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Abstract

The Heath-Jarrow-Morton (HJM) model provides a technically rigorous framework for the
evolution of the entire term structure of interest rates. By utilising information about the
entire yield curve, it is able to posit a spot rate process that is independent of the market price

of risk in the risk-adjusted measure. Thus it enables bonds to be priced independently of the
market's perception of risk. This paper develops the model from basics, providing a thorough

survey of the necessary mathematical and economic ideas that HJM utilises. It explores the
HJM framework in detail, and compares it with existing term structure models. Finally, it

outlines recent theoretical developments and points towards areas of possible future research.
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Chapter 1

An Overview

The Heath-Jarrow-Morton (HJM) framework provides a robust, elegant and technically rigorous

model for the term structure of interest rates. Since its introduction in 1992, it has quickly

established itself as a benchmark.

1.1 How HJM Works

HJM takes as given an initial yield curve, re�ecting an initial term structure of interest rates,

and models the evolution of the entire yield curve over time. By allowing several independent

Brownian motions to in�uence the randomness of this evolution, HJM allows for imperfect

correlation among the movements of di�erent parts of the yield curve. In addition, it provides

a relationship that must exist between the drift and volatility of forward rates to ensure the

absence of arbitrage opportunities. However, the feature most frequently cited as the principal

contribution of the HJM framework is that it allows bonds and other interest rate derivatives

to be priced independently of the market's perception if risk. In this sense, HJM does for bond

pricing what the Black-Scholes equation does for option pricing, i.e. provide a valuation formula

that is independent of market risk.
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1.2 Other Approaches

1.2.1 Sp ot Rate Models

Earlier models, which study the evolution of the spot rate of interest, allow bond prices to be

expressed as solutions of partial di�erential equations (PDEs). They can be made sophisticated

enough to capture several real features of spot rates, such as mean-reversion and positivity,

while still giving relatively simple closed-form bond price formulae. Multifactor models allow

the spot rate to be dependent on several underlying random processes, which could be economic

variables such as in�ation, employment etc.

1.2.2 Drawbacks of Sp ot Rate Models

One major drawback of spot rate models is the �inversion� of the yield curve that is needed to

infer the parameters of the spot rate process. It is for this reason that researchers often seek

yield curves that are a�ne in the spot rate - a complicated function may not be invertible. This

is a severe restriction of spot rate models. Another problem is that one-factor spot rate models

try to capture the dynamics of the entire yield curve from the behaviour of just one point on

it. From an empirical perspective too, it has been shown that none of the established spot rate

models �ts historical data well.

1.3 HJM and Spot Rate Models

1.3.1 Problems Overcome by HJM

By incorporating an initial term structure of interest rates by construction, HJM bypasses the

problem of inverting the yield curve completely. Since it models the behaviour of the whole

yield curve and uses multiple stochastic factors, it captures a richer variety of the dynamics of

interest rate movements. Spot rates can be inferred from forward rates, and so HJM models

are in a sense more general than spot rate models. HJM models can be made strongly path-

dependent, while most spot rate models are Markov di�usions, to preserve tractability. All

existing spot rate models are in fact special cases of appropriately chosen HJM models.
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1.3.2 Problems With HJM

However, there are a number of issues that HJM leaves unresolved. For one, HJM allows spot

rates to become negative with positive probability. No �natural� restrictions of the model

that ensure positivity of interest rates are known. Since the yield curve sits in an in�nite-

dimensional state space and HJM models its evolution as a whole, there are in general no

PDE formulations for bond prices under the HJM framework. Formulation in terms of in�nite-

dimensional stochastic PDEs is an active area of research. There are also proposed extensions

of the model that replace the �nitely many independent Brownian motions with a Brownian

sheet. From an implementation perspective, HJM has to be simulated using computationally

expensive Monte-Carlo methods because of the strong path-dependence of HJM models. On

the empirical side, some work has been published on Markovian HJM models, but not much on

general non-Markovian models.

1.4 Goals

This paper seeks to understand how HJM works. It is self-contained, and develops all the

necessary mathematical and economic theory before analysing the model itself. Chapter 2

provides an overview of the interest rate market, and outlines the methodology of pricing

contingent claims, by arbitrage and by expectation. Chapter 3 is the mathematical �meat� of

the paper, and introduces all the mathematical tools needed to implement the pricing strategy

given in chapter 2. Chapter 4 provides an explicit recipe for pricing contingent claims, based

on the insights of chapter 2 and the mathematical tools of chapter 3. It introduces the �nancial

concepts necessary to complete the picture. Chapters 5 and 6 deal exclusively with the HJM

framework. Since the single-factor version of the model is easy to understand and the extension

from one to many factors is both technically and conceptually uncomplicated, chapter 5 is

devoted to exploring 1-factor HJM models. Chapter 6 studies the general, multifactor HJM

framework. Chapter 7 is a survey of existing term structure models. It outlines the strengths

and weaknesses of the various models currently used to explain the dynamics of interest rates.

Chapter 8 assesses HJM, providing a critique on the model and surveying the work that has

been done since the model was formulated.
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Thus the aim of this paper is to provide an exhaustive summary of term structure modelling

in the context of the HJM framework, and point towards areas of future research.
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Chapter 2

Bonds and Interest Rates

Don't Panic.

2.1 Ob jectives

� De�ne bonds and introduce the interest rate market.

� Compare methodologies for pricing contingent claims, i.e. risk-neutral pricing vs. arbi-

trage pricing.

� Describe the idea and signi�cance of a risk-neutral measure and a market measure.

� Present a general recipe for valuing contingent claims.

� De�ne yields and the term structure of interest rates.

� De�ne spot rates and forward rates.

� Present an overview of modelling considerations.

2.2 Bonds

2.2.1 The Interest Rate Market

The most basic interest rate contract is an agreement to pay some money now in exchange for

the promise of a usually larger amount later. The value of such a contract depends both on

13



its length or maturity, and on random �uctuations in the interest rate market, where the price

of money is set. The dependence of interest rates on maturity is called the term structure of

interest rates. The randomness of the interest rate market opens up the possibility of �nancial

instruments that derive their value from the future value of money. A good interest rate model

should therefore approximate both the initial term structure as well as its evolution over time,

and hence price interest rate derivatives.

2.2.2 Zero Coup on Bonds

A zero-coupon bond (ZCB) is an instrument that pays no dividends between the time it is

bought and the time it matures, when it pays out a known amount, which we conventionally

take to be a dollar. A ZCB requires two numbers to describe it. One is its length T and the

other is the ratio of the initial investment to the �nal payo�. A dollar at time T is worth

P (0; T ) at time zero. The promise of a dollar at time T can also be regarded as an asset, which

will have some value P (t; T ) at each time 0 < t < T . Thus P (t; T ) is the price of the ZCB at

time t.

What does the function P (t; T ) look like? First, we expect bonds with maturities that are

close together to move roughly in step, i.e. to be well-correlated. For example, we expect the

short-run behaviour of 25 and 30-year maturity bonds to be similar, but they might behave very

di�erently from that of a bond that expires in 2 years. Second, since a bond is an interest rate

based derivative, we expect random �uctuations in interest rates over time to be manifested

in the evolution of bond prices as well. In essence, this means that we expect to be a smooth

function of T , but a stochastic function of t.

2.3 Pricing a Bond

2.3.1 No-Arbitrage

What is the current worth of a contract that guarantees a dollar at maturity? Suppose interest

rates were �xed and constant r between now and maturity. Then

P (t; T ) = e�r(T�t)
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If the contract was selling higher, we could sell it, invest the above amount into a ZCB to be

assured of a dollar at T , and pocket the di�erence. Similarly, if it was traded lower, we could

buy and realise a riskless pro�t. One of our basic assumptions is that it ought to be impossible

to make this sort of riskless pro�t. This is called the principle of no-arbitrage.

2.3.2 Pric ing by Exp ectation

Now suppose interest rates were known, but not constant. If t = t0 < t1 < :: < tn = T and the

rate was r1 in [t; t1], r2 in (t1; t2] and so on, then we would have

P (t; T ) = e�
P

n

i=1
ri(ti�ti�1)

In general, if we knew in advance what the rate of interest was going to be, then the price of a

ZCB at time t would be given by

P (t; T ) = e�
R
T

t
r(s)ds

In reality of course we do not know what these rates are going to be. Thus r (t) is a random

quantity and our formula should be modi�ed to

P (t; T ) = Et
h
e�

R
T

t
r(s)ds

i

This means that the ZCB price is the expected value of the quantity in square brackets. The

subscript means that the expectation is computed using all information till time t.

2.3.3 Comments

A couple of comments are in order. First, the interest rate r (t) will, in later sections, be shown

to be the spot rate of interest. This is the rate of borrowing money at the present time and

returning it instantaneously.

The second point is about the distribution of r (t). We have not speci�ed anywhere the

underlying probability density of the random quantity r (t). In general, di�erent investors will

have di�erent opinions about this. Thus the expectation is computed given not only all the
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information till time t, but also the investor's perception of how interest rates are likely to

move. Hence the price may not be unique.

This is the feature that allows a market to exist: di�erent investors have di�erent perceptions

about how an asset is going to move, and so will prefer to either buy or sell depending on whether

they think the asset will go up or down.

2.3.4 The Rational Expectations Hyp othesis

The rational expectations hypothesis allows us to get around the problem of non-uniqueness.

According to it, the present value of an uncertain quantity is its expected future value, where

expectations are computed in an unbiased manner, using all information available till the current

time. The formula above incorporates the latter but not the former.

In the light of rational expectations, bond prices are given by

P (t; T ) = E�t
h
e�

R
T

t
r(s)ds

i

where E� represents expectations with respect to some appropriately de�nes risk-adjusted prob-

ability distribution for future values of r (t). This leads onto an important insight about risk

and probability distributions, discussed next.

2.4 Risk and Probability

2.4.1 The Market Measure

If we have money to invest, we could put it in a bank and let it grow there. Money in a

bank grows at the riskless rate r (t). This is the highest rate of return that can be risklessly

guaranteed. Another possibility is to invest the money in, say, a stock or a bond. Since holding

one of these involves a certain amount of risk, we expect the average return on a stock or bond

to be higher than r (t).

In principle at least, we can observe the average rate of growth of a bank deposit and the

average rate of growth of the risky asset (e.g. a stock or bond). We assume that the random

movements of both these processes (money in a bank and risky asset) are governed by the same
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underlying set of probabilities. This underlying measure, of which the observed movements of

assets are a particular set of outcomes, is called the market measure and will be denoted through

out this paper by Q. In a sense, the market measure characterises our actual observations about

the randomness of, say, stock prices.

Under the market measure, the average rate of growth of money in a bank is r (t) and that

of a stock is, say, � (t) which (we expect) is higher than r (t).

2.4.2 The Risk-Adjusted Measure

The market measure is simply a frame of reference. Is there another set of probabilities under

which the stock grows at r (t)? That is to say, can we shift our frame of reference (or change

the relative weights of various possible outcomes) so that in the new frame, the stock (a risky

asset) grows at the riskless rate? We would like this new frame to be in some sense equivalent

to the market measure. This means that they should both agree on what events are possible,

but the relative likelihoods of the same event might be di�erent under the two measures. If

such a measure exists, it is called the risk-adjusted or risk-neutral or risk-free measure, and will

be denoted by Q�. We shall dwell on the existence and uniqueness of Q� in greater detail in

later chapters when the necessary mathematical tools have been developed, but for now all we

seek is a heuristic idea of risk-adjusted probability.

Thus the risk-adjusted measure Q� is that measure, if it exists, equivalent to the market

measure Q, under which a risky asset appears to grow at a riskless rate.

2.4.3 Market Price of Risk

In the market measure, the di�erence between the return on a stock and the return on a bank

deposit re�ects the amount of risk inherent in holding the stock. Market price of risk is the sum

of money that quanti�es this risk. A person investing in stocks is willing to take on some risk

in order to achieve high rates of growth. A person investing in a bank is not. The return on a

stock, stripped of the market price of risk, is equal to the return on a bank deposit. Thus market

price of risk is an asset-speci�c quantity, re�ecting the fact that di�erent �nancial instruments

are associated with di�erent amounts of risk.

In a sense that will be made rigorous in later chapters, market price of risk provides the

17



link between Q and Q�. Observed stock prices are governed by Q. By factoring out the market

price of risk, we can observe a process governed by Q�. This observation allows us to develop

a strategy for pricing claims.

2.4.4 A Recip e for Pricing Contingent Claims

We want to be able to price bonds. All our observations are made in the market measure. We

�rst factor out the market price of risk in order to place ourselves in a risk-neutral world. Once

we are in this setting, we use rational expectations to �nd the present value of a future claim.

2.5 Interest Rate Term inology

2.5.1 Yie lds

Consider a continuous-trading economy. If interest rate is constant, say r, then by the principle

of no-arbitrage, a bond P (t; T ) that guarantees a dollar at maturity is worth e�r(T�t) at time t.

If it was trading higher, we could sell the contract, invest of the proceeds to guarantee a dollar

later, and lock in the di�erence as a riskless pro�t. Similarly, if it was trading lower we would

buy and make a pro�t. Note that in this case, the expectation-based and arbitrage-based prices

coincide, as they should, because after all a bond is a tradable instrument. The interest rate

can be explicitly recovered as

r = � logP (t; T )

T � t
In practice, interest rates are not constant, but this quantity is useful, so we de�ne

Y (t; T ) = � log P (t; T )

T � t (2.1)

to be the yield on the T -maturity bond. The yield curve is a plot of yield as a function of T .

The mapping of bond price to yield is 1-1 and so no information is lost.

The shape of the yield curve re�ects the market's opinion on future interest rates. An

increasing yield curve implies a possible rise in interest rates, and yield curves are frequently

increasing functions of maturity. However, there is no canonical form for them and they may

take a variety of shapes. If market opinion is that interest rates are likely to fall, then the
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yield curve may become �inverted�, with the yield on long-dated bonds lower than that on

short-dated ones. A good interest rate model should be able to cope with all these possibilities.

2.5.2 Sp ot Rates

The yield curve gives an idea of the rate of borrowing for each term length, but what is the

cost of borrowing now for an amount to be returned instantaneously? The yield for a period

[t; t+ dt] is

Y (t; t+ dt) = � logP (t; t + dt)� log P (t; t)

dt

This follows since logP (t; t) = 0. If the left-hand side converges as dt! 0, it de�nes a quantity

called the spot rate, r(t). Thus

r(t) = � @

@T
logP (t; t) (2.2)

The spot rate is an important process in the interest rate market and many models are based

exclusively on its behaviour, with bond prices extrapolated from it. A spot rate model allows

us to express bond prices as solutions of partial di�erential equations and can be used to derive

yield curves that are a�ne in the spot rate. However, there is some loss of information involved

in the mapping from the discount bond price P (t; T ) to the spot rate r(t). Ideally, we would

like a natural extension of the concept of a spot rate that entails no loss of information but

still preserves the idea of instantaneity. Since the spot rate is the present cost of borrowing

for a contract which matures immediately, a possible candidate for the mapping we seek is the

present rate for a contract which starts at a later time T and matures immediately. This leads

on to the concept of forward rates.

2.5.3 Forward Rates

Consider a forward contract, i.e. a contract struck at time t, to make a payment at a later date

T1 and receive a payment in return at an even later date T2. If at time t we buy one T1-bond

and sell k units of the T2-bond, then the combined value of these assets at t is

V (t) = P (t; T1)� kP (t; T2)
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To give the contract zero initial value, we must choose

k =
P (t; T1)

P (t; T2)

This choice ensures that the contract must have value zero throughout, and in particular at

time T1. This means that

V (T1) = P (T1; T2)� k = 0

which in turn means that k must be the time T1-price of a T2-maturity bond. The corresponding

forward yield is

Y (T1; T2; t) = � log k

T2 � T1 = � log P (t; T2)� logP (t; T1)

T2 � T1

The third argument in Y signi�es the fact that the contract is struck at time t, for the trading

interval [T1; T2]. If we now choose T1 and T2 close together, say T1 = T and T2 = T +�T then

the forward yield converges to a quantity that represents the rate of borrowing instantaneously

at time T , when the contract is struck at time t. This is called the forward rate at time t for

instantaneous borrowing at time T . Thus we have the de�nition

f(t; T ) = � @

@T
logP (t; T ) (2.3)

As expected, the instantaneous forward rate for borrowing at the current time coincides with

the previous de�nition of spot rates.

r(t) = f(t; t)

2.5.4 Equivalence of Bond Prices, Yie lds and Forward Rates

Unlike spot rates, the transformations between bond price, yield and forward rate are all 1-1

and hence knowing any of them is equivalent to knowing all of them. If we know Y (t; T ) then

P (t; T ) is given by

P (t; T ) = e�Y (t;T )(T�t)
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Thus knowing Y implies knowing P . If we know P (t; T ) then

f (t; T ) = � @

@T
logP (t; T )

Thus knowing P implies knowing f . Finally, if we know f then

Y (t; T ) =
1

T � t

Z T

t

f (t; s)ds

Thus knowing f implies knowing Y . Hence knowing any one of the three is equivalent to

knowing them all.

2.5.5 The Term Structure of Interest Rates

The yield curve at any date tells us what the market is willing to pay for loans of various lengths

of time made on that day. An upward sloping yield curve re�ects the fact that the market is

willing to pay more interest on a loan of longer duration. This dependence of interest rate on

the length of a loan is called the term structure of interest rates. The term structure of interest

rates is described by the yield curve

fY (t; T ) : T 2 [t; � ]g

or equivalently by ZCB prices (which are also called discount factors).

2.6 Endnotes

For modelling purposes, specifying the behaviour of bond prices, forward rates and yields are

equivalent and so we need to model only one of them. Spot rate models such as the Vasicek

and Cox-Ingersoll-Ross (CIR) models specify the behaviour of spot rates and then deduce the

evolution of forward rates from them. They assume that the term structure is a function of

the spot rate (usually an a�ne function) and then use the observed yield curve to �nd the

parameters of the spot rate process. This inversion of the term structure is di�cult if we

assume more complicated functional relationships between spot rates and yields, and is often
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not possible. In fact, there is no reason why the yield curve should have a given functional

relationship with the spot rate.

Another more serious problem is that all spot rate models assume an endogenously speci�ed

functional form for the market price of risk, even under the risk-adjusted measure. The HJM

framework models forward rates and by doing so derives a set of conditions under which the

spot rate process is independent of the market price of risk in the risk-adjusted measure.

Given that spot rate modelling is fraught with assumptions about risk preferences and that

there is loss of information involved in the mapping from bond prices to spot rates, modelling

the forward rate might be a better idea. Ho & Lee (HL) were the �rst to model forward rates

directly, and did so in a discrete-time framework. The HJM class of models extends the HL

framework to a continuous-time setting.

So now we turn to the question of how best to model forward rates. As discussed earlier,

we know that term structure is smooth but its evolution is rough. The HJM approach takes

as given an entire initial forward rate curve (this is usually smooth), and then allows it to

evolve stochastically over time. This preserves the smoothness of f(t; T ) as a function of T

and its random nature as a function of t. In deterministic functions, smoothness is intimately

connected with di�erentiability, so the �rst step is to set up a calculus-like set of rules for

stochastic functions.

Once this is done, we are in a position to investigate the behaviour of forward rates in detail.

HJM postulate that the forward rate evolves with two components - one deterministic and the

other random. More on the precise nature of the random component will be said later. The

next step is to �nd restrictions that must be applied to these components so that interest rates

behave in a sensible manner. The last task is to price interest rate derivatives from the model.
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Chapter 3

Stochastic Calcu lus

...something almost but not quite entirely unlike tea.

3.1 Ob jectives

� De�ne stochastic processes in one and many dimensions, and the various terms associated

with them.

� Introduce and study Brownian motion.

� Develop the relevant fundamentals of Ito calculus. These include

Representation of stochastic processes in integral and di�erential forms.

Ito integration, with emphasis on the following integrals:

Z b

a

X(t)dt and

Z b

a

h(t)dW (t)

Ito's formula for stochastic di�erentiation.

The product rule.

� De�ne the Radon-Nikodym derivative and state its basic properties.

� Investigate how change of measure a�ects a stochastic process.
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� Brie�y discuss the Cameron-Martin-Girsanov theorem and the Martingale Representation

Theorem and their relevance to bond pricing.

3.2 De�nitions

3.2.1 Sto chastic Pro cesses

A stochastic process X(t) is a sequence of random variables indexed by the parameter t, which

is usually interpreted as time and may be measured discretely or continuously. Thus at each

time t, the value of X(t) is distributed according to some probability density function. In this

way, the notion of an underlying probability distribution is implicitly tied in with that of a

stochastic process. For each t, we can assign a probability to the likelihood of the process

taking values in a given set, i.e. we can say for example

Pr[a < X(t) < b] = p(a; b; t)

What is the measure being used to calculate this probability? If the process is normally

distributed at each instant in time, then we will get a di�erent value for than if the process is,

say, uniformly distributed. Later in the chapter, we shall systematically analyse the e�ects of

change of measure on a stochastic process.

The set of values fX(t) j t 2 Ig, where I is an index set, is called a realisation of the process

or random walk. For example, in �nancial markets, the price of a bond P (t; T ) as a function of

t is a stochastic process, and actual prices are realisations of the process. The set of all possible

values of a process is called the state space.
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Example of a stochastic process

3.2.2 Filtrations

A �ltration F(t) is the history of the process till time t. An n-dimensional stochastic process

has n components X(t) = [X1(t); :::; Xn(t)]
T and in this case the �ltration F(t) represents the

combined histories of all these processes till the current time.

3.2.3 Claims

In a �nancial context, a claim C is a function of the state space of a stochastic process at some

time horizon T . Thus a process is de�ned for all times 0 < t < T but a claim is a random

variable de�ned only at the terminal time.

3.2.4 An Example

For example, consider a European call option, which is a contract that gives its holder the right

(without obligation) to buy a speci�ed number of shares at a speci�ed price (called the strike

price) at a speci�ed date in the future (called the expiry date). If the stock is trading higher

than the strike price at expiry, the holder can exercise the option and buy at a lower price. If
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the stock price is higher, the holder can choose not to exercise the option and may buy from

the market directly.

Thus if ST denotes stock price at time T , V (t) the price of the option at time t and E the

strike price, then the �nal payo� is given by the function

CT = max fST � E; 0g

The payo� diagram, as it is called, is shown below.

Payo� diagram for a European call.

In the language of processes and claims, V (t) is a stochastic process for 0 < t < T , and CT

is a claim.

3.2.5 Conditional Expectation

The conditional expectation operator EQ [� j F(t)] extends the concept of expectation to two

parameters - a probability measure Q and a �ltration F(t). The conditional expectation of a

claim C given a �ltration F(t) is written EQ [C j F(t)]and is the expectation measured across

the latter half of all paths whose starting point is determined by F(t), as shown below.
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Conditional expectation.

3.2.6 Pro cesses and Claims

For each time t, we can de�ne a process C(t) := EQ [C j F(t)] and in this way form a process

from a claim. Note that EQ [C j F(0)] = EQ[C], the usual expectation, and EQ [C j F(T )] = C.

Why are we interested in forming processes from claims? In �nancial markets, the �nal payo�

is a claim C, and we want to �nd the present value of this claim. In other words, the claim has

some value at each time till it matures. We want to construct a portfolio and follow a strategy

that tracks this value. In other words, we want to �nd a process whose value at any time is the

value of the claim at this time. What is the value it should track? The answer is EQ [C j F(t)].

Thus if we know a claim, we care about forming a process from it so that we know what value

our synthetic approximation (i.e. our portfolio) should track over time.

3.2.7 Previsib le Pro cesses

A previsible process is a one with the same state space and probability measure as X(t), but

whose current values can be predicted from the history of the process till just before the present

time, i.e. from the �ltration F(t�). In discrete time, a process ' on the same tree is previsible if

'(i) can be determined from the �ltration F(i� 1). In the context of markets, suitably chosen

previsible process will play the role of trading strategies, where we have to base the next step

in our strategy only on information available to us till the present time.
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3.2.8 Martingales

A special class of previsible processes, called martingales, are of particular interest in the mod-

elling of �nancial markets. A process X(t) is called a martingale under a probability measure

Q if

EQ [jX(t)j] < 1 for all t � 0, and

EQ [X(t) j F(s)] = X(s) for s < t

This means that if we know the value of the process at a given time, then the expected future

value of the process is just equal to the value we know. Rewritten, it also means that the

process has no bias or drift up or down with respect to the probability measure Q under the

expectation operator. Such a measure is called a martingale measure for the process.

For any claim C, the process C(t) = EQ [C j F(t)] is always a Q-martingale. This is an

immediate consequence of the �tower law�, which is a statement of the fact that

EQ [ [C j F(t)] j F(s)] = EQ [C j F(s)]

whenever s < t. This is true, because the conditioning �rstly upon history till time t and then

on an earlier time s is the same as conditioning directly from the time s. The information set

from s to the present is larger than that from t to the present.

3.3 Brownian Motion

3.3.1 Discrete Approx imation

A stochastic process widely used in �nancial modelling is Brownian motion. Consider a sequence

of random variables fWn(t)g1n=1 such that

� Wn(0) = 0 for all n;

� time steps are of size 1=n;

� up and down jumps are equal and of size 1=
p
n; and
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� the probability measure Q is uniformly equal to 1=2 everywhere on the tree.

Discrete Brownian motion.

One way of constructing this sequence iteratively is to de�ne, for an IID sequence fXig of
binomial random variables taking values +1 or -1 with equal probability 1/2,

Wn

�
i

n

�
= Wn

�
i� 1

n

�
+
Xip
n
=
X1 + :::+Xnp

n

Then it is easy to see that

Wn(t) =
p
t

 Pnt
i=1Xip
nt

!

Using the central limit theorem (CLT), the term in brackets converges to the standard normal

distribution N(0; 1), and so Wn(t) converges in distribution to N(0; t). In addition, since

each step is independent of the previous ones, we can use the CLT again and claim that

Wn(t + s)�Wn(t) � N(0; s) independent of the history of the process till time t.

It can be formally shown that the marginals, conditional marginals and the distributions of

these processes converge as n! 1. The limiting process is called a Brownian motion.

3.3.2 De�nition

Given a probability measure Q, a process W = fW (t) : t � 0g is called a Q-Brownian motion

if
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� W (0) = 0;

� W (t) is a continuous function of the time-like parameter t;

� at time t, W (t) is normally distributed under the measure Q, with mean zero and variance

t, i.e. W (t) � N(0; t) under Q. This means that at any time t,

Pr
Q
[a < W (t) < b] =

1p
2�t

Z b

a

e�
x
2

2t dx

and

� under Q, W (t+ s)�W (t) � N(0; s) independent of the �ltration F(t), the history of the

process till time t.

3.3.3 Comments

It is important to emphasise that we always refer to an underlying probability distribution when

referring to a Brownian motion. Thus a Q-Brownian motion is a Brownian motion under the

measure Q and a Q�-Brownian motion is one under Q�.

Brownian motion is also called a driftless Wiener process or a 1-dimensional Gaussian

process. It is everywhere continuous but nowhere di�erentiable. It looks uniformly rough

at any magni�cation, and thus is a fractal. Using the intermediate value theorem and continu-

ity of Brownian motion, it can be shown that once a Brownian motion hits a particular value, it

immediately hits it again in�nitely often and then again from time to time. Also, it hits every

real number eventually, with probability 1.

3.3.4 Covariance Function for a Brownian Motion

Since at each time t, a Brownian motion is a random variable, we can de�ne its covariance

function, which in this case is

�(s; t) = EQ [W (s)W (t)]

In general, the covariance function is de�ned as

�X(s; t) = E [(X(s)� EX(s)) (X(t)� EX(t))]
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and measures the linear relationship of the two random variables X(t) and X(s). It will be

positive when X(t) and X(s) tend to have the same sign with high probability, and negative if

they have opposite signs with high probability. Since a Brownian motion has mean zero, the

covariance function has a simpler form.

If s < t then

�(s; t) = EQ [W (s)W (t)]

= EQ
�
(W (s)(W (t)�W (s)) +W (s)2

�
= EQW (s)EQ [W (t)�W (s)] + EQ

�
W (s)2

�
= 0+ s

= s

where the third line follows from the fact that the increment in a Brownian motion is indepen-

dent of the past history. Since the roles of s and t can be switched, we have the result

�(s; t) = minfs; tg

The covariance function plays an important role in stochastic integration, discussed later.

3.3.5 Brownian Motion in Several Dimensions

The concept of a Brownian motion is easily extended to several dimensions by considering

the vector W (t) = [W1(t); :::;Wn(t)]
T where each component behaves like a 1-dimensional

Brownian motion and all components are independent or correlated with a known correlation

matrix speci�ed.

3.3.6 Brownian Motion With Drift

A Brownian motion with drift is one whose mean changes with time. For example,

X(t) = �W (t) + �t
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where � and � are constants, is a Brownian motion with constant drift coe�cient �.

3.4 Ito Calcu lus

The idea behind Newtonian di�erentiation is that zooming in on a di�erentiable curve eventually

makes it look like a straight line at su�cient magni�cation. The slope of this line is then de�ned

as the derivative at that point. For a stochastic process, this technique does not work because

Brownian motion is a fractal and so zooming in on it will not make it look any smoother.

Motivated by this, we try to use the self-similarity of a Brownian motion as a building block

for de�ning a calculus-like set of rules for stochastic processes.

3.4.1 Representation of Sto chastic Processes

As a starting point, we set out the a convenient form with which to represent stochastic

processes. If X(t) is a stochastic process, then its increment has a Newtonian term dt and

an increment in the Brownian term, dW (t). The stochastic processes we shall study are those

which can be represented as

X(t) = X(0) +

Z t

0
�sdW (s) +

Z t

0
�sds (3.1)

where the volatility �t and the drift �t can depend on the whole history F(t) of the process

till time t, as well as on X(t) itself. Such processes, which depend on the �ltration F(t) are
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called F(t)-adapted processes. The representation (3.1) is essentially unique, which means that

two processes represented by the same equation di�er only on a set of measure zero. This is a

consequence of the Doob-Meyer decomposition of semimartingales. For the de�nition to make

sense, we insist on the technical condition

Z t

0

�
�2s + j�sj

�
ds <1

which ensures that the integrals remain bounded. As we shall show later,

EQ

"�Z t

0
�sdW (s)

�2
#
=

Z t

0
EQ
�
�2s
�
ds

so that the technical condition is essentially a boundedness condition.

In di�erential form, (3.1)can be written as

dX(t) = �tdW (t) + �tdt (3.2)

In the special case when �t and �t are deterministic and depend on the Brownian motion

only through X(t), (3.2) is called the stochastic di�erential equation (SDE) for X(t). If a

solution to (3.2) exists, it is called a di�usion.

In several dimensions, the integrand in (3.1) is replaced by the standard inner product of

n-vectors, so that a stochastic process in n dimensions is written as

X(t) = X(0) +

nX
j=1

Z t

0
�j(s)dWj(s) +

Z t

0
�sds (3.3)

or

dX(t) =

nX
j=1

�j(t)dWj(t) + �tdt (3.4)

where Z t

0

0
@ nX

j=1

�j(s)
2 + j�sj

1
Ads <1

33



The total volatility of the process is given by

�TOT=
�
�1(t)

2 + :::+ �n(t)
2
�1=2

In other words, the variance is equal to the sum of the variance of the components, which

follows from the independence of the underlying Brownian motions.

3.4.2 Sto chastic Integration

To recover stochastic processes from their SDE representations, we need to assign meaning to

the following symbols: Z b

a

X(t)dt and

Z b

a

h(t)dW (t)

where X(t) is a regular (su�ciently well-behaved) stochastic process. These integrals can be

de�ned in a manner analogous to Riemann integrals in Newtonian calculus, i.e. by approximat-

ing the integrals with discrete sums and then de�ning the limits of these sums (if they exist)

to be the values of the respective integrals. This section presents two general results, and then

examines the particular case of a Brownian motion more closely.

First, we note that the integrals themselves are random variables. Unlike Newtonian calcu-

lus, the integral of a stochastic process has no de�nite value, but rather a probability distribution

function.

Integrating a Browonian Motion over Time

Consider
R b
a
X(t)dt. Form a partition a = t0 < t1 < ::: < tn = b and let ti�1 < �i < ti. Let In

denote the �nite sum

In =

nX
i=1

(ti � ti�1)X (�i) (3.5)

If, as n!1 in such a way that max jti � ti�1j ! 0, the sequence In converges in mean square

to I (say), then we de�ne I to be the integral over [a; b] of the stochastic process X(t), that is

to say

I :=

Z b

a

X(t)dt
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Since the integral is a random variable, we need to specify the sense in which the sequence

converges. Convergence in mean square means that

lim
n!1

EQ

h
jIn � I j2

i
= 0:

Mean square convergence implies convergence in distribution.

There is a general result which says that a regular stochastic process X(t) with covariance

function �(s; t) is integrable over [a; b] if and only if the double integral

Z b

a

Z b

a

�(s; t)dsdt (3.6)

exists, and in this case

EQ

��Z b

a

X(t)dt

��Z b

a

X(s)ds

��
=

Z b

a

Z b

a

�(s; t)dsdt (3.7)

Since we shall primarily be concerned with Brownian motion, we look at this result in some

detail for the special case when X(t) is a Brownian motion.

Let In be de�ned as in (3.5), but with X(t) replaced by W (t). From the de�nition of

mean square convergence, In �!m:s: I if and only if EQ[InIp] = EQ[I
2], where Ip is the sum

corresponding to the partition a = s0 < s1 < ::: < sn = b, and si�1 < �i < si. We have

EQ[InIp] = EQ

2
4
 

nX
i=1

(ti � ti�1)W (�i)

!0
@ pX

j=1

(sj � sj�1)W
�
�j
�1A
3
5

= EQ

2
4 nX
i=1

pX
j=1

(ti � ti�1) (sj � sj�1)W (�i)W
�
�j
�35

=

nX
i=1

pX
j=1

(ti � ti�1) (sj � sj�1)EQ
�
W (�i)W

�
�j
��

=

nX
i=1

pX
j=1

(ti � ti�1) (sj � sj�1) �
�
�i; �j

�

and if the limit of this quantity exists as n ! 1, p ! 1, max jti � ti�1j and max jsi � si�1j,
then it is precisely the double integral in (3.6). This proves both our claims.
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Assuming convergence is uniform, and since the expectation operator is linear, we have

lim EQ[In] = EQ[lim In] or

EQ

�Z b

a

X(t)dt

�
=

Z b

a

EQ[X(t)]dt (3.8)

As an example, consider the integral of a Brownian motion, I(0; T ) =
R T
0 W (t)dt. Using

(3.8) it is easy to see that EQ[I(0; T )] = 0. From (3.7) we have

EQ[I(0; T )
2] =

Z T

0

Z T

0
minfs; tgdsdt

=

Z T

0

�Z s

0
tdt +

Z T

s

sdt

�
ds

=

Z T

0

�
Ts� 1

2
s2
�
ds

=
1

3
T 3

Since the sum of normal distributions is normal, we conclude that

I(0; T ) =

Z T

0
W (t)dt = W

�
1

3
T 3

�
� N

�
0;

1

3
T 3

�
(3.9)

Integrating over Brownian Increments

The other important stochastic integral that we shall encounter is the one we de�ne next:

J :=

Z b

a

h(t)dW (t)

As before, we de�ne the integral to be the limit, if it exists, of the sequence

Jn =

n�1X
j=0

h
�
�j
�
(tj+1 � tj) (3.10)

Since each term of the summation is normally distributed with mean zero, the integral itself

must be normally distributed with mean zero. There is a theorem which states that

EQ

��Z b

a

h(t)dW (t)

��Z b

a

g(s)dW (s)

��
=

Z b

a

EQ [h(t)g(t)]dt (3.11)
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Though the proof of this result in general is beyond the scope of this paper, the basic outline is as

follows: �rst, we prove the result for a class of functions called step functions, which essentially

cover all functions whose exact integral is given by (3.10). These functions are dense in the

class of integrable functions, so that the result (3.11) for step functions can be continuously

extended to the whole class. The proof of (3.11) for step functions is sketched below.

A function h(:) is called a step function if there exists a partition a = t0 < t1 < ::: < tn = b

with associated random variables h0; :::; hn�1 such that

h(t) =

nX
i=1

hi�1X[ti�1;ti)(t)

where X is the indicator function. For these functions, the integral is de�ned as

J(h) =

nX
i=0

hi�1(W (ti)�W (ti�1))

For two di�erent step functions, we can represent the integral using the same partition but

di�erently chosen random variables. If h and g are step functions then

EQ

��Z b

a

h(t)dW (t)

��Z b

a

g(s)dW (s)

��

= EQ

2
4 nX
i;j=1

hi�1gj�1(W (ti)�W (ti�1))(W (tj)�W (tj�1))

3
5

= EQ

2
4 nX
i;j=1

hi�1gj�1(W (ti)�W (ti�1))(W (tj)�W (tj�1))

������F(maxfti; tjg)
3
5

If i 6= j then we can use independence of Brownian increments and say that the expression must

equal zero, since the increments themselves have mean zero. If i = j then the inner expectation

becomes

hi�1gi�1EQ
h
jW (ti)�W (ti�1)j2

���F(ti)
i

= hi�1gi�1EQ
h
jW (ti)�W (ti�1)j2

i
= hi�1gi�1(ti � ti�1)
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Thus

EQ

��Z b

a

h(t)dW (t)

��Z b

a

g(s)dW (s)

��
=

nX
i=1

EQ [hi�1gi�1] (ti � ti�1)

=

Z b

a

EQ [h(t)g(t)]dt

This result gives us a neat alternative to deriving (3.9). We can write

I(0; T ) =

Z T

0
W (t)dt =

Z T

0

�Z t

0
dW (s)

�
dt

=

Z T

0

�Z T

s

dt

�
dW (s) =

Z T

0
(T � s)dW (s)

and now, using (3.11),

EQ
�
I(0; T )2

�
=

Z T

0
(T � s)2ds =

1

3
T 3

The two results on stochastic integration derived in this section are the ones we shall need to

use in this paper.

3.4.3 Sto chastic Di� erentiation : Ito's Formula

Suppose h(x) = x2. Then under Newtonian rules, we expect dh(x) = 2xdx, but does this hold

even if the argument is stochastic, for example a Brownian motion? If it did, then we should

have

d(W (t)2) = 2W (t)dW (t)

which means that Z t

0
dW (t)2 = W (t)2 = 2

Z t

0
W (t)dW (t)

We approximate the last integral by discretising it, so that

2

Z t

0
W (t)dW (t) = 2

n�1X
i=0

W

�
it

n

��
W

�
(i+ 1)t

n

�
�W

�
it

n

��

Now each increment is normally distributed with mean zero, so the sum itself is normally

distributed with mean zero. However, the integral, which if we are right should be W (t)2, has

38



mean t. Thus the assumption that cannot be right. Clearly, we need to look at stochastic

di�erentials and integrals in a slightly di�erent way from Newtonian ones.

What went wrong? Consider a Taylor expansion

dh(W (t)) = h0(W (t))dW (t) +
1

2
h00(W (t))dW (t)2 + :::

Newtonian di�erentiation approximates a derivative with one term of a Taylor series, because

higher order terms decay much faster than the leading order term. Is this necessarily true for

stochastic di�erentials as well? To answer this, consider the second term in the series above.

We can write Z t

0
dW (t)2 =

n�1X
i=0

�
W

�
(i+ 1)t

n

�
�W

�
it

n

��2

De�ne

Z(n; i) =
W
�
(i+1)t
n

�
�W

�
it
n

�
q

t
n

so that Z t

0
dW (t)2 = t

nX
i=1

Z(n; i)2

n

Since for each n, the sequence Z(n; 1); Z(n; 2); ::: is a sequence of IID normals N(0; 1), we can

use the weak law of large numbers and say that the distribution of each term in the sum on the

right converges to the mean of each Z(n; i)2, namely 1. Thus

Z t

0
dW (t)2 = t

This means that the second term cannot be ignored! Higher order terms can, though, and so

we have

dh(W (t)) = h0(W (t))dW (t) +
1

2
h00(W (t))dt+ h.o.t.

The generalisation of this result is called Ito's lemma or Ito's formula. If X(t) is a stochastic

process such that

dX(t) = �tdW (t) + �tdt

and h 2 C2, i.e. h is a deterministic twice continuously di�erentiable function, then Y (t) :=
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h(X(t)) is also a stochastic process and

dY (t) = �th
0(X(t))dW (t) +

�
�th

0(X(t)) +
1

2
�2th

00(X(t))

�
dt (3.12)

In n dimensions, the formulation is as follows: if X(t) is given by the SDE

dX(t) =

nX
i=1

�i(t)dW (t) + �tdt

and Y (t) := h(X(t)) then

dY (t) =

nX
i=1

�i(t)h
0(X(t))dWi(t) +

(
�th

0(X(t)) +
1

2

nX
i=1

�i(t)
2h00(X(t))

)
dt (3.13)

3.4.4 The Product Rule

Consider two stochastic processes adapted to the same Brownian motion, which means they

can be written as

dX = �dW + �dt

dY = �dW + �dt

where all the coe�cients are F(t)-adapted. We are interested in an expression for d(XY ).

Note that XY can be written as

XY =
1

2

n
(X + Y )2 �X2 � Y 2

o

We can apply Ito's lemma directly to X2 and Y 2 (take h(x) = x2). As for X + Y , the SDE

that it satis�es is

d(X + Y ) = (� + �)dW + (�+ �)dt

and we can apply Ito's lemma as before to this as well. Since d(XY ) is O(dt), comparing

coe�cients of dt in the resulting equation gives the expression

d(XY ) = XdY + Y dX + ��dt (3.14)
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In the multidimensional case, if W1; :::;Wn are independent Brownian motions and

dX =
X

�idWi + �dt

dY =
X

�idWi + �dt

then a similar exercise gives the product rule in n dimensions as follows:

d(XY ) = XdY + Y dX +
�X

�i�i

�
dt (3.15)

This has an important consequence, while considering stochastic processes adapted to two

independent Brownian motions. We can view the two Brownian motions as components of a

2-dimensional Brownian motion, and then recover the two processes by choosing coe�cients

appropriately. Explicitly, in a two-Brownian-motion case, we have n = 2, �1 = 1, �2 = 0,

�1 = 0, �2 = 1 and so

d(XY ) = XdY + Y dX (3.16a)

3.5 The Radon-N ikodym Derivative

We are now in a position to address a question that had persistently cropped up earlier. Implicit

in the de�nition of a stochastic process was the concept of an underlying probability measure.

How does the process change if the underlying measure is changed?

3.5.1 The Discrete Radon-N ikodym Derivative

The �rst step is to �nd a way to represent change of measure. Consider a discrete binomial

process shown below.
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Radon-Nikodym on a discrete tree.

Under this measure Q described by the pi, the probability �i of reaching each node i can

be calculated. For example, �6 = p1(1 � p2). Suppose now we have a di�erent probability

measureQ�, described by the numbers p�i , then we shall have a corresponding set of probabilities

associated with each node, say ��i . Comparing these two measures, the relative likelihood of

reaching a particular node is given by ��i =�i. At each node, this ratio de�nes a quantity called

the Radon-Nikodym derivative of Q� with respect to Q at that node. Thus, we de�ne the

discrete Radon-Nikodym derivative or likelihood ratio to be

dQ

dQ
(i) =

��i
�i

This is well de�ned except if some of the pi are zero. Also, if some of the p�i are zero, we

lose information about subsequent nodes in that measure. So we need to restrict our de�nition

to measures that exactly agree on what events are possible, which is a crude way of de�ning

equivalent probability measures. More formally, two probability measures and are equivalent if

and only if

Q(!) = 0() Q�(!) = 0

for all suitably chosen measurable sets ! in the sample space.
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3.5.2 Radon-N ikodym and Exp ectations

One of the bene�ts of de�ning Radon-Nikodym derivatives is that if we are given expectations

with respect to one measure, we can deduce expectations under the other.

EQ� [X ] =
X
j

��jxj =
X
j

�j
��j
�j
xj = EQ

�
dQ�

dQ
X

�
(3.17)

3.5.3 Pro cesses from Radon-N ikodym Derivatives

Given a discrete stochastic process, the Radon-Nikodym derivative at each time step is a random

variable. For example in the situation described above, the Radon-Nikodym derivative at the

end of the �rst time step is given by

dQ�

dQ

����
time=1

=

8<
:

p�
1

p1
at node 3

1�p�
1

1�p1 at node 2

As the process evolves, so does the Radon-Nikodym derivative. Following our general motivation

to derive processes from claims, can we associate a process when we know the Radon-Nikodym

derivative at some time horizon T? We can after all think of this Radon-Nikodym derivative as

a claim. If we are on the tree where the measure is given by Q, we can construct a process by

taking the derivative at each step, and moving forward in time, i.e. we let �(t) be the derivative

evaluated till the time t. Another way of looking at this is the conditional expectation of the

T -horizon Radon-Nikodym derivative, just as we formed a process from a claim in the opening

section of this chapter.

�(t) = EQ

�
dQ�

dQ

����F(t)

�

The process �(t) represents the amount of change of measure so far till time t along the

current path. If we want to know EQ�[X(t)], it is just EQ[�(t)X(t)].

What if we want EQ�[X(t) j F(s)] for 0 < s < t < T? This is precisely the situation we will

encounter later, when we have a prediction about future values of a �nancial asset in a measure

Q�, given information at some time prior to maturity, and we want to translate this prediction

into one in terms of the actual market measure Q. We need the amount of change in measure

between the two times, which is just �(t)=�(s), the change to time t less the change to time s.
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In other words,

EQ�[X(t) j F(s)] = �(s)�1EQ[�(t)X(t) j F(s)] (3.18)

3.5.4 The Continuous Radon-N ikodym Derivative

Now we turn to the continuous case. The Radon-Nikodym derivative is the relative likelihood of

a particular path under two di�erent equivalent measures. One way of calculating this relative

likelihood is to discretise the path and calculate a discrete analogue, and then let the mesh

become dense in the time interval under consideration.

Consider a time interval [0; T ]. Form a partition 0 = t0 < t1 < ::: < tn = T . Let ! = !(t)

be a path. The idea is to sample points from the path and �nd the joint likelihood of these

points under each measure. If the points are fxi = !(ti)gni=0, then we ask: Given a measure

Q = p(�; t), what is the likelihood of all these states being attained? If we have just one point,

the answer is p(x; t). If we have two points, we want, crudely, the probability that x1 is attained

at t1 and x2 at t2. Call this p(x1; x2; t1; t2). Similarly, if we sample many points on the given

path, we get a joint likelihood function

Qn(!) = p(x1; :::; xn; t1; :::; tn) (3.19)

which represents the probability, under the measure Q of attaining the states fxigon the

path !(t) at times ftig. If we allow the mesh ftig to become dense in [0; T ], then (3.19) provides

us a good approximation to Q(!), the likelihood ! of under Q.
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Continuous Radon-Nikodym derivative.

Now we do the same thing with a di�erent probability measure Q�, to get Q�(!), the

likelihood of ! under Q�. The ratio of these two likelihoods is called the continuous Radon-

Nikodym derivative of the measure Q� with respect to the measure Q at !, which in this case

is a point in the sample space (consisting of all possible paths).

dQ�

dQ
(!) = lim

m;n!1
p�(y1; :::; ym; s1; :::; sm)

p(x1; :::; xn; t1; :::; tn)
= lim

m;n!1
Q�n(!)

Qn(!)

An elegant way of looking at the Radon-Nikodym derivative is as follows. Two measures

are equivalent if there exists a function ' such that for any measurable set 
, we can write

Q�(
) =

Z
!2


'(!)dQ(!)

The function ' is precisely the continuous Radon-Nikodym derivative. This is a re�ned state-

ment of the following intuitive concept:

dQ�

dQ
(!) = lim


!f!g

Q�(!)

Q(!)

It can be shown that the continuous Radon-Nikodym derivative also satis�es (3.17) and (3.18).
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3.6 Change of Measure and Brownian Motion

3.6.1 An Example

This section illustrates the ideas of the previous sections with a concrete example. Let W (t) be

a Q-Brownian motion. What will it look like if we change the underlying probability measure?

Suppose Q� is a measure equivalent to Q. Equivalent measures can be characterised using

the Radon-Nikodym derivative of one measure with respect to the other. Thus, suppose Q� is

described by the following Radon-Nikodym derivative:

dQ�

dQ
= e�W (t)� 1

2
2t (3.20)

What does W (t) look like under Q�? To answer this question, we look at the distribution of

W (t) under the new measure.

3.6.2 Characterising Normal Random Variab les

A characterisation of normal random variables using moment generating functions that is par-

ticularly useful in situations like this is as follows:

X � NQ(�; �
2)() EQ

h
e�X
i
= e��+

1

2
�2�2 (3.21)

3.6.3 Example�Continued

Since W (t) � N(0; t) under Q, we have, using (3.17), (3.20) and (3.21)

EQ�
h
e�W (t)

i
= EQ

�
dQ�

dQ
e�W (t)

�

= EQ
h
e�W (t)� 1

2
2t+�W (t)

i
= e�

1

2
2tEQ

h
e(��)W (t)

i
= e�

1

2
2t+ 1

2
(��)2t

= e��t+
1

2
�2t
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so that W (t) � N(�t; t) under Q�, which looks like a Brownian motion with a drift term

added. In fact, if we de�ne W �(t) = W (t) + t then it is easy to see that W �(t) is a Q�-

Brownian motion. This change of measure has thus had the e�ect of converting a Brownian

motion into a Brownian motion with drift. Changing measure amounts to changing the relative

likelihood of a path being chosen. In the original measure, we expect the Brownian motion to

have mean zero. This does not mean that it cannot have mean zero in the second measure,

only that the driftless path is less likely.

3.7 The Cameron-M artin -G irsanov Theorem

3.7.1 Motivation

From the previous section, it is clear that a change in measure can change the drift of a Brownian

motion. The Cameron-Martin-Girsanov theorem (CMG) asserts that this is all a change of

measure can achieve. Changing measure amounts to changing the drift of a Brownian motion,

and conversely a Brownian motion with drift can be regarded as a driftless Brownian motion

in some suitably chosen measure.

3.7.2 The Theorem

If W (t) is a Q-Brownian motion and (t) is an F -previsible process that satis�es the bounded-
ness condition

EQ
h
e
1

2

R
T

0
(t)2dt

i
<1

then there exists a measure Q� such that

� Q� is equivalent to Q;

� dQ�

dQ
= exp

n
� R T0 (t)dW (t)� 1

2

R T
0 (t)2dt

o
; and

� W �(t) = W (t) +
R s
0 (s)ds is a Q

�-Brownian motion.

This means that within constraints, if we want to change a Brownian motion into a Brownian

motion with drift, then we can �nd a measure Q� that allows us to do so.
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3.7.3 CMG Converse

The CMG has a converse as well. If W (t) is a Q-Brownian motion and Q� is a measure

equivalent to Q then there exists an F -previsible process (t) such that

W �(t) = W (t) +

Z t

0
(s)ds

is a Q�-Brownian motion. Additionally, the Radon-Nikodym derivative of Q� with respect to

Q is given by
dQ�

dQ
= exp

�
�
Z T

0
(t)dW (t)� 1

2

Z T

0
(t)2dt

�

3.7.4 Illustrating CMG

In the context of the stochastic processes we have encountered so far, CMG gives us an e�cient

tool for controlling the drift of a process. Suppose we are given a stochastic process

dX = �dW + �dt

in the measure Q, and we want to �nd a measure Q� such that the drift coe�cient in the new

measure is �. We write

dX = �

�
dW +

� � �
�

dt

�
+ �dt

and if we now set (t) = (�(t)� �(t)) =�(t) and the boundedness condition of the CMG theorem

is satis�ed, then we can quote CMG and say that the required measure does indeed exist. Under

this measure,

W �(t) = W (t) +

Z t

0

�(s)� �(s)

�(s)
ds

is a Brownian motion. Thus in the measure Q� the process is

dX = �dW � + �dt

In particular, if we set �(t) to be zero, then under minor constraints we can change any stochastic

process to a driftless one.
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3.7.5 CMG in Several Dimensions

The CMG in several dimensions is not hard to write down. Let W (t) = [W1(t); :::;Wn(t)]
T be

an n-dimensional Q-Brownian motion. Suppose (t) = [1(t); :::; n(t)]
T is an n-dimensional

F -previsible process such that the boundedness condition

EQ exp

��
1

2
k(s)k2L2(0;t)

��
<1

is satis�ed, and we set

W �
i (t) = Wi(t) +

Z t

0
i(s)ds

for i = 1; :::; n. Then there exists a measure Q� equivalent to Q, determined by

dQ�

dQ
= exp

(
�

nX
i=1

Z t

0
i(s)dWi(s)� 1

2

nX
i=1

ki(s)k2L2(0;t)
)

for 0 < t < T , such that W �(t) = [W �
1 (t); :::;W

�
n(t)]

T is an n-dimensional Q�-Brownian motion.

The converse also holds, and is exactly analogous to the one-dimensional case.

3.8 The Martingale Representation Theorem

3.8.1 Motivation

Two results that are central to the modelling of �nancial derivatives in general and to interest

rates in particular are the CMG, discussed in the previous section, and the martingale repre-

sentation theorem (MRT), discussed here. The essence of the MRT is that any martingale can

be expressed in terms of another with a suitable change of scale.

3.8.2 The Theorem

If is M(t) a Q-martingale process whose volatility �(t) satis�es the additional condition that it

is (with probability 1) always non-zero, and N(t) is any other Q-martingale, then there exists

an essentially unique F -previsible process '(t) such that

Z T

0
'(t)2�(t)2dt <1
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with probability 1, and N(t) can be represented in terms of M(t) as

N(t) = N(0) +

Z t

0
'(s)dM(s)

3.8.3 Characterising Martingales

Two characterisations of martingale processes are particularly useful for our purposes. The �rst

asserts that under suitable technical constraints, any driftless stochastic process is a martingale.

If

dX = �dW + �dt

and the volatility coe�cient satis�es the boundedness condition

EQ

h
k�kL2(0;T )

i
<1

then we have the result:

X(t) is a martingale () X(t) is driftless, i.e. � = 0

If the boundedness condition fails, a driftless process may not be a martingale. Such processes

are called local martingales.

3.8.4 Exp onential Martingales

The second result characterises exponential martingales. If dX = �XdW for some F -previsible
process � then

EQ

�
exp

�
1

2

Z T

0
�(s)2ds

��
<1 =) X(t) is a Q-martingale. (3.22)

3.8.5 MRT in Several Dimensions

The MRT can be extended to several dimensions as well. Here, instead of the volatility coe�-

cient, we have a volatility matrix � = [�ij(t)]
n
i;j=1. The j-th component of an n-dimensional
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Q-martingale M(t) can be written in terms of an n-dimensional Q-Brownian motion as

dMj(t) =

nX
i=1

�ij(t)dWi(t)

and the process M(t) itself can be represented as dM(t) = �dW . If the volatility matrix is

non-singular with probability 1 and N(t) is any 1-dimensional Q-martingale, then there exists

an essentially unique n-dimensional F -previsible process '(t) = ['1(t); :::; 'n(t)]
T satisfying

Z T

0

0
@ nX

j=1

�ij(t)'j(t)

1
A

2

dt <1

and the process N(t) can be written as

N(t) = N(0)+

nX
j=1

Z t

0
'j(s)dMj(s)

3.9 Endnotes

What has the purpose of this tedious exercise been? The reason for going through stochastic

calculus in some detail was to be able to understand CMG and the MRT. Using CMG we

change measure in the �nancial world to factor the risk preferences of an economic agent out,

thus placing the agent in a risk-neutral economy. It will turn out that in such a world, quantities

that can be traded in line with the principle of no-arbitrage are precisely those which can be

represented as martingales in the risk-neutral world. We then use the MRT. Once we have valued

our �nancial instruments, we once again can use CMG to factor in an investors risk preferences

and quote a value appropriate to those preferences. This process will be more fully outlined in

subsequent chapters. For instruments that are traded, we need to �nd synthetic constructions

that track the value of these traded instruments over their lifetimes. For those that are not,

we observe the prices of tradable instruments whose value derives from the underlying non-

tradables, and thus track the non-tradable. These are the last pieces that we need to complete

the picture.
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Chapter 4

Prelude to HJM

There is a theory which states that if ever anyone discovers exactly what the universe is for and

why it is here, it will instantly disappear and be replaced by something even more bizarre and

inexplicable.

There is another theory which states that this has already happened.

4.1 Ob jectives

� Prepare the ground for a general approach to risk-neutral contingent claim pricing.

� Introduce the concept of tradable quantities, numeraires, self-�nancing portfolios and

replicating portfolios.

� Demonstrate contingent claim valuation using replicating portfolios, CMG and MRT.

� Illustrate the procedure by using it to price stock options.

� Show the equivalence of this formulation and the Black-Scholes framework.

� Review market completeness and its consequences.

� Investigate change of numeraires.
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4.2 The Market

Consider a continuous-trading economy and a trading interval [0; �]. Assume that a continuum

of default-free bonds trades in this economy, with expiries on every trading date in the time

interval. This means a set of bonds

fP (t; T ) : 0 < t < T < �g

Uncertainty in the economy is characterised by a probability space (
;F ;Q) where F is the

�ltration generated by n independent Brownian motions

fW1(t); :::;Wn(t)g

initialised at zero. In the 1-factor world, a single Brownian motion generates all the uncertainty.

A note about the probability space. Q is called the market measure. It re�ects the market's

prediction of the future distribution of asset prices and re�ects the market's perception to risk

as a whole. In this paper, we will primarily be concerned with the market's perception of how

bond prices will move, since these are the tradable instruments that we shall consider.

4.3 Trading Strategies

4.3.1 Portfolios

Intuitively, a portfolio is a collection of �nancial assets held by an investor at a given time.

Portfolios are dynamic since the investor can buy or sell any amount of these at will. In a

simple 1-factor case, a portfolio is a vector process (�;  ) that is bounded, F -previsible and

non-negative. It consists of � units of the T -expiry bond P (t; T ) and  units of the numeraire.

A numeraire is a basic security relative to which the value of others can be judged. Usually, we

take it to be a cash or money market account B(t), started with unit amount and rolling over

at the riskless spot rate of interest r(t). Thus our numeraire is

B(t) = e
R
t

0
r(s)ds
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4.3.2 Self-F inancing Portfolios: Discrete Time

Consider a discrete-time framework and a trading strategy that involves buying a portfolio �i

at time i, which consists of �i+1 units of the T -bond Pi = P (ti; T ) and  i+1 units of the cash

bond Bi = B(ti). Note that since the processes are previsible, we can get their values at i+ 1

from their values at i. The value of this portfolio at time i� 1 is

Vi�1 = �iPi�1 +  iBi�1

If this strategy is held over the next time tick, then its value changes to

�iPi +  iBi (4.1)

since the securities will have changed values but the amounts held remain unchanged. The

�nancing gap Di is the di�erence between (4.1) and Vi, and is the extra cash that needs to be

injected in order to buy the portfolio �i at time i and so keep the trading strategy going. Thus

we have

Di = Vi � �iPi �  iBi

= Vi � Vi�1 + Vi�1 � �iPi �  iBi

= �Vi + �iPi�1 +  iBi�1 � �iPi �  iBi

= �Vi � �i (Pi � Pi�1)�  i (Bi � Bi�1)

= �Vi � �i�Pi �  i�Bi

If the �nancing gap were zero (i.e. Di = 0), then no external in�ows would be needed to sustain

the portfolio. In other words, the portfolio would be self-�nancing. Thus the condition for a

portfolio to be self-�nancing is

�Vi = �i�Pi +  i�Bi (4.2)

This means that all changes in the value of the portfolio are entirely due to changes in the value

of the securities held.
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4.3.3 Self-F inancing Portfolios: Continuous Time

In the continuous case, the strategy would be to hold a portfolio �(t) = (�(t);  (t)) whose value

at time t is

V (t) = �(t)P (t; T ) +  (t)B(t)

If we hold this portfolio for the interval [t; t+ dt] then at t+ dt its value is

�(t)P (t+ dt; T ) +  (t)B(t + dt)

The �nancing gap is therefore given by

D(t) = V (t+ dt)� �(t)P (t+ dt; T )�  (t)B(t + dt)

= dV (t)� �(t) (P (t + dt; T )� P (t; T ))�  (t) (B(t + dt)�B(t))

= dV (t)� �(t)dP (t; T )�  (t)dB(t)

The portfolio is self-�nancing if and only if the �nancing gap is zero, and so in continuous time

the condition for a portfolio to be self-�nancing is, analogous to (4.2) in discrete time, given by

dV (t) = �(t)dP (t; T ) +  (t)dB(t) (4.3)

i.e. the change in the portfolios value comes only from changes in values of the securities held

in it.

4.3.4 The Discounted Bond Price Pro cess

Given a bond price process P (t; T ) the discounted bond price process is de�ned to be the bond

price normalised by the numeraire. If the numeraire is a money market account, then the

discounted bond price process is Z(t; T ) = B(t)�1P (t; T ). Consider a portfolio �(t) as above.

In terms of the discounted bond price process, we can write

H(t) = B(t)�1V (t) = �(t)Z(t; T ) +  (t)

55



By considering Z(t; T ) as a security in itself and following exactly the same procedure as above,

the self-�nancing condition can also be written as

dH(t) = �(t)dZ(t; T ) (4.4)

As before, changes in the value of the portfolio are derived entirely from changes in the prices

of the securities in it.

4.3.5 Replicating Portfolios

Given a claim C, a replicating portfolio for the claim is one which is self-�nancing and whose

terminal value is C. Thus �(t) = (�(t);  (t)) is a replicating portfolio for C if

� dV (t) = �(t)dP (t; T ) +  (t)dB(t); and

� V (T ) = C.

Why do we care about replicating portfolios? If one exists, we can set it up at some initial

time and be sure that it will pay o� C at expiry without any external in�ows of cash. The value

of the replicating portfolio at any time prior to expiry is exactly the arbitrage-free price at that

time. If the traded price was lower, we could buy the (lower-priced) contract that guaranteed

C at expiry and short the replicating portfolio, thus locking in a riskless pro�t. Similarly, an

arbitrage opportunity would exist if the traded price was higher than the value of the replicating

portfolio. Thus replicating portfolios allow us to synthesize a contingent claim.

4.4 Claim Valuation

We now have the tools ready for valuing a contingent claim. From the paragraph above, the

value of a contingent claim at any time is equal to the value of the replicating portfolio at that

time. This section presents a recipe for valuation of contingent claims, using CMG, MRT and

the idea of a replicating portfolio. To illustrate the basic ideas, we shall use a 1-factor model.

The extension to several factors is conceptually straightforward.
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4.4.1 Change of Measure

Suppose we are given a market consisting of a bond P (t; T ), a numeraire B(t) and some

contingent claim C. This is a 1-factor version of the framework outlined at the beginning

of this chapter. The �rst step to valuation is to form the discounted bond price process

Z(t; T ) = B(t)�1P (t; T ). We then use CMG to �nd a probability measure Q� equivalent

to the market measure Q such that Z(t; T ) is a Q�-martingale. For reasons that will become

clear in subsequent chapters, Q� is the risk-neutral measure. Form the process

H(t) = EQ�
�
B(T )�1C

��F(t)
�

which, by construction, is a Q�-martingale. Using MRT, there exists an F -previsible process

�(t) such that

dH(t) = �(t)dZ(t; T )

4.4.2 Constructing a Replicating Portfolio

Our trading strategy now is to hold a portfolio �(t) = (�(t);  (t)) for 0 < t < T < � consisting

of

� �(t) units of the T -bond P (t; T ); and

�  (t) = H(t)� �(t)Z(t; T ) units of the cash bond (numeraire) B(t).

We need to check that this recipe is correct, i.e. that we have indeed created a replicating

portfolio for the claim. The value of the portfolio at time t is

V (t) = �(t)P (t; T ) +  (t)B(t)

= �(t)P (t; T ) + (H(t)� �(t)Z(t; T ))B(t)

= H(t)B(t)
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Now since B(t) is a zero-volatility process and H(t) is stochastic, we can use the chain rule as

in Newtonian calculus and write

dV = HdB +BdH

= ( + �Z)dB + �BdZ

= � (ZdB + BdZ) +  dB

= �d(BZ) +  dB

= �dP +  dB

Thus the portfolio is self-�nancing. To check that it is replicating, we need to check that its

terminal value is C. Since

H(T ) = EQ�
�
B(T )�1C

��F(T )
�
= B(T )�1C

we have V (T ) = H(T )B(T ) = C. Thus the portfolio is replicating.

4.4.3 A Claim Valuation Formula

From what we have outlined above, the current value of the contingent claim must be given by

V (t) = B(t)EQ�
�
B(T )�1C

��F(t)
�

= EQ�
h
Ce�

R
T

t
r(s)ds

���F(t)
i

(4.5)

This is just what we would expect from the rational expectations hypothesis.

4.5 Pricing Sto ck Options

To get an idea of how the ideas described so far work in practice, consider the pricing of stock

options. In a simplistic sense, an option may be described as a claim de�ned at some future date,

whose value is a function of the stock price at that time. One such instrument, the European

call option, has already been introduced in chapter 3. This section presents the Black-Scholes

model, which is the benchmark for option pricing.
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4.5.1 Black-Schole s

The Black-Scholes framework posits the existence of a deterministic riskless interest rate r and

speci�es a model for the behaviour of stock prices S(t) under the market measure Q as follows:

S(t) = S0e
�W (t)+(�� 1

2
�2)t (4.6)

where � is the constant stock volatility and � is a constant. The quantity
�
�� 1

2�
2
�
is the

(constant) stock drift parameter. The SDE for S(t) is

dS(t) = �S(t)dW (t) + �S(t)dt (4.7)

This is why we take an apparently contrived drift term in (4.6)�conventionally, � represents

the drift of dS=S. Black and Scholes considered a portfolio consisting of one option V = V (S; t)

and short a number � of the stock S. Using Ito's lemma, we have

dV = �SVSdW +

�
Vt +

1

2
�2S2VSS + �SVS

�
dt (4.8)

Thus for the portfolio � = V ��S, we have

d� = �S (VS ��)dW +

�
Vt +

1

2
�2S2VSS + �S (VS ��)

�
dt (4.9)

If we choose � = VS , we can knock out the random term above and so make the portfolio

instantaneously riskless. Thus the return on the portfolio must be r�dt and substituting in

various quantities yields the celebrated Black-Scholes equation

Vt +
1

2
�2S2VSS + rSVS � rV = 0 (4.10)

4.5.2 Option Pricing by Exp ectation

Can we follow the technique developed in this chapter to �nd an option pricing formula consis-

tent with the Black-Scholes price?

The ingredients we need are a stock price process, a numeraire and a claim to replicate.
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Our strategy will be to use the stock and the numeraire and construct a portfolio that replicates

the option. As we shall see later, the original Black-Scholes approach uses the option and the

asset (stock) to replicate a cash bond numeraire.

The stock price is given in the market measure Q by the process

S(t) = S0e
�W (t)+(�� 1

2
�2)dt

which corresponds to the SDE

dS = �SdW + �Sdt

The numeraire is chosen as a cash bond starting with dollar initial investment and rolling over

at the riskless rate of interest, i.e.

B(t) = ert

Note that interest rates are assumed constant. This numeraire satis�es the ODE (a special

case of an SDE!)

dB = rBdt

The �rst step is to construct the discount stock price process

Z(t) = B(t)�1S(t)

The SDE that Z obeys is

dZ = f�dW + (� � r)dtgZ (4.11)

Next, we use CMG to �nd a measure Q� equivalent to the market measure Q such that Z is a

martingale under the new measure Q�. We can rewrite (4.11) as

dZ = �Z

�
dW +

� � r
�

dt

�

and then set

(t) =
� � r
�

which clearly satis�es the boundedness conditions for CMG, since it is de�ned using constants
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only. Now we can use CMG to show the existence of a probability measure Q� equivalent to

the market measure Q such that

W �(t) = W (t) +

Z t

0
(s)ds

W (t) +
�� r
�

t

is a Brownian motion under Q�. In this measure, we can write the SDE for Z as

dZ = �ZdW �

which implies, from the characterisation of exponential martingales (3.22), that Z is a martin-

gale under the measure Q�.

If C is the option payo� at expiry, then the discounted claim is de�ned as B(T )�1C. Form

the process

H(t) = EQ�
�
B(T )�1C

��F(t)
�

which, by construction, is a Q�-martingale. Using the MRT, there exists an F -previsible
process �(t) such that

dH = �dZ

We are now ready to state our trading strategy. Construct a portfolio (�;  ) consisting of

� �(t) units of the stock S(t); and

�  (t) = H(t)� �(t)Z(t) units of the cash numeraire B(t)

at time t.

It is a routine veri�cation to check that we do indeed have a self-�nancing replicating

portfolio for the claim C. The price at time t of the option that pays C at expiry must

therefore be

V (t) = B(t)H(t)

= e�r(T�t)EQ� [C j F(t)] (4.12)
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4.5.3 Equivalence of Formulations

For a European call option, it can be shown that solving the PDE (4.10) under appropriate

boundary conditions gives the same answer as solving (4.12). In fact, both the formulations

are equivalent.

In the original formulation, Black & Scholes considered the hedged portfolio V ��S con-

sisting of one option and short a number � of the stock. They then chose � such that the

resulting portfolio grew like a riskless cash bond. Their portfolio thus replicated a cash bond.

The choice of � that knocked out risk from the portfolio was found to be � = VS (S; t).

In our formulation, we are long the cash bond and the stock, and we try to replicate the

option. The asset price random walk is given by

dS = �SdW � + rSdt

Let V (S; t) be the value of the replicating portfolio we constructed above. Using Ito's lemma,

dV = �SVSdW
� +

�
Vt +

1

2
�2S2VSS + rSVS

�
dt (4.13)

But from the self-�nancing condition, we have

dV = �dS +  dB

= � (�SdW � + rSdt) + r Bdt

= ��SdW � + r (�S +  B) dt

= ��SdW � + rV dt (4.14)

Since these represent the same quantity and SDE representations are unique, comparing the

stochastic terms in (4.13) and (4.14) must match, giving � = VS . Thus the number of stocks

that we need to hold is the option delta. In the original Black-Scholes model, the strategy was

to be long an option and short a number delta of the stock. In this formulation, it appears that

we need to be long delta of the stock. The apparent discrepancy can be reconciled by noting

that the Black-Scholes hedged portfolio tries to replicate a cash bond using an option and a
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stock, whereas here we use the cash bond and the stock to try and replicate the option.

Matching drift terms of the two SDE representations gives

Vt +
1

2
�2S2VSS + rSVS � rV = 0

which is precisely the Black-Scholes PDE. This shows the equivalence of the two formulations

discussed in this chapter.

4.6 Arbitrage-Free Complete Markets

4.6.1 Complete Markets

Amarket is arbitrage�free if there is no way of making a riskless pro�t. An arbitrage opportunity

would be a trading strategy that starts at zero initial value and terminates at some positive

value. No such opportunities exist in an arbitrage- free market. A market is called complete

if any possible contingent claim can be hedged by trading with a self-�nancing portfolio of

securities.

4.6.2 Uniqueness of the Risk-Adjusted Measure

Suppose we have a market of securities (bonds in our case, but the analysis holds in general

as well) and a numeraire. Harrison and Pliska showed that this market is arbitrage-free if and

only if there exists a probability measure equivalent to the market measure under which all

the discounted bond prices (i.e. the bond prices normalised by the numeraire) are martingales.

In this case, they show that the market is complete if and only if this equivalent martingale

measure is unique.

Suppose there exists a potential arbitrage opportunity in the self-�nancing strategy outlined

above. From (4.4), the self-�nancing condition on the portfolio is

dH(t) = �(t)dZ(t; T )

Suppose the strategy starts from zero value but has a non-negative terminal payo� V (T ) � 0.
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Then we have

EQ� [H(T )] = EQ� [H(T ) j F(0)] = H(0) = V (0) = 0

since H is a martingale under the risk-adjusted measure. The fact that the Q�-expectation of

H(T ) is zero means that H(T ) can only be zero, so that V (T ) too can only be zero. Thus if

an equivalent martingale measure Q� exists, then arbitrage opportunities cannot.

Market completeness means we can hedge using tradables. If we can hedge, there can be at

most one equivalent martingale measure Q�. To see this, suppose two such measures Q� and Q0

exist. If A is an event in the �ltration, consider the contingent claim given by the Arrow-Debreu

price

C = B(T )XA

where X is the indicator function. This means the payo� is B(T ) if A occurs and zero otherwise.

The complete markets assumption implies that this claim can be replicated, which means, as

before, that there exists a discounted strategy such that

dH(t) = �(t)dZ(t; T )

Now Z(t; T ) is a martingale under both Q� and Q0 and so H(t) is too. Thus we must have

H(0) = EQ� [H(T )] = EQ0 [H(T )]

Since H(T ) is simply the indicator function of the event A, we have EQ� [A] = EQ0 [A] for all

events A and so the measures Q� and Q0 are identical. Thus market completeness implies that

the equivalent martingale measure (EMM) is unique.

4.7 Change of Numeraire

Suppose we have a market of bonds P (t; T1); :::; P (t; Tn) where 0 < Ti < � and let their common

domain be [0; T ] where T = minTi. We consider these bonds on the common domain and two

other instruments B(t) and G(t), one of which is chosen as a numeraire. Let Pi(t) denote the
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bond P (t; Ti) on the common domain. Thus we have the set of securities

fB(t); G(t); P1(t); :::; Pn(t)g

If we choose B(t) to be the numeraire, then we seek an EMM QB such that B(t)�1Pi(t) and

B(t)�1G(t) are QB-martingales. If on the other hand we choose G(t) to be the numeraire,

then we seek an EMM QG such that G(t)�1Pi(t) and G(t)�1B(t) are QG-martingales. We can

actually �nd the Radon-Nikodym derivative of QG with respect to QB.

Recall from (3.18) that for any process X(t),

�(s)EQG[X(t) j F(s)] = EQB[�(t)X(t) j F(s)]

It follows that if X(t) is a QG-martingale then

�(s)X(s) = EQB[�(t)X(t) j F(s)]

and so X(t) is a QB-martingale as well. The canonical QG-martingales are

1; G�1B;G�1P1; :::; G
�1Pn

and similarly the canonical QG-martingales are

1; B�1G;B�1P1; :::; B
�1Pn

Each corresponding pair has common ratio �(t) = B(t)�1G(t). Thus the Radon-Nikodym

derivative of QG with respect to QB is simply the ratio of the numeraire G(t) to the numeraire

B(t) :
dQG

dQB
=
G(t)

B(t)
, 0 < t < T

We should check that contingent claim valuation remains unchanged under a change in nu-

meraire. The price of a claim C under the measure QG is

V G(t) = G(t)EQG

�
G(T )�1C

��F(t)
�
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Using the Radon-Nikodym result that

EQG[C j F(T )] = �(t)�1EQB[�(T )C j F(t)]

we have

V G(t) = �(t)�1G(t)EQG

�
G(T )�1C

��F(t)
�

= B(t)�1EQB

�
B(T )�1C

��F(t)
�

which is the value of the claim under the measure QB. Thus the two prices agree, as we hoped

they would.

4.8 Endnotes

We now have the tools with which to study HJM models. Chapter 3 provided the mathematical

grounding in terms of CMG, Radon-Nikodym derivatives and the MRT. This chapter has shown

how we can apply these to price contingent claims. The next chapter deals with 1-factor HJM

models, and uses the results of this chapter and the last one to price contingent claims under

the HJM framework.
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Chapter 5

Single-Factor HJM

...like having your brains smashed out by a slice of lemon wrapped round a large gold brick.

5.1 Ob jectives

� Introduce HJM through its single-factor version.

� Stipulate a forward rate process.

� Follow the analysis of chapter 3 and set up the model under a martingale measure for the

discounted bond price.

� Deduce the drift restriction on forward rates that ensures the absence of arbitrage oppor-

tunities.

� Link the EMM to market price of risk.

� Use HJM to price bonds.

5.2 Introduction

HJM models study the evolution of an initial yield curve. The general model allows several

independent stochastic factors to in�uence random movements of the yield curve. The single-

factor version allows only one such component, but since the transition from one to many factors
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is conceptually and technically easy, it is useful to study the simpler 1-factor model in detail

before moving on to the general model.

We start by considering, as in the previous chapter, a continuous-trading economy, a prob-

ability space (
;F ;Q) characterising uncertainty in the economy, and a T -expiry bond P (t; T ).

HJM models the behaviour of the forward rate f(t; T ) for 0 < t < T . It starts with a given

initial forward rate curve f(0; T ) and volatility structure and then imposes successively restric-

tive conditions on the volatility and drift of the forward rate SDE so that CMG and MRT can

be used.

5.3 1-Factor HJM : The Model

5.3.1 The Forward Rate Pro cess

Given an initial forward rate curve (also called an initial yield curve or an initial term structure)

f(0; T ), the forward rate f(t; T ) for each maturity 0 < T < � is assumed to evolve under the

market measure Q as

f (t; T ) = f (0; T ) +

Z t

0
� (s; T; !) dW (s) +

Z t

0
� (s; T; !)ds (5.1)

or in di�erential form

dtf(t; T ) = � (t; T; !)dW (t) + � (t; T; !)dt (5.2)

Thus the forward rate evolution is governed by a deterministic term and a single stochastic

term. In the next chapter, we shall allow the stochastic term to be multidimensional. The

volatilities and drifts are F(t)-adapted processes in general. The argument ! is a state variable.

A state variable is a quantity that gives us some information about a portion of the economy

at that time. For example, we could take the state variable to be the forward rate itself.

In this 1-factor model, a single Brownian motion generates all the randomness of forward

rate movements, and so the incremental changes of all forward rates and thus all yields and all

bond prices are perfectly correlated. This obvious drawback is overcome by multifactor models,

which will be discussed in later chapters.
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From (5.1), the spot rate process is given by

r(t) = f (t; t) = f (0; t) +

Z t

0
� (s; t; !)dW (s) +

Z t

0
� (s; t; !) ds (5.3)

5.3.2 Technical Conditions - 1

The HJM framework imposes several technical constraints on the drift and volatility functions,

to ensure that we can indeed perform the manipulations that we need to. These will be presented

in two sets, to make for easy reading.

� � and � are F -previsible processes.

� R T0 � (t; T; !)2 dt and
R T
0 j� (t; T; !)jdt are �nite.

� The initial forward rate curve is deterministic and
R T
0 jf (0; u)j du is �nite.

� R T0 R u0 j� (s; u; !)jdsdu <1.

� EQ
hR T

0

��R u
0 � (s; u; !) dW (s)

��dui <1.

The �rst three of these ensure that the forward rate given by (5.1) is well-de�ned. The next

two allow us to use a stochastic analogue of Fubini's theorem.

5.3.3 Bond Price SDE

We have a family of processes for the forward and spot rates of interest. Now we need a tradable

quantity and a numeraire. As shown in the last chapter, choice of numeraire is arbitrary, but

algebraic convenience points to a canonical numeraire, the money market account or cash bond

starting with dollar investment and rolling over at the spot rate of interest. Thus our numeraire

of choice is

B(t) = exp

�Z t

0
r(s)ds

�

The technical conditions above ensure that this is a well-behaved process. For the tradable

instrument, we choose the T -expiry bond P (t; T ).
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Next, we are interested in the dynamics of the bond price process. If we de�ne

a (t; T ) = �
Z T

t

� (t; s; !)ds ; and (5.4)

b (t; T ) = �
Z T

t

� (t; s; !)ds+
1

2
a (t; T )2 (5.5)

then the bond price SDE is

dtP (t; T ) = a (t; T )P (t; T )dW (t) + fr(t) + b (t; T )gP (t; T )dt (5.6)

To see this, observe that

logP (t; T ) = �
Z T

t

f (t; s)ds = �
Z T

t

f (0; s)ds�
Z T

t

Z t

0
� (u; s; !)dW (u)ds

�
Z T

t

Z t

0
� (u; s; !)duds

Now use the stochastic analogue of Fubini's theorem to interchange the order of integration

log P (t; T ) = �
Z T

0
f (0; s)ds+

Z t

0
f (0; s)ds

�
Z t

0

Z T

t

� (u; s; !)dsdW (u)�
Z t

0

Z T

t

� (u; s; !)dsdu

Adding and subtracting the same terms from inside the double-integrals gives

log P (t; T ) = �
Z T

0
f (0; s)ds+

Z t

0
f (0; s)ds

+

Z t

0

Z t

u

� (u; s; !)dsdW (u) +

Z t

0

Z t

u

� (u; s; !) dsdu

�
Z t

0

Z T

u

� (u; s; !)dsdW (u)�
Z t

0

Z T

u

� (u; s; !)dsdu

In the third and fourth terms, we can integrate over the same triangle in two ways, and write

(informally)
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Z t

0

Z t

u

:::dsdu =

Z t

0

Z s

0
:::duds

Thus we can write

logP (t; T ) = logP (0; T )

+

Z t

0

�
f (0; s) +

Z s

0
� (u; s; !)dW (u) +

Z s

0
� (u; s; !) du

�
ds

�
Z t

0

Z T

u

� (u; s; !) dsdW (u)�
Z t

0

Z T

u

� (u; s; !)dsdu

Using the de�nitions of r(t), a (t; T ) and b (t; T ) from (5.3), (5.4) and (5.5) respectively gives

logP (t; T ) = logP (0; T ) +

Z t

0
a (u; T )dW (u)

�1

2

Z t

0
a (u; T )2 du+

Z t

0
fr (u) + b (u; T )gdu

A simple application of Ito's formula now gives the bond price SDE as (5.6).

The discounted bond price is Z (t; T ) = B (t)�1 P (t; T ). From the above discussion, it is

easy to see that the SDE for this process is given by

dtZ (t; T ) = Z (t; T ) fa (t; T )dW (t) + b (t; T )dtg (5.7)
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5.3.4 Technical Conditions - 2

Now we look for a martingale measure. In order to ensure that things go smoothly, we need to

lay down a few more technical constraints.

� There exists an F -previsible process  (t) such that

b (t; T ) + a (t; T )(t) = 0

for all 0 < t < T .

� The process a (t; T ) is nonzero for almost all t and for every maturity T .

� EQ
h
1
2 exp

�R T
0  (t)2 dt

�i
<1.

� EQ
h
1
2 exp

�R T
0 f (t)� a (t; T )g2 dt

�i
<1.

5.3.5 Change of Measure

We have an SDE for the discounted process Z in the market measure Q and in keeping with

the strategy outlined in chapter 3, we now seek an equivalent measure Q� such that Z is a

Q�-martingale. Recall that the SDE for Z is

dtZ (t; T ) = Z (t; T ) fa (t; T )dW (t) + b (t; T )dtg

For a given maturity date T , suppose there exists a function T (t) such that

b (t; T ) + a (t; T )T (t) = 0

If a (t; T ) 6= 0 then we can write

�T (t) =
b (t; T )

a (t; T )
(5.8)

Now we can rewrite (5.7) as

dtZ (t; T ) = a (t; T )Z (t; T )

�
dW +

b (t; T )

a (t; T )
dt

�
= a (t; T )Z (t; T ) fdW � T (t) dtg
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Applying Girsanov's theorem, we see the existence of a unique equivalent probability measure

Q� such that

W � (t) = W (t)�
Z t

0
T (s)ds

is a Q�-Brownian motion. Under this new measure, the SDE for Z is

dtZ (t; T ) = a (t; T )Z (t; T )dW � (t) (5.9)

The conditions on a (t; T ) and the characterisation of exponential martingales (3.22) ensure

that Z is a Q�-martingale.

Before moving on to the pricing of contingent claims, two points are worthy of note. The

�rst is the restriction on the drift parameter of the forward rate process that we have implicitly

imposed in order to ensure the absence of arbitrage, and the second is the introduction of a

market price of risk through the change of measure transformation. The next two sections

brie�y discuss each of these in turn.

5.3.6 Drift Restriction

If the measure is unique, then since it is de�ned through the ratio b=a, we must have, for all

expiries S, T in the trading interval,

�T (t) =
b (t; T )

a (t; T )
=
b (t; S)

a (t; S)
= �S (t)

which means that T (t) is independent of T . Thus we may write it as simply  (t), satisfying

the technical conditions above. From the �rst of these, we have

b (t; T ) + a (t; T )(t) = 0

Substituting for each term using the de�nitions gives

�
Z T

t

� (t; s; !) ds+
1

2
a (t; T )2 �  (t)

Z T

t

� (t; s; !)ds = 0
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Partial di�erentiation with respect to T gives

�� (t; T; !) + a (t; T ) f�� (t; T; !)g �  (t) � (t; T; !) = 0

or

� (t; T; !) = �� (t; T; !)
�
 (t)�

Z T

t

� (t; s; !)ds

�
(5.10)

Equation (5.10) is the restriction on the drift parameter of the HJM evolution that is necessary

for the absence of arbitrage. This is so because it is the condition needed to ensure uniqueness

of the martingale measure Q�, and a unique EMM implies an arbitrage-free complete market,

as discussed in the previous chapter.

5.3.7 Market Price of Risk

The transformation from market to risk-neutral probability measure was characterised by the

function  (t). This section shows how � (t) can be interpreted as the market price of risk.

Consider the bond price SDE under the market measure

dtP (t; T ) = a (t; T )P (t; T )dW (t) + fr(t) + b (t; T )gP (t; T )dt

If we write  (t) = �b (t; T ) =a (t; T ) then we can write this as

dtP (t; T ) = a (t; T )P (t; T ) fdW (t) �  (t) dtg+ r (t)P (t; T )dt

= a (t; T )P (t; T )dW � (t) + r (t)P (t; T )dt

Thus the bond price evolves like a riskless bank account with random perturbations. The point

to note is that the deterministic term contains only the spot rate of interest, and not r plus

some �risky� term. Transforming the equation using  thus makes the asset grow on average

like a riskless bank deposit, or like the cash numeraire.

If we write � (t; T ) = r (t)+ b (t; T ) then the bond price SDE under the market measure can

be written as

dtP (t; T ) = a (t; T )P (t; T )dW (t) + � (t; T )P (t; T )dt
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The quantity f� (t; T )� r (t)g =a (t; T ) measures the market return over and above the risk-free

rate, normalized by volatility. This is the market price of risk. But f� (t; T )� r (t)g =a (t; T ) is
simply  (t) and so we label it the market price of risk.

This analysis holds for instruments other than bonds as well, and provides a neat alternate

derivation of the Black-Scholes equation. Consider the pricing of stock options. Prior to 1973,

the approach to option pricing was as follows. Consider the option V = V (S; t) as above,

and then set EQ [dV ] = rV dt. This gives us an equation similar to the Black-Scholes equation

(4.10), but subtly di�erent. Explicitly, we get

Vt +
1

2
�2S2VSS + �SVS � rV = 0

The immediate problem with this is that estimating the drift � is di�cult. In order to get rid

of the drift term, we need to change measure, so that we can use rational expectations and take

expectations with respect to the risk-neutral measure.

How do we reconcile the two? Suppose we consider the riskless measure Q�. Under this

measure, the asset must grow on average at the riskless rate. This means that the drift of S(t)

must be r. Now we use techniques from Chapter 3 to write the stock price SDE (4.7) as follows

dS = �S

�
dW +

� � r
�

dt

�
+ rSdt

= �SdW � + rSdt

If we now use the equation EQ� [dV ] = rV dt, then it is easy to see that we shall end up with

the Black-Scholes equation.

In the market measure, the asset price SDE drifts at a rate �, whereas in a riskless world, it

drifts at the riskless rate r. The di�erence between the two drifts normalised by the volatility

of the asset price gives us a measure of the discrepancy between the market measure and the

risk-neutral measure. This quantity, (� � r) =� measures the excess return over the riskless

rate that accrues when we are in the market measure. For this reason, it is called the market

price of risk.

Black and Scholes' contribution was to equate the return on a hedged portfolio rather

than just the option to the riskless return. By choosing � appropriately, they ensure that
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the portfolio instantaneously remains free of risk. They utilised the extra degree of freedom

a�orded by the option delta to equate not just the expected return, but the actual return on

their hedged portfolio to the risk-free return.

5.3.8 Pric ing Contingent Claims Using HJM

This section will follow discussions in earlier chapters about contingent claim pricing under a

martingale measure. Most of the theory has been covered in chapter 4. Consider a claim C

at some time horizon T . Form the discounted claim B (T )�1C and work in the risk-neutral

measure Q�. Form the process

H (t) = EQ
h
B (T )�1 C

���F (t)
i

By construction, this is a Q�-martingale. Using the MRT, there exists a previsible process �

such that

dH (t) = � (t)dtZ (t; T )

The strategy is as before, to hold a portfolio which at time t consists of

� � (t) units of the T -bond P (t; T ); and

�  (t) = H (t)� � (t)Z (t; T ) units of the cash bond B (t).

As before, we can show that this is a self-�nancing replicating portfolio, and so its value at

any time t < T is given by

V (t) = EQ�
h
Ce�

R
T

t
r(s)ds

���F(t)
i

In particular if we have a bond that pays $1 with certainty at expiry, then using this formula

we can write the time-t price of this bond as

P (t; T ) = EQ�
h
e�

R
T

t
r(s)ds

���F(t)
i

under the risk-adjusted measure.
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The spot rate process in Q� is given by

r(t) = f (0; t) +

Z t

0
� (s; t; !)dW � (s) +

Z t

0
� (s; t; !)

�Z t

s

� (s; u; !)du

�
ds

This is where HJM contributes, since the expression for the spot rate of interest is independent

of the market price of risk under the risk-neutral measure. In most of the established spot rate

models, a speci�ed market price of risk prevails even under the risk-neutral measure. This is a

subtle point: we do not get rid of market price of risk by mere virtue of the fact that we are

in a risk-neutral measure. HJM uses information about the market to actually factor out the

market price of risk from the spot rate process and hence from the formula for bond price.

5.4 Endnotes

To review, this chapter has developed a 1-factor HJM model. Though it is a simpli�ed version

of the general framework, it does capture some characteristics of the n-factor version. Most

notably, it shows how the spot rate process is independent of the market price of risk in an

HJM setting under the risk-neutral measure.. This allows us to price bonds using no infor-

mation other than what the market provides. The extension to several factors is conceptually

straightforward, and is discussed in the next chapter.

77



Chapter 6

The General HJM Framework

Of course in these enlightened days no one believes a word of it.

6.1 Ob jectives

� Motivate the need to study a multifactor HJM model.

� Develop the general HJM model analogous to the 1-factor case.

� Price contingent claims using this general model.

� Comment on the strengths and weaknesses of the model.

6.2 Introduction

The aim of the HJM class of models is to provide a framework for pricing interest rate sensitive

contingent claims, taking as given the price of zero-coupon bonds (ZCBs). This chapter studies

the full-blown multifactor version of the HJM framework. Keeping in mind that the price of

interest rate based derivatives is characterised by the term structure of interest rates, HJM

takes as given an initial yield curve. This is also called an initial forward rate curve and is in

1-1 correspondence with a given set of ZCB prices. The model studies how this curve evolves

over time. Thus HJM models the evolution of forward rates. As we shall see later, the only
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other input needed is a set of volatility functions, or a term structure of volatilities. Given these

two parameters, HJM can be used to price all interest rate sensitive contingent claims.

The multifactor version of HJM has three powerful advantages. First, it imposes a stochastic

structure directly on the evolution of forward rates. In this way it avoids modelling spot rates

altogether. As we saw in chapter 2, we can deduce spot rates from forward rates but not vice

versa, since there is loss of information in the transformation f (t; T )! r (t) = f (t; t).

Secondly, since it does not model spot rates, it does not require an �inversion of term

structure�. If we are given a spot rate model, we can express bond price as the solution to

a PDE. We then infer the parameters of the spot rate process by comparing solutions of this

equation with observed ZCB prices. This will be more fully discussed in the next chapter. By

modelling forward rates directly, the HJM framework can incorporate any initial yield curve by

construction and so does not require an inversion of term structure to �t the parameters.

Thirdly, it allows multiple independent stochastic factors to in�uence the evolution of the

yield curve. This feature has enabled HJM models to be used to price instruments that derive

their value from imperfect correlation among the movements of di�erent parts of the yield curve.

The presence of several stochastic factors implies that HJM models can be calibrated so that

bond prices for a particular maturity may be strongly correlated with some factors and weakly

with others. Single-factor models cannot deal with this level of complexity.

HJM is an example of a state-space model. The state variable in HJM is the forward rate.

Spot rate models take the spot rate as this state variable. The process driving a state variable

might be one or many dimensional. This is called the dimension of the state space. Frequently,

the dimension of the state space is identi�ed with the number of Brownian factors driving the

process, though the former is generally larger than the latter. Single-factor models attempt to

explain the dynamics of interest rates using just one explanatory variable. Using this approach,

the greatest sophistication that can be achieved while still retaining computational tractability

is to have time-dependent parameters. An alternative to increasing the explanatory power of a

model is to increase the number of underlying state variables. This is what multifactor models

seek to do.

One-factor models imply a perfect correlation between movements of di�erent parts of the

yield curve. Multifactor models allow the yield curve to move in a space of greater complexity
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(i.e. in a space of higher dimension) and so can be used to price instruments that derive their

value from imperfect correlations among di�erent parts of the yield curve.

O�setting these advantages are two crucial di�culties. The �rst is that it is often di�cult to

disentangle the individual e�ects of several stochastic factors. Some underlying state variables

such as the rate of in�ation are not easily observed. The other drawback is computational.

Increasing the number of factors necessitates the use of cumbersome numerical recipes. With

increases in computing power, this second problem is now diminishing in magnitude for models

that consider two or three factors. Larger models however are still stuck with this intractability.

The idea behind pricing remains the same. We observe the market probabilities, and then

change probability measure to �nd an EMM for the discounted bond price. Thus we factor out

the risk. Now that we are in a risk-neutral world, there exists only one price for the contingent

claim. We now use rational expectations to price bonds and other interest rate derivatives.

The framework remains the same as before. To recap, we have a continuous trading econ-

omy with trading interval [0; � ] and a continuum of default-free bonds P (t; T ) trading in the

economy, with expiries for each trading date T 2 [0; � ] prior to expiry. Uncertainty in the

economy is characterised by a probability space (
;F ;Q) where F is the �ltration generated

by n independent Brownian motions

fW1(t); :::;Wn(t)g

initialised at zero. The bonds P (t; T ) will play the role of tradables and the money market

account B (t) will be the numeraire.

6.3 The HJM Model

6.3.1 The Forward Rate Pro cess

For a �xed but arbitrary T 2 [0; � ], the forward rate f (t; T ) for a T -expiry contingent claim

evolves according to the stochastic process

f (t; T ) = f (0; T ) +

nX
i=1

Z t

0
�i (s; T; !)dWi (s) +

Z t

0
� (s; T; !)ds (6.1)
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The total instantaneous square volatility of f (t; T ) is
P
�2i and the covariance of the increments

of two forward rates f (t; T ) and f (t; S) is

� (S; T ) =

nX
i=1

�i (t; T; !) �i (t; S; !)

In 1-factor models, and so increments of forward rates of all maturities are perfectly correlated.

From (6.1), the forward rate SDE is

dtf(t; T ) =

nX
i=1

�i (t; T; !)dWi (t) + � (t; T; !)dt (6.2)

and the spot rate process is

r(t) = f (0; t) +

nX
i=1

Z t

0
�i (s; t; !)dWi (s) +

Z t

0
� (s; t; !)ds (6.3)

6.3.2 Technical Conditions - 1

As in chapter 5, we need technical conditions to ensure that these are well-de�ned. Also, we

would like conditions that allow us to use a stochastic analogue of Fubini's theorem, and ensure

that the numeraire is well-behaved. These conditions are stated below.

� For each i, �i and � are F -previsible processes.

� R T0 �i (t; T; !)
2 dt is �nite for all i and so is

R T
0 j� (t; T; !)jdt.

� The initial forward rate curve is deterministic and
R T
0 jf (0; u)j du is �nite.

� R T0 R u0 j� (s; u; !)jdsdu <1.

� EQ
hR T

0

��R u
0 �i (s; u; !) dW (s)

�� dui <1 for all i.
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6.3.3 The Bond Price SDE

In a manner exactly following the analysis of chapter 5, it can be shown that the process for

the bond price satis�es

logP (t; T ) = logP (0; T ) +

nX
i=1

Z t

0
ai (s; T )dWi (s)

�1

2

nX
i=1

Z t

0
ai (s; T )

2 ds+

Z t

0
fr (s) + b (s; T )gds

where

ai (t; T ) = �
Z T

t

�i (t; s; !)ds ; and

b (t; T ) = �
Z T

t

� (t; s; !)ds +
1

2

nX
i=1

ai (t; T )
2

A straightforward application of Ito's lemma now yields the bond price SDE under the market

measure as

dtP (t; T ) =

nX
i=1

ai (t; T )P (t; T )dWi (t) + fr(t) + b (t; T )gP (t; T )dt (6.4)

Thus the SDE for the discounted bond price process Z is

dtZ (t; T ) = Z (t; T )

"
nX
i=1

ai (t; T )dWi (t) + r(t)dt

#
(6.5)

6.3.4 Market Price of Risk

We now seek an EMM for the discounted bond price process. Since we are working in a multifac-

tor world, we need a multifactor version of the CMG. The �rst step is to �nd a transformation

to the risk-neutral world. We then try and ensure that such a measure is unique, and this will

be our EMM.

For a given set of expiry dates 0 < T1 < ::: < Tn < � , we assume that there exist well-
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behaved solutions i (�;T1; :::; Tn) to the system of simultaneous equations

2
6664
b (t; T1)

...

b (t; Tn)

3
7775+

2
6664
a1 (t; T1) � � � an (t; T1)

...
...

a1 (t; Tn) � � � an (t; Tn)

3
7775
2
6664
1 (t;T1; ::; Tn)

...

n (t;T1; ::; Tn)

3
7775 =

2
6664

0

...

0

3
7775 (6.6)

As before �i (t;T1; ::; Tn) can be interpreted as the market price of risk associated with

the i-th random factor. We assume that the matrix A (t) = [ai (t; Tj)]i;j is non-singular. This

ensures that the solutions to the above system are unique.

6.3.5 Technical Conditions - 2

In this section, we list the technical conditions that ensure smooth changes of measure and

applications of CMG and MRT.

First, we insist that
R T1
0 i (s;T1; ::; Tn)

2 ds is �nite for all i. Next, we assume

EQ

"
exp

(
nX
i=1

Z T1

0
i (s;T1; ::; Tn)dWi (s)

�1

2

nX
i=1

Z T1

0
i (s;T1; ::; Tn)

2 ds

)#

= 1

and �nally

EQ

"
exp

(
nX
i=1

Z T1

0
(ai (s; Tj) + i (s;T1; ::; Tn))dWi (s)

� 1

2

nX
i=1

Z T1

0
(ai (s; Tj) + i (s;T1; ::; Tn))

2 ds

)#

= 1
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6.3.6 Existence and Uniqueness of an EMM

We can now use the multivariate version of CMG. Given a set of expiries as before, there exists

a probability measure Q�T1;::;Tn equivalent to the market measure Q such that the discount bond

prices

fZ (t; T1) ; :::; Z (t; Tn)g

are martingales with respect to the measure Q�T1;::;Tn. CMG identi�es this measure through

the Radon-Nikodym derivative

dQ�T1;::;Tn
dQ

= exp

(
nX
i=1

Z T1

0
i (s;T1; ::; Tn)dWi (s) (6.7)

� 1

2

nX
i=1

Z T1

0
i (s;T1; ::; Tn)

2 ds

)

Under this measure

W
�T1;:::;Tn
i = Wi (t) �

Z t

0
i (s;T1; ::; Tn)ds (6.8)

are independent Brownian motions. Nonsingularity of the matrix A (t) ensures that the measure

is unique. We need to show now that this measure is independent of the choice of discounted

bonds.

Suppose Q�, de�ned though Q�= Q�T1;::;Tn for any increasing set of maturities Ti in the

trading interval, is the unique EMM for the discount bond prices Z (t; T ) where T 2 [0; � ]

and t 2 [0; T1]. Since the measure is de�ned through i (t;T1; ::; Tn), it (the measure Q�) is

independent of the Ti if and only if the market price of risk �i (t;T1; ::; Tn) is too. This means

that for any other increasing set of n maturities Si, we must have

i (t;T1; ::; Tn) = i (t;S1; ::; Sn) = i (t) (6.9)

Thus for each volatility factor, we have an associated market price of risk i (t) which is inde-

pendent of the vector of bonds chosen to de�ne it. From (6.6), we have

b (t; T ) +

nX
i=1

ai (t; T )i (t) = 0
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Substituting for ai and b and di�erentiating partially with respect to T gives the drift restriction

� (t; T; !) = �
nX
i=1

�i (t; T; !)

�
i (t)�

Z T

t

�i (t; s; !) ds

�
(6.10)

Equation (?? ) is called the standard �nance condition. It ensures the absence of arbitrage, by

ensuring that we get the same market price of risk no matter what vector of bonds we use to

derive it. Thus (6.10) can be interpreted as the restriction on the drift analogous to (5.10) of

an HJM evolution that is necessary to prevent arbitrage opportunities. It is also the restriction

necessary to ensure a unique EMM.

6.3.7 Pric ing Contingent Claims

We would now like to use a suitable version of the MRT to �nd a replicating strategy for a

given claim and thus price contingent claims using familiar results. Since we have an n-factor

model, we need n bonds and the numeraire in order to hedge. An advantage of HJM, as shown

by our preceding discussion, is that these bonds may be chosen pretty much as we like.

Suppose we have a claim C expiring at some time T . We choose bonds with expiries after

this date. Thus we have

0 < T < T1 < ::: < Tn < �

We already know that each discounted bond price process Z (t; Ti) is a martingale under the

common EMM Q�. Now we form the process

H (t) = EQ�
h
B (T )�1 C

���F (t)
i

which, by construction is a martingale under Q�. We use the multivariate version of MRT,

discussed in chapter 3, to claim the existence of unique processes �i (t) such that

dH (t) =

nX
i=1

�i (t) dZ (t; Ti)

Consider a strategy (�1 (t) ; :::; �n (t) ;  (t)), which involves holding, at time t,

� �i (t) units of the bond P (t; Ti); and
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�  (t) = H (t)�Pn
i=1 �i (t)Z (t; Ti) units of the cash numeraire B (t).

It is a routine exercise to check that this is a self-�nancing replicating portfolio for the claim,

and thus the present value of the claim is

V (t) = EQ�
h
Ce�

R
T

t
r(s)ds

���F (t)
i

In a risk-neutral setting, the spot rate process r is given by

r (t) = f (0; t) + +

nX
i=1

Z t

0
�i (s; t; !)dW

�
i (s)

+

Z t

0
�i (s; u; !)

�Z t

s

�i (s; u; !)du

�
ds

6.4 Endnotes

HJM has gained enormous popularity because it does for �xed-income derivatives what Black-

Scholes does for option pricing, i.e. provide a term structure that is independent of the risk

preferences of an economic agent. The market prices of risk drop out of the expression for the

spot rate, and are replaced by an expression involving the volatilities across di�erent maturities

of the forward rates, or a �term structure of volatilities�. Thus contingent claims can be priced

independent of the market price of risk under the risk-adjusted measure.

The next chapter discusses the implications of this and provides a critique of the HJM

framework, especially as regards where it stands among other models of the term structure of

interest rates.
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Chapter 7

Other Term Structure Models

The courageous Spaceman Spi�, interplanetary explorer extraordinaire, lands on yet another

bizarre planet.

7.1 Ob jectives

� Describe 1-factor spot rate models.

� Show how PDE formulations can be derived.

� Outline the main established spot rate models.

� Describe the multifactor spot rate framework.

� State the Feynman-Kac formulas for PDE formulation of multifactor models.

� Outline two examples of multifactor spot rate models.

7.2 Introduction

The term structure of interest rates has been modelled for over 20 years now. How does

HJM compare with the models that have been in use for all this time? The crucial di�erence

between the older models and HJM is that the older ones are all spot rate models. The one

notable exception is the model of Ho & Lee (HL), which is formulated in discrete time and
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seeks to study the dynamics of the whole yield curve (i.e. is a forward rate model). HJM is

a continuous-time, multivariate generalisation of HL. Thus, in order to see how HJM compares

with older models, this chapter presents a brief review of spot rate modelling.

7.3 Sp ot and Forward Rates

How are spot and forward rates related? An interesting alternative viewpoint to that outlined

in chapter 2 is as follows. Consider a bond P (t; T ). In terms of forward rates, we have

P (t; T ) = e�
R
T

t
f(t;s)ds (7.1)

In terms of the spot rate, we have

P (t; T ) = Et
h
e�

R
T

t
r(s)ds

i
(7.2)

where the subscript t is a shorthand for the expectation conditional on F (t). Expanding both

these expressions in Taylor series gives

P (t; T ) = 1�
Z T

t

f (t; s) ds+
1

2

�Z T

t

f (t; s)ds

�2

� 1

6

�
�
Z T

t

f (t; s)ds

�3

+ :::

= 1� Et
�Z T

t

r (s)ds

�
+

1

2
Et

"�Z T

t

r (s)ds

�2
#
� :::

Thus, to �rst order at least, we have

Z T

t

f (t; s)ds = Et

�Z T

t

r (s)ds

�
=

Z T

t

Et [r (s)]ds

which gives the intuitively appealing result

f (t; T ) = Et [r (T )]

This amounts to saying that the forward rate at time t for any future time T is just the expected

value of the spot rate at T , conditional on information available at time t. This �ts in nicely

into a no-arbitrage argument. If the market expected future spot rates to be any di�erent, then
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why would anyone enter into a forward contract at the rate f (t; T )? It is important to note

here that the expectation is computed under the market measure. Note also that Et [r (T )]

gives us a recipe for getting a �process from a claim� so that as t evolves, we get a forward rate

evolution.

Since we want to see how HJM (a forward rate model) compares with spot rate models, the

next few sections are devoted to a brief survey of spot rate modelling of the term structure.

7.4 One-Factor Sp ot Rate Models

7.4.1 Generalities

A one-factor spot rate model takes the spot rate itself as a 1-dimensional state variable, and

speci�es an SDE for its evolution. In the market measure Q this takes the form

dr(t) = �(r(t); t)dW (t) + �(r(t); t)dt (7.3)

Note that this covers all Markovian (or Gaussian) spot rate models. If � (t) is the market

price of risk, then it is easy to see that the corresponding SDE in the risk-adjusted measure Q�

is of the form

dr (t) = � (r (t) ; t)dW � (t) + � (r (t) ; t)dt (7.4)

where � = � + �.

Considerable e�ort has been expended by researchers in trying to make spot rate models

capture the characteristics of observed spot rates. For example, the Vasicek model outlined later

incorporates mean-reversion, while the Cox-Ingersoll-Ross (CIR) model additionally ensures

that interest rates stay non-negative. However, none of these models has any economic basis

and it has been shown that are not empirically sound. Moreover, by being Markovian, they

have low predictive power. This is a serious setback, because even if they can be adjusted to

match historical observations, there is no guarantee that they will predict well. Since bond

prices depend on future distributions of spot rates, this is a problem. There is evidence to show

89



that AR(1) processes, which are essentially of the form

yt = �yt�1 + "t

where � < 1 and "t is some error term, are much better approximators to interest rates than

Markov processes. Thus interest rates have path-dependence which Gaussian spot rate models

of the type above fail to capture.

So why do we bother with these models? For all their drawbacks, these models allow bond

prices to be expressed as the solutions of PDEs. Thus they can be made fairly complicated and

will still give closed form bond price formulas. They are analytically tractable, giving yield

curves that are a�ne in the spot rate (an a�ne function is a constant plus a linear function).

In addition, they capture observed characteristics of interest rates such as mean reversion and

positivity.

One of the main drawbacks of forward rate models is that they allow interest rates to go

negative with positive probability. Also, it is di�cult to get closed-form solutions for bond

prices for realistic models. There seems to be a trade-o� between how realistic the model is

and how simple the bond price formulas derived from it are.

7.4.2 PDE Formulation

Suppose we have an instrument whose value depends on the spot rate and calendar time. As

an example, consider a bond P (r; t; T ). Suppressing the dependence on T , we can use Ito's

lemma and (7.3) to write

dP = Prdr + Ptdt+
1

2
Prrdr

2 + :::

= �PrdW +

�
Pt +

1

2
�2Prr + �Pr

�
dt

so that

EQ [dP ] =

�
Pt +

1

2
�2Prr + �Pr

�
dt

We might be tempted to equate this to rPdt but we must be careful. r is the riskless rate of

return. In the riskless measure, the drift is actually �� . So if we want to equate the return
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to the riskless return, we must use the risk-adjusted drift. In other words, we write

You are using the "gather" environment in a style in which it is not defined.

\Bbb{E}_{\Bbb{Q}^{*}}\left[ dP\right] =\left( P_{t}+\frac{1}{2}\rho

^{2}P_{rr}+\left( \mu +\gamma \sigma \right) P_{r}\right) dt=rPdt\text{ ; or}

\nonumber \\

P_{t}+\frac{1}{2}\rho ^{2}P_{rr}+\left( \mu +\gamma \sigma \right) P_{r}-rP=0

\label{1-spot BPE}

We can solve this under appropriate boundary conditions. By calibrating the calculated bond

prices with the observed ZCB prices, it is possible to infer the parameters of the spot rate

process. This is what inversion of term structure means.

The next few sections very brie�y outline some of the established 1-factor spot rate models.

7.4.3 The Vasicek Model

In the risk-neutral measure, the speci�cation of the spot rate SDE is given as

dr = �dW � + (� � �r)dt (7.5)

This is historically one of the earliest models for the term structure of interest rates. It assumes

a constant market price of risk. The di�usion process proposed by Vasicek is a mean-reverting

Ornstein-Uhlenbeck process. The spot rate is de�ned as the strong solution to the SDE (7.5),

where �, � and � are strictly positive constants. It is well-known that the solution to (7.5)

is a Markov process with continuous sample paths and Gaussian increments. It allows for

negative interest rates, which is an undesirable feature. The counter-argument often o�ered is

that for appropriate values of the constants, the probability of negative spot rates is very small.

Vasicek does not claim that this is the best model for actual spot rate behaviour.

Without going into details, the Vasicek SDE permits representations of bond prices in the

form e�A(t;T )�rB(t;T ), thus giving an a�ne yield curve. It can also be shown that if we set up a

Vasicek model for expiries far into the future, the mean-reversion becomes severely diminished,

so that the model is essentially an unrestricted di�usion.
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7.4.4 The Cox-Ingersoll-Ross Model

The CIR model studies the evolution of a single state variable, the spot rate, in a general equi-

librium framework. Heath, Jarrow and Morton show how this can be equivalently formulated

in a no-arbitrage setting as well. The spot rate process proposed in the CIR model is

dr = �
p
rdW � + (� � �r)dt

where �, � and � are strictly positive constants. The market price of risk is proportional top
r=�. Due to the presence of the square root term, the CIR spot rate takes only non-negative

values. It can go to zero, but it never dips below zero. In fact it can be shown that for 2� � �2,

spot rates stay strictly positive. In this way, it rules out negative interest rates. Like the

Vasicek model, it also has a mean-reverting drift term. There appears to be modest empirical

support for the CIR model.

This too, like the Vasicek model, belongs to the class of a�ne yield curves, but closed form

solutions are not necessarily �pretty�.

7.4.5 Longsta� 's Model

Longsta� modi�ed the CIR model by postulating the following dynamics for the spot rate

process

dr = �
p
rdW � + �

�
� � �pr�dt

which is also referred to as a double square-root (DSR) process. Closed-form solutions to the

bond price equation exist, but in this case they are of the form

P (r; t; T ) = e�A(t;T )�rB(t;T )�prC(t;T )

for explicitly known functions A, B and C.

The yield curve is thus a non-linear function of the spot rate. Also, the bond price is not

a monotonically decreasing function of the spot rate. This makes valuation of bond options

more complicated. An empirical comparison of the Longsta� model, done by Longsta� in 1989,

suggests that it outperforms CIR in most circumstances.
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7.4.6 The Hull-W hite Model

Both the Vasicek and the CIR models are special cases of the following mean-reverting di�usion

process

dr = �r�dW � + (� � �r)dt

where 0 < � < 1 is a constant. The Hull-White model is a generalisation of this process, where

� � 0 is a constant and all other parameters are time-dependent.

dr = �(t)r�dW � + (�(t)� �(t)r)dt

If � = 0, we get the generalised Vasicek model and if � = 0:5 we get the generalised CIR model.

The most important feature of the general Hull-White approach is the possibility of an exact

�t to a given initial term structure and in some cases to a term structure of volatilities.

7.4.7 The Black-Derman-Toy Model

The BDT model derives from a discrete-time model of the term structure. At each node, it

involves choosing spot rates and the corresponding transition probabilities so that the model

matches not only the initial term structure, but also the initial volatility structure of forward

rates. In continuous time, BDT is a special case of the more general lognormal model

d log r = �(t)dW � + (�(t)� �(t) log r)dt (7.6)

for deterministic functions �(t), �(t) and �(t). The BDT model corresponds to the speci�cation

�(t) = ��0(t)=�(t). The lognormal model speci�ed in (7.6) has also been studied by Black &

Karasinski, who postulate that it �ts the yield curve, the volatility curve and the cap curve.

Hogan & Weintraub showed that the dynamics of (7.6) lead to in�nite prices for Eurodollar

futures. To overcome this, Sandmann & Sondermann proposed a focus on e�ective annual

rates rather than simple rates over shorter periods, but this will not be covered here.
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7.5 Multifactor Sp ot Rate Models

7.5.1 Generalities

All the one-factor models surveyed in the previous section took a state variable, the spot rate,

and modelled its evolution over time. They attempted to explain the dynamics of interest

rates using just one explanatory variable. Using this approach, the greatest sophistication

that can be achieved while still retaining computational tractability is to have time-dependent

parameters. An alternative to increasing the explanatory power of a model is to increase the

number of underlying state variables. This is what multifactor models seek to do. They

assume that the spot rate itself is a function of several underlying state variables.

From the theoretical point of view, a multifactor process is based on the speci�cation of a

multidimensional Markov process X = (X1; :::; Xn)
T which is de�ned as the strong solution to

the vector SDE

dX(t) = �(X(t)) � dW �(t) + �(X(t))dt (7.7)

where X(t), W (t) and �(:) take values in Rn, and �(:) takes values in Rn�n, the set of all

n � n matrices with real entries. As is common in existing literature, state variables here are

identi�ed with stochastic factors, so that the dimensionality of the Brownian motion is equal

to the number of underlying state variables. Generally, the latter are larger than the former.

Given the SDE (7.7) the spot rate is de�ned by a function

r(t) = g(X(t))

for some deterministic function g : Rn! R.

As a special case, we could postulate that X(t) satis�ed the following linear SDE with

bounded, time-dependent coe�cients

dX(t) = �(t) � dW �(t) + (a(t) + b(t)X(t))dt

It is common to then set either

r(t) =
1

2
jX(t)j2 : a squared Gauss-Markov (SGM) process, or
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r(t) = � �X(t) for some � 2 Rn: a Gaussian process.

From a practical viewpoint, it is important to identify multifactor models which lead to yields

that are a�ne in the spot rate. Du�e and Kan show that a multifactor model has this property

if and only if the coe�cients of the process forX(t) and the function g are a�ne in some suitable

sense.

7.5.2 The Feynman-K ac Formula

Given a setting described in the previous section, it is frequently convenient to exploit the

Feynman-Kac formula to �nd a PDE representation for bond prices. In a risk-neutral world,

the ZCB price is determined by the formula

P (X; t; T ) = EQ�

�
exp

�
�
Z T

t

g(X(s))ds

�����X(t)

�

The function P de�ned above satis�es the PDE

Pt +
1

2
Trace

�
Pxx��

T
�
+ Px�+ gP = 0 (7.8)

with boundary data P (x; T; T ) = 1. The 1-factor version of this result is precisely the bond

pricing equation (?? ). If we seek a term structure that is a�ne in the spot rate, we look for

solutions of the form

P = e�A(t;T )�B(t;T )�x

to (7.8). Du�e and Kan consider a special case of this solution, i.e. one of the form

P (x; t; T ) = exp (u(T � t) + v(T � t) � x)

where u(:) = (u1(:); :::; un(:))
T and v(:) are suitably well-behaved and satisfy the boundary

conditions v(0) = 0 and ui(0) = 0 for i = 1; :::; n. They show that the functions u and v must

satisfy the Riccati-type di�erential equations

u00i (s) = ci + ki � u(s) + u(s)Tqiu(s), i = 1; :::; n
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v0(s) = c0 + k0 � u(s) + u(s)Tq0u(s)

where ci 2 R, ki 2 R and qi 2 Rn are constants given in terms of the coe�cients de�ning the

a�ne functions �, ��T and g. Indeed, Du�e and Kan show that the term structure is a�ne

in the spot rate if and only if these functions are.

7.5.3 The Generalised Multifactor CIR Model

A simple example of an a�ne model that is not Gaussian is the multifactor CIR model, where

the Markov process corresponding to (7.7) is

dXi(t) = �i
p
Xi(t)dW

� + (�i � �iXi(t))dt (7.9)

for positive constants �i, �i and �i, with the spot rate given by r(t) = X1(t) + :::+Xn(t). In

terms of the function g discussed above, we have g(x) =
P
xi. This model has been extended

by Heston (1991), Longsta� & Schwartz (1992), Chen & Scott (1992), Pearson & Sun (1994)

and Jamshidian (1995). Restrictions apply: for interest rates to remain positive, we must

have �i > �2i =2 as shown by Ikeda and Wantanabe (1981). Chen (1994) studies another a�ne

model, this time with a three-dimensional state space.

7.5.4 Du� e & Kan's General A� ne Model

Du�e & Kan (1996) study the general a�ne case, where after a linear change of variable the

SDE for the underlying Markov process is

dXi(t) = �(t) � dW � + (�X(t) + �)dt

with

�ij(t) = �ij

q
mij + pij �X(t)

where �ij , mij , pij , � 2 Rn and � 2 Rn�n. In this case, the state space is

fx 2 Rn : mij + pij �X(t) > 0; i; j = 1; :::; ng

96



Restrictions analogous to those for the CIR model apply, but are more complicated.

7.6 Endnotes

This chapter has outlined most of the established spot rate models. By assuming that the

spot rate process lives in a �nite-dimensional state space, these models lead to bond prices that

are solutions of PDEs. Spot rate models are versatile enough to allow for closed form bond

price formulae even while capturing fairly sophisticated and realistic qualitative features of the

dynamics of interest rates. The main drawback is that they all assume a speci�c functional form

for the market price of risk, even under the risk-neutral measure. In addition, they generally

match empirical observations poorly. Since they are Gaussian, they have low predictive power

too. Apart from this, they have to be calibrated to �t the yield curve, and this inversion of

term structure severely restricts the generality of spot rate models.
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Chapter 8

Assessing the HJM Framework

Why does Man create? Is it Man's purpose on earth to express himself, to bring form to

thought, and to discover meaning in experience?

Or is it just something to do when he's bored?

8.1 Ob jectives

� Review the ideas of HJM.

� Show how all 1-factor spot rate models are special cases of 1-factor HJM models.

� Illustrate this with an example.

� Show how spot rates are path-dependent under HJM.

� Study a case when they are not path-dependent.

� Discuss PDE formulations under HJM.

� Survey the state of a�airs in HJM-type modelling.

8.2 Introduction

Chapters 5 and 6 treated the HJM model in some detail. This chapter aims to provide a

critique of the HJM framework. First, let us step back and review the broad ideas in the
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model.

HJM is a state space model. It takes the forward rate as a state variable and speci�es

a process for its evolution over time. The inputs to the model are an initial term structure

of interest rates ff (0; T )gT and a term structure of volatilities. Using these quantities, HJM

arrives at a spot rate process that is independent of the market price of risk. Once this process

is known, it uses rational expectation to �nd bond prices. While deriving this formulation, the

framework also imposes restrictions on the drift of the forward rate process that ensure the

absence of arbitrage opportunities.

8.3 HJM and Spot Rate Models

8.3.1 General Considerations

All the 1-factor models discussed in the previous chapter are special cases of appropriately

chosen HJM models. To see this, consider a spot rate model in a risk-adjusted measure,

dr (t) = � (r (t) ; t)dW � (t) + � (r (t) ; t)dt

Bond prices are given by

P (t; T ) = e�
R
T

t
f(t;s)ds = EQ�

h
e�

R
T

t
r(s)ds

���F (t)
i

Thus

Z T

t

f (t; s)ds = � log EQ�
h
e�

R
T

t
r(s)ds

���F (t)
i

= g (r (t) ; t; T )

where

g (x; t; T ) = � log EQ�
h
e�

R
T

t
r(s)ds

��� r (t) = x
i

(8.1)

Thus, given a spot rate model, the implied forward rate is given by

f1 (t; T ) =
@

@T
g (r (t) ; t; T )
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From this, we can use Ito's lemma to deduce df1. We get

df1 (t; T ) = �
@2g

@x@T
dW � +

�
�
@2g

@x@T
+

@2g

@t@T
+

1

2
�2

@3g

@x2@T

�
dt

Comparing this with a risk-adjusted HJM evolution

df (t; T ) = � (t; T; !) dW � (t) + � (t; T; !)

�Z T

t

� (t; s; !) ds

�
dt

we can equate the volatility coe�cients to get

� (t; T; !) = � (r (t) ; t)
@2g

@x@T
(r (t) ; t; T ) ; and (8.2)Z T

t

� (t; s; !) ds = � (r (t) ; t)
@g

@x
(r (t) ; t; T ) (8.3)

Thus we can �nd an HJM model corresponding to all Markovian spot rate models.

Suppose we don't know for sure if a model is Markovian. It can be shown that such a model

is a special case of HJM as well. Given an HJM evolution, the discounted bond price SDE is

dtZ (t; T ) = a (t; T )Z (t; T )dW � (t)

Using Ito's lemma, it is easy to check that the solution of this SDE is

Z (t; T ) = Z (0; T ) exp

�Z t

0
a (s; T )dW � (s)� 1

2

Z t

0
a (s; T )2 ds

�

By de�nition, we also have

Z (t; T ) = B (t)�1 P (t; T ) = P (t; T ) e�
R
t

0
r(s)ds

= e�
R
t

0
r(s)ds�g(r(t);t;T )

Comparing these two expressions for Z gives

g (r (t) ; t; T ) = �
Z t

0
a (s; T )dW � (s)�

Z t

0

�
r (s)� 1

2
a (s; T )2

�
ds

� logP (0; T )
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Using the de�nition of a (t; T ), this can be rewritten as

g (r (t) ; t; T ) =

Z t

0

Z T

s

� (s; u; !)dudW � (s)�
Z t

0

(
r (s)� 1

2

�Z T

s

� (s; u; !)du

�2
)
ds

� logP (0; T )

Since the implied forward rate f1 is the partial derivative of g with respect to T , we get

f1 (t; T ) = f (0; T ) +

Z t

0
� (s; T; !)dW � (s) +

Z t

0
� (s; T; !)

�Z T

t

� (s; u; !)du

�
ds

which is precisely the risk-neutral HJM evolution. Thus all spot rate models are special cases

of HJM. The next section illustrates this with an example.

8.3.2 Vasicek in Terms of HJM

Under the risk-neutral measure, the Vasicek SDE is

dr (s) = �dW � (s) + (� � �r (s))ds

for s 2 [t; T ] and �, � and � constants. If we are given r (t) = x then

dr + �rds = �dW � + �ds

If we multiply throughout by the integrating factor e�s then we can write this as

d (e�sr) = �e�sdW � + �e�sds

Integrating both sides from t to s and using r (t) = x gives

re�s � xe�t = �

Z s

t

e�udW � (u) +
�

�

�
e�s � e�t

�

This can be rearranged to write the solution as

r (s) =
�

�
+ e��(s�t)

�
x� �

�

�
+ �e��s

Z s

t

e�udW � (u) (8.4)
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To get the HJM model corresponding to this spot rate model, we need to �nd the correct

function g as in (8.1). First, we simplify (8.4). Consider the third term on the right hand

side. Using (3.11), and writing J =
R s
t
e�udW � (u), we have

EQ�
�
J2
�
=

Z t

s

e2�udu =
1

2�

�
e2�s � e2�t

�

Thus

J = W �
�
e2�s � e2�t

2�

�

so that the third term in (8.4) can be rewritten as

�W �
 
1� e�2�(s�t)

2�

!

To �nd g, we need to �nd
R T
t
r (s)ds.

Z T

t

r (s)ds =
�

�
(T � t)�

�
x� �

�

�
1

�

�
e��(T�t) � 1

�

+�

Z T

t

W �
 
1� e�2�(s�t)

2�

!
ds

Substitution gives

g (x; t; T ) =
�

�
(T � t)�

�
x� �

�

�
1

�

�
e��(T�t) � 1

�

� log EQ�

"
exp

(
��
Z T

t

W �
 
1� e�2�(s�t)

2�

!
ds

)#

The �rst and third terms are independent of x and so

@g

@x
= � 1

�

�
e��(T�t) � 1

�
@2g

@x2
= e��(T�t)

102



Now, using (8.2) and (8.3),we can get the corresponding HJM parameters

�HJM(t; T; !) = �e��(T�t)

�HJM(t; T; !) =
�2

�
e��(T�t)

�
e��(T�t) � 1

�

8.4 Path-D ep endence of HJM Spot Rates

The general HJM framework gives forward and spot rates that are strongly path dependent.

This section illustrates path-dependence of spot rates under a general 1-factor HJM model.

Consider the evolution of the spot rate under HJM, given by the equation

r(t) = f (0; t) +

Z t

0
� (s; t; !) dW � (s) +

Z t

0
� (s; t; !) ds

Let us temporarily suppress the dependence on !. If we work in a discrete-time framework

starting at time 0, then

r (1) = f (0; 1) + � (0; 1)ÆW � (0) + � (0; 1)Æt

r (2) = f (0; 2) + � (0; 2)ÆW � (0) + � (1; 2)ÆW � (1)

+ f� (0; 2)+ � (1; 2)g Æt

Thus the increment in r is given by Ær (1) = r (2)� r (1), which is

Ær (1) = f (0; 2)� f (0; 1) + f� (0; 2)� � (0; 1)g ÆW � (0) + � (1; 2)ÆW � (1)

+ f� (0; 2)+ � (1; 2)� � (0; 1)g Æt

If we assume that the drift is time-homogeneous (i.e. the volatility is time-homogeneous too)

then � (1; 2) = � (0; 1) and so

Ær (1) = f (0; 2)� f (0; 1) + f� (0; 2)� � (0; 1)g ÆW � (0) + � (1; 2)ÆW � (1) (8.5)

+� (0; 2)Æt (8.6)
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In general, this is not the case and we will need the entire evolution of the parameters, i.e. we

will not be able to discard � (1; 2) and � (0; 1) above. However, let us stay with the simpler

time-homogeneous case for the present.

The forward rate increment over the �rst time period is

Æf (1; 2) = � (1; 2)ÆW � (1) + � (1; 2)Æt

and therefore

Ær (1)� Æf (1; 2) = f (0; 2)� f (0; 1)+ f� (0; 2)� � (0; 1)g ÆW � (0)

+ f� (0; 2)� � (0; 1)g Æt

Thus the di�erence in drifts between the forward rate and the spot rate at time 1 stem from

three factors

� A deterministic term linked to the shape of the yield curve at time zero, i.e. the term

f (0; 2)� f (0; 1);

� The di�erence in the drifts, at time 0, of the forward rates maturing at times 1 and 2

respectively, i.e. the coe�cient of Ætin the equation above; and

� A term depending on past Brownian increments, f� (0; 2)� � (0; 1)g ÆW � (0).

Let us carry forward the analysis leading to Ær (1). We can write

r (3) = f (0; 3) + � (0; 3)ÆW � (0) + � (1; 3)ÆW � (1) + � (2; 3)ÆW � (2)

+ f� (0; 3) + � (1; 3) + � (2; 3)g Æt

From this we get, on multiplying and dividing by Æt,

Ær (3) = r (3)� r (2)

=

�
f (0; 3)� f (0; 2)

Æt

+
� (0; 3)� � (0; 2)

Æt
ÆW � (0) +

� (1; 3)� � (1; 2)
Æt

ÆW � (1)
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+

�
� (0; 3)� � (0; 2)

Æt
+
� (1; 3)� � (1; 2)

Æt

�
Æt+ � (2; 3)

�
Æt

+� (2; 3)ÆW � (2)

Now we are in a position to generalise this to an arbitrary time step as follows:

Ær (n) = r (n+ 1)� r (n)

=

(
f (0; n+ 1)� f (0; n)

Æt
+

n�1X
i=0

� (i; n+ 1)� � (i; n)

Æt
ÆW � (i)

+

n�1X
i=0

� (i; n+ 1)� � (i; n)

Æt
Æt + � (n; n+ 1)

)
Æt

+� (n; n+ 1) ÆW � (n) (8.7)

The drift term itself has a term which depends on realisations of the Brownian motion, and

so (8.7) clearly shows that the process for the spot rate is in general path-dependent. Notice

that path-dependence is exhibited even in the special time-homogeneous case. Thus the general

framework is very strongly path-dependent.

It is now an easy matter to move to the continuous case, by allowing Æt! 0. This gives

dr(t) =

�
@f (0; t)

@t
+

Z t

0

@� (s; t)

@t
dW � (s) +

Z t

0

@� (s; t)

@t
ds

�
dt (8.8)

+� (t; t) dW � (t) (8.9)

Notice that for the HJM approach, we have because of the relation between drift and volatility

imposed by the model. The above equation clearly shows that the spot rate process is non-

Markovian in general.

8.5 Markovian Spot Rates Under HJM

As the previous section demonstrated, the HJM approach generally produces models in which

the spot rate is path dependent. Therefore, a discrete-time approximation within the HJM

framework is usually less e�cient than the path-independent case, since the number of opera-

tions rises exponentially with the number of steps. The aim of this section is to �nd conditions

105



under which spot rates are Markovian in an HJM setting.

For simplicity, consider a 1-factor HJM setting. The extension to several factors is straight-

forward. It will be shown now that spot rates given by an HJM evolution are Markovian if and

only if there exist functions p and q such that the HJM volatility � (t; T; !) can be represented

(suppressing dependence on !) as

� (t; T ) = p (t) q (T ) (8.10)

Writing the spot rate process under HJM,

r(t) = f (0; t) +

Z t

0
� (s; t) dW � (s) +

Z t

0
� (s; t)ds

it is obvious that spot rates are Markovian if and only if

Dt =

Z t

0
� (s; t) dW � (s)

is Markovian, i.e.

EQ� [h (DT )j F (Dt)] = EQ� [h (DT )jDt] (8.11)

for any bounded measurable function h : R! R and any T 2 [t; � ]. Note that

DT =

Z T

0
� (s; T )dW � (s)

= Dt +

Z T

0
� (s; T )dW � (s)�

Z t

0
� (s; t) dW � (s)

= Dt +

Z T

t

� (s; T )dW � (s) +

�Z t

0
� (s; T )dW � (s) �

Z t

0
� (s; t)dW � (s)

�

Now observe that (8.11) holds if and only if the above equation only depends on Brownian

increments between t and T . Thus the term in parentheses must be zero. This amounts to

saying that J (t; T ) =
R t
0 � (s; T )dW

� (s) is completely determined by Dt. Treating both these

quantities as random variables, this in turn is equivalent to having them perfectly correlated.

Both have mean zero, so from the de�nition of correlation, perfect correlation holds if and only
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if

EQ� [J (t; T )Dt]
2 = EQ�

h
J (t; T )2

i
EQ�

�
D2
t

�
Using the properties of Ito integrals derived in chapter 3, this can be written as

�Z t

0
� (s; t)� (s; T )ds

�2

=

�Z t

0
j� (s; t)j2 ds

��Z t

0
j� (s; T )j2 ds

�

Written in terms of the standard inner product on L2 (0; t), this is just saying

h� (s; t) ; � (s; T )i = k� (s; t)k k� (s; T )k

or that the two functions are collinear (i.e. each lies in the linear span of the other). Thus,

the Markov property for spot rates (8.11) holds if and only if, for any T 2 [0; � ] and t 2 [0; T ]

there exists a function q (T ) such that

� (t; T ) = q (T )� (t; �)

If we now set � (t; �) = p (t), (8.10) follows immediately.

If spot rates are Markovian, then for any three time points t < t� < T we have, by de�nition,

a (t; T ) = �
Z T

t

� (t; s)ds = �p (t)
Z T

t

q (s)ds

=
p (t) q (t�)

p (t�) q (t�)

"
�p (t�)

Z T

t�
q (s)ds� p (t�)

Z t�

t

q (s) ds

#

=
� (t; t�)

� (t�; t�)

�
�
Z T

t�
� (t�; s)ds + p (t�)

Z t

t�
q (s)ds

�

=
� (t; t�)

� (t�; t�)

�
�
Z T

t�
� (t�; s)ds +

Z t

t�
� (t�; s)ds

�

=
� (t; t�)

� (t�; t�)
(a (t�; T )� a (t�; t))

If in addition the volatility � (t; T ) is time-homogeneous then

w (T � t) := log � (t; T ) = log p (t) + log q (T ) = p� (t) + q� (T )
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Di�erentiating this �rst with respect to t and then T gives

w0 = �p�0 = q�0

Since p� is independent of T and q� of t, we must have w0 = K (constant). Solving this gives

w (T � t) = K (T � t) + logL

so that � (t; T ) = LeK(T�t). Substituting into the de�nition of a (t; T ) gives

a (t; T ) =
L

K

�
eK(T�t) � 1

�

8.6 Non-Existence of PDEs Under HJM

The Feynman-Kac equation outlined in the previous chapter works only when the underlying

state space for the process is �nite-dimensional. Except for rather restrictive special cases

(such as Sankarasubramanian, 1993), there is no �nite-dimensional state space for the HJM

framework, so PDE-based methods cannot be used. Instead, the process is constructed from

�rst principles in a discrete setting and Monte-Carlo simulations are used to compute the

expectations necessary.

For the general state-space representation of HJM models, we take the forward rate to be

the state variable. For example, Musiela (1994) takes the state space to be C1 [0;1). The

current state X (t) is the function mapping the maturity T to the forward rate f (t; t+ T ).

With the goal of viewing X as a Markov process satisfying an SDE, Musiela shows that the

HJM framework leads to

dXt (T ) =
@

@T

(
Xt (T ) +

1

2


Z T

0
� (t; t+ s)


2

L2

)
dt+ � (t; t+ T )dW (t) (8.12)

Then, taking � (t; t+ T ) = ' (X; T ) for some function ', we can view (8.12) as a stochastic

PDE in the sense of Walsh (1994). General conditions on ' for the existence and uniqueness

of Markovian solutions to (8.12) have yet to be deduced.
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8.7 Further Research in HJM

Though HJM has obvious strengths, there are still questions and issues raised by it that have

not been satisfactorily answered as yet. One of these is the positivity of interest rates. Under

HJM, interest rates can go negative with positive probability. One explanation put forward for

this is that HJM seeks to model a derived quantity (the forward rate) rather than an economic

fundamental (the spot rate) and so �loses control� (Rogers). Heath, Jarrow and Morton

suggest a volatility structure that ensures positive interest rates, but this is highly arti�cial

and not grounded in any economic reasons. Their proposed volatility structure is essentially

� (t; T; !) = min f� (t; T ) ; kg for some k > 0. More work in this area has been done by Flesaker

& Hughston (1996).

Secondly, there remains the issue of yield curve �tting and PDE formulations. It is often

claimed that HJM can avoid the compromise between theory and practice that arises from yield

curve calibration because it can be made to �t any initial term structure. However, the original

HJM formulation allows the yield curve to move in a space generated by a �nite-dimensional

Brownian motion and so restricts the movements that can be made without calibration. Recent

work by Kennedy (1995) has extended the basic HJM model to allow the multidimensional

Brownian motion to be replaced by a Brownian sheet for the case of deterministic volatility

processes �. It seems natural to view the HJM spot rate process as an in�nite-dimensional

stochastic PDE. There are however no results as yet in this vein.

The last issues are computational and empirical. In the absence of PDE formulations,

computationally expensive Monte-Carlo simulations need to be used to calculate bond prices

using HJM. Heath, Jarrow, Morton and Spindel (1994) claim that though the method is

expensive, it yields accurate results in as little as a dozen iterations. On the empirical side,

a lot of work has gone into testing parametric Markovian HJM models. However, there is

good reason to believe that forward rates are non-Markovian, and very few results have been

published in this area. Stanton (1997) uses a non-parametric method to extend Ait-Sahalia's

(1996) estimation of spot rate models to reject virtually every established spot rate model. The

method can be extended to cover the Gaussian HJM case, but this has not been done as yet.
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