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GARCH and Volatility Swaps1

Abstract

This article discusses the valuation and hedging of Volatility Swaps
within the frame of a GARCH(1,1) stochastic volatility model. First we
use a general and flexible PDE approach to determine the first two mo-
ments of the realized variance in a continuous or discrete context. Then
we use this information to approximate the expected realized volatility via
a convexity adjustment. Following this, we provide a numerical example
using S&P500 data. Finally we describe a non-risk-neutral approach rely-
ing on the Central Limit Theorem for dealing with these volatility swaps
practically.

1The authors would like to thank Omar Foda (University of Melbourne), Lennart Widlund
(G&W Asset Management, Sweden), Jørgen Haug (Norwegian School of Economics), Robert
Trevor (Macquarie University), Jin-chuan Duan (University of Toronto), Xingmin Lu (Royal
Bank of Canada) and Christophe Bahadoran (Universite’ Blaise-Pascal) for their very helpful
comments and feedback. Robert Trevor also helped the authors with the numerical examples
and the calibration process. The authors remain responsible for any errors in this paper. The
discussions were mostly carried on www.wilmott.com/forum/. This is likely to be the first
quantitative finance paper ever created over an internet forum.
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1 Introduction

Variance and volatility swaps are useful products for volatility hedging and
speculation. An interesting explanation for the takeoff for this market is given
in Jim Gatheral’s excellent course notes on variance and volatility swaps, NYU
2000 :

“Variance swaps took off as a product in the aftermath of the LTCM
meltdown in late 1998 when implied stock index volatility levels rose to
unprecedented levels. Hedge funds took advantage of this by paying
variance in swaps (selling the realized volatility at high implied levels).
The key to their willingness to pay on a variance swap rather than sell
options was that a variance swap is a pure play on realized volatility (no
labor-intensive delta hedging or other path dependency is involved).
Dealers were happy to buy vega at these high levels because they were
structurally short vega (in the aggregate) through sales of guaranteed
equity-linked investments to retail investors and were getting badly hurt
by high implied volatility levels.”

The market for variance and volatility swaps has since then been growing,
and many investment banks and other financial institutions are now actively
quoting volatility swaps on various assets: stock indexes, currencies, as well as
commodities.

As a “warm up” to the valuation side we can suggest several papers: Carr
and Madan (1998), Demeterifi, Derman, Kamal, and Zou (1999), Heston and
Nandi (2000) and Brockhaus and Long (2000). A variance swap gives a payoff
at maturity, which is equal to the difference between the realized variance over
the swap period and the contract variance, multiplied by the notional. Sim-
ilarly a volatility swap pays out the difference between the realized volatility
covered by the swap and the contract volatility. In contrast to a variance swap
a volatility swap is linear in pay-out for the realized volatility. As we soon will
see a convexity adjustment is needed to value a volatility swap versus a vari-
ance swap. Market participants are used to trade volatility (through options),
but not variance. In that respect, volatility swaps make more sense for most
people. However, since variance swaps are easier to price, it seems like quants
and institutions have preferred their clients to trade those (until now).

A stochastic volatility (or GARCH) model is needed for both the variance
swap and the volatility swap. However the popular stochastic volatility models
give us σ2 (the volatility squared) and allow us to estimate the expectation
E[σ2] = E[v], which is all that is needed for a variance swap. Since the price of
any swap should be zero at issuance, the variance swap “delivery price” is E[v] =
E[σ2]. By the same token for a volatility swap the expected volatility is E[σ] =
E[

√
v]. This is not available directly from the stochastic process for the common

models. Still, one can use the Brockhaus and Long (2000) approximation (which
is a Taylor expansion of order 2, of the square-root function on variable v around
the point v0 = E[v]) to calculate
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E[
√
v] ≈

√
E[v] − Var[v]

8E[v]3/2
.

See Appendix A for a quick proof of this. For a volatility swap we therefore
need not only E[v] but also Var[v]. We can also say that the term Var[v]

8E[v]3/2

corresponds to the convexity adjustment or Jensen’s Inequality correction for
the square root function.

Moreover, it is actually the variance over the whole period covered by the
swap which is important, and not only the variance at maturity. Let I =∫ t

0
vu du. We need to know E[I] and Var[I] to compute the convexity adjust-

ment. Note that the convexity adjustment is only important when we are trying
to find closed-form solutions for specific stochastic volatility processes. But even
without talking about a specific stochastic volatility process in the Demeterifi,
Derman, Kamal, and Zou (1999) paper it is the variance process that is repli-
cated through a portfolio of plain vanilla calls and puts, and therefore there is
still a need to go from a variance swap to a volatility swap using a convexity
adjustment.

Note that we are using a continuous time process to calculate the convexity
adjustment above. Still, we can use the discrete time process GARCH(1,1)
to calculate E[In], where In is the discrete variance over the period. Even if
the variance swap process is entirely discrete, the volatility swap process is not,
unless we estimate Var[In] using the continuous diffusion limit process and apply
a finite difference scheme to the resulting PDE.

Later we will also discuss risk-neutrality and hedging of volatility swaps. We
will suggest to drop risk neutrality and price via an expectation, a method that
leads to a result that is more realistic and robust.

2 The Volatility Model

We will set up the problem for an arbitrary stochastic volatility model and then
concentrate on one popular example: GARCH(1,1).

Supposing that

dv = f(v)dt + g(v)dX,

where v is the ‘variance’ or, more precisely, the square of volatility, and dX
is a Wiener process, then we are interested in finding the following

Problem A:

1. E[v]

2. Var[v]
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Problem B:

1. E
[∫ t

0
vu du

]

2. Var
[∫ t

0 vu du
]

Here E[·] and Var[·] are expectations at time T .

2.1 Problem A: Expectation and variance of v

The first two of these can be found by solving the Feynman-Kac backward
equation

∂

∂t
+

1
2
g(v)2

∂2

∂v2
+ f(v)

∂

∂v
= 0 (1)

subject to the relevant final conditions.
Using F (v, t) to denote the expectation we are seeking and G(v, t) the ex-

pected value of v2 then both F and G satisfy Equation (1) with

F (v, T ) = v

and
G(v, T ) = v2.

The variance of v is then given by

G− F 2.

2.2 Problem B: Expectation and variance of
∫ t
0 vu du

To address the second problem, we need to introduce a new state variable:

It =
∫ t

0

vu du.

where I can be seen as the realized variance. More precisely I is the variance
over the life of the contract, as opposed to v the instantaneous variance at a
point in time. To be technically correct, we should say

It =
1
T

∫ t

0

vu du.

This way on the issue date of the swap, the realized volatility will coincide
with the instantaneous volatility and we can mark-to-market the swap during
its life, which would allow us to have American swaps as well. However this
division by T does not change our equations and we will not include it for
simplicity reasons. Now we must solve

∂

∂t
+

1
2
g(v)2

∂2

∂v2
+ f(v)

∂

∂v
+ v

∂

∂I
= 0 (2)



GARCH and Volatility Swaps 6

subject to the relevant final conditions.
Using F (v, I, t) to denote the expectation of I and G the expected value of

I2 then both F and G satisfy Equation (2) with

F (v, I, T ) = I

and
G(v, I, T ) = I2.

The variance of I is then given by

G− F 2.

3 Special case: GARCH(1,1)

The model for the variance in a continuous version is specifically

dv = κ(θ − v)dt + γv dX.

where κ is the speed of mean reversion, θ is the mean reversion level, and
γ is the volatility of volatility, more precisely, the volatility of the square of
volatility. The discrete version of the GARCH(1,1) process is described in Engle
and Mezrich (1995)

vn+1 = (1 − α− β)V + αu2
n + βvn

where V is the long-term variance, un is the drift-adjusted stock return at
time n, α is the weight assigned to u2

n, and β is the weight assigned to vn.2

Further we have the following relationship

θ =
V

dt

κ =
1 − α− β

dt

γ = α

√
ξ − 1
dt

2The GARCH(1,1) model implies that the stock process and the volatility process contain
two uncorrelated Brownian Motions. In an NGARCH process, described by Engle and Ng
(1993), we have

vn+1 = (1 − α − β)V + α(un − c)2 + βvn

where c is another parameter to be estimated and creates the correlation between the two
processes. However this will not affect our discussion at all and therefore we will use the
GARCH(1,1) model throughout this paper. The NGARCH process is discussed for instance
in Ritchken and Trevor (1997).
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where3 ξ is the Pearson kurtosis4 (fourth moment) of u[n].
A stochastic volatility model (or GARCH) gives us only dv where vt (or vn)

is the variance and not the volatility. So, for both the continuous version above
or the discrete version we do need the Taylor Expansion to find the value of a
volatility swap:

E[
√
v] ≈

√
E[v] − Var[v]

8E[v]3/2
.

3.1 Problem A

The problem for F can be written as

∂F

∂t
+

1
2
γ2v2 ∂

2F

∂v2
+ κ(θ − v)

∂F

∂v
= 0

with F (v, T ) = v. This has the simple solution

F (v, t) = θ + e−κ(T−t)(v − θ).

The solution for G(v, t) is also easily found to be

G(v, t) =
2κ2θ2

γ2 − κ

(
e(γ

2−2κ)(T−t) − 1
γ2 − 2κ

+
e−κ(T−t) − 1

κ

)

+
2κθ

γ2 − κ

(
e(γ

2−2κ)(T−t) − e−κ(T−t)
)
v + e(γ

2−2κ)(T−t)v2.

From F and G we can calculate the variance of v as indicated above.

3.2 Problem B

The problem for F can be written as

∂F

∂t
+

1
2
γ2v2 ∂

2F

∂v2
+ κ(θ − v)

∂F

∂v
+ v

∂F

∂I
= 0

with F (v, I, T ) = I.
3The γ in the Engle and Mezrich (1995) paper is γ = α

√
(ξ − 1)dt which is different from

our defintion. This is likely due to a small typo in their paper. See also Nelson (1990).
4Pearson kurtosis is Fisher kurtosis plus three. The normal distribution has a Pearson

kurtosis of 3 (Fisher kurtosis of 0), called mesokurtic. Distributions with Pearson kurtosis
larger than 3 (Fisher higher than 0) are called leptokurtic, indicating higher peak and fatter
tails than the normal distribution. Pearson kurtosis smaller than 3 (Fisher lower than 0) is
termed playakurtic. Before calculating kurtosis from asset prices make sure you know if the
software you are using returns Pearson or Fisher kurtosis.



GARCH and Volatility Swaps 8

The solution for F (v, I, t) is now

F (v, I, t) = θ

(
T − t+

e−κ(T−t) − 1
κ

)
+

1
κ

(
1 − e−κ(T−t)

)
v + I.

Similarly, G(v, I, t) has solution

G(v, I, t) = f(t) + g(t)v + h(t)v2 + l(t)I + n(t)vI + I2

with

f(t) = θ2(T − t)2 − 4θ2(γ2 − κ)
κ(γ2 − 2κ)

(
T − t+

e−κ(T−t) − 1
κ

)

− 4θ2κ2

(γ2 − κ)2(γ2 − 2κ)

(
1 − e(γ

2−2κ)(T−t)

(γ2 − 2κ)
+

1 − e−κ(T−t)

κ

)

−2θ2(γ2 + κ)
γ2 − κ

(
e−κ(T−t)T − t

κ
+

1
κ2

(e−κ(T−t) − 1)
)

g(t) =
2θ
κ

(T − t) − 4θ(γ2 − κ)
κ2(γ2 − 2κ)

(
1 − e−κ(T−t)

)

+
4θκ

(γ2 − κ)2(γ2 − 2κ)

(
e(γ

2−2κ)(T−t) − e−κ(T−t)
)

+
2θ(γ2 + κ)
κ(γ2 − κ)

(T − t)e−κ(T−t)

h(t) =
2

κ(γ2 − 2κ)

(
e(γ

2−2κ)(T−t) − 1
)
− 2
κ(γ2 − κ)

(
e(γ

2−2κ)(T−t) − e−κ(T−t)
)

l(t) = 2θ
(
T − t +

e−κ(T−t) − 1
κ

)

n(t) =
2
κ

(
1 − e−κ(T−t)

)

3.3 Explicit Expression for vt

It would be interesting to use an alternative method to calculate F (v, t) and the
other above quantities. We could calculate vt directly by solving the stochastic
differential equation (SDE)

dv = κ(θ − v)dt + γv dX.

This equation can be solved via a variation of constants technique and the
solution is
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vτ = v0e
−(κ+γ2

2 )τ+γXτ + κθ

∫ τ

0

e−(κ+γ2

2 )(τ−u)+γ(Xτ−Xu) du

with τ = T−t. We can see immediately that the resulting F (v, t) is the same
as the one in is section (3.1) using the well known equation E(eγXτ ) = e

1
2γ2τ . A

short summary of how to calibrate the GARCH(1,1) model is given in appendix
B.

3.4 Numerical examples

Before we move on let’s take a look at some numeric examples. We are cali-
brating the GARCH parameters from five years of daily historic S&P500 (SPX)
prices (from 1996/10/01 to 2001/09/28). This gives us a long term variance of
V = 0.00015763 (so the annualized long-term volatility is around 19.93%) and
a kurtosis of 5.81175. The discrete GARCH(1,1) parameters are α = 0.127455,
β = 0.7896510. Based on business daily data and therefore dt = 1/252, the dif-
fusion limit parameters are θ = 0.0397224, κ = 20.889356 and γ = 4.4382085.
We take for inputs v = 0.0361 (corresponding to a volatility of 19%) and I = 0
(on the issue-date of volatility swap). Figure 1) illustrates the strike of a volatil-
ity swap from a GARCH(1,1) model with and without convexity adjustment.
Figure 2) shows the convexity adjustment itself, which is the difference between
the naive strike and the convexity adjusted-strike.

S&P500 Volatility Swap
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From Figure 2 we can easily see how the convexity-adjustment is decreasing
with swap maturity. The intuition behind this is mainly that the volatility of
the volatility over a long period of time is low.

For market participants there would typically be of great interest to know
how sensitive a volatility swap is to change in volatility. Figure 3 shows the
sensitivity of the strike/ fair value of a volatility swap with respect to one point
change in the input volatility (the vega). Similarly Figure 4 illustrates the one
day theta of a volatility swap (change in the strike of the volatility swap as time
to maturity decreases by one day).
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4 Volatility swaps and risk neutrality

There are several problems with the traditional risk-neutral hedging concept
for variance and volatility swaps. Demeterifi, Derman, Kamal, and Zou (1999)
suggest to replicate a variance swap with a forward contract and an infinite sum
of calls and puts, which they argue can be approximated with a finite number
of options. This method has several pitfalls and is probably not practical to
implement. Realistically, we can’t hedge this product, so we have to appeal
to the concept of market price of risk. Or do we? There are several reasons
to avoid models that require the input of market price of risk, which is very
difficult to estimate. Even at its best, the market price of risk is very unstable5,
see Wilmott (2000) chapter 36. Here we will suggest to drop risk neutrality and
price via an expectation. So E[

√
v] or E[v] become our real expected payoff.

We stress ’real’. But this payoff isn’t guaranteed, it’s risky. The payoff may be
more or may be less. This is where the Var[

√
v] or Var[v] comes in. If we are

now using the real (not the risk-neutral) process for volatility in a mean-variance
framework (see Ahn, Arkell, Choe, Holstad, and Wilmott (1999), and Wilmott
(2000) chapter 36) the delivery price K of a volatility swap will be

K = E[
√
v] − λStdv[

√
v]

where λ measures our own personal risk aversion, and the minus sign would
change to a plus sign if we are short volatility instead of being long. The same
concept naturally holds for E[I] and E[

√
I].

Back to the λ parameter, market participants will get different prices de-
pending upon their risk-aversion parameter (much like utility theory). To give
some intuition on this parameter:

• Choose λ = 0 and you never make money, nor lose it (on average, that is,
over many deals).

• Choose λ large and you will find that your price is outside the market’s
hence you never do any deals and again don’t make any money.

• Choose λ small and you will make a little bit of profit on average, and
maybe do quite a few deals. So, at this stage, there is an optimization to
be done. You can think of this optimization as making the most from the
Central Limit Theorem.

Concerning the Central Limit Theorem and the mean-variance framework
for a given µ = E[v] and σ =

√
Var[v] and our personal (fixed) degree of risk-

aversion λ, if we are long volatility, then the delivery-price will be

K = µ− λσ

Now if we have n transactions on with the same law and same µ and σ and
supposing

5Where is the market price of volatility risk in the Heston and Nandi (2000) model? In
the drift of the volatility.
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1. n is large enough.

2. and we assume the v1, v2, . . . , vn are independent.

We can now apply the Central Limit Theorem and we can say

Vn =
v1 + . . . + vn

n
≈ N

(
µ,

σ√
n

)

where N() the normal distribution. So our decision to make a trade or not
would depend on Kn = µ − λ σ√

n
being within the market bid/ask interval for

the delivery-price or not. As the number of deals n goes higher Kn approaches
K and gets a better chance to actually be within this bid/ask interval.

To summarize, the suggested approach has several advantages over other
proposed solutions:

1. It doesn’t depend on the market price of risk.

2. The price can vary from person to person. In a world where everyone
agrees on the same price there’s not much point in trading.

3. It is nonlinear, therefore economies of scale apply. This also gives us a
bid-offer spread on volatility swaps and would allow optimal semi-static
hedging (see Wilmott (2000) chapter 32).

5 Conclusion

We have given you two different methods to compute E[vt] and Var[vt] as well
as E[I] and Var[I]. From these we can not only value a variance swap but
also determine the convexity adjustment for a volatility swap. The first method
we used is the PDE method described in section (2.1). The main strength of
this method is its flexibility. With the PDE method we can basically find the
expected variance and variance of the variance for any given function6, either
explicitly, or for more complex cases by using finite difference methods.

In the second method we solved the stochastic differential equation using
the usual (non-stochastic) differential-equation tricks in combination with Ito’s
lemma to come up with closed form solutions. Closed form solutions offer ad-
ditional insight and intuition that are not readily available from PDE methods.

A drawback of most stochastic volatility solutions, whether PDE or closed
form based, is that they typically assume continuous monitoring of the volatility.
This problem is also discussed by Carr and Corso (2001). In practice all variance
and volatility swaps are based on discrete monitoring, typically some type of
daily close (fixing) price. Even if we assume constant volatility, for instance
geometric Brownian motion, the volatility of volatility could be high simply
because of discrete monitoring.7 In this paper we have the solution for the

6For instance E[e−avt ] poses no problems.
7See for example Haug (1997) pages 169-170 and Wilmott (2000) pages 299-301.



GARCH and Volatility Swaps 14

expected continuous time variance E[I] and the expected variance in a discrete
GARCH(1,1) model

E[In] = V +
1 − (α + β)n

(1 + n)[1 − (α + β)]
(v0 − V )

where In is the discrete variance covering the period8. However for the vari-
ance of the variance we only have the solution for the continuous time GARCH
process. In order to obtain Var[In] we could apply a finite difference scheme
to the PDE method of section (2.1) and therefore obtain an entirely discretely
monitored volatility swap pricing model.
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Appendix A: Quick proof of the Brockhaus-Long
approximation

Here is a quick proof of the Brockhaus and Long (2000) approximation, see
also Brockhaus, Farkas, Ferraris, Long, and Overhaus (2000). Given F the
square-root function

F (x) = x1/2

We have

F ′(x) =
1

2x1/2

F ′′(x) = − 1
4x3/2

The second order Taylor expansion for F (x) around x0 gives

F (x) ≈ F (x0) + F ′(x0)(x − x0) +
1
2
F ′′(x0)(x − x0)2

≈ x
1/2
0 +

x− x0

2x1/2
0

− 1
8

(x− x0)2

x
3/2
0

≈ x + x0

2x1/2
0

− (x − x0)2

8x3/2
0

Now if we take x = v and x0 = E[v] we will have

√
v ≈ (v + E[v])

2
√
E[v]

− (v − E[v])2

8E[v]3/2

and taking Expectations on both sides

E[
√
v] ≈ E[v] + E[v]

2
√
E[v]

− E[(v − E[v])2]
8E[v]3/2

or

E[
√
v] ≈

√
E[v] − Var[v]

8E[v]3/2

which is the Brockhaus-Long approximation. So all we need to find the
convexity adjustment for a volatility swap is E[v] and Var[v] for the given choice
of process. In our case GARCH(1,1).
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Appendix B: Calibration to historical data

For the calibration of the GARCH(1,1) model we can use a maximization of
likelihood ratio for the stock return density and we will get the optimum α and
β, see Engle and Mezrich (1995) and Hull (2000). Then we will deduce θ, κ, γ
from the former parameters together with our choice of dt. One would try to
minimize

N∑
n=1

(
ln(vn) +

u2
n

2vn

)

with
vn = (1 − α− β)V + αu2

n−1 + βvn−1

where un is the drift-adjusted stock return at time n and N the total number
of observations. One way would be to use the Fletcher-Reeves-Pollak-Ribiere
minimization method, see Press, Teukolsky, Vetterling, and Flannery (1993).
Note that this method is non-constrained and would “blow-up” if used like this,
so inside the function to be minimized (the above sum) one would need to
include the constraints 0 < α < 1 , 0 < β < 1, 0 < α < 1 − β.

Note that, given our stochastic process dv = κ(θ − v)dt + γvdX , if γ the
volatility of the volatility is too large, i.e. if the term κ− 1

2γ
2 becomes negative,

then our variance term and therefore our convexity adjustment will diverge for
T − t large enough. In order to make sure that κ− 1

2γ
2 > 0 we can add to our

usual GARCH(1,1) optimization constraints, the condition 1−α−β− ξ−1
2 α2 > 0.

Appendix C: Calibration to market data

If we want to calibrate the model against current market prices (as opposed to
historic prices) we need to make the parameter θ representing the long-term
variance, time dependant. Therefore instead of estimating V from the historic
prices and deduce θ from there only once, we recalculate them dynamically. The
rest of what we did however remains the same.
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