Construction of interest rate trinomial tree for Hull-White model

We shall give a description on how to construct an interest rate trinomial tree for Hull-
White model
dr = (0(t) — ar)dt + odW (1)

using Arrow-Debreu prices (see Appendix). To start, lets define some notation. For t =
1,2,3,..., let

e D(t) be the discount factor over time period [0,¢]. D(t) could be thought of as the
value at t = 0 of a $1 face value default free zero bond that matures at time .

e 7(t) the interest rate over [0,¢]. We shall use continuously compounded interest. Hence
D(t) = et

e o > 0 be the volatility, with respect to the risk neutral probability, of the interest rate
at time t.

e a>0.

e D(t,j) be the discount factor at time ¢t and state j, at (¢,7) for short, over the time
period [t,t + 1].

e 7(t,j) be the spot interest rate at (¢, ) over time period [t,t + 1]. Note that D(¢,j) =
e_"'(tvj)

® jmax = the smallest integer equal or greater than 0.184/a. (The choice of jq. iS to
ensure the risk neutral probabilities at each node are positive. Please see [1, p 581] for
details.)

e AR = 0+/3. This choice of AR is to minimise the approximation error to the continuous
case. (See [1, p 581] for details.)

® n; = nun tvjma:r)~

Note that r(0,0) = r(1). To construct a trinomial tree inductively, we start at (0,0). If we
are at node (¢, ), then

e Branch (a) is used if —jmae < J < Jmaz -
e Branch (b) is used if j = —jq4z-
(

e Branch (c) is used if j = jmaz-

f(t+1,j+1) rt+1p+2) i) r(t+1,))
r(t+1,)) r(t+1,j+1)
r{t,j) J ) r(t+1,j-1)
r{t+1,j-1) ” r(t+1,)
(a) ") ) () rlt+12)

Note that the constructed trinomial tree is symmetric about ¢t = 0, and n; is the number
of nodes on either side of t = 0 at ¢t . If a = 0.1, then jq0e = 2, the trinomial tree would
look like the following.



0 1 2 3 4

When the interest rate is ”sufficiently high”, a downward branch is used. Likewise when
interest rate is ”sufficiently low”. This mimics the mean reversion process suggested by (1) .

At each node (¢, 5), let py, Pm, Pa be the risk neutral probabilities of up, middle and down
direction respectively.

pu

pd
For the rest of this article assume that
r(t,7) =r(t,0) + jJAR for —ny < j < ngy, (2)

It turns out that at (¢,7), pu, Pm, pa only depends on j and are given by the following (see
[1, p 582] for details).For branch (a)

1 j%a® —ja
2
pm = 3—j (4)
1 j%a®+ja
= - 5
Dd 6 + 2 (5)



For branch (b)

1 524+ ja
Pu = 6 + 92 (6)
1 .
Pm = 3 j*a® — 2ja (7)
7 j%a® + 3ja
Pa = & T (8)
For branch (c)
7 j%a® —3ja
= 412 97 9
DPu 6 + D) ( )
1
Pmo = —3 — j%a® + 2ja (10)
1 j2a%® —ja
= -4 200 11
Dd 6 + 5 (11)

(The equations for p,,, pm, pa come from the constrains on the mean and variance of r(¢, k +
1,7t k),r(t,k — 1) and py + pm + pa = 1. See [1, p 582] for details.)

Set r(0,0) = r(1) = —InD(1). We now show how to find r(¢, ;) inductively, where 1 <
t <n-—1, —ny < j < ng, which satisfies (2) and the r(¢, j)s are chosen so that there is no
arbitrage opportunity. These r(t, j)s are discretisation of the Hull-white model

dr = (0(t) — ar)dt + cdW

Please consult [1, Chapter 21] and [2, Chapter 9, section 5] for more details.
At time t = 0, consider

e portfolio A that consists of a zero bond which matures at time ¢t = 2 with a face value
of $1.

e portfolio B that consists of a derivative which pays

D(1,1) at (1,1)
D(1,0) at (1,0)
D(1,-1) at (1,—-1)
The value of portfolio A at time ¢ = 0 is D(2). The value of portfolio B at time ¢t = 0
is Q(1,-1)D(1,-1) + Q(1,0)D(1,0) + Q(1,1)D(1, 1), where Q(¢, j)’s are the Arrow-Debreu

prices and they are known (see Appendix ). As both portfolios have the same payoff at t = 1,
by the no arbitrage argument, their value at time ¢ = 0 must be the same. Hence

D(2) =Q(1,-1)D(1,-1) + Q(1,0)D(1,0) + Q(1,1)D(1,1) (12)

From (2), we can express D(1,—1), D(1,0), D(1,1) in terms of r(1,0). Hence (12) becomes
D(2) — Q(L 1)6—7'(1,0)+AR + Q(Lo)e—r(l,o) + Q(L 1)6—7-(170)—AR (13)

fL0) = In (Q(Ll)eﬁwgg +Q<1,1)e—”> (14)

Then r(1,—1),r(1,1) follows from (2).



Now that we have worked out the spot rates at time ¢ = 1, we move on to time ¢t = 2.
Recall no = min(2, jmaz), the number of nodes at time 2. At time ¢ = 0, consider (new
portfolios)

e portfolio A that consists of a zero bond which matures at time ¢ = 3 with a face value
of $1.

e portfolio B that consists of a derivative which at time 2 has payoff D(2,j) at (2, ) for
—ng < j < na.
Both portfolios A and B have the same payoff at time ¢t = 2. By the no arbitrage argument
they must have the same value at time ¢ = 0. This gives

ny

DE)= Y Q(2,4)D(2,) (15)

Jj=—n2

From (2), we can express the D(2, j)s in terms of r(2,0). Hence (15) would become

DE) = 3 Qj)ere0-an (16)
2 2,j)e IR
r(2,0) = In (Zﬂmgé)j) ) (17)

Then r(2, j) for —ny < j < ng follows from (2).

In general, suppose ¢t > 1 and we have worked out r(t — 1, ) and Q(t — 1,7) for —n;_q <
j <ng_1. (Note that (0,0) = (1) and Q(0,0) =1 .) For —n; < jo < ny, we have (see (24))

ne—1

Q(t,jo) = D (Probof (t —1,5) — (£,50)) D(t — 1, /)Q(t — 1, ) (18)

Jj=—ni—1

Note that ”Prob of (t — 1,j) — (¢,j0)” is the risk neutral probability of going from node
(t —1,7) to (t,70). It might be zero or one of py, pm,ps defined earlier. The no arbitrage
argument described above gives

n

D(t+1)= Y Q(t5)D(t]) (19)

Jj=—ny

Then by rewriting the D(%, j)s in terms of r(¢,0) using (2), (19) becomes

Tt

D(t+1) = > Q(t,j)e"HOIAR (20)
ny 'efjAR
r(t,0) = In (Zf—‘%g(j’i; ) (21)

Once we have worked out 7(t,0), the other (¢, j)s could be deduced from (2).



Appendix Arrow-Debreu prices

Let r(¢,j) be the interest rate at time ¢ and state j, at (¢, ) for short, over time period
[t,t 4+ 1] on a trinomial tree. At node (t,j), let p(t — 1, ,d),p(t — 1,4, m), p(t — 1, 4, u) be the
risk neutral probabilities of the up, middle, down direction respectively.

r(tj+k+1)

r(t)) r(t,j+k) k=-100r1

f(t, j+ k-1)

For 0 < tg, let Q(to, jo) be the value of a derivative at time 0 and the payoff at ¢ = ¢ is
given by
dj,; Wwhere j is the state reached at time to (22)

(We also use Q(to,jo) to denote the above defined derivative.) Note that Q(0,0) is 1. The
Q(t,7)’s are known as the Arrow-Debreu prices.

Let V(t,j) be the value (payoff) of an arbitrary derivative at (¢,5). It can be easily
verified that V'(0,0), the value of the derivative at time ¢ = 0 is given by

V(07 0) - Z V(t7 S)Q(t, 5) (23)

Let tg, jo be given. The value of Q(tg,jo) at node (to — 1,7) is
(PI‘Ob of (tO - 13]) - (tO’jO)) : D(tO - 1’])

where Prob of (to — 1,7) — (to,jo) is p(to — 1,4, d), p(to — 1, j,m), p(to — 1, j,u) depending on
the values of j, jo.
For t > 1, by applying (23) to the value of Q(t,j) at ¢t — 1, we have

Q(t,j) =Y _(Probof (t—1,s) — (t,s)) - D(t —1,5)Q(t — 1,5) (24)

S

Note that we define Q(¢t,j) = 0 if (¢,7) is not part of the tree. From (24), we see that Q(t, j)
could be calculated inductively.
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