Construction of interest rate trinomial tree for Hull-White model

We shall give a description on how to construct an interest rate trinomial tree for Hull-White model

$$
dr = (\theta(t) - ar)dt + \sigma dW \tag{1}
$$

using Arrow-Debreu prices (see Appendix). To start, lets define some notation. For $t =$ $1, 2, 3, \ldots$, let

- $D(t)$ be the discount factor over time period [0, t]. $D(t)$ could be thought of as the value at $t = 0$ of a \$1 face value default free zero bond that matures at time t.
- $r(t)$ the interest rate over [0, t]. We shall use continuously compounded interest. Hence $D(t) = e^{-t \cdot r(t)}$.
- $\sigma > 0$ be the volatility, with respect to the risk neutral probability, of the interest rate at time t.
- \bullet $a > 0$.
- $D(t, j)$ be the discount factor at time t and state j, at (t, j) for short, over the time period $[t, t+1]$.
- $r(t, j)$ be the spot interest rate at (t, j) over time period $[t, t + 1]$. Note that $D(t, j)$ = $e^{-r(t,j)}$
- j_{max} = the smallest integer equal or greater than 0.184/a. (The choice of j_{max} is to ensure the risk neutral probabilities at each node are positive. Please see [1, p 581] for details.)
- $\Delta R = \sigma \sqrt{3}$. This choice of ΔR is to minimise the approximation error to the continuous case. (See [1, p 581] for details.)
- $n_t = min(t, j_{max}).$

Note that $r(0, 0) = r(1)$. To construct a trinomial tree inductively, we start at $(0, 0)$. If we are at node (t, j) , then

- Branch (a) is used if $-j_{max} < j < j_{max}$.
- Branch (b) is used if $j = -j_{max}$.
- Branch (c) is used if $j = j_{max}$.

Note that the constructed trinomial tree is symmetric about $t = 0$, and n_t is the number of nodes on either side of $t = 0$ at t . If $a = 0.1$, then $j_{max} = 2$, the trinomial tree would look like the following.

When the interest rate is "sufficiently high", a downward branch is used. Likewise when interest rate is "sufficiently low". This mimics the mean reversion process suggested by (1) .

At each node (t, j) , let p_u , p_m , p_d be the risk neutral probabilities of up, middle and down direction respectively.

For the rest of this article assume that

$$
r(t,j) = r(t,0) + j\Delta R \quad \text{for } -n_t \le j \le n_t,
$$
\n(2)

It turns out that at (t, j) , p_u, p_m, p_d only depends on j and are given by the following (see [1, p 582] for details).For branch (a)

$$
p_u = \frac{1}{6} + \frac{j^2 a^2 - ja}{2} \tag{3}
$$

$$
p_m = \frac{2}{3} - j^2 a^2 \tag{4}
$$

$$
p_d = \frac{1}{6} + \frac{j^2 a^2 + ja}{2} \tag{5}
$$

For branch (b)

$$
p_u = \frac{1}{6} + \frac{j^2 a^2 + ja}{2} \tag{6}
$$

$$
p_m = -\frac{1}{3} - j^2 a^2 - 2ja \tag{7}
$$

$$
p_d = \frac{7}{6} + \frac{j^2 a^2 + 3ja}{2} \tag{8}
$$

For branch (c)

$$
p_u = \frac{7}{6} + \frac{j^2 a^2 - 3ja}{2} \tag{9}
$$

$$
p_m = -\frac{1}{3} - j^2 a^2 + 2ja \tag{10}
$$

$$
p_d = \frac{1}{6} + \frac{j^2 a^2 - ja}{2} \tag{11}
$$

(The equations for p_u, p_m, p_d come from the constrains on the mean and variance of $r(t, k +$ 1), $r(t, k)$, $r(t, k - 1)$ and $p_u + p_m + p_d = 1$. See [1, p 582] for details.)

Set $r(0, 0) = r(1) = -\ln D(1)$. We now show how to find $r(t, j)$ inductively, where $1 \le$ $t \leq n-1, -n_t \leq j \leq n_t$, which satisfies (2) and the $r(t, j)$ s are chosen so that there is no arbitrage opportunity. These $r(t, j)$ s are discretisation of the Hull-white model

$$
dr = (\theta(t) - ar)dt + \sigma dW
$$

Please consult [1, Chapter 21] and [2, Chapter 9, section 5] for more details.

At time $t = 0$, consider

- portfolio A that consists of a zero bond which matures at time $t = 2$ with a face value of \$1.
- portfolio B that consists of a derivative which pays

$$
\left\{\begin{array}{cl} D(1,1) & \text{at } (1,1) \\ D(1,0) & \text{at } (1,0) \\ D(1,-1) & \text{at } (1,-1) \end{array}\right.
$$

The value of portfolio A at time $t = 0$ is $D(2)$. The value of portfolio B at time $t = 0$ is $Q(1,-1)D(1,-1) + Q(1,0)D(1,0) + Q(1,1)D(1,1)$, where $Q(t, j)$'s are the Arrow-Debreu prices and they are known (see Appendix). As both portfolios have the same payoff at $t = 1$, by the no arbitrage argument, their value at time $t = 0$ must be the same. Hence

$$
D(2) = Q(1,-1)D(1,-1) + Q(1,0)D(1,0) + Q(1,1)D(1,1)
$$
\n(12)

From (2), we can express $D(1, -1)$, $D(1, 0)$, $D(1, 1)$ in terms of $r(1, 0)$. Hence (12) becomes

$$
D(2) = Q(1,1)e^{-r(1,0)+\Delta R} + Q(1,0)e^{-r(1,0)} + Q(1,1)e^{-r(1,0)-\Delta R}
$$
\n(13)

$$
r(1,0) = \ln\left(\frac{Q(1,1)e^{\Delta R} + Q(1,0) + Q(1,1)e^{-\Delta R}}{D(2)}\right)
$$
\n(14)

Then $r(1, -1)$, $r(1, 1)$ follows from (2) .

Now that we have worked out the spot rates at time $t = 1$, we move on to time $t = 2$. Recall $n_2 = min(2, j_{max})$, the number of nodes at time 2. At time $t = 0$, consider (new portfolios)

- portfolio A that consists of a zero bond which matures at time $t = 3$ with a face value of \$1.
- portfolio B that consists of a derivative which at time 2 has payoff $D(2, j)$ at $(2, j)$ for $-n_2 \leq j \leq n_2$.

Both portfolios A and B have the same payoff at time $t = 2$. By the no arbitrage argument they must have the same value at time $t = 0$. This gives

$$
D(3) = \sum_{j=-n_2}^{n_2} Q(2,j)D(2,j)
$$
 (15)

From (2), we can express the $D(2, j)$ s in terms of $r(2, 0)$. Hence (15) would become

$$
D(3) = \sum_{j=-n_2}^{n_2} Q(2,j)e^{-r(2,0)-j\Delta R}
$$
\n(16)

$$
r(2,0) = \ln\left(\frac{\sum_{j=-n_2}^{n_2} Q(2,j)e^{-j\Delta R}}{D(3)}\right)
$$
 (17)

Then $r(2, j)$ for $-n_2 \leq j \leq n_2$ follows from (2).

In general, suppose $t \geq 1$ and we have worked out $r(t-1, j)$ and $Q(t-1, j)$ for $-n_{t-1} \leq$ $j \leq n_{t-1}$. (Note that $r(0, 0) = r(1)$ and $Q(0, 0) = 1$.) For $-n_t \leq j_0 \leq n_t$, we have (see (24))

$$
Q(t, j_0) = \sum_{j=-n_{t-1}}^{n_{t-1}} (\text{Prob of } (t-1, j) \to (t, j_0)) D(t-1, j) Q(t-1, j)
$$
(18)

Note that "Prob of $(t-1, j) \rightarrow (t, j_0)$ " is the risk neutral probability of going from node $(t-1,j)$ to (t, j_0) . It might be zero or one of p_u, p_m, p_d defined earlier. The no arbitrage argument described above gives

$$
D(t+1) = \sum_{j=-n_t}^{n_t} Q(t,j)D(t,j)
$$
 (19)

Then by rewriting the $D(t, j)$ s in terms of $r(t, 0)$ using (2) , (19) becomes

$$
D(t+1) = \sum_{j=-n_t}^{n_t} Q(t,j)e^{-r(t,0)-j\Delta R}
$$
\n(20)

$$
r(t,0) = \ln\left(\frac{\sum_{j=-n_t}^{n_t} Q(t,j)e^{-j\Delta R}}{D(t+1)}\right)
$$
\n(21)

Once we have worked out $r(t, 0)$, the other $r(t, j)$ s could be deduced from (2).

Appendix Arrow-Debreu prices

Let $r(t, j)$ be the interest rate at time t and state j, at (t, j) for short, over time period $[t, t+1]$ on a trinomial tree. At node (t, j) , let $p(t-1, j, d)$, $p(t-1, j, m)$, $p(t-1, j, u)$ be the risk neutral probabilities of the up, middle, down direction respectively.

For $0 \le t_0$, let $Q(t_0, j_0)$ be the value of a derivative at time 0 and the payoff at $t = t_0$ is given by

 δ_{j_0j} where j is the state reached at time t_0 (22)

(We also use $Q(t_0, j_0)$ to denote the above defined derivative.) Note that $Q(0, 0)$ is 1. The $Q(t, j)$'s are known as the Arrow-Debreu prices.

Let $V(t, j)$ be the value (payoff) of an arbitrary derivative at (t, j) . It can be easily verified that $V(0,0)$, the value of the derivative at time $t = 0$ is given by

$$
V(0,0) = \sum_{s} V(t,s)Q(t,s)
$$
\n(23)

Let t_0 , j_0 be given. The value of $Q(t_0, j_0)$ at node $(t_0 - 1, j)$ is

(Prob of
$$
(t_0 - 1, j) \rightarrow (t_0, j_0)
$$
) $\cdot D(t_0 - 1, j)$

where Prob of $(t_0 - 1, j) \rightarrow (t_0, j_0)$ is $p(t_0 - 1, j, d), p(t_0 - 1, j, m), p(t_0 - 1, j, u)$ depending on the values of j, j_0 .

For $t \geq 1$, by applying (23) to the value of $Q(t, j)$ at $t - 1$, we have

$$
Q(t,j) = \sum_{s} (\text{Prob of } (t-1,s) \to (t,s)) \cdot D(t-1,s)Q(t-1,s)
$$
 (24)

Note that we define $Q(t, j) = 0$ if (t, j) is not part of the tree. From (24), we see that $Q(t, j)$ could be calculated inductively.

S H Man 8/4/03

References

- [1] J Hull, Options, Futures and Other Derivatives, fourth edition, Prentice-Hall International
- [2] L Clewlow and C Strickland Implementing Derivatives Models, Wiley