

 
= − 

 
∑ . Therefore, the no-arbitrage conditions will be stated as  

 ( ) ( ) [ ] ( ) ( )0 0 0
0 01 (1) ,f r rQ QP e E p E e e− − − = ≡ = =   

 ( ) ( ) ( ){ } ( ) ( ) ( ){ }0 1 0 1
0 02 2 ,f f r rQ QP e E p E e− + − + = ≡ =      

and, in general,  

 ( ) ( ) ( ) ( )
1 1

0 0
0 0

exp exp .
n n

Q Q

j j

P n f j E p n E r j
− −

= =

    
= − ≡ = −       

     
∑ ∑  (8) 

[ ]0
QE ⋅  is the expectation at date 0 under the EMP distribution Q and ( )f j  is the forward rate 

for the interval from j to j + 1. 

                                                        
3 For simplicity, we assume that ( ) ( )0 0rγ =  for the reminder of this paper. 
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 From statistics we know that if x is normally distributed, ( )2,N µ σ , then:5  

 
21

2 .xE e e
µ σ− +−  =   (9) 

Therefore, for date t = 2: 

 ( ) ( ) ( ) ( ){ } ( ) ( ){ } ( )( )2
0

1
0 1 10 1 2

0 02 2 .
Qr E r rr rQ QP E p E e e

σ− +   + − +  = = =     

Upon simplification: 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2
0

2
0

1
ln 2 0 1 1 ,   or

2
1

1 ln 2 0 1 .
2

Q

Q

P r E r r

E r P r r

σ

σ

 = − − + 

  = − − + 

 

Because ( ) ( ) ( ) ( ) ( )ln 2 0 1 0 1P f f r f= − − = − − , upon substitution in the above equation, 

 ( ) ( ) ( )( )2
0

1
1 1 1 .

2
QE r f rσ  = +   (10) 

The expectation of the spot rate at date 1 is the forward rate plus a term determined by the 

variance of the spot rate, ( )( )21
1

2
rσ . 

 Taking the expectation of equation (4), we have6  

 ( ) ( ) ( )0 1 0 0 .QE r r µ  = +   (11) 

From equations (10) and (11), we derive: 

 ( ) ( ) ( ) ( )( )21
0 1 0 1 .

2
f r rµ σ= − +  (12) 

                                                                                                                                                                                   
4 For example, we can illustrate the equivalence with respect to the expected rate of return on the two-period bond 

from date zero to date 1. [ ]0
QE ⋅  is the expectations operator under the equivalent martingale probability 

distribution Q : 

( )

( ) ( )
( )

( )
( ) ( ) ( ) ( )

1 1
0 0 0 0 1

0ln 0   or    or  2
2 2

r rQ Q

r r rQ
E e E e

r e P E e
P P

− −

− −
          = = =   
  

. 

5 See Mood, Graybill and Boes (1974, p. 117) for a discussion of this result. 
6 Recall that for simplicity we have set ( ) ( )0 0rγ = . 
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 Thus, the drift term, ( )0µ , is equal to the sum of two effects: 1) (1) (0)f r−  is the 

difference between the forward rate and the spot rate, i.e., the spot interest rate drifts up or down 

toward the forward rate, 2) ( )( )21
2 1rσ  is a positive drift adjustment term (DAT) that is required 

to preclude arbitrage.7 

 Let ( )tδ  denote the DAT for date t. Then:  

 ( ) ( )( )21
0 1 .

2
rδ σ=  (13) 

 Now, we can work out the details for date t = 3. 

 ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( )( )2
0

1
0 1 2 1 20 1 2 2

0 03 3 .
QE r r r r rr r rQ QP E p E e e

σ−  + + + + − + +  = = =     

Simplifying: 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )

2
0 0

2 2
0

2 2
0

1
ln 3 0 1 2 1 2

2
1 1

0 1 1 2 1 2   or
2 2

1 1
2 ln 3 0 1 1 2 1 .

2 2

Q Q

Q

Q

P r E r E r r r

r f r E r r r

E r P r f r r r

σ

σ σ

σ σ

   = − − − + +   

 = − − − − + + 

  = − − − + + − 

 

We know that ( ) ( ) ( ) ( ) ( ) ( ) ( )ln 3 0 1 2 0 1 2P f f f r f f= − − − = − − − . Upon substitution in the 

equation above: 

 ( ) ( ) ( ) ( )( ) ( )( )2 2
0

1 1
2 2 1 2 1 .

2 2
QE r f r r rσ σ  = + + −   (14) 

 The expectation at date t = 0 of the spot rate at date 2 is the forward rate plus a term 

determined by the variance, ( ) ( )( ) ( )( )2 21 1
2 21 2 1r r rσ σ+ − . 

 Taking the expectation of equation (5), we have: 

 ( ) ( ) ( ) ( )0 2 0 0 1 .QE r r µ µ  = + +   (15) 

                                                        
7 Boyle was the first to point out this general result. 
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From equations (14) and (15) we derive: 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )2 21 1
1 2 0 0 1 2 1 .

2 2
f r r r rµ µ σ σ= − − + + −  

Substitute equation (12) into the above to get: 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )2 21
1 2 1 1 2 1 .

2
f f r r rµ σ σ= − + + −  (16) 

The drift term, ( )1µ , is equal to the sum of two effects: 1) (2) (1)f f−  is the difference between 

the forward rate at date 2 and the forward rate at date 1, and 2) ( ) ( )( ) ( )( )2 21
2 1 2 1r r rσ σ+ −  is 

the positive DAT required to preclude arbitrage. 

 Let (1)δ  denote the DAT for date 1. Then: 

 ( ) ( ) ( )( ) ( )( )2 21
1 1 2 1 .

2
r r rδ σ σ= + −  (17) 

 If we add equations for ( )0δ  and ( )1δ  (equations (13) and (17)) we get 

 
( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1
2 2 2

0

2 2

1 1
1 1 2 1

2 2

1 1
1 2 1 .

2 2

t

t r r r r

r r r

δ σ σ σ

σ σ

=

= + + −

= + −

∑
 

 If we add equations for ( )0µ  and ( )1µ  (equations (12) and (16)) we get 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( )

2 2 2

2 2

1 1
0 1 1 0 1 2 1 1 2 1

2 2
1 1

2 0 1 2 1 ,
2 2

f r r f f r r r

f r r r r

µ µ σ σ σ

σ σ

+ = − + + − + + −

= − + + −
 

which can be simplified to  

 ( ) ( ) ( ) ( )
1 1

0 0

2 0 .
t t

t f r tµ δ
= =

= − +∑ ∑  (18) 

 The results of the first two dates can be generalized for the case of date t.  
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 ( ) ( ) ( ) ( )
1

2 2
0

1 1

1 1
  1 1.

2 2

t t
Q

j j

E r t f t r j r j t Tσ σ
−

= =

   
= + − ∀ < ≤ −      

   
∑ ∑  (19) 

( ) ( ) ( ) ( ) ( ) ( )
1 2

2 2 2

1 1 1 1

1 1
1 1    3.

2 2

t t t n

j j n j

t f t f t r j r j r j tµ σ σ σ
− −

= = = =

     
− = − − + − + ∀ ≥     

     
∑ ∑ ∑ ∑  (20) 

In addition: 

 ( ) ( ) ( )
1

2 2

0 1 1

1 1
   1.

2 2

t t t

n j j

n r j r j tδ σ σ
+

= = =

   
= − ∀ ≥   

   
∑ ∑ ∑  (21) 

 ( ) ( ) ( ) ( )
0 1

1 0    1.
t t

n n

n f t r n tµ δ
= =

= + − + ∀ ≥∑ ∑  (22) 

 Equations (19)–(22) give the necessary recursive relations to evolve the HW no-arbitrage 

model of spot interest rate. The inputs are the set of market prices of (pure) discount bonds, a 

structure of volatilities for the spot rates, and other parametric values. 

 The above discussion is general in the sense that it applies equally well to implementation 

based on interest-rate trees and Monte Carlo simulation.8  

II. Implementation Example 

 We illustrate the implementation with reference to an example developed by HW (1996). 

They illustrate implementation of their model with the example of pricing a three-year put option 

on a zero-coupon bond that pays $100 in 9 years. The exercise price is $63, the volatility, s, is 

constant at 1% per annum for all dates, and the speed of reversion to the mean, α, is 0.10. 

Exhibit 1 displays the prices and yields of the zero-coupon bonds. 

 The HW implementation uses a trinomial lattice with upper and lower bounds. First, HW 

identify the step sizes and the probabilities necessary to achieve the desired volatility, around 

zero, of the interest rates. Second, they find the expected value of the interest rate at each date 

                                                        
8 Monte Carlo implementation of the HW model may be important for the valuation of path-dependent securities. 
For example, at least one derivatives firm values amortizing index swaps using Monte Carlo implementation of the 
HW model. 
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that is consistent with the initial conditions. This requires the use of search process and forward 

induction. We display HW’s results in Exhibit 2. 

 Our first task is to illustrate how to eliminate a numerical search procedure and forward 

induction to identify the mean value of the interest rates. Specifically, given the initial 1-period 

interest rate 5.0928%, how do we derive analytically the subsequent mean values of 6.5026%, 

7.3393%, and 8.0538%? 

 Recall that: 

 ( ) ( ) ( )( )2
0

1
1 1 1 ,

2
QE r f rσ  = +   (23-A) 

 ( ) ( ) ( ) ( )( ) ( )( )( )2 2
0

1
2 2 1 2 1 ,

2
QE r f r r rσ σ  = + + −   (23-B) 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( )2 2
0

1
3 3 1 2 3 1 2 ,

2
QE r f r r r r rσ σ  = + + + − +   (23-C) 

from equations (11), (15) and (19). Also:  

 ( ) ( ) ( ) ( )1 0 0 0 ,r r bs zµ= + + ∆  (24-A) 

 ( ) ( ) ( ) ( ) ( ) ( )( )2 0 0 1 0 1 ,r r bs k z zµ µ= + + + ∆ + ∆  (24-B) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )23 0 0 1 2 0 1 2 ,r r bs k z k z zµ µ µ= + + + + ∆ + ∆ + ∆  (24-C) 

from equations (4), (5) and (6), respectively. The expressions for k and b are given in equations 

(2-A) and (2-B), respectively. 

 With this information, we can calculate the variances of the sum of the spot rates. 

( )( ) ( )( )( )2 2 2 2 21 0 0.9520 (0.0001) 0.00009063.r bs z b sσ σ= × ∆ = = =  

( ) ( )( ) ( ) ( ) ( ){ }( ) ( ){ }22 2 2 21 2 0 0 1 1 1

(0.00009063)(4.6284) 0.00041949.

r r bs z k z z b s kσ σ+ = × ∆ + ∆ + ∆ = + +

= =
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( ) ( ) ( )( ) ( ) ( )( ) ( ){ }( )
( )( )

2 2 2

2 22 2 2

1 2 3 1 0 1 1 2

1 1 1

(0.00009063)(12.0462) 0.0010918.

r r r bs k k z z k z

b s k k k

σ σ  + + = × + + ∆ + ∆ + + ∆ 

 = + + + + + 

= =

 

 With this information, we can derive analytically the values that HW derived through 

searches. 

( )0 1 ln 0.8906 ln 0.9503 (0.5)(0.00009063) 6.5026%.QE r  = − + + =   

( )0 2 ln 0.8277 ln 0.8906 (0.5)(0.00041949 0.0009063) 7.3393%.QE r  = − + + − =   

( )0 3 ln 0.7639 ln 0.8277 (0.5)(0.0010918 0.00041949) 8.5038%.QE r  = − + + − =   

These results match those produced by HW’s search method, as shown in Exhibit 2. 

III.  Conclusion 

 HW develop an attractive no-arbitrage model of the evolution of the spot interest rate that 

incorporates mean reversion. Their implementation of the model requires both the use of a search 

method to identify the expected value of the spot interest rate at each date and forward induction. 

The analytical expression for the expected value of the future spot rates derived in this paper 

eliminates need for the search process.  

 Our implementation described here applies equally well to interest-rate binomial trees, 

trinomial lattices and Monte Carlo simulation implementation of the model and can be adapted to 

incorporate additional complexities such as time-varying volatility. 
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Exhibit 1 
Initial Prices and Yields in the Hull and White Example 
 
Maturity 1 2 3 4 5 6 7 8 9 

Price $0.9503 $0.8906 $0.8277 $0.7639 $0.7065 $0.6536 $0.6010 $0.5573 $0.5139 

Yield 5.093% 5.795% 6.305% 6.733% 6.948% 7.087% 7.274% 7.308% 7.397% 
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Exhibit 2 
Intermediate Calculations for the Four-Epoch Trinomial Lattice for the Example 
of the Hull and White Short Rate 
 
Calibrating the Variances in the Lattice 
Steps Transition Probabilities Node Rates 

J 
up  mp  dp  0i =  1i =  i = 2 3i =  

   2 0.8993 0.0110 0.0897   3.2979% 3.2979% 
   1 0.1236 0.6576 0.2188  1.6489% 1.6490% 1.6490% 
   0 0.1667 0.6667 0.1667 0.0000% 0.0000% 0.0000% 0.0000% 
 –1 0.2188 0.6576 0.1236  –1.6490% –1.6489% –1.6489% 
 –2 0.0897 0.0110 0.8993   –3.2979% –3.2979% 
        
Calibrating the Prices in the Lattice 
Steps Transition Probabilities Node Rates 

J 
up  mp  dp  0i =  1i =  i = 2 i = 3 

   2 0.8993 0.0110 0.0897   10.6372% 11.3517% 
   1 0.1236 0.6576 0.2188  8.1515% 8.9883% 9.7028% 
   0 0.1667 0.6667 0.1667 5.0928% 6.5026% 7.3393% 8.0538% 
 –1 0.2188 0.6576 0.1236  4.8536% 5.6904% 6.4049% 
 –2 0.0897 0.0110 0.8993   4.0414% 4.7559% 
        

 


