
A C++ Encoded Hull-White Interest Rate Tree-Builder

John H. Li1

Duke University
Durham, NC

April 15, 2002

1 John Li graduated from Trinity College, Duke University Class of 2002 with and BS degree and High Distinction
honors in Economics. He also holds a minor in Computer Science. He is employed by Deutsche Bank and will be
working in the Corporate Derivatives group of the Global Markets Division. He will reside in London and New York
City.

2

Acknowledgement

I would like to gratefully thank my independent study advisor, Dr. Bjorn Eraker, for

recommending this research topic and providing me excellent guidance during the study. With his

enthusiasm and great efforts to explain things clearly and simply, he helped to make the esoteric parts of

finance understandable for me during my financial engineering independent study. Throughout my

thesis-writing period, he provided encouragement, sound advice, good teaching and many ideas.

I wish to acknowledge Deutsche Bank’s Corporate Derivatives desk for providing me with up-

to-date term structures and market prices for specific interest rate derivatives at my request. I

particularly wish to express appreciation to my future manager and head of the desk, Raj Bhattacharrya,

for his enthusiastic supervision during this project.

I am indebted to my uncle and Johnson Graduate School of Management professor, Dr.

Charles Lee, for his continued support and assistance in the preparation of this manuscript. Gratitude is

also extended to Brian Bevan and John Mayer for their support.

Lastly and most importantly, I wish to thank my parents, Dr. Pei-Luen Li and Ling Li. I am

forever indebted to them for their understanding, endless patience and encouragement when it was most

required. To them I dedicate this thesis.

3

Abstract

The Hull-White model is a single-factor, no arbitrage approach to modeling the term structure of

interest rates. It models the term structure by describing the evolution of the short rate, or the

instantaneous rate of interest. Implementing this model results in a trinomial pricing tree that can be used

to price complex interest rate derivatives such as options on swaps and bonds. The difficulty of this

model lies in its relative complexity and multi-stage implementation. The model's advantage over similar

models is its calculation speed.

This paper does not develop a new method but rather explains the author’s original

implementation of the algorithm behind the Hull-White interest rate model using C++ programming

code. The paper will first explain the generalized Hull-White model. It will then explain the construction

of the Hull-White tree by correlating each step in the model's two-stage tree-building procedure with the

C++ program architecture. The paper will then run the Hull-White model using current market data to

price a one-year bond option on a ten-year zero-coupon bond and briefly explain the discrepancies in

the instrument's market price and calculated price. The paper will also describe some of the limitations

of the program and discuss possible future improvements.

4

Introduction

Interest rate derivatives are financial instruments whose payoffs are a function of the term

structure of interest rates. Like foreign exchange and equity derivatives, interest rate derivatives are

extremely important in today's economy for both risk management and speculative purposes. As a

result, many new financial products have been created to meet the needs of end users such as

corporations, banks, money managers and insurance companies. The challenge lies in finding an

accurate procedure for pricing and hedging these products.

Pricing interest rate products is more complicated than pricing foreign exchange or equity

derivative for several reasons. A primary reason is because for the valuation of many interest rate

products, it is necessary to develop a model describing the behavior of today's entire term structure of

interest rates2. As a result, a no-arbitrage term structure model must be created. The no-arbitrage

property ensures that the value generated by the term structure model is exactly consistent with the

market's bond prices implied by the zero-coupon yield curve. There are generally two different

approaches to building no-arbitrage yield curve models: describing the evolution of the forward rate and

describing the evolution of the short-term interest rate3. Each approach has its strengths and

weaknesses.

The first approach describes the evolution of the instantaneous forward rate and was first

developed by Heath, Jarrow, and Morton. The Heath-Jarrow-Morton (HJM) model considers the

current term structure with a user specification of the volatility of forward rates to build a tree to model

the behavior of the instantaneous forward rate. "The HJM tree of forward rates is the fundamental unit

representing the evolution of interest rates in a given period of time4." Brace, Gatarek and Musiella

(1997) extended this model into the LIBOR Market Model (LMM) that allows one to apply the model

to observable non-instantaneous forward rates, such as the 3-month LIBOR. The approach behind

both models results in an easily understandable tree implementation that permits as complex of a

volatility structure as desired. "The HJM-LMM models provide approaches that give the user complete

2 Hull, J., Options, Futures and Other Derivatives, Prentice Hall, 2000. pg 530.
2 Hull, J. and A. White, "The General Hull-White Model and Super Calibration," Financial Analysts Journal, Vol. 57,
No. 6 (Nov/Dec 2001), pg 37.

5

freedom in choosing the volatility term structure5." The weakness of the approach is that the trees

created cannot be represented as recombining trees; calculations are based on a statistical process.

HJM-LMM models are thus difficult to implement by any other means other than Monte-Carlo

simulation6. This makes the accurate pricing of interest rate derivatives both time and computationally

inefficient.

The second approach to modeling the yield curve is to take the initial term structure as given and

describe how the short-term interest rate, the rate that applies over the next short interval of time, can

evolve7. Models of the short rate are implemented in the form of a recombining tree similar to the stock

price tree first developed by Cox, Ross and Rubinstein (1979) and do not need to be statistically

calculated8. As a result, interest rate trees implemented using this approach are both robust and

computationally fast; most models used for routine interest rate derivatives pricing are based on this

approach. The method's weakness is its relative complexity and lack of flexibility in the user

specification of the volatility environment. Example models of the short-term interest rate include the Ho

and Lee model as well as the Hull and White model. This study examines the implementation of the

single-factor Hull-White model.

The Hull-White Model

The single-factor, no-arbitrage Hull-White model is a model where the function of the

instantaneous interest rate (short rate), r, follows the following stochastic differential equation:

dy = (?(t)-ay)dt + sdz (1)

where y = f(r) is some function of the short rate, ?(t) is a function of time chosen so that the model

provides an exact fit to today's zero-coupon yield curve, a is the mean reversion rate, dt is a small

change in time, s is the annual standard deviation of the short rate and dz is a Wiener process9. A

4 "Heath-Jarrow-Morton Model," http://www.mathworks.com/access/helpdesk/ help/toolbox/finderiv/using8.shtml,
The MathWorks Inc., 2001.
5 Hull Options, pg 618.
6 Hull “The General Hull-White” pg 38.
7 Hull, Options, pg. 596.
8 Hull, “The General Hull-White,” pg. 39.
9 “CurveTrader Online Help,” http://www.powerfinance.com/help. Leap of Faith Research, Inc., 1998.

6

trinomial tree is used to construct a discrete time and space Markov approximation of the state variable

y.

The parameters a and s make up the volatility parameter (state factor) that is chosen by the user

to calibrate the model to the market prices of a set of actively traded interest-rate derivatives10. The

model assumes that the short rate is normally distributed and subject to mean reversion, the well

documented phenomenon where interest rates appear to drift to a long-run average level over time. The

model also assumes there are no market frictions, taxes nor transaction costs. It is assumed that assets

are perfectly divisible and trading takes place at discrete time steps11.

For this study the author identifies the short rate as the state variable:

y = r

A downside to setting the state variable equal to the short rate is the possibility of negative interest rates.

However, in practice this probability is small. Furthermore, when y = r and a ? 0, the model reduces

to the analytically tractable model:

dr = (?(t)-ar)dt + sdz (2)

as shown and proven in Hull and White (1990). The model is analytically tractable because it allows for

the pricing at time t of a zero-coupon bond maturing at time T in terms of the initial term structure and r

at time t12. Specifically, Hull and White proved:
)(),(),(),(trTtBeTtATtP −= (3)

where:

a
e

TtB
tTa)(1

),(
−−−

= (4)

() ()
()

() () () ()1
4
1,0ln

,
,0
,0

ln,ln 222
3

−−−
∂

∂
−= −− atataT eee

at
tP

TtB
tP
TP

TtA σ (5)

10 Hull, “The General Hull-White,” pg 39.
11 Leippold, M. and Z. Wiener, "The Term Structure of Interest Rates II: The Hull-White Trinomial Tree of Interest
Rates, 1999, pg 1.
12 Hull, J. and A. White, "Using Hull-White Interest Rate Trees," Journal of Derivatives, Vol. 3, No. 3, (Spring 1996),
pp. 28, 30.

7

In practice, bond prices are usually computed in terms of R(t), the discrete ?t-period at time t rather

than r. Hull and White convert equation (3) to:

() ())(),(ˆTt,ˆ, tRTtBeATtP −= (6)

where:

() ()
()

()
()

()
()

−
∆+

∆+
−=

tP
ttP

tttB
TtB

tP
TP

TtA
,0

,0
ln

,
,

,0
,0

ln,ˆln (7)

() () () ()[]tttBTtBTtBe
a

at ∆+−− − ,,,1
4

2
2σ

()
()

t
tttB

TtB
TtB ∆

∆+
=

,
,

),(ˆ (8)

An alternative would be to set:

y = ln(r)

This prevents the chance of negative interest rates, but has no analytic tractability13.

The Hull-White model can be viewed as an extension of the Ho and Lee model with mean

reversion rate of a; when a = 0, the model reduces to the Ho-Lee model. Furthermore, when written

as:

dzdty
a
t

ady σ
θ

+

 −=

)(

the Hull-White model can be characterized as an extension of the Vasicek model with a time-dependent

reversion level of
a
t)(θ

 at rate a14.

A trinomial interest rate tree is a discrete representation of the stochastic process for the short

rate15. The C++ implementation of the Hull-White model roughly follows the two-stage procedure for

constructing trinomial trees. Each stage will be outlined.

13 Hull, Options, pg. 587.
14 Hull, Options, pg. 574.
15 Hull, Options, pg. 578.

8

Theoretical Implementation- First Stage

The Hull-White interest rate tree is a discrete-time representation of the stochastic process for

the short rate. Each step on the tree represents a point in time, ti. The time step on the tree is ?t=ti+1-

ti. Each node on the interest rate tree at time ti with a relative tree position j is denoted as node (i,j).

t0 t1 t2 t3

j=3

j=2

j=1

j=0

j=-1

j=-2

j=-3

node(1,1)

node(3,-3)

Figure 1

It is assumed that the ?t-period interest rate at time t, R(t), follows the same process as the short rate, r:

dR = (?(t)-aR)dt + sdz (9)

 The goal of the first stage is to construct a tree such that the central node at each time step,

node (i,0), has a value of zero16. This is achievable by defining a new variable R* obtained from R by

setting both setting ?(t) and the initial value of R equal to zero17. R* follows the process:

dR* = -aR*dt + sdz (10)

where the expected value of () () ()dttaRtRttR *** −=−∆+ ; its variance is equal to s 2?t18.

Setting ?(t) to zero and the initial value of R* is zero results in a process that is mean reverting to

zero. If R* starts at zero the unconditional expected value of R* at all future times is zero (Hull 4).

Define ?R as the interest rate spacing between the nodes on the tree, fit to represent the volatility of R,

computed to the Hull-White recommended specifications for error minimization:

tR ∆=∆ 3σ

16 Hull, “Using Hull-White,” pg. 28.
17 Hull, “Using Hull-White,” pg. 28.
18 Hull, Options, pg. 581.

9

The upward, middle and downward branching probabilities for each node are then set to match the

expected value and the standard deviation of the change in R* for the process in equation (10)19.

Solving this system of equations leads to the following probabilities.

? u =
26

1 222 tajtja ∆−∆
+

? m = 222

3
2

tja ∆−

? d =
26

1 222 tajtja ∆+∆
+

The model incorporates mean reversion by setting a limit variables jmax equal to the smallest integer

greater than
ta∆

84.1
 and jmin = 0 - jmax. If x at any node is greater than jmax or less than jmin, the branching

will switch to a downward or upward branching pattern, respectively.

Standard Downward Upward

pu pu pu

pm pm pm

pd pd pd

Figure 2

The probabilities for an upward-branching method are:

? u =
26

1 222 tajtja ∆+∆
+

? m = tajtja ∆−∆−− 2
3
1 222

19 Hull, “Using Hull-White,” pg. 27.

10

? d =
2

3
6
7 222 tajtja ∆+∆

+

The probabilities for a downward-branching method are:

? u =
2

3
6
7 222 tajtja ∆−∆

+

? m = tajtja ∆+∆−− 2
3
1 222

? d =
26

1 222 tajtja ∆−∆
+

Hull-White (1990) proved this equation prevents any of the probabilities of any node from being

negative. The end product of the first stage is a recombining tree with a time step of ?t and vertical

spacing of ?R that is symmetrical around 0.

Implementation- 1st Stage

This first stage is created by iterating through the tree twice- once to construct and connect

nodes and once to add each node's respective probabilities. The end result is a tree represented as a

vector of nodes.

0 1

j=2

j=1

j=0

j=-1

j=-2

2 Depth

0

1

2

3

4

5

6 Vector
 Position
7

8

R
elative Position

Figure 3

Vector Position 0 1 2 3 4 5 6 7 8
Depth 0 1 1 1 2 2 2 2 2
Relative Position 0 1 0 -1 2 1 0 -1 -2

Table 1

11

Each node is represented in C++ as a struct containing the following data:

struct myNode
{
 int nodeNumber; // node's numerical position on the vector
 int depth; // equals the depth of the node
 int relativePosition; // equals the relative position of the node
 float rate; // equals the delta(t) rate for the node
 float presentValue; // equals the node's Arrow-Debreu price
 float alpha; // equals g(t)
 float pu; // probability of branching up
 float pm; // probability of branching middle
 float pd; // probability of branching down

 myNode * up; // the node connected via the highest branch
 myNode * middle; // the node connected via the middle branch
 myNode * down; // the node connected via the lowest branch
....

The program’s first iteration uses the user-inputted term structure. The program will build a tree whose

depth, D, matches the depth of the term structure inputted and assumes that each interest rate given is

for time D*?t. The time step, ?t, is a user input. For simplicity, the root node is hard coded:

void HullTree::connectNodes(tvector<float> structure)
{
 // initializing the root node
 maxdepth = 0;
 myTree[0]->depth = 0;
 myTree[0]->relativePosition = 0;
 myTree[0]->presentValue = 1.00000;

 if (structure.size() > 1)
 {
 myTree[0]->up = myTree[1];
 myTree[0]->middle = myTree[2];
 myTree[0]->down = myTree[3];
 myTree[1]->depth = 1;
 myTree[2]->depth = 1;
 myTree[3]->depth = 1;
 myTree[1]->relativePosition = 1;
 myTree[2]->relativePosition = 0;
 myTree[3]->relativePosition = -1;
 }
...

For robustness, the calling one of two functions creates all other depths: expand, which expands the

number of nodes vertically, and maintain, which maintains the number of nodes during the next time

step. A portion of maintain is shown below:

int HullTree::maintain(int lastNodeNumber, int nodesInDepth, int tempDepth)

12

{
 int beginningNode = lastNodeNumber-nodesInDepth+1;
…
 // prevent the top node from expanding
 myTree[beginningNode]->up = myTree[beginningNode + nodesInDepth];
 myTree[beginningNode]->middle = myTree[beginningNode + nodesInDepth + 1];
 myTree[beginningNode]->down = myTree[beginningNode + nodesInDepth + 2];

 // expand the middle nodes accordingly
 for (int i = 1; i <= nodesInDepth - 2; i++)
 {
 myTree[beginningNode + i]->up = myTree[beginningNode + i +
nodesInDepth - 1];
 myTree[beginningNode + i]->middle = myTree[beginningNode + i +
nodesInDepth];
 myTree[beginningNode + i]->down = myTree[beginningNode + i +
nodesInDepth + 1];
 }

 myTree[lastNodeNumber]->up = myTree[lastNodeNumber + nodesInDepth -
2];
 myTree[lastNodeNumber]->middle = myTree[lastNodeNumber + nodesInDepth -
1];
 myTree[lastNodeNumber]->down = myTree[lastNodeNumber + nodesInDepth];

 // adding relativePosition
 int divider = (nodesInDepth - 1) / 2;
 for (int a = 0; a < nodesInDepth; a++)
 {
 myTree[beginningNode + nodesInDepth + a]->relativePosition = divider - a;
 }
 return nodesInDepth;
}

The function, connectNodes, chooses to either expand or maintain the width of the tree by comparing

the interest rate of node(i,j) to jmin and jmax limits.

// tempNode is the bottom-most node of the nodes in depth d
if (100 * tempNode->relativePosition * deltaR > jMax || 100 * tempNode-
>relativePosition * deltaR < jMin)
 {
 maintain(lastNodeNumber, nodesInDepth, count);
 }
 else expand(lastNodeNumber, nodesInDepth, count);
...

Adding branching probabilities requires a second iteration through the vector of nodes, this time

adding the up, middle and down probabilities to each node based on the above formulas:

void HullTree::udm(myNode * node)
{
 if (node->relativePosition * deltaR > jMax)

13

 {
 node->pu = (7.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(3 * meanReversion * node->relativePosition*deltaT))/2);
 node->pm = (0.00000-(1.00000/3.00000)) - (meanReversion *
meanReversion * node->relativePosition * node->relativePosition * deltaT *
deltaT)+(2 * meanReversion * node->relativePosition*deltaT);
 node->pd = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(meanReversion * node->relativePosition*deltaT))/2);
 }

 else if (node->relativePosition * deltaR < jMin)
 {
...
 }
 else
 {
 node->pu = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(meanReversion * node->relativePosition*deltaT))/2);
 node->pm = (2.00000/3.00000) - (meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT);
 node->pd = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)+(meanReversion * node->relativePosition*deltaT))/2);
 }
}

The end product is a tree represented as a vector of nodes, with each node containing pointers to other

nodes within the vector and probabilities attached to the pointers.

Vector Position 0 1 2 3 4 5 6 7 8
R* 0.000% 1.732% 0.000% -1.732% 3.464% 1.732% 0.000% -1.732% -3.464%
? u 0.16667 0.121667 0.166667 0.221667 0.086667 0.121667 0.166667 0.221667 0.286667
? m 0.66667 0.656667 0.666667 0.56667 0.626667 0.656667 0.666667 .0656667 0.62666
? d 0.16667 0.221667 0.166667 0.121667 0.286667 0.221667 0.166667 0.121667 0.08666
Up (Vector Position) 1 4 5 6
Middle 2 5 6 7
Down 3 6 7 8
Depth 0 1 1 1 2 2 2 2 2
Relative Position 0 1 0 -1 2 1 0 -1 -2

Table 2

Theoretical Implementation- 2nd Stage

The end product of the first stage tree is a tree that represents the process (10):

dR* = -aR*dt + sdz

14

The second stage in the tree construction is to convert the generic level tree into a tree whose interest

rates are calibrated to the initial term structure. "Within the calibrated tree the prices of the zero bonds

that mature at each tree time-period coincide with those implied by the yield curve currently observed in

the market20." This is accomplished by defining g:

g(t) = R(t) – R*(t) (11)

where:

[]dttagtdg)()(−= θ

Since g(t) is a function ?(t) and the function ?(t) is selected so that the model fits the term structure, the

de facto process is to adjust the nodes in the tree so that it correctly prices discount bonds of all

maturities21.

In order for the interest rate tree to be exactly consistent to the initial term structure, g for each

time-step must be calculated iteratively. Given a tree of node(i,j) where (ni ≤≤0 ; ii mim ≤≤−),

define the following:

R*(i,j): value of R* at node(i,j)

R(i,j): value of R at node(i,j)

g(ti) = gi = R(i,j) – R*(i,j)

R(0,0) is equal to the term structure rate for 1*?t. As a result, if ?t = 1, R(0,0) is the one year rate on

the yield curve and R(i,j) is the one year rate for year i+1 on the interest rate tree.

Hull and White define Q(i,j|h,k) as an Arrow-Debreu (AD) price, the present value at

node(h,k) of a security that pays off $1 at node(i,j) and zero at any other node22. Q(i,j|h,k) is equal to

the probability of reaching i,j from h,k, discounted at R(h,k). If h = i-1:

Q(i,j|i-1,k) =))((11,1),1|,(−−− −+−− iiiki ttgxekijip

Q(i,j|0,0) can be denoted as Qij as denotes as the root AD price for node(i,j):

20 Leippold, "The Term Structure of,” pg. 10.
21 Hull, “The General Hull-White,” pg. 42.
22 Hull, “The General Hull-White,” pg. 42.

15

ki
ttgx

k

ki
k

ij

Qekijip

QkijiQQ

iiiki

,1
))((

,1

11,1),1|,(

),1|,(

−
−+−

−

−−−−=

−=

∑

∑
(12)

Qij is determined for every node j at step i23. Only after computing the Arrow-Debreu prices for

node(i,j) one can begin to calibrate the interest rate tree to the term structure.

Calibration of the interest rate tree is accomplished by matching the price of a discount bond of

length ti+1, P(i+1), to the summation of all of the Arrow-Debreu prices of nodes at time ti, each Arrow-

Debreu price discounted at each node's R(i,j) rate. For example, if ?t =0.5, the summation of the

values for Q(1,1), Q(1,0) and Q(1,-1) discounted at (R*1,1 + g1), (R*1,0 + g1) and (R*1,-1 + g1),

respectively, would be calibrated to the price of a (2*.5) = 1 year discount bond.

Denote P(i+1) as the price at node(0,0) of a discount bond that pays $1 at time ti+1. P(i+1) is

computed using the term structure:
))((

1
11 ++−

+ = ii ty
i eP

where yi+1 is the interest rate on the current term structure for ti+1. P(i+1) is matched to the summation

of the present value of Q(i,j) prices. Denote V(i,j) as the present value of Q(i,j), each value discounted

to each node's R = R*(t) + g(t) rate:
))((1 iiiij ttgx

ij eV −+− +=

Hull and White calculate the present value as

))((

1

1 iiiij ttgx

j
ij

ij
j

iji

eQ

VQP

−+−

+

+∑

∑

=

=

(13)

The formula can be rearranged to solve for gi:

t

PeQ

i
i

tRj
j ij

g
∆

+−∆∆−∑
=

)1(lnln
(14)

Denote the Arrow Debreu price at node(0,0) = 1. Based on (14), R(0,0) can be calculated. The next

iteration uses R(0,0) to price Q(1,1), Q(1,0), and Q(1,-1). Only after Q(1,1), Q(1,0) and Q(1,-1) are

23 Hull ,“The General Hull-White,” pg. 42-43

16

determined can R(1,1), R(1,0) and R(1,-1) be calculated through calibration techniques. This iterative

technique is used until i = n total steps and the interest rate tree is complete.

Implementation- 2nd Stage

The completion of the first stage is an interest rate tree centered around zero. The second stage

is implemented by iterating through the vector of nodes one depth at a time. The function that

orchestrates the iterative process is function addRates. During the iteration of each depth within

addRates, a temporary vector, depthVector, containing all nodes at time t is created.

void HullTree::addRates(tvector<float> structure)
{
 ...
 int tempDepth = 1;

 for (int a = 1; a < myTree.size(); a++)
 {
 // we're put all nodes of the same depth on a vector
 if (myTree[a]->depth == tempDepth)
 {
 depthVector.push_back(myTree[a]);
 }
 else
 {
 tempDepth++;
 ...

Each node within depthVector has its Arrow-Debreu prices calculated using each predecessor node's

R rates as an input. Because C++ pointers are one-directional—nodes that node(a,b) points to as its

highest, middle and lowest branch nodes do not have pointers back to node (a,b)—a search algorithm

is created to find the predecessors of each node in depthVector and return these predecessor nodes

through a temporary vector, tempVector.

tvector<myNode*> HullTree::findConnectors(myNode * node)
{
 tvector<myNode *> tempVector;
 for (int count = 0; count < myTree.size(); count++)
 {
 if (myTree[count]->up == node || myTree[count]->middle == node
||myTree[count]->down == node)
 {
 myNode * tempNode = myTree[count];
 tempVector.push_back(tempNode);
 }

17

 }
 return tempVector;
}

Given tempVector, the Arrow-Debreu price for the current node[a] in depthVector is calculated.

float HullTree::addPresentValue(myNode * node, tvector<myNode *> depthVector,
tvector<float> structure)
{
 float alpha= 0.00000;
 // going through those connecting nodes, finding Q for depthVector[a]
 for (int b = 0; b < tempVector.size(); b++)
 {
 if (tempVector[b]->up == depthVector[a])
 {
 depthVector[a]->presentValue = tempVector[b]->pu *
exp(0.00000 - (tempVector[b]->rate)*deltaT) * tempVector[b]->presentValue +
depthVector[a]->presentValue;
 }
 else if (tempVector[b]->middle == depthVector[a])
 {
 depthVector[a]->presentValue = tempVector[b]->pm *
exp(0.00000 - (tempVector[b]->rate)*deltaT) * tempVector[b]->presentValue +
depthVector[a]->presentValue;
 }
 else if (tempVector[b]->down == depthVector[a])
 {
 depthVector[a]->presentValue = tempVector[b]->pd *
exp(0.00000 - (tempVector[b]->rate)*deltaT) * tempVector[b]->presentValue +
depthVector[a]->presentValue;
 }
 ...

This process is run for each node in depthVector. Using depthVector's Arrow-Debreu prices, gi is

determined.

 ...
 g = 0;
 for (int c = 0; c < depthVector.size(); c++)
 {
 g = g + depthVector[c]->presentValue * exp(0.00000 - (deltaR *
deltaT * depthVector[c]->relativePosition));
 }
 g = log(g);
 g = g - log(bondPrices[depthVector[0]->depth]);
 g = g / deltaT;
 return g;
}

18

This value is returned to the central node of time ti, node(i,0) in addRates. The central node's R*(i,0)

value is zero; its new calibrated interest rate, R(i,0), is set to gi. The remaining nodes at ti have their

R(i,j) values calculated using function addRemainingRates.

void HullTree::addRemainingRates(myNode * tempNode, tvector<myNode *>
depthVector)
{
 for (int a = 0; a < depthVector.size(); a++)
 {
 depthVector[a]->rate = depthVector[a]->relativePosition * deltaR +
tempNode->rate;
 }
}

depthVector gets erased after each node in the vector has its R(i,j) values calculated. The vector gets

recreated for the next time period, beginning the iteration for time i+1. This iterative process continues

until the tree is calibrated. The C++ implementation of both stages is illustrated in Appendix A.

Pricing Analysis

The Hull-White tree generated allows for the pricing of numerous interest rate derivatives.

Many of such instruments have their values derived from the U.S. Treasury term structure, shown below

for April 10, 2002:

Term Structure
Maturity Yield (%)
3 month 1.7
6 month 1.97
2 year 3.44
5 year 4.6
10 year 5.25
30 year 5.71

Table 3

19

Figure 4

One such derivative is a European put option on a zero-coupon bond. A common instrument using a

portfolio of such options is an interest rate cap, an option that provides a payoff whenever a specified

interest rate exceeds a certain level24. The specific derivative priced is a one-year put option on a zero-

coupon bond that will expire in ten years. The notional price is $1000. The strike price is at the money;

the current price of the bond is $592.74. It is assumed that a = 1 and s = 0.01.

Consider the construction of an eight-step, one-year tree. The time step is ?t = 1 / 8 = 0.125

years and the rate step, ?r = t∆3σ = 0.0061237. jmin and jmax values are calculated as the smallest

integer greater than 0.184 / a?t = 15. Inputting a, s , ?t and the term rates for 1/8, 2/8, 3/8...8/8 year

into the C++ tree generator results in a completed interest rate tree with ?t-period rate, R, at each

node. Rates for maturities between given interest rates in Table 3 are calculated using linear

interpolation. Table 4 presents the completed tree and corresponding g = R – R* rates; appendix B

displays the program’s true output in full detail.

 Branching Probabilities ?t rate, R
j ? up ? middle ? down i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7
7 0.1267 0.6590 0.2142 0.0761
6 0.1320 0.6610 0.2070 0.0675 0.0700
5 0.1374 0.6628 0.1999 0.0589 0.0614 0.0638
4 0.1429 0.6642 0.1929 0.0503 0.0528 0.0552 0.0577
3 0.1486 0.6653 0.1861 0.0416 0.0442 0.0467 0.0491 0.0516
2 0.1545 0.6660 0.1795 0.0331 0.0355 0.0381 0.0405 0.0430 0.0455

24 Hull, Options, pg. 665.

20

1 0.1605 0.6665 0.1730 0.0247 0.0270 0.0294 0.0320 0.0344 0.0369 0.0393
0 0.1667 0.6667 0.1667 0.0162 0.0185 0.0209 0.0232 0.0258 0.0283 0.0308 0.0332

-1 0.1730 0.6665 0.1605 0.0124 0.0148 0.0171 0.0197 0.0222 0.0246 0.0271
-2 0.1795 0.6660 0.1545 0.0086 0.0110 0.0136 0.0160 0.0185 0.0210
-3 0.1861 0.6653 0.1486 0.0049 0.0075 0.0099 0.0124 0.0148
-4 0.1929 0.6642 0.1429 0.0013 0.0038 0.0063 0.0087
-5 0.1999 0.6628 0.1374 0.0000 0.0001 0.0026
-6 0.2070 0.6610 0.1320 0.0000 0.0000
-7 0.2142 0.6590 0.1267 0.0000

 g 0.0162 0.0185 0.0209 0.0232 0.0258 0.0283 0.0308 0.0332
Table 4

Figure 5 is a graphical representation of the tree without branching lines between nodes.

Nodes

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6 8

Time Steps

R
at

e

Nodes

Figure 5

Next, the bond payoff, P(t,T), at each terminal node (ti = 8) must be calculated. This is done

analytically through equations (3) through (8). Table 5 presents a spreadsheet which calculates the

P(t,T) values analytically.

User Inputs Leaf Node Calculations
t 1 Leaf Node Rates P(t,T)

T 10 0.0761 0.4764
deltaT 0.125 0.0700 0.4941

a 0.1 0.0638 0.5125
sigma 0.01 0.0577 0.5316

 0.0516 0.5514

21

Term Structure Calculations 0.0455 0.5720
P(0,t) 0.9757 0.0393 0.5933

P(0,T) 0.5927 0.0332 0.6154
P(0,t+deltaT) 0.9714 0.0271 0.6383

deltaR 0.0061 0.0210 0.6621

 0.0148 0.6867
Calculations 0.0087 0.7123

B(t,T) 5.9343 0.0026 0.7388
Bhat(t,T) 5.9715 0.0000 0.7503

B(t,t+deltat) 0.1242 0.0000 0.7503
Ahat(t,T) 0.7503

Table 5

User-inputted values are italicized. Appendix C shows the calculation of each formula using Microsoft

Excel cell references.

Calculating the value of the put option whose strike price is the current bond price, $592.74, is

accomplished by calculating the option payoff, 1000*MAX(0.59274 - P(t,T), 0), where MAX takes

the higher value of 0.59274-P(t,T) or zero. Table 6 provides these payoffs.

Leaf Node Calculations
Strike Price (x1000) Leaf Node Rates P(t,T) Put Option Price

0.592739659 0.0760759 0.476392195 116.3474638
 0.0699522 0.494135092 98.60456681
 0.0638285 0.512538811 80.20084794
 0.0577048 0.531627964 61.11169533
 0.0515811 0.551428079 41.31158047
 0.0454573 0.571965976 20.77368251
 0.0393336 0.593268453 0
 0.0332099 0.615364325 0
 0.0270862 0.638283142 0
 0.0209624 0.662055951 0
 0.0148387 0.686713766 0
 0.00871498 0.712290029 0
 0.00259126 0.738818865 0
 0 0.750339983 0
 0 0.750339983 0

Table 6

22

Each option price must then be discounted back through the tree. The process works in

reverse: from end nodes(i,j), the value at node(i-1,k) is computed as the discounted sum of all of its

branching nodes’ values. Specifically,

Standard Branching: ()))((
1,,1,,1

1,1 −− −−
−+− Π+Π+Π= iiki ttR

kidownkimiddekiupki evvvv

Downward Branching: ()))((
2,1,,,1

1,1 −− −−
−−− Π+Π+Π= iiki ttR

kidownkimiddekiupki evvvv

Upward Branching: ()))((
2,1,,,1

1,1 −− −−
++− Π+Π+Π= iiki ttR

kidownkimiddekiupki evvvv

Table 7 iterates from i = 7 backwards to i = 0 and discounts at each time step using the rates and

transition probabilities in Table 4.

 Put Option Price
j i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7
7 116.3475
6 96.3210 98.6046
5 76.4811 78.3106 80.2008
4 56.7367 58.1482 59.6071 61.1117
3 37.4190 38.1860 39.1058 40.1843 41.3116
2 20.8372 20.5673 20.3003 20.0950 20.1095 20.7737
1 9.7706 8.9816 8.0483 6.9027 5.4161 3.3187 0.0000
0 4.0198 3.3902 2.7176 2.0045 1.2660 0.5512 0.0000 0.0000

-1 0.8362 0.5363 0.2818 0.0951 0.0000 0.0000 0.0000
-2 0.0619 0.0170 0.0000 0.0000 0.0000 0.0000
-3 0.0000 0.0000 0.0000 0.0000 0.0000
-4 0.0000 0.0000 0.0000 0.0000
-5 0.0000 0.0000 0.0000
-6 0.0000 0.0000
-7 0.0000

Table 7

The price of the put option is calculated to be $4.0198, or 0.402% of the bond’s notional value.

Comparison

The market’s ask price for the bond option is $4.39, or 0.439% of the bond's notional. This is

a $0.37 increase over the tree-calculated option price. There are several explanations for this

difference, listed in decreasing hypothesized significance:

23

• Illiquidity premium- While puts and calls on bonds are quite common, many are bundled into

portfolios to create easily hedged interest rate caps and floors. One-year options for zero

coupon bonds are seldom traded alone in the over-the-counter market and as a result, there

may be an extra illiquidity premium added to the price of the option. When asked how often

options off the Treasury curve are traded, the analyst covering the desk replied that she prices

bond options of duration of this length once a year.

• Pricing inaccuracy- The interest rate derivatives analyst covering short-term options did not

have a model immediately available that was capable of pricing this particular option. As a

result, she entered the yield curve into a European swaption model to generate the price of the

bond option. It is unclear what possible differences in assumptions or calculations the analyst

used to generate the market price.

• Differences in volatility assumptions- The Hull-White model contains a single factor, volatility,

that can be modified to fit the market price of the derivative. Determining the volatility

parameters a and s is known as model calibration and is out of the scope of the article. In this

example, a and s are assumed to be .1 and .01, respectively. These numbers were chosen

because they match the volatility parameters of examples priced by Hull, Leippold and Wiener.

It is unknown if the volatility parameters chosen result in a minimal or near minimal goodness-of-

fit measure25. Likewise, the market model priced was without calibration; it is unknown what

volatility assumptions should be used.

• Time step inaccuracy- The interest rate tree generated in the exercise has only eight steps and is

considered a rough approximation of the option price because each time step is equivalent to

over 45 days. When calculated using 20 time steps (?t = 18.25 days) the price of the bond

option increases to $4.16 (appendix D). It is shown that continuing to increase the resolution of

the tree will continue narrow the difference between the market price and calculated price26.

• Linear interpolation of interest rates- For this exercise linear interpolation of the term structure is

used. This violates the no-arbitrage assumption described in the beginning of the article as the

term structure used in the tree is no longer exactly consistent with the market yield curve.

25 Hull, Options, pg. 593.
26 Hull, Options, pg. 589.

24

• Limitations of the model- The single-factor Hull-White model is limited in its flexibility in

managing volatility. "The model can be made to provide a fit to volatilities observed in the

market, but the user has no control over the volatilities at subsequent times27." A solution is to

generate a model whose volatility is dependent on time. Hull and White (1996) create such a

model:

d(f(r)) = (?(t)+u-af(r))dt +s 1dz1

where u has an initial value of zero and follows the process

du=-budt+s 2d2

The C++ tree-constructor is flexible enough to be easily modified to accommodate this feature

and create three-dimensional trees. However, it was felt that a model with time-dependent

volatility was not suitable for this article because its pricing would require intense calibration.

Furthermore, making volatility time-dependent may lead many to believe that volatility as a

function of time, implying that there can be assumptions on what the factor is in the future. This

is an incorrect assumption.

It can only be concluded that the calculated price serves as an approximation of the true price of the

bond option.

The C++ tree-builder itself can be improved. Firstly, the code should be able to handle and

automatically interpolate inputted two, three, five, 10, and 30-year treasury rates. This function is

currently done by hand. Later developments include having a built in bond-pricer and a function that

automatically calculates user-inputted payoff functions. These functions are currently either hand-

calculated or run on a fairly inflexible spreadsheet. These developments could be done by converting

the source file into a Microsoft Excel-linkable dynamic link library or add-on. These functions would

make this program comparable to the highly marketed Pricingtools.com-created Hull-White tree

constructor. Long-run developments include a calibrating function that connects to a listing of prices of

similar derivatives on the Internet.

27 Hull, Options, pg. 601.

25

Summary

In this article the single factor Hull-White term structure model is explained. No new theoretical

aspects are added to the model; rather, an advanced C++-encoded algorithm implementing its tree-

building procedure is described. The program's vital functions are shown to roughly match the two-

stage construction process first developed by Hull. When executed, the program is shown to be a

flexible tree-generator capable of modeling the short-term interest rate and pricing interest rate

derivatives. An example bond option is then priced twice using the current term structure, once using

eight time-steps and once at twenty time-steps. Finally, time is devoted to discussing the possible

reasons for the discrepancies between the market price and the model-generated price of the option.

26

References

“CurveTrader Online Help,” http://www.powerfinance.com/help. Leap of Faith Research, Inc., 1998.

"Heath-Jarrow-Morton Model," http://www.mathworks.com/access/helpdesk/

help/toolbox/finderiv/using8.shtml, The MathWorks Inc., 2001.

Hull, J., Options, Futures and Other Derivatives, Prentice Hall, 2000.

Hull, J. and A. White, "The General Hull-White Model and Super Calibration," Financial Analysts

Journal, Vol. 57, No. 6 (Nov/Dec 2001), pp. 34-43.

Hull, J. and A. White, "Using Hull-White Interest Rate Trees," Journal of Derivatives, Vol. 3, No. 3,

(Spring 1996), pp. 26-36.

Leippold, M. and Z. Wiener, "The Term Structure of Interest Rates II: The Hull-White Trinomial Tree

of Interest Rates, 1999, 1-17.

27

Appendix A- Hullwhite.Cpp

// --
// Written by John Li
// 3/18/2002
// --

#include <iostream>
#include <string>
#include "tvector.h"
#include "math.h"
#include "fstream.h"
#include "hulltree.h"

float meanReversion;
float deltaT;
float deltaR;
float jMax;
float jMin;
tvector<float> termStructure;

void getInputs()
{
 float sigma;
 float tempFloat;
 string tempfile;

 ifstream inputFile;
 cout << "Enter File: ";
 cin >> tempfile; // what's the file
 inputFile.open(tempfile.c_str()); // open it

 inputFile >> meanReversion;
 inputFile >> sigma;
 inputFile >> deltaT;

 // defining term structure
 while (inputFile >> tempFloat)
 {
 termStructure.push_back(tempFloat);
 }
 // figuring out deltaR
 deltaR = sigma * sqrt(3 * deltaT);
 // figuring out jMin and jMax
 jMax = ceil(0.184 / (meanReversion * deltaT));
 jMin = 0 - jMax;
}

int main()
{

28

 HullTree myHullTree;
 getInputs();
 myHullTree.buildTree(termStructure, meanReversion, deltaT, deltaR,
jMin, jMax);
}

29

Appendix A- Hulltree.H

#ifndef _HULLTREE_H
#define _HULLTREE_H
// The hull tree
// John Li

#include "tvector.h"
#include "math.h"

struct myNode
{

int nodeNumber;
 int depth; // equals depth of the tree
 int relativePosition; // equals j (-2,-1,-0, 1, 2) for the node
 float rate; // equals R for the node
 float presentValue; // equals Q for the node
 float alpha; // equals value of center node= term struct

float pu; // probability of going up
float pm; // probability of going in the middle
float pd; // probability of going down

 myNode * up;
 myNode * middle;
 myNode * down;

 myNode(int & i, int & a, int & b, float & c, float & d, float & e,
float & z, float & y, float & x, myNode * f = NULL, myNode * g = NULL, myNode
* h = NULL)
 : nodeNumber(i),

 depth(a),
 relativePosition(b),
 rate(c),
 presentValue(d),
 alpha(e),

 pu(z),
 pm(y),
 pd(x),

 up(f),
 middle(g),
 down(h)
 { }
};

class HullTree
{

public:

HullTree(); // constructor
 ~HullTree(); // destructor

 void udm(myNode * node);

30

 void addBondPrices(tvector<float> structure);
tvector<myNode *> findConnectors(myNode * node);
float addPresentValue(myNode * node, tvector<myNode *>

depthVector, tvector<float> structure);
 void addRemainingRates(myNode * tempNode, tvector<myNode *>
depthVector);

void addRates(tvector<float> structure);
 int expand(int lastNodeNumber, int nodesInDepth, int
tempDepth);
 int maintain(int lastNodeNumber, int nodesInDepth, int
tempDepth);

void connectNodes(tvector<float> structure);
void outputTree();
void buildTree(tvector<float> structure, float a, float dT,

float dR, float min, float max);

private:

tvector<myNode *> myTree;

 // same size as structure, saves alpha values per term
tvector<float> alphaStructure;

// same size as structure, saves bond prices per term
 tvector<float> bondPrices;

// same size as structure, saves width per term
tvector<int> width;

myNode * rootNode;
float meanReversion;
float deltaT;
float deltaR;
float jMin;
float jMax;

};

#endif

31

Appendix A- Hulltree.Cpp

// --
// Written by John Li
// 3/19/2002
// --

#include "hulltree.h"
#include "tvector.h"
#include "math.h"
#include <string>
#include <fstream>

// default constructor
HullTree::HullTree()
{

}

// destructor
HullTree::~HullTree()
{

}

//this figures out the Pu, Pm, and Pd for each node
void HullTree::udm(myNode * node)
{
 if (node->relativePosition * deltaR * 100 > jMax)
 {
 node->pu = (7.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(3 * meanReversion * node->relativePosition*deltaT))/2);
 node->pm = (0.00000-(1.00000/3.00000)) - (meanReversion *
meanReversion * node->relativePosition * node->relativePosition * deltaT *
deltaT)+(2 * meanReversion * node->relativePosition*deltaT);
 node->pd = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(meanReversion * node->relativePosition*deltaT))/2);
 }

 else if (node->relativePosition * deltaR * 100 < jMin)
 {
 node->pu = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)+(meanReversion * node->relativePosition*deltaT))/2);
 node->pm = (0.00000-(1.00000/3.00000)) - (meanReversion *
meanReversion * node->relativePosition * node->relativePosition * deltaT *
deltaT) - (2 * meanReversion * node->relativePosition*deltaT);
 node->pd = (7.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)+(3 * meanReversion * node->relativePosition*deltaT))/2);

32

 }
 else
 {
 node->pu = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(meanReversion * node->relativePosition*deltaT))/2);
 node->pm = (2.00000/3.00000) - (meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT);
 node->pd = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)+(meanReversion * node->relativePosition*deltaT))/2);
 }

}

// calculates bond prices based on the term structure
void HullTree::addBondPrices(tvector<float> structure)
{
 for (int a = 0; a < structure.size(); a++)
 {
 float temp = exp(0.00000 - (structure[a] * (a+1)*deltaT));

 bondPrices.push_back(temp);
 }

}

// finds and returns connecting nodes for the calculation of Q
tvector<myNode*> HullTree::findConnectors(myNode * node)
{
 tvector<myNode *> tempVector;
 for (int count = 0; count < myTree.size(); count++)
 {
 if (myTree[count]->up == node || myTree[count]->middle == node
||myTree[count]->down == node)
 {
 myNode * tempNode = myTree[count];
 tempVector.push_back(tempNode);
 }
 }
 return tempVector;
}

// adds Q
float HullTree::addPresentValue(myNode * node, tvector<myNode *> depthVector,
tvector<float> structure)
{

 float alpha= 0.00000;

 for (int a = 0; a < depthVector.size(); a++)

33

 {
 depthVector[a]->presentValue = 0;

 // find connecting nodes to each node of the same depth
 tvector<myNode *> tempVector = findConnectors(depthVector[a]);

 // going through those connecting nodes, finding Q for depthVector[a]
 for (int b = 0; b < tempVector.size(); b++)
 {
 if (tempVector[b]->up == depthVector[a])
 {
 depthVector[a]->presentValue = tempVector[b]->pu * exp(0.00000 -
((tempVector[b]->rate)*deltaT)) * tempVector[b]->presentValue +
depthVector[a]->presentValue;
 }
 else if (tempVector[b]->middle == depthVector[a])
 {
 depthVector[a]->presentValue = tempVector[b]->pm * exp(0.00000 -
((tempVector[b]->rate)*deltaT)) * tempVector[b]->presentValue +
depthVector[a]->presentValue;
 }
 else if (tempVector[b]->down == depthVector[a])
 {
 depthVector[a]->presentValue = tempVector[b]->pd * exp(0.00000 -
((tempVector[b]->rate)*deltaT)) * tempVector[b]->presentValue +
depthVector[a]->presentValue;
 }
 }
 }

 for (int c = 0; c < depthVector.size(); c++)
 {
 alpha = alpha + (depthVector[c]->presentValue * exp(0.00000 - (deltaR
* deltaT * depthVector[c]->relativePosition)));
 }

 alpha = log(alpha);

 alpha = alpha - log(bondPrices[depthVector[0]->depth]);

 alpha = alpha / deltaT;

 return alpha;

}

// adds the remaining rates
void HullTree::addRemainingRates(myNode * tempNode, tvector<myNode *>
depthVector)
{
 for (int a = 0; a < depthVector.size(); a++)
 {

 depthVector[a]->rate = depthVector[a]->relativePosition * deltaR +

34

tempNode->rate;

 }

}

// adds the term structure onto the center nodes
void HullTree::addRates(tvector<float> structure)
{
 myTree[0]->rate = structure[0];
 myTree[0]->presentValue = 1;

 myNode * tempNode = myTree[0];

 tvector<myNode *> depthVector;
 int tempDepth = 1;

 for (int a = 1; a < myTree.size(); a++)
 {
 // we're put all nodes of the same depth on a vector
 if (myTree[a]->depth == tempDepth)
 {
 depthVector.push_back(myTree[a]);
 }
 else
 {
 // getting the center node
 tempNode = tempNode->middle;

 // calling present value with the center node and vector of nodes with
the same depth
 tempNode->rate = addPresentValue(tempNode, depthVector, structure);

 // add remaining rates to the nodes in the same depth as tempNode
 addRemainingRates(tempNode, depthVector);

 tempDepth++;

 // clear and add the first node of the next depth
 depthVector.clear();
 a--;
 }
 }

 // getting the center node
 tempNode = tempNode->middle;

 // calling present value with the center node and vector of nodes with the
same depth
 tempNode->rate = addPresentValue(tempNode, depthVector, structure);

 addRemainingRates(tempNode, depthVector);

35

}

int HullTree::expand(int lastNodeNumber, int nodesInDepth, int tempDepth)
{
 int beginningNode = lastNodeNumber-nodesInDepth+1;
 int t = 0;

 // temp variables, then adding on new blank nodes
 int aa = 0;
 float bb = 0;

 for (int c = 0; c < nodesInDepth + 2; c++)
 {
 myNode * tempNode = new
myNode(aa,tempDepth,aa,bb,bb,bb,bb,bb,bb,NULL,NULL,NULL);
 myTree.push_back(tempNode);
 }

 while (t < nodesInDepth)
 {
 myTree[beginningNode+t]->up = myTree[beginningNode + t +
nodesInDepth];
 myTree[beginningNode+t]->middle = myTree[beginningNode + t +
nodesInDepth + 1];
 myTree[beginningNode+t]->down = myTree[beginningNode + t +
nodesInDepth + 2];
 t++;
 }

 // adding relativePosition
 int divider = (nodesInDepth + 1) / 2;
 for (int a = 0; a < nodesInDepth+2; a++)
 {
 myTree[beginningNode + nodesInDepth + a]->relativePosition = divider - a;
 }

 return nodesInDepth + 2;
}

int HullTree::maintain(int lastNodeNumber, int nodesInDepth, int tempDepth)
{
 int beginningNode = lastNodeNumber-nodesInDepth+1;

 // temp variables, then adding on new blank nodes
 int aa = 0;
 float bb = 0;

 for (int c = 0; c < nodesInDepth; c++)
 {
 myNode * tempNode = new
myNode(aa,tempDepth,aa,bb,bb,bb,bb,bb,bb,NULL,NULL,NULL);
 myTree.push_back(tempNode);
 }

36

 // prevent the top node from expanding
 myTree[beginningNode]->up = myTree[beginningNode + nodesInDepth];
 myTree[beginningNode]->middle = myTree[beginningNode + nodesInDepth + 1];
 myTree[beginningNode]->down = myTree[beginningNode + nodesInDepth + 2];

 // expand the middle nodes accordingly
 for (int i = 1; i <= nodesInDepth - 2; i++)
 {
 myTree[beginningNode + i]->up = myTree[beginningNode + i +
nodesInDepth - 1];
 myTree[beginningNode + i]->middle = myTree[beginningNode + i +
nodesInDepth];
 myTree[beginningNode + i]->down = myTree[beginningNode + i +
nodesInDepth + 1];
 }

 myTree[lastNodeNumber]->up = myTree[lastNodeNumber + nodesInDepth -
2];
 myTree[lastNodeNumber]->middle = myTree[lastNodeNumber + nodesInDepth -
1];
 myTree[lastNodeNumber]->down = myTree[lastNodeNumber + nodesInDepth];

 // adding relativePosition
 int divider = (nodesInDepth - 1) / 2;
 for (int a = 0; a < nodesInDepth; a++)
 {
 myTree[beginningNode + nodesInDepth + a]->relativePosition = divider - a;
 }

 return nodesInDepth;
}

// goes down the vector of myNodes and connects the nodes to each other
void HullTree::connectNodes(tvector<float> structure)
{
 // temporary variables
 myNode * tempNode;

 // temp variables, originally making a max of 9 nodes
 int aa = 0;
 float bb = 0;

 for (int c = 0; c < 9; c++)
 {
 myNode * tempNode = new myNode(aa,aa,aa,bb,bb,bb,bb,bb,bb,NULL,NULL,NULL);
 myTree.push_back(tempNode);
 }

 // initializing the root node
 myTree[0]->depth = 0;
 myTree[0]->relativePosition = 0;
 myTree[0]->presentValue = 1.00000;

37

 width.push_back(1);

 if (structure.size() > 1)
 {
 myTree[0]->up = myTree[1];
 myTree[0]->middle = myTree[2];
 myTree[0]->down = myTree[3];
 myTree[1]->depth = 1;
 myTree[2]->depth = 1;
 myTree[3]->depth = 1;
 myTree[1]->relativePosition = 1;
 myTree[2]->relativePosition = 0;
 myTree[3]->relativePosition = -1;
 width.push_back(3);
 }

 if (structure.size() > 2)
 {
 myTree[1]->up = myTree[4];
 myTree[1]->middle = myTree[5];
 myTree[1]->down = myTree[6];
 myTree[2]->up = myTree[5];
 myTree[2]->middle = myTree[6];
 myTree[2]->down = myTree[7];
 myTree[3]->up = myTree[6];
 myTree[3]->middle = myTree[7];
 myTree[3]->down = myTree[8];
 myTree[4]->depth = 2;
 myTree[5]->depth = 2;
 myTree[6]->depth = 2;
 myTree[7]->depth = 2;
 myTree[8]->depth = 2;
 myTree[4]->relativePosition = 2;
 myTree[5]->relativePosition = 1;
 myTree[6]->relativePosition = 0;
 myTree[7]->relativePosition = -1;
 myTree[8]->relativePosition = -2;
 width.push_back(5);
 }

 if (structure.size() > 3)
 {
 for (int count = 3; count < structure.size(); count++)
 {
 tempNode=myTree[myTree.size()-1];

 // see if tempNode->relativePosition * deltaR is greater than jMax or
less than jMin
 if (100 * tempNode->relativePosition * deltaR > jMax || 100 * tempNode-
>relativePosition * deltaR < jMin)
 {
 width.push_back(maintain(myTree.size()-1, width[count-1], count));
 }

38

 // if not, then make it even bigger
 else width.push_back(expand(myTree.size()-1, width[count-1], count));
 }
 }
}

// used for debugging purposes
void HullTree::outputTree()
{
 string filename = "OUTPUT";
 ofstream output(filename.c_str());

 for (int count = 0; count < myTree.size(); count++)
 {
 myTree[count]->nodeNumber = count;
 }

 for (int count = 0; count < myTree.size(); count++)
 {
 output << count << " ";
 output << myTree[count]->depth << " ";
 output << myTree[count]->relativePosition << " ";
 output << myTree[count]->rate << " ";
 output << myTree[count]->pu << " ";
 output << myTree[count]->pm << " ";
 output << myTree[count]->pd << endl;
 }
}

// builds the tree
void HullTree::buildTree(tvector<float> structure, float a, float dT,
float dR, float min, float max)
{
 // variables which equal referenced values
 meanReversion = a;
 deltaT = dT;
 deltaR = dR;
 jMin = min;
 jMax = max;

 connectNodes(structure); // connect the nodes

 for (int count = 0; count < myTree.size(); count++)
 {
 udm(myTree[count]);
 }

 addBondPrices(structure);
 addRates(structure);
 outputTree();
}

39

40

Appendix B

Node # i j R ?up ?middle ?down
0 0 0 0.016175 0.166667 0.666667 0.166667
1 1 1 0.02465 0.160495 0.66651 0.172995
2 1 0 0.018527 0.166667 0.666667 0.166667
3 1 -1 0.012403 0.172995 0.66651 0.160495
4 2 2 0.033125 0.154479 0.666042 0.179479
5 2 1 0.027001 0.160495 0.66651 0.172995
6 2 0 0.020878 0.166667 0.666667 0.166667
7 2 -1 0.014754 0.172995 0.66651 0.160495
8 2 -2 0.00863 0.179479 0.666042 0.154479
9 3 3 0.041602 0.14862 0.66526 0.18612

10 3 2 0.035479 0.154479 0.666042 0.179479
11 3 1 0.029355 0.160495 0.66651 0.172995
12 3 0 0.023231 0.166667 0.666667 0.166667
13 3 -1 0.017108 0.172995 0.66651 0.160495
14 3 -2 0.010984 0.179479 0.666042 0.154479
15 3 -3 0.00486 0.18612 0.66526 0.14862
16 4 4 0.050333 0.142917 0.664167 0.192917
17 4 3 0.044209 0.14862 0.66526 0.18612
18 4 2 0.038085 0.154479 0.666042 0.179479
19 4 1 0.031961 0.160495 0.66651 0.172995
20 4 0 0.025838 0.166667 0.666667 0.166667
21 4 -1 0.019714 0.172995 0.66651 0.160495
22 4 -2 0.01359 0.179479 0.666042 0.154479
23 4 -3 0.007467 0.18612 0.66526 0.14862
24 4 -4 0.001343 0.192917 0.664167 0.142917
25 5 5 0.058912 0.13737 0.66276 0.19987
26 5 4 0.052789 0.142917 0.664167 0.192917
27 5 3 0.046665 0.14862 0.66526 0.18612
28 5 2 0.040541 0.154479 0.666042 0.179479
29 5 1 0.034418 0.160495 0.66651 0.172995
30 5 0 0.028294 0.166667 0.666667 0.166667
31 5 -1 0.02217 0.172995 0.66651 0.160495
32 5 -2 0.016046 0.179479 0.666042 0.154479
33 5 -3 0.009923 0.18612 0.66526 0.14862
34 5 -4 0.003799 0.192917 0.664167 0.142917
35 5 -5 -0.00232 0.19987 0.66276 0.13737
36 6 6 0.067494 0.131979 0.661042 0.206979
37 6 5 0.06137 0.13737 0.66276 0.19987
38 6 4 0.055246 0.142917 0.664167 0.192917
39 6 3 0.049122 0.14862 0.66526 0.18612
40 6 2 0.042999 0.154479 0.666042 0.179479
41 6 1 0.036875 0.160495 0.66651 0.172995
42 6 0 0.030751 0.166667 0.666667 0.166667
43 6 -1 0.024628 0.172995 0.66651 0.160495
44 6 -2 0.018504 0.179479 0.666042 0.154479
45 6 -3 0.01238 0.18612 0.66526 0.14862
46 6 -4 0.006256 0.192917 0.664167 0.142917

41

47 6 -5 0.000133 0.19987 0.66276 0.13737
48 6 -6 -0.00599 0.206979 0.661042 0.131979
49 7 7 0.076076 0.126745 0.65901 0.214245
50 7 6 0.069952 0.131979 0.661042 0.206979
51 7 5 0.063829 0.13737 0.66276 0.19987
52 7 4 0.057705 0.142917 0.664167 0.192917
53 7 3 0.051581 0.14862 0.66526 0.18612
54 7 2 0.045457 0.154479 0.666042 0.179479
55 7 1 0.039334 0.160495 0.66651 0.172995
56 7 0 0.03321 0.166667 0.666667 0.166667
57 7 -1 0.027086 0.172995 0.66651 0.160495
58 7 -2 0.020962 0.179479 0.666042 0.154479
59 7 -3 0.014839 0.18612 0.66526 0.14862
60 7 -4 0.008715 0.192917 0.664167 0.142917
61 7 -5 0.002591 0.19987 0.66276 0.13737
62 7 -6 -0.00353 0.206979 0.661042 0.131979
63 7 -7 -0.00966 0.214245 0.65901 0.126745

42

Appendix C

B10 C D E F G

11 User Inputs Leaf Node Calculations

12 t 1
Leaf Node

Rates P(t,T)
13 T 10 0.0761 D27*EXP(0-D25*F13)
14 deltaT 0.125 0.0700 D27*EXP(0-D25*F14)
15 a 0.1 0.0638 D27*EXP(0-D25*F15)
16 sigma 0.01 0.0577 D27*EXP(0-D25*F16)

17 0.0516 D27*EXP(0-D25*F17)

18 Term Structure Calculations 0.0455 D27*EXP(0-D25*F18)
19 P(0,t) Term Structure-DONE'!E5 0.0393 D27*EXP(0-D25*F19)
20 P(0,T) Term Structure-DONE'!E13 0.0332 D27*EXP(0-D25*F20)
21 P(0,t+deltaT) Term Structure-DONE'!E6 0.0271 D27*EXP(0-D25*F21)
22 deltaR D16*SQRT(3*D14) 0.0210 D27*EXP(0-D25*F22)

23 Calculations 0.0148 D27*EXP(0-D25*F23)
24 B(t,T) (1-EXP(0-(D15*(D13-D12))))/D15 0.0087 D27*EXP(0-D25*F24)
25 Bhat(t,T) D24*D14/D26 0.0026 D27*EXP(0-D25*F25)
26 B(t,t+deltat) ((1-EXP(0-(D15*D14)))/D15) -0.0035 D27*EXP(0-D25*F26)

27 Ahat(t,T)

EXP(LN(D20/D19)-
((D24/D26)*LN(D21/D19))-

(((D16*D16)/(4*D15))*(1-EXP(0-
(2*D15*D12)))*D24*(D24-D26))) -0.0097 D27*EXP(0-D25*F27)

43

Appendix D

Leaf Node Calculations
Strike Price (x1000) Leaf Node Rates P(t,T) Put Option Price

0.592739659 0.107542 0.394178702 198.5609571
 0.103669 0.40336644 189.3732193
 0.0997957 0.412769067 179.9705919
 0.0959228 0.422389868 170.3497908
 0.0920498 0.432235168 160.5044913
 0.0881768 0.442309947 150.4297121
 0.0843038 0.452619555 140.1201043
 0.0804308 0.463169465 129.5701944
 0.0765578 0.473965278 118.7743813
 0.0726849 0.485012437 107.7272219
 0.0688119 0.496317378 96.42228055
 0.0649389 0.507885822 84.85383732
 0.0610659 0.519723909 73.01575033
 0.0571929 0.531837924 60.90173459
 0.0533199 0.5442343 48.50535859
 0.049447 0.556919287 35.82037224
 0.045574 0.569900273 22.83938581
 0.041701 0.583183828 9.555831284
 0.037828 0.596777003 0
 0.033955 0.610687015 0
 0.030082 0.62492125 0
 0.0262091 0.639486884 0
 0.0223361 0.654392402 0
 0.0184631 0.669645346 0

t 1 Leaf Node Rates P(t,T) Leaf Node Rates P(t,T) Leaf Node Rates P(t,T)
T 10 0.10754 0.39418 0.04945 0.55692 0.00000 0.74739

deltaT 0.05 0.10367 0.40337 0.04557 0.56990 0.00000 0.74739
a 0.1 0.09980 0.41277 0.04170 0.58318 0.00000 0.74739

sigma 0.01 0.09592 0.42239 0.03783 0.59678 0.00000 0.74739
0.09205 0.43224 0.03396 0.61069 0.00000 0.74739
0.08818 0.44231 0.03008 0.62492 0.00000 0.74739

P(0,t) 0.9757 0.08430 0.45262 0.02621 0.63949 0.00000 0.74739
P(0,T) 0.5927 0.08043 0.46317 0.02234 0.65439 0.00000 0.74739

P(0,t+deltaT) 0.9740 0.07656 0.47397 0.01846 0.66965 0.00000 0.74739
deltaR 0.0039 0.07268 0.48501 0.01459 0.68525

0.06881 0.49632 0.01072 0.70123
B(t,T) 5.9343 0.06494 0.50789 0.00684 0.71757

Bhat(t,T) 5.9492 0.06107 0.51972 0.00297 0.73430
B(t,t+deltat) 0.0499 0.05719 0.53184 0.00000 0.74739

Ahat(t,T) 0.7474 0.05332 0.54423 0.00000 0.74739

User Inputs

Term Structure Calculations

Calculations

Leaf Node Calculations

44

 0.0145901 0.685253815 0
 0.0107171 0.701226094 0
 0.00684414 0.717570494 0
 0.00297115 0.734295985 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0
 0 0.747390658 0

