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ABSTRACT

We present a model for pricing and hedging derivative securities and option
portfolios in an environment where the volatility is not known precisely, but
is assumed instead to lie between two extreme values op,in and omax. These
bounds could be inferred from extreme values of the implied volatilities of
liquid options, or from high-low peaks in historical stock- or option-implied
volatilities. They can be viewed as defining a confidence interval for future
volatility values. We show that the extremal non-arbitrageable prices for the
derivative asset which arise as the volatility paths vary in such a band can
be described by a non-linear PDE, which we call the Black-Scholes-Barenblatt
equation. In this equation, the “pricing” volatility is selected dynamically from
the two extreme values oin,0max, according to the convexity of the value-
function. A simple algorithm for solving the equation by finite-differencing or a
trinomial tree is presented. We show that this model captures the importance of
diversification in managing derivatives positions. It can be used systematically
to construct efficient hedges using other derivatives in conjunction with the
underlying asset.
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1. The uncertain volatility model

According to Arbitrage Pricing Theory, if the market presents no arbitrage opportunities,
there exists a probability measure on future scenarios such that the price of any security is the
expectation of its discounted cash-flows (Duffie, 1992). Such a probability is known as a mar-
tingale measure (Harrison and Kreps, 1979), or a pricing measure. Determining the appropriate
martingale measure associated with a sector of the security space (e.g. the stock of a company
and a riskless short-term bond) permits the valuation of any contingent claim based on these
securities. However, pricing measures are often difficult to calculate precisely and there may exist
more than one measure consistent with a given market.! It is useful to view the non-uniqueness
of pricing measures as reflecting the many choices for derivative asset prices that can exist in an
uncertain economy. For example, option prices reflect the market’s expectation about the future
value of the underlying asset as well as its projection of future volatility. Since this projection
changes as the market reacts to new information, implied volatility fluctuates unpredictably. In
these circumstances, fair option values and perfectly replicating hedges cannot be determined with
certainty. The existence of so-called “volatility risk” in option trading is a concrete manifestation
of market incompleteness.

This paper addresses the issue of derivative asset pricing and hedging in an uncertain future
volatility environment. For this purpose, instead of choosing a pricing model that incorporates a
complete view of the forward volatility as a single number, or a predetermined function of time
and price (“term-structure of volatilities”), or even a stochastic process with given statistics, we
propose to operate under the less stringent assumption that that the volatility of future prices is
restricted to lie in a bounded set, but is otherwise undetermined. 2

For simplicity, we restrict our discussion to derivative securities based on a single liquidly
traded stock which pays no dividends over the contract’s lifetime and assume a constant interest
rate. The basic assumption then reduces to postulating that, under all admissible pricing mea-
sures, future volatility paths will be restricted to lie within a “band”. Accordingly, we assume
that the paths followed by future stock prices are Ito6 processes, viz.,

dSt == St <O't dZt + Ht dt), (1)

where o, and p; are non-anticipative functions such that

Omin < 0 < Omax » (2)

1 Uniqueness of the martingale measure is tantamount to market completeness, a stringent economic assump-
tion. A model for a securities market is said to be complete if the associated dividend matrix is invertible or,
equivalently, if it is possible to realize any given payoff structure through an appropriate portfolio of traded
securities.

2 The original idea for this paper came from analyzing a simple incomplete market based on a trinomial tree
(Levy, Avellaneda and Paras, 1995). For reasons of clarity and generality, we adopt a continuous-time formulation

hereafter.



and Z; is Brownian motion. The constants o5, and omax represent upper and lower bounds on
the volatility that should be input in the model according to the user’s expectation and uncertainty
about future price fluctuations. These bounds could be obtained, for instance, from the extreme
values of implied volatilities of liquid derivative instruments or from peaks in historical stock- or
option-implied volatilities. They can be viewed as determining a “confidence interval” for future
volatility values. If necessary, oy and omax can be modeled as functions of the stock price
and time to maturity. ( For simplicity, we shall assume here that opj, and omax are constant
over time and independent of S). Based on these assumptions, we shall derive optimal bounds
on the values of derivative securities which are consistent with these volatility bounds. We shall
also describe strategies for managing a derivatives position in such environment.

Assume that at a given date t, a derivative security (or a portfolio of derivatives) is charac-
terized by a stream of cash-flows at N future dates, t; < t3 < ... <tn,

Fl(Sh)vF?(Stz)v”'v FN(StN)7 (3)

where Fj( S ) are known functions of the price of the underlying stock. We would like to find
the “present value” of these cash-flows. If there is no arbitrage, the forward stock price dynamics
under any pricing measure should satisfy the modified, risk-neutral It6 equation

dSt:St<O'tdZt—|—Tdt>, (4)

where r is the riskless interest rate (Duffie, 1992). * Let us denote by P the class of all probability
measures on the set of paths { Sy, 0 < t < T}, such that (4) holds for some o, which is
non-anticipative and satisfies the bounds in (2). If there are no arbitrage opportunities and our
assumption on volatility is correct, the value of this derivative should lie somewhere between the
bounds

N
WH( S, t) = Supp Ef [ Y e "W =0 F(S,)] (5)
j=1
and
N
W™(Si,t) =TInfp Bf [ e "W~ Fi(S, )], (6)
j=1

where P ranges over all measures in P and Ef is the conditional expectation operator under P
conditional on the information up to time ¢.

3 Equation (4) is obtained from eq. (1) by substituting the return pit by the riskless rate r. We assume that

the latter 1s constant.



We now make the key observation that these two functions can be obtained by solving
dynamical programming partial differential equations, viewing (5) and (6) as stochastic control
problems with control variable oy (Krylov, 1980). Accordingly, in the case of a single maturity
date (N =1 .64 = T ,F, = F), the two extreme functions are obtained by solving the
final-value problem

oW (S, 1)
ot

+ r(S % - W(S,t))—l—%az[

OPW(S,t)
05?

O?*W(S,t)
05?

]52 =0, (7)

W(S,T) = F(S5),

where W is obtained setting

2 e 2W
85 lf 852 < 07

%min

U[aZW] { omax lf %QTV;/ Z 0,

in (7), and W~ with

(9)

o
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a 952

min

The case of multiple payoffs is similar. Problem (7) is first solved for ty_1 < t <ty with
terminal condition W(S ,tny) = Fy(5) . At time t_; the value-function is set to

W(S, tnN_1 ) = W(S, tnN—1 —|—0) + FN_l(S) , (10)

where the first term in the right-hand side represents the limit from the right as t — 0 ( the
value at the date ty_; immediately after the cash-flow Fy_1(S¢y_,) is paid out). Equation (7)
is then used to discount the price back to time #xn_s, and so forth?.

We shall refer to the non-linear PDE in (7) as the Black-Scholes-Barenblatt (BSB) equation
. It is a generalization of the classical Black-Scholes PDE [3], and reduces to it in the case of
constant volatility (o5 = omax). We note that the “volatility” o [-] implied by equation (7)

5

is a function of %QTV;/(S , t). This has following consequence: if the future volatility path was

actually given by

A justification of the dynamical programming equations and a more compact formulation of the multiple-
payoff problem are given in the Appendix.
> The physicist G. I. Barenblatt [2] introduced a diffusion equation with a similar nonlinearity to model flow

in porous media; hence our terminology.



9 WH(Sy, t)
5o (11)

O'tZO'[

with o [-] satisfying (8), then the standard Black-Scholes argument shows that a portfolio com-
posed of A; shares and B; bonds, where

_OWT(S, 1)
AE T (12)

and

OWT(S;, t)

B, = W'(Si. t) — S s

(13)

would be self-financing and would replicate exactly all future cash-flows. On the other hand, if
oy was an arbitrary function satisfying (2), then a self-financing portfolio of stocks and bonds
worth initially V; = WT(S;,t) and subsequently constrained to satisfy (12) ( but not (13) ) will
have a non-negative final value after paying out all the derivative’s cash-flows, almost surely °.
Therefore, a self-financed trading strategy which uses the hedge-ratio (12) with o given in (8), will
hedge risklessly a short position in the derivative security. This strategy is optimal in the sense
that it has the least possible initial cost within the class of all other dominating strategies that use
only stocks and bonds. In fact, the initial cost cannot be reduced further since we have perfect
matching of the cash-flows (3) when the volatility path is given by (11). Equation (11) represents
the “worst-case scenario” volatility path in the context of this model. Similarly, W™(S; ,t) and
W can be interpreted, respectively, as the maximal initial bid value and the hedge-ratio
for managing a long position in this derivative security.

2. Risk-diversification

The uncertain volatility model gives us a means of quantifying the diversification of volatility
risk in portfolios of derivative securities. In fact, let

N
& =Y e "W F(S,) (14)
j=1

and

6 See the the Appendix.



N/
U= e "D G Sy ) (15)

k=1

denote the sums of the discounted cash-flows of two “generic” derivative products. Clearly, we
have

Supp Ef [®@ + U] < Supp Ef [®] + Supp Ef [ V] (16)

and

Infp E/ [ + ¢ ] > Infp E/ [®] + Infp E [T] . (17)

Typically, the inequalities in (16) and (17) will be strict, except when the pricing measures realiz-
ing the supremums (or infimums) separately for each derivative security are identical. Therefore,
in general, the optimal risk-averse “offer” price of the portfolio “® + U7 will be lower than
the sum of the individual optimal offer prices for “®” and “¥”. Similarly, the “bid” price for
“® + U7 portfolio will be higher than the sum of the separate bid prices.

This can be understood more concretely in terms of option portfolios. Since the “volatility”
in the BSB equation is equal to o,,;;, or omax according to the convexity of the value function,
and that option values are convex in S, the upper and lower bounds in (5) and (6) are simply
Black-Scholes prices obtained by using the extreme volatilities. This result is intuitively clear: a
risk-averse agent that plans to delta- hedge his position in this uncertain volatility environment
would have to sell options at the highest volatility and buy them at the lowest one. On the
other hand, more complex derivatives and option portfolios that combine short and long option
positions (and thus have mixed convexity), are priced differently. The BSB equation selects the
volatility path that generates the most efficient non-arbitrageable bid/offer values. Pricing the
“whole” is more efficient than adding the prices of the individual “parts”. This is illustrated
in Figures 1 and 2 and Tables 1 and 2, where we study this “pooling” effect on vertical and
horizontal call-spreads.

Since the extreme prices for options are obtained by using the two extreme volatilities, one
might believe that the extremal prices for option portfolios would be given by Black-Scholes
prices with some constant volatility ¢ in the range o < 0 < Opmar - However, the
theory presented here shows that such valuation is always subject to volatility risk if the portfolio
has mixed convexity. Theoretical premiums calculated with the Black-Scholes formula with a
constant volatility will be too low to enter into a delta-hedging strategy that protects against
future volatility movements within the band. To illustrate this, we present in Figure 3 comparison
between the extreme prices that would be obtained by pricing with a constant volatility and those
obtained from the BSB equation for the call spread of Figure 1/Table 1. It is noteworthy that the
volatility risk is significant despite the fact that the Vega of the position (using the BS formula)
can be quite small”.

7 Vega measures the sensitivity with respect to infinitesimal, rather than large, volatility movements.
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months to expiry. The thick lines correspond to the BSB upper and lower bounds. The outer dotted lines are the

bid/ask values obtained by pricing the options separately using the Black-Scholes formula. The middle line is the
Black-Scholes price with the mid volatility. The parameters are r=0.05, 0,;,=0.1 and 0max=0.4.

Table 1

Numerical values corresponding to Figure 1 for different values of the stock 5.

S W+ Cdh — Croo Coo — Choo (midvol.)
W= %0 — Cloo

75 2.69 4.13 1.01
0.02 —2.26

80 3.73 6.04 1.79
0.19 —3.28

85 4.90 8.33 2.79
0.79 —3.88

90 6.15 10.72 3.93
1.79 —3.43

95 7.44 12.75 5.09
2.83 —1.96



Figure 2

and the other

Different pricing curves forG—ealendsrspreadwith-ote—eallstriek—at—$90—with I year ta—expi

priowms cwrves T30 B0 U0 00 . 120 140 160 Y180 T2
call struck at $100, with 6 months to expiry. The thick lines correspond to the BSB upper and lower bounds.
The outer dotted lines are the bid/ask values obtained by pricing the options separately using the Black-Scholes
formula. The middle line is the Black-Scholes price with the mid volatility. The parameters are r=0.05, 0y, =0.1

and O-maXIO.4.

Table 2

Numerical values corresponding to Figure 2 for different values of the stock 5.

S wt Ch — Cioo Coo — Clop (midvol.)
W= %0 — Cloo

75 7.14 8.11 3.31
0.34 —1.94

80 8.94 10.50 4.71
1.11 —2.32

85 10.83 13.26 6.18
2.33 —2.07

90 12.75 15.80 7.60
3.58 —1.07

95 14.47 17.85 8.85
4.78 0.48



SOlld lines represent the ex e VJﬁutj‘ie‘ol f\alobllc 1 SPT 6\,1 a/?I(?O = lﬁlﬁﬁ 1aﬁc uimélocu 111863 e ?ent the upper

and lower envelopes of Black-Scholes prices for the call spread calculated using a constant volatility o between

O'mln—()l and O-max—o.4.

3. Hedging with stochastic volatility

Many interesting papers in Finance study stochastic volatility and incomplete markets, cf.
Johnson & Shanno (1987), Hull and White (1987), Scott (1987), Wiggins (1987), Dupire (1992)
and Eisenberg and Jarrow (1994). Hull and White, for instance, considered a system of stochastic
differential equations to model the joint statistics of the stock price and its volatility. Their method
consists in calculating the present value of a security by averaging over the joint distribution of
stock price and volatility. In this section, we consider a similar stochastic volatility model and
compare the BSB price/hedging strategy — which corresponds to extreme volatility scenarios
— with the prices/strategies obtained by averaging over volatility. The main interest of this
comparison lies in the issue of hedging. Since volatility is not a traded asset, delta-hedging
against volatility movements using the underlying stock and risk-neutral valuation is always risky

(Dupire, 1992).

To analyze the potential losses arising from hedging a derivative product in a stochastic
volatility environment, we implemented the following volatility dynamics:

o = exp(X¢) (18)
where X is the mean-reverting Gaussian diffusion satisfying

9



Here W, is a Brownian motion independent of Z,. The parameter values were taken to be
a=0693=1In2, v=-1.609=1n02, p = 2 x (In2)"/?/Zys , where Zg5 = 1.64 represents
the 95% percentile of the standard Gaussian. With these parameter values, the volatility band
0.1 — 0.4 is then a centered 90% confidence interval for the volatility under the equilibrium
measure. Monte-Carlo simulations corresponding to price evolutions over 6-month periods show
that volatility paths initialized at the mean value < o; >= 0.2 spent on average 1.9% of the time
above 0.4 and 1.9% of the time below 0.1. These slightly better statistics are due to the finite 6
month time-horizon.

We considered the problem of delta-hedging a call spread consisting of a short call with strike
price $90 and a long call with strike price $100, both with six months to maturity. To construct
a hedging strategy consistent with the average price, we observed that, in the long run, the price
corresponding to averaging with respect to the mean-reverting volatility paths coincides with the
standard Black-Scholes price with constant volatility o5y &~ < of >1/2  This is due to the
ergodic theorem, which equates the temporal and ensemble averages of o;. We verified that this
approximation gives essentially the same price six months from expiry as as the one obtained by
averaging over the joint statistics of stock price and volatility. The exact value of o,y is 0.2214.
Consistently with this observation, we assumed that one agent would delta-hedge his position
using the Black-Scholes formula with ¢ = ocys over the six-month period and another one
would use the BSB hedge. Adjustments in Delta take place at regular intervals with about 100
rehedgings over the six-month period. In Figures 4, 5 and 6 we present various histograms made
by running 100,000 Monte-Carlo simulations of stock prices following the (4) with the stochastic
volatility in (18), (19). These results show that the BSB hedge provides strong protection against
catastrophic losses in a stochastic volatility environment, comparable to that of the Black-Scholes
strategy in the ideal case of constant volatility.

4. Using derivatives to hedge volatility risk

The uncertain volatility model can be used to construct hedging portfolios that use other
liquid derivatives in addition to the underlying stock. To see this, consider the hypothetical case
of an agent that wishes to offer the derivative security “®” to a client and hedge his or her risk
using another derivative asset “¥”, contingent on S, which we assume can be bought in the
market at price G.® If the agent buys \ units of this derivative to hedge the short position and
delta-hedges the remaining exposure, the cost of establishing the hedge, including the additional
coverage for the risk due to the mismatch between a “®” and “U” will be at most

NG + Supp EF [® — N T]. (20)

The second term can be calculated using the BSB equation. To find the optimal the number of

8 We use the same conventions as in Section 2. The functions & and ¥ are defined in equations (14) and (15).

10



0.5 i

0.4 ]

0.1 4

0 ‘ WHHHHN Elighire HHHHHHHHWW N ‘

Histogram describing the probak_)l%ty distgbution 0 proﬁt/]liosses for6 an agenst delta—ﬂlgd@n_gg;h% call-spread of
Figure 1 /Table 1 using BSB in a lognormal volatility environment. The interval ,,;,=0.1 < o, < 0,,,,=0.41is
a 90%-96% centered confidence interval for 0. The tail of the distribution to the left of 0 represents the probability

of losses.

0.5

0.4-

0.3

T

0.2

T

0.1

0 ! - i HHHHHHHWW a !

. - -4 2 . .. 4 - .
Same as Figure 4, for an agent hedg16ng the call-spread using B(?ack—Schgles with VOlatlhtyGP'/M$)IO.2214. Notice

that the probability of losses, determined by the portion of the density to the left of zero, is significant. The
vertical dashed line indicates the break-even point for an agent with initial endowment equal to the BSB upper

price.

11



1.2

0.8

0.6-

0.4

0.2-

0 | | FiQE i

ty 20’:0.22141. NOti(‘eﬁ’/ﬂfgf the tails of the

distribution are much narrower than in Figure 5, and that the tails to the left of zero are comparable to those

Same as Figure 5, but for a logno?l@ml pri(?é" with c_o%

of Figure 4. This suggests that the BSB hedge gives a similar degree of protection in an uncertain volatility

environment than does Black-Scholes in a constant volatility environment.

contracts for such hedge, we must therefore solve the minimization problem

Infx { NG + Supp E[® — AT ] }. (21)

Similarly, an agent that wants to take improve the value of his portfolio and holds the derivative
security with payoff ® can solve the maximization problem

Supy, { NG + Infp E[® — AT ]}, (22)

to hedge away some of the volatility risk of his position. In practice, the calculation of the
optimal hedge requires solving the BSB equation repeatedly with different As to perform the
optimization. The same procedure can be be implemented to determine an optimal hedge using
several derivatives ( in which case ¥ , G and A should be regarded as vectors).

We observe that dynamically complete models or models that incorporate a random volatility
with known statistics cannot distinguish between hedges that use derivatives and those which use
only the underlying stock. Therefore, unlike the present model, they cannot be used to construct
hedges that involve derivative securities. Risk-diversification through derivatives is a natural

12



and important tool in derivative market-making, precisely because of the uncertain nature of
volatility?.

Recently, Rubinstein (1994), Shimko (1993), Derman and Kani (1994) and Dupire (1994)
considered the problem of calculating “implied trees”, or implied martingale measures consistent
with prices of liquidly traded derivatives. The model presented here is closely related to this point
of view. In fact, the starting point of the uncertain volatility model consists of an environment
with a multiplicity of pricing measures. As shown above, the existence of derivative products
in the market offers the possibility of further risk-diversification, resulting in narrower bounds
for the prices of OTC derivative products than those corresponding to delta-hedging with the
underlying security alone. A systematic application of the the procedure in (21), using the
BSB equation, would yield the optimal price range consistent with the market, and thus the
corresponding “implied trees” and hedging portfolios. Notice that the range between the upper
and lower bounds will be progressively narrowed if the number of derivative products available
for hedging increases and the market becomes more complete. Thus, the optimization problem
in (21) can also be viewed as a constructive algorithm for finding the “implied tree” if it exists,
i.e. if the market is complete.

5. Numerical implementation

In practice, we implement the two-volatility model using a discretization of the BSB equa-
tion. This discretization can be viewed as a “trinomial tree” that approximates the stochastic
differential equation (4) with adjusted drift. Thus, we consider a model with N trading peri-
ods. After each trading period, the asset price S can change with uncertainty to one of three
values: DS M S or US. Here D, M and U are positive numbers satisfying D < M < U and
U D = M?. This last condition is imposed so that the set of all possible trajectories forms
a recombining tree. To calibrate the model, we assume a time horizon 0 < ¢ < T, (time is
measured in years) and divide it into N trading periods of At = T / N with At <« 1. We set

_ _Omaz VAL + 7 At
U =e ,

and

9 It is also noteworthy that the BSB equation is formally similar to an equation proposed recently to hedge
option portfolios in the presence of transaction costs, Leland (1985), Whalley and Wilmott (1993), Hoggard,
Whalley and Wilmott (1994), Flesacker and Houghton (1994) and Avellaneda and Pards (1994). The benefits of
risk-diversification captured by using the nonlinear equation with Gamma-dependent volatility were pointed out
by Hoggard et al.. Thus, a posteriori, the uncertain volatility model could also incorporate the agent’s expected

delta-hedging costs due to bid-offer spreads.

13



D — e_ Tmazx \/E + r At . (23)
We define a one-parameter family of probabilities at each node of the tree, given by

omax VAt )
2 2

Py(p)=p- (1 -

and

+ Um%\/ﬂ>7 (24)

where p varies in the range

_min . < 1/9 . 25
2UI%QM_29_/ (25)

For a given value of p, the variance of the logarithm of the price shock is given by

2 p- ohax At . (26)

Therefore, as the parameter p varies at different nodes of the tree, the set of probabilities defined
in (26) span a family of stochastic processes which approximate the solutions of the stochastic
differential equation (4) and satisfy the local volatility bounds in (2).10

The finite-difference scheme approximating the BSB equation can also be viewed as the
solution of the extremal problems (5) and (6) in this discrete setting. To describe it in detail,
we label the nodes of the trinomial tree by pairs of integers (n , j), where n indicates the time
coordinate and j the price level at the node, with j increasing with price. We make the convention
that each node (n , j) has three “offspring” (n+1, j)(up), (n+1, j) (middle) and (n+1, j—1)
(down). There are 2n 4+ 1 nodes at stage n. According to (23), the price at node (n , j) is

S] _ 58 ej' Omaz \/E + n-r At . (27)

n =

Assuming that the cash-flows of the derivative security of interest are of the form (3) with ¢, =
n- At, we set

10 1t is easy to verify that the probabilities (26) make the model risk-neutral in the limit At < 1.

14



N
F/ = F, ( S;ZL) and Wsc’j = SuporInf E [ Z et = tn) By ( Sk )] ) (28)

7

k=j+1
The equations for W+ are then
W:I:,j — F] + e—rAt «
Supp or Inf, [ Py(p) Wjﬁﬁl + Py (p) T/T/’ni_i’_]1 + Pp(p) Wjﬁﬁl ] , (29)

where the parameter p in the interval (25). The equations can be recast in the more explicit form

iy iy 4
W + %Ln—lfl if L,y =0
Wi = FI 4 e 2! (30)
WS 4 T LE i LE, < 0
and
W + 5 Luih it 1,7 <0
W, = Fi 4 e 72! (31)
o o2 . —j . —j
Wn_(-]l _I_ 2075;@:]3 Ln—izl lf Ln—|i71 ZO,
where
4. omax VAt + 41 omax VAt +.j-1 +.5
LYY = (1 R ) W+ (1 + 9 ) W — Wi (32)

This last expression can be viewed as a discretization of the second-derivative operator. In
particular, the right-hand sides of these equations depend on the local convexity /concavity of the
solution. Finally, we note that this discrete scheme can be shown to converge to the solution of
the BSB equation as the mesh-size At tends to zero.
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Appendix: Dominating Strategies and the BSB Equation

We establish here that the solutions to the BSB equation give rise to optimal dominating
strategies for derivative securities with cash-flows given by (3) (using only shares and cash). This
result implies, in particular, that the BSB equation is the dynamical programming equation for
the control problems (5) and (6). For simplicity, we shall assume that the riskless rate is zero or,
alternatively that we measure prices in dollars-at-expiration. The BSB equation corresponding
to the function W7 in (5) can then be written in the form

OWT(S,t) 1, o OPWH(S. 1), O2WH(S,1) N-1
D S - ) . ’ _ F St —
ot + 2 5t o [ 95?2 052 tkz;t K (S) - ( k) (33)

for t < ty, where § is the Dirac function, with the final condition

WH(S,tn) = Fn(S5). (34)
Notice that we represented the stream of intermediate cash-flows as singular term in the right-
hand side of (33).
Consider an agent that has the following position at time ¢:

1) short one derivative security with payoff (3),

+
ii) long awaigs“t) shares of stock,

+
iii) WH(Se,t) — Sy awaigs“t) in cash deposited in a money-market account.

Suppose also that this agent adopts a trading strategy which consists in maintaining a hedge-ratio

of

OW*(S,,7)
A = T (35)

shares at each future time, financing these trades using the money market account and paying
out the obligations implied by the short position in the derivative security. Let V. represent the
combined value of the stock portfolio and money market account at time 7. Recalling that » = 0,
it is clear that after the last payoff date ¢y, the combined value of the position would be

13 N
Viero = WHS, 1) + / ArdS, — Y Fi(Sy) . (36)
tp > 1

t

17



On the other hand, by It6’s Lemma, we have
Fn (StN) = W+(StN 7tN) = W+(St 7t) +

tn

or 2 052

tn

+ 277+
/A,-ds,-—l—/[w—l-l@%szw]%'-
t

t

Now, since

PWH(S, )
052 < o'

PWH(S, 7) T PWH(S, 7)
05? 05? 7

¢

for omin < 0, < Omax , we have, using (33) and (37),

in N-1
Fx(Siy) < WHS, 1) + / A dS, — Y Fi(Sy)
f th > t
and thus
N N
0 < W+(St,t) + / A, dS, — Z Frp(St,) = Viy+o -
f t >t

(38)

(39)

(40)

This proves that the strategy is riskless if the volatility remains between the bounds. On the other
hand, the final position would be worth exactly zero if the volatility was such that we had equality
in (39), i.e. if equation (11) held. Therefore, the strategy is the best possible for delta-hedging a

short position. A similar argument applies to long positions and to W=(S ,¢ ).
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