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USING HULL-WHITE INTEREST-RATE TREES

ABSTRACT

The Hull-White tree-building procedure was first outlined in the Fall 1994 issue of Journal
of Derivatives. It is becoming widely used by practitioners. This procedure is appropriate
for models where there is some function x = f(r) of the short rate r that follows a mean-
reverting arithmetic process. It can be used to implement the Ho-Lee model, the Hull-
White model, and the Black-Karasinski model. Also, it is a tool that can be used for
developing a wide range of new models.

In this article we provide more details on the way in which Hull-White trees can be used.
We discuss the analytic results available when x = r and make the point that it is important
to distinguish between the ∆ t-period rate on the tree and the instantaneous short rate that
is used in some of these analytic results. We provide an example of the implementation of
the model using market data. We show how the model can be implemented so that it
provides an exact fit to the initial volatility environment while at the same time explaining
why we do not recommend this approach. We also discuss how to deal with such issues as
variable time steps, cash flows that occur between nodes, barrier options, and path
dependence.
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USING HULL-WHITE INTEREST-RATE TREES

In a recent Journal of Derivatives article, Hull and White [1994a], we described a
procedure for constructing trinomial trees for one-factor yield curve models of the form:

( ) dzdtaxtdx   σθ +−= (1)

where r is the short rate, x = f(r) is some function of r, a and  are constants, and θ(t) is a
function of time chosen so that the model provides an exact fit to the initial term structure
of interest rates. The model can be written

( )
dzdtx

a
t

adx   σθ +



 −=

This shows that, at any given time, x reverts toward θ(t)/a at rate a. Its variance rate per
unit time is σ2.

When f(r) = r, the model reduces to the Hull-White [1990] model.

( )[ ] dzdtrtadr   σθ +−= (1A)

The attraction of the Hull-White model is its analytic tractability. As shown in Hull and
White [1990, 1994a] bonds and European options at some future time t can be valued
analytically in terms of the initial term structure and the value of r at time t. When f(r) =
log(r) and a and ### are allowed to be functions of time the model becomes Black and
Karasinski [1991]. When f(r) = log(r) and a(t) = − σ'(t)/σ(t), and σ'(t) = ∂σ /∂t, the model
becomes the Black, Derman, and Toy [1990] model. In Section III below we describe
how to extend the basic tree-building procedure to accommodate time-varying mean
reversion and volatility.

The construction of the Hull-White tree involves two stages. The first stage involves
defining a new variable x* obtained from x by setting both θ(t) and the initial value of x
equal to zero. The process for x* is:

dzdtaxdx   ** σ+−= (2)

We construct a tree for x* that has the form shown in Figure 1. The central node at each
time step has x* = 0. The vertical distance between the nodes on the tree is set equal to
∆x V* = 3  where V is the variance of the change in x in time ∆t, the length of each time
step. The probabilities at each node are chosen to match the mean and standard deviation1

of the change in x* for the process in equation (2). Defining the expected change in x* as
M x*, at node j ∆x* the up-, middle-, and down-branching probabilities are

                                               
1The expected value and variance of the change in x* over some time ∆t are

[ ] ( ) [ ] ( ) aeVdxxeMxdxE tata 2/1*Var      *;1** 22 ∆−∆− −==−== σ
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As indicated in Figure 1, we cope with mean reversion by allowing the branching to be
nonstandard at the edge of the tree. At the top edge of the tree where the branching is
non-standard the modified probabilities become
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and at the bottom edge of the tree where the branching is non-standard the modified
probabilities become
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The second stage in the construction of the tree involves forward induction. We work
forward from time zero to the end of the tree adjusting the location of the nodes at each
time step in such a way that the initial term structure is matched. This produces a tree of
the form shown in Figure 2. The size of the displacement is the same for all nodes at a
particular time t, but is not usually the same for nodes at two different times. The effect of
this second stage is to convert a tree for x* into a tree for x.

The full details of the tree building procedure are given in Hull and White [1994a]. In a
later article, Hull and White [1994b], we describe extensions where two interest rates are
modeled simultaneously and where the tree building technology is used to construct two-
factor models of a single term structure.

The purpose of this article is to provide more details on the basic Hull-White tree building
procedure. We discuss how to use analytic results when f(r) = r. We provide sample
results based on a real yield curve that the reader can use to test his or her own
implementation of the model. We show how the tree-building procedure can be used for
models such as Black and Karasinski [1991] where a and σ are functions of time, but
point out some pitfalls of these models. We also discuss issues such as how the length of
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the time step can be changed, how cash flows that occur between time steps can be
handled, and so on.

I. Analytic Results

Bond Prices:

When f(r) = r, the model in equation (1) is analytically very tractable. For example, as
shown in Hull and White [1990, 1994a]

( ) ( ) ( )rTtBeTtATtP ,,, −= (4)

where P(t, T) is the price at some time t of a zero coupon bond maturing at time T, r is the
short-term rate of interest at time t, and A and B are functions only of t and T. The
function A is determined from the initial values of the discount bonds, P(0, T).

( ) ( )
( ) ( ) ( ) ( ) ( )[ ]

( ) ( )( ) aeTtB

aeTtBtFTtB
tP
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TtA

tTa
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/1,
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, 222

−−

−

−=

−−= σ
(5)

F(0, t) is the instantaneous forward rate that applies to time t as observed at time zero. It
can be computed from the initial price of a discount bond as ( ) ( )[ ] ttPtF ∂∂ /,0log,0 −=
The variable r in equation (4) is the instantaneous short rate while the interest rates on the
Hull-White tree are ∆t-period rates. The two should not be assumed to be interchangeable.
Let R be the ∆t period rate at time t, and r be the instantaneous rate at time t. Using
equation (4):

( ) ( )rtttBtR etttAe ∆+−∆− ∆+= ,,

so that

( )
( )tttB

tttAtRr
∆+

∆++∆=
,

,log
(6)

To calculate points on the term structure given the ∆t period rate R at a node of the Hull-
White tree it is first necessary to use equation (6) to get the instantaneous short rate, r.
Equation (4) can then be used to determine rates for longer maturities. When this
procedure is followed, it can be shown that the prices of discount bonds that are computed
are independent of the forward rate, F(0, t).2

Expected Future Rates:

Inspection of equations (1) and (2) shows that x(t) and x*(t) differ only by some function
of time. Define this difference as

                                               
2Since the forward rate is computed from the first derivative of the yield curve it is very sensitive to the
exact shape of the yield curve. Slight variations in the yield curve create large changes in the computed
forward rate. If the computed bond price did depend on the forward rate the results would be very
sensitive to exactly how one computed the yield curve.
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( ) ( ) ( )txtxt *−=α (7)

This is the difference between the location of comparable nodes in the x and x* trees at
time t. In particular it is the difference between the central or expected values of x and x*
at time t, and since the expected value of x* is zero α(t) can be interpreted as the expected
value of x(t). As has been pointed out by Kijima and Nagayama [1994] and Pelsser [1994],
α(t) can be calculated analytically for the model where f(r) = r. Differentiating equation
(7) it follows from equations (1) and (2) that

( ) ( ) ( )tat
t
t αθ

∂
∂α −=

or

( ) ( ) ( )












 ∫+−=

t
aqdqeqratt

0
0exp θα

Substituting the analytic expression for θ(t) given in Hull and White [1990, 1994a] this
reduces to

( ) ( ) ( )22

2

12
,0

atea
TFt

−−
+= σα (8)

The use of the analytic expression for α to determine the location of the central nodes in
the tree avoids the need to obtain them from forward induction.3 However, the resulting
tree does not provide an exact fit to the initial term structure. This is because the tree is a
discrete representation of the underlying continuous stochastic process. The advantage of
the forward induction procedure is that the initial term structure is always matched exactly
by the tree itself.

II. An Example

As an example of the implementation of the model we use the data in Table 1. This data,
which is for the DM yield curve on July 8, 1994, was kindly provided to us by Antoon
Pelsser of ABN Amro Bank.

                                               
3Forward induction is always necessary when f(r) ≠ r since there are no analytic results in that case.
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Table 1
The DM zero coupon yield curve, July 8, 1994.

Maturity Days Rate Maturity Days Rate

3 days 3 5.01772 4 years 1461 6.73464
1 month 31 4.98284 5 years 1826 6.94816
2 month 62 4.97234 6 years 2194 7.08807
3 month 94 4.96157 7 years 2558 7.27527
6 month 185 4.99058 8 years 2922 7.30852
1 year 367 5.09389 9 years 3287 7.39790
2 years 731 5.79733 10 years 3653 7.49015
3 years 1096 6.30595

Data points for maturities between those indicated are generated using linear interpolation.

The zero curve was used to price a 3-year4 (= 3 × 365 day) put option on a zero coupon
bond that will pay $100 in 9 years (= 9 × 365 days). Interest rates were assumed to follow
the Hull-White (equation (1A)) model. The strike price was $63, and the parameters a and 
σ were chosen to be a = 0.1, and σ = 0.01. These two parameters determine the volatility
of the discount bond for option pricing purposes. The values that were chosen were
roughly representative of the values that are observed in the market. The tree was
constructed out to the end of the life of the option. The zero-coupon bond prices at the
final nodes were calculated analytically as described in the previous section.

To illustrate the process consider the construction of a 3-step tree. First, we must
determine the time and rate step sizes, and where non-standard branching (if any) takes
place. The size of the time step is ∆t = 3 × 365 days / 3 / 365 days/year = 1.0 years. As
shown in Hull and White [1994a] the expected change in r* and the variance of the change
in r* in time ∆t are given by

[ ] ( ) [ ] ( ) aeVdrreMrdrE tata 2/1*Var      *;1** 22 ∆−∆− −==−== σ

For the given parameter values M = − 0.095162582 and V  = 0.009520222. Since the
step size ∆r V= 3 , ∆r = 0.016489508. Finally, as shown in Hull and White [1994a] non-
standard branching takes place at nodes ±j* where j* is the smallest integer greater than
− 0.184/M. In this case j* is 2. The data defining the initial tree is shown in Table 2.

                                               
4The fundamental unit of time in this example is one day. For convenience we define 1 year as 365 days,
which is approximately the length of a real year, and quote rates and volatilities per year. The data in
Table 1 is quoted on this basis. Thus the 10-year rate of 7.49015% is actually a rate of 0.0205210% per
day. This rate applies for 3,653 days or about 10.0082 years. This convention may seem cumbersome but
is necessary to avoid the ambiguity associated with the variable length of a calendar year.
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Table 2
Data defining a 3-step tree in r*.

j rate = j ∆r pu pm pd Eq'n

2 0.032979 0.899291 0.011093 0.089616 3B
1 0.016490 0.123613 0.657611 0.218776 3A
0 0.0 0.166667 0.666667 0.166667 3A
− 1 − 0.016490 0.218776 0.657611 0.123613 3A

− 2 − 0.032979 0.089616 0.011093 0.899291 3C

The rates at each node in the tree at each time step are now shifted up by some amount, α,
chosen so that the revised tree correctly prices discount bonds. Since there are nodes at
the 1-, 2-, and 3-year points we need the discount bond prices corresponding to these
dates as well as the 4-year price, one time-step beyond the option maturity. When the
option price is calculated, the 9-year bond price will be required as well. This data,
interpolated from the data in Table 1 is shown in Table 3. Table 3 also shows the value of 
α required to fit the bond prices at each time step. An efficient procedure for implying the
value of α is given in Hull and White [1994a]. For reference purposes the instantaneous
forward rate and the instantaneous values of α (based on equation (8)) are also shown.

Table 3
The amount, α, by which the interest rates at each time step must be raised in

order to replicate the bond prices computed from the zero coupon discount rates.
The instantaneous forward rate and the instantaneous value of α are also shown.
Time Step

i
t = i ∆t
Years

Zero
Rate (%)

Discount
Bond Price

α
(%)

Forward
Rate (%)

α(t) - Eq'n (8)
(%)

0 0.0 5.017720 1.000000 5.09275 5.017720 5.017720
1 1.0 5.092755 0.950348 6.50257 5.299942 5.304470
2 2.0 5.795397 0.890557 7.33932 7.206143 7.222572
3 3.0 6.304557 0.827673 8.05381 7.830417 7.864004
4 4.0 6.733466 0.763885

9.0 7.397410 0.513879

Combining the α's from Table 3 with the rates and probabilities in Table 2 produces the
complete tree. The tree is shown in Table 4, which shows the ∆t period rates at each node
of the tree and the probabilities of branching from one node to the next. Table 5 shows
how this tree can be used to compute the price of a 2-year discount bond. At each step the
bond price is computed as the discounted value of the expected value at the next time-
step. Calculations of the type shown in Table 5 are used to determine what value of α is
needed at each time step in order to replicate the discount bond prices. Table 6 shows the
calculations required to compute the discount bond prices at the option maturity, 3 years.
Finally, Table 7 shows the discounting of the option value back through the tree.
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Table 4
The 4 time steps in the interest rate tree. The probability of transiting from
node (i, j) to nodes (i+1, j+1), (i+1, j), and (i+1, j− 1) are normally pu(j),
pm(j), and pd(j) respectively. When j = ±2 the alternative branching
schemes are used.

Transition Probabilities Node Rates, R, (%)
j pu pm pd i = 0 i = 1 i = 2 i = 3
2 0.8993 0.0111 0.0896 10.6372 11.3517

1 0.1236 0.6576 0.2188 8.1515 8.9883 9.7028

0 0.1667 0.6667 0.1667 5.0928 6.5026 7.3393 8.0538

− 1 0.2188 0.6576 0.1236 4.8536 5.6904 6.4049

− 2 0.0896 0.0111 0.8993 4.0414 4.7559

Table 5
Computing the price of a bond that pays $1 at time 2 ∆t (2 years).
Each value is calculated as

vi,j = (pu vi+1,j+1 + pm vi+1,j + pd vi+1,j− 1) exp(-Ri,j ∆t).
Transition Probabilities Bond Price

j pu pm pd i = 0 i = 1 i = 2
2 0.8993 0.0111 0.0896 1.0
1 0.1236 0.6576 0.2188 0.9217 1.0
0 0.1667 0.6667 0.1667 0.8906 0.9370 1.0
− 1 0.2188 0.6576 0.1236 0.9526 1.0
− 2 0.0896 0.0111 0.8993 1.0
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Table 6

Computing the option payoff at each terminal node (i = 3) on
the tree. The ∆t-period rate, R, is the rate that applies from 3 to
4 years. The instantaneous rate, r, is computed using equation
(6). The forward rate at time 3 years was computed to be
0.078304. On the basis of this equation (5) gives

A(3, 4) = 0.994229, A(3, 9) = 0.881944,
B(3, 4) = 0.951626, B(3, 9) = 4.511884.

The bond price, P(3, 9), is computed with equation (4) and the
option payoff is 100 Max[0.63 −  P(3, 9), 0].

j
∆t-period

rate, R
Instantaneous

rate, r Bond Price Option Payoff
2 0.113517 0.113206 0.529196 10.080445
1 0.097028 0.095878 0.572229 5.777133
0 0.080538 0.078550 0.618761 1.123884
− 1 0.064049 0.061222 0.669078 0.0
− 2 0.047559 0.043895 0.723486 0.0

Table 7

Discounting the option price back through the tree. At the third
step the option value is as given in Table 6. The computed value,
at earlier steps is
vi,j = (pu vi+1,j+1 + pm vi+1,j + pd vi+1,j− 1) exp(-Ri,j ∆t)
where Ri,j , the rate at node j and time step i, is αi + j ∆r. Note
that when j = ±2, non-standard branching applies. When j = 2 the
computed value is
vi,j = (pu vi+1,j + pm vi+1,j− 1 + pd vi+1,j− 2) exp(-Ri,j ∆t)
and when j = − 2 the computed value is
vi,j = (pu vi+1,j+2 + pm vi+1,j+1 + pd vi+1,j) exp(-Ri,j ∆t).

Time step, i
j pu pm pd 0 1 2 3
2 0.8993 0.0111 0.0896 8.2987 10.0804
1 0.1236 0.6576 0.2188 4.1977 4.8362 5.7771
0 0.1667 0.6667 0.1667 1.8734 1.7854 1.5910 1.1239
− 1 0.2188 0.6576 0.1236 0.4885 0.2323 0.0000
− 2 0.0896 0.0111 0.8993 0.0967 0.0000

α (%) 5.0928 6.5026 7.3393 8.0538

The results of pricing this put option for trees of different size are shown in Table 8. This
example provides a good test of one's implementation of the model because the gradient of
the zero curve changes sharply immediately after the expiration of the option. Small errors
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in the construction and use of the tree are liable to have a big effect on the option values
obtained. For example, when 100 time steps are used, the value of the option is reduced
by about $0.25 if the ∆t-period rate is assumed to be the instantaneous rate.

Table 8
Value of a 3-year Put Option on a 9-year, $100,
Zero-coupon Bond. The Strike price is $63. The
volatility parameters are a = 0.1 and σ = 0.01.

Steps Tree Based Value Analytic Value

10 1.8491 1.8093
30 1.8179 1.8093
50 1.8060 1.8093
100 1.8128 1.8093
200 1.8089 1.8093
500 1.8090 1.8093

III. Making Volatility Parameters Time Dependent

When a and σ are functions of time the model in equation (1) becomes

( ) ( )[ ] ( )dztdtxtatdx σθ +−= (9)

The three functions of time in this diffusion equation each play a separate role. The
function θ(t) is chosen so that the prices of all discount bonds are matched at the initial
time. The other two functions provide two extra degrees of freedom that allow us to
match the initial volatility of all zero coupon rates and the volatility of the short rate at all
future times. The tree can then be tuned to price not only the zero-coupon bonds, but also
a set of interest-rate derivatives at their current market prices. The initial volatility of all
rates depends on σ(0) and a(t). The volatility of the short rate at future times is
determined by σ(t). Unless σ(t) and a(t) are constants the volatility term structure is non-
stationary.

Our tree building procedure can be extended to accommodate the model in equation (9).
Analogously to the constant a and σ case we first build a tree for x* where

( ) ( )dztdtxtadx σ+−= **

We first choose the times at which nodes will be placed, t0, t1, t2, … , tn, where t0 = 0 and
ti = i ∆t for i = 0, … , n. The vertical (x* dimension) spacing between adjacent nodes at
time ti+1 is then set equal to 3Vi  where

( ) ( )( ) ( )i
tta

ii taetV i 2/1 22 ∆−−= σ

Suppose that the value of x* at the jth node at time ti is x*i, j. The mean and standard
deviation of x* at time ti+1 conditional on x* = x*i, j at time ti are approximately x*i, j +
Mi x*i, j and Vi , where
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( )( )1−= ∆− tta
i

ieM

We match these by branching from x*i, j to one of x*i+1, k− 1, x*i+1, k, and x*i+1, k+1
where k is chosen so that x*i+1, k is as close as possible to x*i, j + Mi x*i, j ∆t. We then
calculate the displacements, α(t), necessary for the tree to match the initial term structure.

The a(t) and σ(t) can be set in advance of the numerical procedure. Alternatively, it is not
difficult to devise a numerical procedure that chooses a(t) and σ(t) so that the initial prices
of caps or swap options (or both) are matched. When used for x = log(r) this type of tree
building procedure has the advantage over Black and Karasinski [1991] that the length of
the time step is under the control of the user.5

It seems appealing to take advantage of all the degrees of freedom in a model to exactly fit
initial market data. However, the resulting non-stationarity in the volatility term structure
may have many untoward and unexpected effects. To illustrate this we use the x = r
model:

( ) ( )[ ] ( )dztdtrtatdr σθ +−=
and show the effect of matching cap prices.

Caps are usually priced using Black's model, under which the price at time zero of a caplet
expiring at T on a rate that applies from T to T + τ is

( ) ( ) ( ) ( )[ ]21, dXNdNTTFPeC TR −+= +− ττ τ

where P is the notional principal, R is the zero coupon rate with a maturity T + τ, F(T, T + 
τ) is the forward rate for the period T to T + τ and X is the cap rate.

( )( )
( )

( )

( ) TTvdd

TTv
TTv

XTTFd

−=

++=

12

1 2
/,log τ

where v(T) is the volatility for the caplet expiring at T.

The data set that we will use for calibration consists of the market prices of at-the-money
caps that are reset monthly (τ = 1 month). The particular v(T) function we assume for
illustration purposes is shown in Figure 3.6 This has a similar shape to the v(T) function
commonly observed in the market. We assume the term structure is flat at 7%
continuously compounded.

In order to match the Black volatilities we first used them in conjunction with Black's
model to calculate caplet prices. We then matched the caplet prices in two ways:

                                               
5We will explain in the next section how the length of the time step can be changed by the user in the
Hull-White tree building procedure.
6This volatility curve is ( ) ( )[ ]( )011 vecbTTv dT−−++=  for T ≤ 5, b = − 0.1, c = 0.5, d = 0.8, and v(0) = 0.2.
The curve was extended beyond T = 5 by assuming that the gradient of v(T)T when T > 5 equals its
gradient when T = 5.
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1. We fixed the short rate standard deviation, σ, and allowed the reversion
rate, a, to be a function of time; and

2. We fixed a and allowed σ to be a function of time.

Figure 4 shows the value of a(t) required to fit the market data when σ is fixed7 at 1.4%
and the value of σ(t) required to fit the market data when a is fixed at 5%. It can be seen
that the implied a(t) and σ(t) exhibit severe non-stationarity. Although by construction this
non-stationarity leads to caplets being priced correctly, it is liable to lead to unacceptable
results when used to price other instruments.

Any instrument whose price depends on the future volatility structure, rather than today's
volatility structure, is liable to be mispriced by a model with time dependent volatility
parameters. One example of such a security is an American-style call option where the
decision to exercise at some future date depends on the volatility structure at that date.
Another example is a caption, an option to buy a cap, where the decision to exercise the
option at it expiry depends on the value of the cap at that time.

This example illustrates the types of problems that can arise when a model is implemented
in such a way that the volatility structure is not stationary. It is a problem that afflicts all
Markov interest-rate models including the Black, Derman and Toy, and Black and
Karasinski models. By fitting a one-factor Markov interest-rate model to today's option
prices, we make it exactly reflect the initial volatility structure. However, we are also
unwittingly making a statement about how the volatility term structure will evolve in the
future. Using all the degrees of freedom in the model to fit the volatility exactly constitutes
an over parameterization of the model. It is our opinion that there should be no more than
one time varying parameter used in Markov models of the term structure evolution and
that this should be used to fit the initial term structure.

IV. Other Issues

There are a number of other practical issues to consider when implementing Hull-White
trees for valuing interest rate derivatives. In this section we review a number of these and
indicate how they can be handled.

In our description of the tree-building procedure in Hull and White [1994a] it was
assumed that the length of the time step is constant. In practice, it is sometimes desirable
to change the length of the time step.8 Changing the length of the time step is
straightforward. When drawing the tree for x*, we first choose the times at which nodes
will be placed, t0, t1, t2, … , tn, where t0 = 0. Defining ∆ti = ti+1 −  ti for i = 0, … , n −  1,
                                               
7The choice of the fixed value for σ in this example, and the following choice of the fixed value for a are
arbitrary. However, the implied values of a(t) and σ(t) are representative of the type of non-stationarity
that results from the given volatility structure. The best fixed value of σ (or a) to use might be the one that
minimizes the variance of the implied a(t) (or σ(t)).
8Consider for example the situation where the lognormal model is used to value a European 6-month
option on a 5-year bond. It might be appropriate to use a longer ∆t between 6 months and 5 years than
during the first six months. This is because the part of the tree between 6 months and 5 years is used only
to value the underlying bond.
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the vertical (x* dimension) spacing between adjacent nodes at time ti+1 is then set equal
to 3Vi  where

( ) aeV ita
i 2/1 22 ∆−−= σ

From this point, the construction is similar to the procedure followed when the volatility
parameters are a function of time. Suppose that the value of x* at the jth node at time ti is
x*i, j. The mean and standard deviation of x* at time ti+1 conditional on x* = x*i, j at time
ti are approximately x*i, j + Mi x*i, j and iV , where

( )1−= ∆− ita
i eM

We match these by branching from x*i, j to one of x*i+1, k− 1, x*i+1, k, and x*i+1, k+1
where k is chosen so that x*i+1, k is as close as possible to x*i, j + Mi x*i, j ∆ti. Note that
whenever the size of the time step changes, ∆ti ≠ ∆ti+1, the vertical (x* dimension)
spacing between nodes increases by ii tt ∆∆ + /1 . This means that the branching is
nonstandard at points when the length of the time step changes. Figure 5 illustrates the
tree that is constructed when the time step increase by a factor of three after two time
steps.

The tree for x is constructed from the tree for x* to match the initial zero coupon yield
curve as described in Hull and White [1994a]. Note that, when the length of the time step
changes from ∆ti to ∆ti+1, the interest rates considered at the nodes automatically change
from the ∆ti period rates to the ∆ti+1 rates.

Another issue in the construction of the tree concerns cash flows that occur between nodal
dates. Suppose a cash flow occurs at time τ when the immediately preceding nodal date is
ti and the immediately following nodal date is ti+1. One approach is to discount the cash
flow from time τ to the nodes at time ti using estimates of the τ −  ti rates prevailing at the
nodes at time ti.9 Another approach is to assume that a proportion (τ −  ti)/(ti+1 −  ti) of
the cash flow occurs at time ti+1 while the remainder occurs at time ti.10 A final approach
is to avoid the problem altogether by changing the length of the time step so that every
payment date is also a nodal date.

Barrier options present a further problem in the use of the tree because convergence tends
to be slow when nodes do not lie exactly on barriers. In the case of an interest rate option
the barrier is typically expressed in terms of a bond price or a particular rate. When x = r,
analytic results can be used to express the barrier as a function of the ∆t-period rate.
Nonstandard branching can then be used to ensure that nodes always lie on the barrier.
Ritchken (JOD Winter 1995) describes such an approach, and shows that a substantial
improvement in performance is possible with it. An alternative approach that has more
general applicability is to extend the idea suggested by Derman et al [1995] to interest rate

                                               
9In the case of the Hull-White, x = r model these rates can be calculated analytically.
10This approach has the effect of apportioning the cash flow to nodal dates while ensuring that the
expected time when the cash flow occurs is correct.
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trees. This approach involves using a procedure to correct values of the derivative
calculated at nodes close to a barrier.

A final problem in the use of interest rate trees is path dependence. This can sometimes be
handled in the way described by Hull and White [1993]. The requirements for the Hull-
White method to work are:

1. The value of the derivative at each node must depend on just one function of the
path for the short rate r (e.g., the maximum, minimum, or average value);

2. In order to update the path function as we move forward through the tree we need
to know only the previous value of the function and the new value of r.

Hull and White show how their approach can be used for index amortizing swaps and
mortgage-backed securities. The relevant path function in each case is the remaining
principal.

V. Summary

The Hull-White tree building procedure is a flexible approach to constructing trees for a
wide range of different one-factor models of the term structure. The tree is constructed in
such a way that it is exactly consistent with the initial term structure. In this article we
have shown how the basic procedure presented in our earlier paper can be extended. Some
of these extensions involve the use of analytic results and some involve changing the
geometry of the tree to reflect special features of the derivative under consideration. We
have devoted some time in this article to a discussion of what happens when the volatility
parameters are made time-dependent. It not difficult to extend the Hull-White tree to
incorporate time-dependent parameters so that the prices of caps or swap options (or
both) are matched. However, this is liable to result in unacceptable assumptions about the
evolution of volatilities.
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Figure 1

The initial tree (θ(t) = 0 and x(0) = 0)

Figure 2

The final tree for x
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Figure 3

Black's volatility for at-the-money caplets that are reset monthly
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Figure 4

Value of a(t) when σ = 1.4% (left-hand scale), and the value of σ(t) when a = 5% (right-
hand scale) required to replicate the caplet prices computed from the Black volatilities in
Figure 3. The Black volatilities from Figure 3 are included for reference purposes.
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Figure 5

The tree for x* when length of time step changes


