
CONTINUOUS TIME LIMIT OF THE BINOMIAL MODEL

PENDO KIVYIRO
Supervisor: Dr.Diane Wilcox

June 3, 2005



Contents

List of Figures ii

Acknowledgements iii

Abstract iv

1 INTRODUCTION 1

1.1 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mathematical Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Log-normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Concepts in Mathematical Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Market participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Option Pricing in the Binomial model 9

2.1 A single-period binomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Replicating Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Risk-Neutral Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Multi-period Binomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Cox-Ross-Rubinstein (CRR) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Change of Parameters used in CRR Model . . . . . . . . . . . . . . . . . . . 12

2.3.2 CRR pricing formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Modelling in Continuous Market Models . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Ito’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Black -Scholes Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



CONTENTS ii

3 Convergence in distribution 17

3.1 Convergence of stock price to the geometric Wiener process. . . . . . . . . . . . . . . 17

3.2 Convergence of the binomial model to the Black-Scholes model . . . . . . . . . . . . 20

4 Numerical implementations 25

4.1 Parameters used in the CRR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Parameters used in the JR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Parameters used in TIAN model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Odd-even binomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Derivation of Black-Scholes pricing formula for European options 33

A.0.1 Formula for Call option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.0.2 Formula for Put option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B Numerical methods 37

Bibliography 45



List of Figures

1.1 A generalised Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 A CRR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 typical pattern resulting from option price for valuing call option calculations with
binomial model: example with CRR-Model with parameters: S = 100,X = 110, T =
1, r = 0.05, σ = 0.3, n = 10, . . . , 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 typical pattern resulting from option price for valuing call option calculations with
binomial model: example with JR-Model with parameters: S = 100,X = 110, T =
1, r = 0.05, σ = 0.3, n = 10, . . . , 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 typical pattern resulting from option price for valuing call option calculations with bi-
nomial model: example with JTIAN-Model with parameters: S = 100,X = 110, T =
1, r = 0.05, σ = 0.3, n = 10, . . . , 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 typical pattern resulting from option price for valuing call option calculations with
odd-even binomial model: with parameters: S = 100,X = 110, T = 1, r = 0.05, σ =
0.3, n = 10, . . . , 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Histogram of the logarithmic of the stock price plotted against frequency . . . . . . 30



Acknowledgements

I would like to thank, God purposes all I do in my life. My greatest appreciation to my supervisor
Dr. Diane Wilcox, for her assistance, suggestions and useful comments throughout the course of this
essay. I would like to express my sincere gratitude to AIMS staff most especially Prof. Neil Turok
the founder of AIMS, Prof. Fritz Hahne the director of the institute, Mirjam the administrative
officer, Igsaan the facility manager, and all tutors Dr. Mike Pickles, Kate, Lisa and Carl for their
assistance. It was such a great time to be with such wonderful tutors who are eager to assist at
all time. I would like to thank Dr. Mike Pickles and Prof. Kotze for reading through my essay
and making corrections, suggestions and comments, may our almighty God bless you all. I am
indebted to my husband who has been very special to me by encouraging me on a daily basis and
his approval towards AIMS I say a big thank you. I would also like to thank my fellow class mates
most especially Naval for his assistance. I appreciate all my fellow students for making AIMS such
a wonderful place to live and study.



Abstract

The limit of the Cox-Ross-Rubinstein formula as the length of the time step goes to zero is the
Black-Scholes formula. The proof requires a suitable version of the central limit theorem. The
convergence of binomial models involves a wider range of related problems.

We show the convergence of option price in the Binomial model to the price given by Black-Scholes-
formula. We show also the convergence of the stock price in the binomial model to the geometric
Wiener process.

We show some numerical implementations in analysing the convergence results of the binomial
option pricing to the Black-Scholes formula. Particularly we discuss lattice methods developed by
CRR(1979), Jarrow and Rudd(1983) and Tian(1993).

In order to undertake the task, we review the concepts of binomial distribution, Gaussian distribu-
tion , and Poisson distribution; Wiener process, Poisson process; Binomial model, option pricing
in binomial model. Cox-Ross-Rubinstein formula; Models of convergence of sequences of random
variables, relationship.



Chapter 1

INTRODUCTION

1.1 BACKGROUND

Financial market instruments can be divided into two distinct species. We have underlying assets
such as stocks and bonds. And we have their derivatives such as options, forwards and futures and
swaps. These are sometimes called contingent claims. There are various models which has been
developed in pricing these underlying assets and their corresponding derivatives securities.

The work of Merton (1969, 1973)[12] and Black and Scholes(1973) innovated the use of diffusion
process in continuous time methods in asset pricing problems. Diffusion process have become the
workhorse model of the underlying asset price in option pricing models, such as Cox, Ingersoll,
Ross(1985) and Morton(1992).

Early in this theoretical development, Sharpe(1978) developed a binomial model approach. This
has some advantages of making the idea behind the diffusion process more widely accessible and
making the implementation simple.

The idea of looking at a binomial model as a discrete time approximation to continuous-time diffu-
sion were initially justified by Brennan and Schwartz (1978) and Cox, Ross and Rubinstein (1979).
These authors (1979) showed that the binomial model of the stock price converges to a continuous
process as the time interval goes to zero.

A more general characteristic of binomial asset pricing models is that they consist of two state
conditions, either the price of the stocks tends to move upward by the factor µ, or move downward
by the factor d. Also the one-step ahead price is always risky. At any time t − 1 we are not sure
of the value of the asset at time t. This is because the prices of the stock are random variables.
Since the stock prices are considered as random variables we should have to study some probability
and expectations. One way of coping with randomness in this essay will be to build on probability
foundations to find the strongest possible links between derivatives security and their random
underlying stocks.
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1.2 Mathematical Tools

Definition 1.1 : σ-field

A σ-field F is a family of subsets of Ω such that:

• It contains the empty set; ∅ ∈ F .

• For all A ∈ F then Ac ∈ F .

• F is closed under the operation of countable union; If A1,A2, . . . ,∈ F then
⋃

n>1 An ∈ F

Definition 1.2 : Measurable space

A measurable space is a set Ω together with a collection F of subset Ω which is a sigma field.

Definition 1.3 : Probability Measure

Let Ω be a set and F , a σ − field of subsets of Ω. A probability measure is a function P : F →[0,1]
such that

• P (∅)=0;

• P (Ω) =1;

• If A1, A2, . . . ,∈ F and Ai
⋂

Aj = ∅ if i �= j, then P (
⋃∞

i=1 Ai) =
∑∞

i=1 P (Ai)

Where by P(A) = ‘The probability that A occurs’ and A ∈ F is called an event. The triple (Ω,F , P )
is called a probability space

Definition 1.4 : Measurable function

Let (X,B(X)) and (Y,B(Y )) be two measurable spaces. Then f : X → Y is measurable function if

f−1(B(Y )) ⊆ B(X)

where f−1(B(Y )) = {f−1(A)|A ∈ B(Y ).

Definition 1.5 : Random Variable

A random variable X is a measurable function from a probability space (Ω,F , P), such that X :
Ω → R is F-measurable. It can be discrete and therefore

{ω ∈ Ω : X(ω) = x} ∈ F or continuous {ω ∈ Ω : X(ω) ≤ x} ∈ F (1.1)

The latter defines the probability distribution of X denoted by F (x) = P [X ≤ x], ω ∈ Ω and is called
a scenario of randomness and X(ω) represents an outcome of the random variable if the scenario
happens.
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Definition 1.6 : Conditional Expectation

Let X be a random variable of (Ω,F ,P) and let H ∈ F be a σ- algebra. Then the conditional
expectation of X given H is a random variable denoted by E[X|H] and is characterised by the
following properties

• E[X|H] = X if X is a H-measured random variable.

• E[XY |H] = XE[Y |H] if X is H-measurable.

• E[E[X|H]] = E[X]

• E[X|H] = E[E[X|G]|H] where H ⊆ G

Definition 1.7 : Characteristic Function

The characteristic function of a random variable X is a function ϕX : R → C defined by

ϕX(t) = E[eitX ] =
∫

R

eitxdFX(x),

where FX is the distribution function of a random variable X.

Properties

• ϕX(0) = 0.

• If X and Y are independent random variables then ϕX+Y = ϕXϕY .

• For a, b ∈ R, ϕaX+b(t) = eitbϕX(at)

• If E[X]n < ∞, then ϕX has continuous nth derivative

dkϕX(t)
dtk

= ϕk
X(t) =

∫
R

(ix)keitxdFX(x) (1.2)

and particularly,
ϕ

(k)
X (0) = ikE[Xk]. (1.3)

1.2.1 Gaussian Distribution

This is the distribution with mean µ and standard deviation σ2. It is sometimes called the normal
distribution. The general formula for the probability density function of the normal distribution is

f(x) =
1√
2πσ

e−1/2( x−µ
σ )2

where µ is the mean of the distribution and σ is the standard deviation. The graph of normal
distribution is symmetric about the mean. The case where µ = 0 and σ = 1 is called the standard
normal distribution and the probability density function for the standard normal is

f(x) =
e−x2/2

√
2π
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Approximately two thirds of the area under the curve lies within one standard deviation about the
mean. This distribution occurs in many ways, for example, it can be obtained as a continuous time
limit of the binomial distribution as n → ∞. The former concept to this effect is presented by
the central limit theorem that: The sum of a large number of independent, identically distributed
random variables is approximately normally distributed (see section 1.3 below)

1.2.2 Log-normal Distribution

A random variable X has a log-normal distribution if its natural logarithm, Y = log(X) has a
normal distribution The probability density function of log-normal distribution with the mean µ
and variance σ2 is as given below

f(x) =
exp(−1

2( ln(X)−µ
σ )2)

σ
√

2π

Definition 1.8 : Filtration

The filtration of information flow on a time interval [0, T ] denoted Ft∈[0,T ] on a probability space
(Ω,F , P ) is an increasing function sequence of a σ-field containing information on the evolution
of the price process up to time T such that for all 0 ≤ s ≤ t then Fs ⊆ Ft ⊆ F A probability
space (Ω,F , P ) equipped with filtration is called a filtered probability space and is denoted as
(Ω,F , {F}t∈[0,T ], P )

Definition 1.9 : Stochastic Process

A stochastic process is a collection {X}t∈[0,T ] of random variables Xt : Ω → Rn where t ∈ τ(a given
parameter set). Usually τ = [0,∞). Then Xt can be regarded as the state of some system at time t.
We may write Xt(ω) = X(t, ω) : τ ×Ω → Rn and regard the process as a function of two variables.

Definition 1.10 : Martingale

Let Y (t) be a stochastic process and let Ht be a filtration (an increasing family of σ-algebras).
Then Y (t) is a martingale with respect to Ht if

1. Y (t) is Ht -adapted (i.e for all t the random variable ω → Yt(ω) is Ht- measurable)

2. E[|Yt|] < ∞
3. If s > t then E[Ys|Yt] = Yt

Definition 1.11 : Markov property

This is a particular type of stochastic process where only the present value is relevant for predicting
the future. The past history reflects the present price. Stock prices are usually assumed to follow
a Markov process.
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Definition 1.12 : Wiener process

This is the basic building block for modelling in continuous time and is also called Brownian motion.
Models of stock price behaviour are usually expressed in terms of Wiener processes, which consist
of properties such that Wt is a random variable, drawn from a normal distribution with mean zero
and variance t.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2  2.5  3

Figure 1.1: A generalised Wiener process

1.3 The Central Limit Theorem

Theorem 1.1 : Let X1, . . . ,Xn be independent, identically distributed random variables with fi-
nite mean µ and variance σ2. Then for n large, the distribution sample total T = X1+X2+. . .+Xn

is approximately normal with mean nµ and standard deviation σ(T ) = σ
√

n.

Firstly we show that the mean and the variance are finite.
Proof

E[T ] = E[X1 + X2 + . . . + Xn]
= E[X1] + E[X2] + . . . + E[Xn]

=
n∑

i=1

E[Xi] = nµ (1.4)
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Var[T ] = Var[X1 + X2 + . . . + Xn]

=
n∑

i=1

Var [Xi] = nσ2 (1.5)

Standard deviation [T ] =
√

Var[T ] = σ
√

n (1.6)

Proof of the Theorem
The proof of the theorem is based on the concept of the characteristics function (see 1.4)
Let Yj = (Xj−µ)

σ be a standardised random variable for each j = 1, 2, . . . , n then,

Z =
T − nµ

σ
√

n
=

1√
n

n∑
i=1

Yj (1.7)

From (1.4) since E[X]k < ∞ then,

E[Xk] =
ϕ

(k)
X (0)
ik

(k = 1, 2) E[X1] = µ and E[X2] = σ2 + µ2 (1.8)

ϕY (t) = E[eitY ]

= E

[
eit(X−µ

σ )
]

= e
−itµ

σ E

[
e

it
σ

X
]

=
[
1 − itµ

σ
− t2µ2

2σ2
+ o(t2)

]
E

[
1 +

itX

σ
− t2X2

2σ2
+ o(t2)

]

= 1 − t2

2
+ o(t2) (1.9)

and hence,

ϕY (t/
√

n) = 1 − t2

2n
+ o

(
t2

n

)
(1.10)

As the Xi are independent, the Yi are as well, and from (1.3) if Yi are independent then,

ϕn
Yj

(t) = ϕY1(t)ϕY2(t) . . . ϕYn(t)

=
[
1 − t2

2n
+ o

(
t2

n

)]n

→ e−
1
2
t2 as n → ∞ (1.11)

This limit is just the characteristics function of a standard normal distribution and the central
limit theorem follows from the Levy continuity theorem which proves that the convergence of
characteristic functions implies convergence in distribution.

1.4 Concepts in Mathematical Finance

Definition 1.13 : Asset

An asset is a resource that an individual, or cooperation, or country own or control that has
economic values and is expected to provide future benefits.
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Definition 1.14 : Options

These are financial instruments which give the holder the right, but not the obligation, to trade
them at specified price at a specified date. A call option gives the holder the right to buy an asset,
a put option gives the holder the right to sell an asset.

• The American Option is the one where you can exercise the option any time before some fixed
time T i.e expiry date.

• The European Option is the one which you can exercise only at the expiry date T .

• The Strike price K is the price at which the future transaction will take place and is fixed in
advance at time 0 ’now’.

Note that since the holder has the right and not obligation to buy or sell he will only exercise it if
it is profitable to him, otherwise he will not. In the case of a European call, he will exercise the
option if the market price St is greater than the strike price K, while in the case of the European
put; if the market price St is less than K. The difference between the two prices at the time of
exercise gives the payoff of the option. Since the market price of the asset is generally unbounded
the payoff of the call options is also an unbounded random variable. Suppose CE and PE denote
the payoff of a European call and put option respectively, then:

CE = Max(ST − K, 0) = (ST − K)+ (1.12)

PE = Max(K − ST , 0) = (K − ST )+ (1.13)

Definition 1.15 : Derivative security

A derivative security (also called a contingent claim) is a financial contract whose value at expiry
date T is fully determined by the prices at time T (or at a fixed range of times within [0, T ]) of
underlying assets Si, i = 0, 1, . . . , d. Examples of derivative security are such as; option, forward
and futures (binding agreement to buy or sell asset S at a future date T ), and swap.

1.4.1 Market participants

Definition 1.16 : Hedgers

These are traders who aim to reduce the risk associated with price movement in the underlying
assets by off-setting long and short positions. Since the future movement cannot be determined
with certainty hedgers try to reduce some risk due to price movement.

Definition 1.17 : Speculators

These are traders who take risks with the intention of profiting from them. Speculators take large
risks, especially with respect to anticipating future price movement. Speculators are not interested
in holding the underlying asset for long period but seeking only to profit by trading in it.

Definition 1.18 : Arbitrageurs
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This is the third group of traders who seek to profit from market deficiencies. They purchase
securities in one market for immediate resale in another market in hope of profiting from price
differences. They want to lock in a risk-less profit by simultaneous holding positions in many
markets, and exploiting possible mis-pricing of assets.

All these groups of traders are important in making the financial market more efficient.



Chapter 2

Option Pricing in the Binomial model

Since the future values of risky assets are uncertain, a mathematical model of the market dynamics
requires us to work with probability spaces. The Binomial model was first proposed by Cox, Ross
and Rubinstein in a paper published in 1979 [6]. This solution to pricing an option is probably
the most common model used for pricing derivative securities. The model divides the time to an
option’s expiry into a large number of intervals, or steps. At each interval it calculates that the
stock price will move either up or down with a given probability. In this chapter we are going to
analyse critically the binomial mode in relation to other market models.

2.1 A single-period binomial model

This is the market model with one time step, and the price of the single stock in the model takes
one of just two possible values at the end of this step. So there are just two time points (0 and 1)
and the price S(0) changes to to S(1, ω1) or S(1, ω2) at time 1. In this model we have two assets,
a bond and a stock. At time t a bond is denoted by Bt and the price of stock is denoted by St

• The bond price process is deterministic and is given by the following formula, Bt = (1 + r)t

such that

B0 = 1

B1 = 1 + r

where r is the risk-less interest rate.

• The stock price process is stochastic process and is described by the following;

S1(ω) =

{
s1(ω1) = S0(1 + u) with probability p,

s1(ω2) = S0(1 + d) with probability 1 − p.
(2.1)

Theorem 2.1 :
The market is viable (Arbitrage-free) if −1 < d < r < u
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Proof-(By contradiction) Suppose d < u < r, consider a portfolio Θ = (1. − S0). The value of
portfolio at time t = 0 is V0(Θ) = 0. At time t = 1, we consider the two cases
If the stock prices move upward by the factor u;
Then

V1(Θ) = S1(ω1) − S0(1 + r)
= S0(1 + u) − S0(1 + r)
= S0(u − r),

V1(Θ) = S1(ω2) − S0(1 + r)
= S0(1 + d) − S0(1 + r)
= S0(u − r),

If there is no arbitrage then V1(ω1) < 0 or V1(ω2) < 0 and also either V1(ω1) > 0 or V1(ω2) > 0 this
shows that either u > r > d or d > r > u

Definition 2.1 :

A probability measure Q is called a martingale measure if the following conditions holds

S0 =
1
R

EQ[S1]

Proposition 2.1 : The market model is arbitrage free if and only if there exists a martingale
measure Q.

A single-period binomial model has the following martingale probabilities;{
q = r−d

u−d

1 − q = u−r
u−d .

(2.2)

2.1.1 Replicating Portfolios

Let Θ = (θ0, θ1) be a self-financing portfolio and r be the risk-less interest rate. The portfolio Θ
replicates the derivative security C if its value at time 1 equals that of C for all scenarios. That is

V1(Θ) = C1.

Theorem 2.2 : In a single-period binomial model any derivative C has a replicating portfolio

Proof. We need a portfolio Θ = (θ0, θ1) which satisfies the following

V1(Θ) =

{
θ1Su + θ0(1 + r) = Cu

θ1Sd + θ0(1 + r) = Cd

(2.3)
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where Su and Sd denotes the prices of the stock when either moves up or down. Cu and Cd are
their corresponding prices of derivative securities.
Solving (2.3) for θ0, θ1 gives the unique solutions.

θ1 =
Cu − Cd

Su − Sd

θ0 =
1

1 + r

[
CdSu − CuSd

Su − Sd

]
, (2.4)

where θ1 indicates shares in stock and θ0 indicates units of cash or bond. By the law of one
price; “If two assets have the same terminal values, then they must have the same initial values;
otherwise an arbitrage profit is feasible”

C0 = V0(Θ) = θ1S0 + θ0 =
Cu − Cd

Su − Sd
S0 +

CdSU − CuSd

(1 + r)(Su − Sd)

=
1

1 + r

[(
r − d

u − d

)
Cu +

(
u − r

u − d

)
Cd

]
. (2.5)

2.1.2 Risk-Neutral Probabilities

From the result (2.5), the coefficients of Cu and Cd add up to 1. They can be interpreted as
probability. In fact, the equation can be simplified by defining a subjective probability measure
Q = (q, 1 − q) such that, q = r−d

u−d and 1 − q = u−r
u−d Therefore

C0 =
1

1 + r
[qCu + (1 − q)Cd] =

1
1 + r

EQ[C1] (2.6)

The probability measure Q = (q, 1 − q) is called risk-neutral probability or equivalent martingale
measure(EMM). It is a feature of every complete market. In general, the arbitrage price (fair) price
of any derivative security X, at time t = 0 in a one step binomial setup is given by

X0 =
1

1 + r
EQ[X1] = EQ[X̄1], (2.7)

where X̄ is the discounted price at time t = 1 and E[. . .] denotes the expectation taken with respect
to probabilities (q, 1−q), that is “the present value of a derivative is equal to its discounted expected
value under the risk neutral measure”.

2.2 The Multi-period Binomial Model

A multi-period binomial model is a discrete model with time running from t = 0 to t = T . This is
the extension of single step. In this model also we have two underlying assets, a bond with prices
Bt and a stock with prices St.

• The bond price

The bond price is predictable and the risk-free interest rate r is known and constant over the
period 0 ≤ t ≤ T . The bond value increased by the factor of erT (compound interest). However
we require that the interest rate over the period is known at the beginning of the interval time tn,
n = 0, 1, . . . , (N − 1)
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• The Stock price dynamics

The possible trajectories of the stock price can be encoded in a tree such that over each mini-period
the stocks follow a simple binomial model. The mini-periods are of equal length h = T

N with time
tn = nh. Therefore, the stock prices can be given as a vector: [S0, S1, S2, . . . , Sn, . . . , SN = ST ]
for 0 ≤ n ≤ N . We consider the notation U = 1 + u and D = 1 + d to denote the growth factors
in prices, with the risk-neutral measure Q = (q, 1 − q) representing the probability of an up or
downward movement in prices respectively, At any time step n,

• Each scenario (path) with exactly j upward moves and n− j downward moves gives the same
stock prices; Sn = S0U

jDn−j

• There are
(n

j

)
such paths and the probability of each is qj(1 − q)(n−j) and hence Sn =

S0U
jDn−j with probability

(
n
j

)
qj(1 − q)n−j

• The stock price is a discrete random variable with n + 1 different values and at each n-step
the stock has 2n possible prices.

• The number of j move and n − j are random variables with binomial distribution.

2.3 Cox-Ross-Rubinstein (CRR) Model

This is the most widely used market model in discrete time, which includes an important simplifica-
tion of the multi-period binomial model in order to allow easier calculations. The two parameters,
denoted by u (up) and d(down) which satisfy d < u are fixed for all nodes ω at time t with prices
S(t, ω), the prices at its two successors are S(t, ω)(1 + u) and S(t, ω)(1 + d) The only parameters
needed to specify the CRR model are T, r, S(0), u where r denotes risk-less and r > 0

2.3.1 Change of Parameters used in CRR Model

In this model there is a slight change of notation: we let R = 1 + r, U = 1 + u,D = 1 + d in
order to simplify the description of the prices at later time, e.g for t = 3 there are four nodes with
with prices S(0)U3, S(0)U2D,S(0)UD2 and S(0)D3 respectively. In general in this model the 2T

different scenarios (paths) lead to only T + 1 different prices by time T , given by

(S(0)UT , S(0)UT−1D,S(0)T−2D2, . . . , S(0)DT−1U,S(0)DT ).

2.3.2 CRR pricing formula

The pricing and hedging in a CRR model also in multi-step binomial model is determined using
backward Induction. In particular, suppose that the price of stock is known at time n − 1. Using
the risk neutral probability, S(n− 1) = Ψ(n)E

(n−1)
Q [Sn], where Ψ(n) = 1

R is the discount factor over

each time step, similarly the the value of derivative fn−1 = Ψ(n)E
(n−1)
Q [fn] . This notion of pricing

is used to develop the CRR model price for any derivative whose price dynamics can be encoded
in a tree structure as shown.
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fn+1,j+1

fn+1,j

fn+1,j−1

fn,j

fn,j−1

fn−1,j−1

Figure 2.1: A CRR model

Let fn,j denote the value of the derivative at the nth time step (0 ≤ n ≤ N) in state j, as shown
in the figure 2.1 where j represents the number of times that the price of the underlying stock has
had an upward jump. Then using EMM Q , for all (0 ≤ n ≤ N − 1), fn,j is equal to the discounted
expected payoff of the immediately succeeding time-step n + 1, as shown in figure 2.1

fn,j =
1
R

EQ(fn+1)

=
1
R

[qfn+1,j+1 + (1 − q)fn+1,j]

and

fn,j−1 =
1
R

[qfn+1,j + (1 − q)fn+1,j−1]

Also

fn−1,j−1 =
1
R

[qfn,j + (1 − q)fn,j−1]

=
1

R2
[q(qfn+1,j+1 + (1 − q)fn+1,j) + (1 − q)(qfn+1,j + (1 − q)fn+1,j−1)]

=
1

R2
[q2fn+1,j+1 + 2q(1 − q)fn+1,j + (1 − q)2fn+1,j−1]

By mathematical induction:

f0 =
1

Rn

n∑
j=0

(
n

j

)
qj(1 − q)n−jfn,j (2.8)

At the terminal nodes of the binomial tree, the value of an option fN,j, determined by the price of
the underlying asset SN,j, replicates the value of the portfolio. Let SN,j = S0U

jDN−j denote the
price of the underlying stock at the N th-step in state j. Also let the payoff of the European call
option at expiry be CN,j in state j (0 ≤ j ≤ N + 1) that is

CN,j = Max{SN,j − X, 0} = Max{S0U
jDN−j − X, 0} (2.9)
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where X is the strike price. Therefore equation above can be written as

C =
1

RN

N∑
j=0

(
N

j

)
qj(1 − q)N−j [S0U

jDN−j − X]+. (2.10)

For the claim to be exercisable, we require S0U
jDN−j > X. Let a denote the minimum number of

up moves required for the option to end up in money. That is

S0U
aDN−a > X.

Thus
a =

ln(X/S0) − N lnD

ln(U/D)
+ ξ where 0 < ξ < 1.

where ξ is a factor added to make a an integer. Thus equation (2.10) can be written as

C0 = S0

⎛
⎝ 1

RN

N∑
j=a

(
N

j

)
qj(1 − q)N−jU jDN−j

⎞
⎠− X

RN

⎛
⎝ N∑

j=a

(
N

j

)
qj(1 − q)N−j

⎞
⎠ (2.11)

Note that;
qj(1 − q)N−jU jDN−j

RN
=
(

qU

R

)j (D(1 − q)
R

)N−j

.

Thus (2.11) becomes

C0 = S0

N∑
j=a

(
N

j

)(
qU

R

)j ((1 − q)D
R

)N−j

− X

RN

N∑
j=a

(
N

j

)
qj(1 − q)N−j . (2.12)

Since Q = (q, 1 − q) is a risk-neutral probability measure, and the model is viable then R =
qU + (1 − q)D therefore we write,

1 =
qU

R
+

(1 − q)D
R

Let q∗ = qU
R and 1 − q∗ = (1−q)D

R Then

C0 = S0

N∑
j=a

(
N

j

)
q∗j(1 − q∗)N−j − X

RN

N∑
j=a

(
N

j

)
qj(1 − q)N−j

= S0Ψ(a;N, q∗) − XR−NΨ(a;N, q). (2.13)

The above equation(2.13) is called the Cox-Ross-Rubinstein Formula for pricing option, where,

Ψ(a;N, q) =
N∑

j=a

(
N

j

)
qj(1 − q)N−j

is the complementary binomial distribution function. Using the continuously compounded risk-free
interest rate we can rewrite (2.13) as

C0 = S0Ψ(a;N, q∗) − Xe−rT Ψ(a;N, q). (2.14)
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2.4 Modelling in Continuous Market Models

This section develops a continuous-variable, continuous-time stochastic process for stock prices. An
understanding of this process is the first step to understanding the pricing option and other more
complicated derivatives. We will analyse critically the Black-Scholes formula for pricing option with
the applications of Ito’s lemma. We suppose that the stock price follows a stochastic differential
equation

dS = µSdt + σSdW
Or

dS

S
= µdt + σdW (2.15)

Where µ is the expected rate of return of the stock, µdt is the drift term which gives the deterministic
component in the rate of return, σ is the volatility of the stock, σ d W is the stochastic component
of the return and S is the stock price at time t.

2.4.1 Ito’s Lemma

The price of stock option is a function of the underlying stock’s price and time. More generally, we
can say that the price of any derivative is the function of the stochastic variables underlying the
derivative and time. From Taylor series expansion of f(S, t) it follows that

df =
∂f

∂t
dt +

∂f

∂S
dS +

1
2

∂2f

∂S2
dS2 + O(dS3)

Where by dS2 = µ2S2dt2+2µσS2dtdW+σ2S2dW2
t + and dW2 → dt, dtdW → 0, dt2 → 0 Therefore

the above equation becomes

df =
(

∂f

∂t
+

∂f

∂S
µS +

1
2

∂2f

∂S2
σ2S2

)
dt +

∂f

∂S
σSdW (2.16)

Note that the above equation is made up of a random component proportional to the random
variable dW and a deterministic component proportional to dt. This proves to be very important
in the derivation of Black-Scholes results.

2.4.2 Black -Scholes Formula

This was first published in 1973. It has been extended so that it can be used to value an option on
the foreign exchange. It is based on the following fundamental assumptions

• The prices of assets follow a log-normal random walk.i.e dS
S = µdt + σdW

• The risk free interest rate r and the asset volatility σ are functions of time over the life of
security.

• There are no dividends during the life of derivative security.

• There are no arbitrage opportunities or possibilities.
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• There are no transaction costs associated with hedging a portfolio.

• Trading of the underlying assets takes place continuously.

• Short selling is permitted, borrowing and lending at the risk-free rate is possible and assets
are divisible.

• The market is liquid and there is no default risk.

Suppose S denotes the price of an underlying asset and V (S, t) denotes the price of the derivative
security, particularly an option. Then the Black- Scholes formula is given the following partial
differential formula:

∂V

∂t
+

1
2
σ2s2 ∂2V

∂s2
+ rS

∂V

∂s
= rV (2.17)

Black-Scholes pricing formulas

The Black-Scholes formulas for the prices at time zero of European a call option on a non-dividend-
payment are

C = S0N(d1) − Xe−rT N(d2)

and
P = Xe−rT N(−d2) − S0N(−d1)

where

d1 =
ln(S0/X) + (r + σ2/2)T

σ
√

T

d2 =
ln(S0/X) + (r − σ2/2)T

σ
√

T

= d1 − σ
√

T ,

where N (di)i = 1, 2 = the cumulative probability function for a variable that is normally distributed
with mean 0 and standard deviation 1, S0 is the current stock price, X the strike price, C is the
European call option, P is the European put option and T is the time to maturity.



Chapter 3

Convergence in distribution

In this chapter, we are going to analyse critically convergence in distributions of the stock and
option prices. We will be able to show how the option price in the binomial model converges to the
Black-Scholes formula as the length of the time steps decreases. In other words the binomial model
provides discrete approximations to the continuous process underlying the Black-Scholes model.
We will show also the convergence of stock prices in the binomial model to the geometric Wiener
process. In particular we investigate the relationships between the parameters of the binomial
model (the up and down returns) and the parameters of the log-normal distribution of the stock
prices (drift and volatility)

3.1 Convergence of stock price to the geometric Wiener process.

Stock prices always follow the geometric Wiener process. In this section we are going to see how
the stock prices in the binomial model converge to the geometric Wiener process. In particular, we
will show that the stock prices follow the log-normal random walk. The geometric Wiener process
with a constant drift term µt and scaled Brownian motion σWt is given by

ln
(

S(t)
S(0)

)
= µt + σWt. (3.1)

So we are going to see that the stock price have the same equation in order to prove the convergence
criteria.
Let S0 denote the initial price of the stock and S(t) its price at a future time t. We consider a
discrete time model of a financial market such as the binomial model with the set dates 0, 1, . . . , T .
The stock price process can be expressed for all t ∈ [0, T − 1] as

χt =
S(t + 1)

S(t)
∈ {u, d}, (3.2)

where χt is the return of the stock. We also require that the market is arbitrage free and therefore
−1 < d < r < u where u, d ∈ R and S(0) is strictly non-negative. To provide a probability model,
we assume that χt, for t = 1, 2, 3, . . . , T are mutually independent and identically distributed
random variables on a common probability space (Ω,F , P) with identical probability, That is

P[χt = u] = p = 1 − P[χt = d] for t = 0, 1, . . . , T
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Therefore, the stock price dynamics can be modelled for all t ∈ [0, T ] as

S(t) = S(0)
t∏

j=1

χj for all t ≤ T (3.3)

Further we divide the time axis into units of length equal to 1/n and assume that the stock price at
time tj = j/n increases by the factor u with probability p or decreases by a factor d with probability
1 − p, That is

Sj/n(t) =

{
uSj−1/n(t) with probability p,

dSj−1/n(t) with probability 1 − p.
(3.4)

Let us denote the rate of return over the time interval tj − tj−1 = 1/n by χn
j , where the superscript

indicates the dependence on the choice of n. Then

χn
j =

Sj/n(t) − Sj−1/n(t)
Sj−1/n(t)

j = 1, 2, . . . , n and t = 0, 1, . . . , T. (3.5)

As n → ∞ we can write (3.5) as

χn
j =

Sj/n(t) − Sj−1/n(t)
Sj−1/n(t)

= ln
(

1 +
Sj/n(t) − Sj−1/n(t)

Sj−1/n(t)

)

= ln
(

Sj/n(t)
Sj−1/n(t)

)
j = 1, 2, . . . , n and t = 0, 1, . . . , T (3.6)

This follows from approximation of ln(1 + t) = t for all small t ∈ R,j = 1, 2, . . . , n and t =
0, 1, . . . , T We are going to show, using the idea of central limit theorem that, S(t)/S0 has a log-
normal distribution. The basic idea is to present ln(S(t)/S0) as a sum of independent, identically
distributed random variable, that is

S(t)
S0

=
S(1/n)

S0
× S(2/n)

S(1/n)
. . .

S(k/n)
S((k − 1)/n)

× S(t)
S(k/n)

(3.7)

where k
n ≤ t ≤ (k+1)

n that is k = 	nt
 and therefore �nt�
n ≤ t < �nt�+1

n . Consequently,

lim
n→∞

	nt

n

= t

Since the rate of return over the a time interval of length 1/n goes to zero as n → ∞ it follows that
limn→∞ ln(S(t)/S(	nt
/n)) = 0. Taking the logarithm on both sides of (3.7) we see that

ln
(

S(t)
S0

)
=

�nt�∑
j=1

ln
(

S(j/n)
S((j − 1)/n)

)
+ ln

(
S(t)

S(	nt
/n)

)

=
�nt�∑
j=1

ln
(

S(j/n)
S((j − 1)/n)

)

=
�nt�∑
j=1

χn
j see (3.6) (3.8)
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The returns χn
j are independent, identically distributed random variable with E(χn

j ) = µn, V ar(χn
j ) =

σ2
n, thus

E

[
ln
(

S(t)
S0

)]
= E

⎡
⎣�nt�∑

j=1

χn
j

⎤
⎦ = 	nt
µn (3.9)

Var
[
ln
(

S(t)
S0

)]
= Var

⎡
⎣�nt�∑

j=1

χn
j

⎤
⎦ = 	nt
σ2

n (3.10)

Using the fact that limn→∞	nt
/n = t it follows that

lim
n→∞	nt
µn = lim

n→∞
	nt

n

(nµn) = t lim
n→∞(nµn) (3.11)

lim
n→∞	nt
σ2

n = lim
n→∞

	nt

n

(nσ2
n) = t lim

n→∞(nσ2
n) (3.12)

But the above two equations exist if the limits limn→∞ nµn = µ and limn→∞ nσ2
n = σ2 exist. We

make the assumption that the rate of return and its variance are proportional to the length of the
time interval 1/n; that is we assume

µn =
µ

n
, σ2

n =
σ2

n
, σn =

σ√
n

Therefore
lim

n→∞	nt
µn = µt

lim
n→∞	nt
σ2

n = σ2t

We apply the central limit theorem (see section 1.3).The sum of independent and identically dis-
tributed random variables with finite mean µn and variance σ2

n is normally distributed with mean
µ and variance σ2. Therefore

T =
�nt�∑
j=1

χn
j = ln

(
S(t)
S0

)
is N (µ, σ2)

with 	nt
 instead of n, µ/n and σ/
√

n instead of µ and σ, respectively. Therefore

lim
n→∞P

(∑�nt�
j=1 χn

j − 	nt
(µ
n )√	nt
(σ/

√
n)

≤ z

)
= lim

n→∞P

(∑�nt�
j=1 χn

j − tµ

σ
√

t
≤ z

)

= P(Z ≤ z) (3.13)

This means that as n → ∞ we have
�nt�∑
j=1

χn
j − tµ/(σ

√
t) ≈ Z (3.14)

This means that, the distribution of the random variable is approximately the same as a standard
normal distribution,i.e Z ∼ N (0, 1). This is equivalent to

ln
(

S(t)
S0

)
≈

�nt�∑
j=1

χn
j ≈ tµ + σ

√
tz. (3.15)
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In particular, as limn→∞, we have equality, that is the distribution of ln(S(t)/S0) is equal to that
of µt + σ

√
tz. But z

√
dt = dWt Where z is a random sample drawn from normal distribution,

therefore equation (3.1) can be written as

ln
(

S(t)
S0

)
≈

�nt�∑
j=1

χn
j ≈ tµ + σWt. (3.16)

Therefore this proves the fact that the stock price in the binomial model converges to the geometric
Wiener process and in-fact ln(S(t)/S0) is log-normally distributed. Compare (3.1) and (3.16).

3.2 Convergence of the binomial model to the Black-Scholes model

It is well-known that the binomial model converges to the Black-Scholes model when the number
of time steps increases to infinity. The proof relies on a specific case of the central limit theorem.
The formula for valuing a call option given by Black-Scholes is

C = S0N (d1) − Xe−rT (d2) (3.17)

d1 =
ln(S0/X) + (rc + σ2/2)(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

where S0 is the current stock price, X is the strike price, rc is the continuously compounded risk-less
interest rate, T is the time to expiration and σ2 is the variance of continuously compounded return
of the stock. On the other hand, the option price in the binomial model is given by the following
formula as discussed in the previous chapter.

C =
1

RN

N∑
j=a

(
N

j

)
qj(1 − q)N−jMax{S0U

jDN−j − X, 0}, (3.18)

where
(N

j

)
represent the number of paths the stock take to reach a certain point in a binomial tree,

q is the risk neutral probability of an up move. U and D are parameters of the binomial tree model,
R = 1 + r and r is the risk-free interest rate. This expression can be simplified. For some outcome
Max{S0U

jDN−j − X, 0} is zero. Let a represent the minimum number of upward moves for the
call to finish in the money. That is, a is the smallest integer such that

S0U
aDN−a > X.

Then for all j < a, max{S0U
jDN−j−X, 0} = 0, but for j and a, max{S0U

jDN−j−X, 0}=(S0U
jDn−j−

X)+. We need only to count binomial paths from j = a to N , hence the above model can be written
as

C =
1

RN

N∑
j=a

(
N

j

)
qj(1 − q)N−j[S0U

jDN−j − X]. (3.19)

If we split into two terms we obtain the following;

C = S0

⎛
⎝R−N

N∑
j=a

(
N

j

)
qj(1 − q)N−jU jDN−j

⎞
⎠− X

RN

⎛
⎝ N∑

j=a

(
N

j

)
qj(1 − q)N−j

⎞
⎠ (3.20)
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Let us call the two terms in the large parentheses Ψ(a;N, q∗) and Ψ(a;N, q). The latter is the
probability density function for the binomial distribution.
Note that

qj(1 − q)N−jU jDN−j

RN
=
(

qU

R

)j (D(1 − q)
R

)N−j

Thus the equation above can be written as

q∗j(1 − q∗)N−j

where q∗ = qU
R , and (1 − q∗) = D(1−q)

R . Thus Ψ(a;N, q∗) also is the binomial probability with
probability of each trial being q∗

Therefore the binomial model can be written as

C = S0Ψ(a;N, q∗) − XR−NΨ(a;N, q). (3.21)

We need this to converge to the Black-Scholes formula as given above. We shall have to get
Ψ(a;N, q∗) and Ψ(a;N, q) to converge to N (d1) and N (d2), respectively. However recall that R−N

is the present factor for N periods where the per capital rate is R. This present value factor
is equivalent to exp(−rT ) when the interest rate is continuously compounded. So the binomial
formula is equivalent to

C = S0Ψ(a;N, q∗) − Xe−rT Ψ(a;N, q),

Which is the same as (2.13) in the previous chapter. We proceed to get this binomial formula to
converge to the Black-Scholes formula.
Since we require S0U

aDn−a > X, it follows that

a ln U + (N − a) ln D + ln S0 > ln X

a ln U + N ln D − a ln D + ln S0 > ln X

a(ln U − ln D) > ln X − lnS0 − N ln D

a >
ln(X/S0D

N )
ln(U/D)

But a should be an integer therefore,

a =
ln(X/S0) − n ln D

ln(U/D)
+ ξ

where ξ is the number added to make a an integer.
From the famous De Moivre-La Place limit theorem, which says that a binomial model converges
to normal if np → ∞ as n → ∞. That is, we need to show for example

Ψ(a;N, q∗) →
∫ ∞

a
f(j)dj,

where f(j) is the probability density function for a normal distribution. We need to convert a
random variable j in a standard normal such that z = j−E(j)

σj
. Then we would have

Ψ(a;N, q∗) →
∫ ∞

a
f(j)dj =

∫ ∞

d
f(z)dz.
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where d = (a − E(j))/σj .
By the symmetry of the normal distribution we can define d = −(a − E(j))/σj . Hence

Ψ(a;N, q∗) →
∫ ∞

a
f(j)dj =

∫ d

−∞
f(z)dz = N (d1)

where N (d) is the cumulative probability distribution function for the standard normal distribu-
tion.
Similarly;

Ψ(a;N, q) →
∫ ∞

a
f(j)dj =

∫ d

−∞
f(z)dz = N (d2)

Now let ST be the stock price at expiration, such that;

ST = S0U
jDN−j

ST/S0 = U jDN−j.

Thus the log return on the stock over the life of the option is

ln(ST /S0) = j ln U + (N − j) ln D

= j ln(U/D) + N ln D.

Then we take the expectation such that,

E ln(ST /S0) = E(j) ln(U/D) + N ln D.

Hence
E(j) =

E[ln(ST /S0)] − N ln D

ln(U/D)
. (3.22)

The variance of the log return on the stock over the life of option is
Var[ln(ST /S0)] = Var(j)[ln(U/D)]2.
Thus

Var(j) =
Var[ln(ST /S0)]

[ln(U/D)]2
. (3.23)

Since d = (−a + E(j))/σj , a = ln(X/S0)−N lnD
ln(U/D) + ξ, and E(j) and Var(j) are as given above,

d =
ln(S0/X) + E[ln(ST /S0)] − ξ ln(U/D)√

Var[ln(ST /S0)]

=
ln(S0/X) + E[ln(ST /S0)]√

Var[ln(ST /S0)]
− ξ√

Var[ln(ST /S0)]

ln(U/D)

. (3.24)

From the properties of the binomial distribution, it is known that Var(j)=nq(1-q) where q is the
probability per outcome. Therefore

d =
ln(S0/X) + E[ln(ST /S0)]√

Var[ln(ST /S0)]
− 1√

q(1 − q)
ξ√
n

. (3.25)
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As n goes to infinity, the last term can be ignored. The discrete binomial process is then converging
to a continuous log-normal process, for which it is known that V ar[ln(ST /S0)]=σ2T . Thus we have

d =
ln(S0/X) + E[ln(ST /S0)]

σ
√

T
. (3.26)

But we need this to be equal to d1 and d2 as defined by the Black-Scholes formula when the
probabilities are q∗ and q respectively. This means that we need

E[ln(ST /S0)] = (r + σ2/2)T

if the probability is q∗ and

E[ln(ST /S0)] = (r − σ2/2)T

if the probability is q.
But

q∗ =
qU

R

=
U

R

(
R − D

U − D

)
(3.27)

Rearrange to solve for R
R = [q∗(1/U) + (1 − q∗)(1/d)]−1.

Recall that RN = rT = [q∗(1/U) + (1 − q∗)(1/d)]−N Note that S0/ST can be expressed as follow:

S0/ST = (S0/S1)(S1/S2) . . . (Sn−1/Sn) =
N∏

i=1

(Si−1/Si). (3.28)

The expectation of this would be

E(S0/ST ) =

[
E

n∏
i=1

(Si−1/Si)

]
=

n∏
i−1

E(Si−1/Si) (3.29)

Now recall that the probability for Ψ(a;N, q∗) is q∗. Since Si = Si−1U with probability q∗ and
Si = Si−1D with probability (1 − q∗), then it follows that

E(Si−1/Si) = q∗(1/U) + (1 − q∗)(1/D) (3.30)

Thus

E(S0/ST ) =
n∏

i=1

[q∗(1/U) + (1 − q∗)(1/D)]

= [q∗(1/U) + (1 − q∗)(1/D)]n. (3.31)

Inverting this gives
[E(S0/ST )]−1 = [q∗(1/U) + (1 − q∗)(1/D)]−n. (3.32)

Since rT = [q∗(1/U)+ (1− q∗)(1/D)]−n, then rT = E[S0/ST ]−1 or r−T = E[S0/ST ]. Since ST/S0 is
log-normally distributed, it is also true that the inverse of log-normal distribution is also log-normal
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distributed. And for any random variable x that is log-normally distributed the following equation
holds, i.e ln[E(x)] = E[ln x] + Var[ln x]/2. Therefore since S0/ST is a random variable which is
log-normally distributed, it is true that

−T ln r = ln[E(S0)/ST ]
= E[ln(S0/ST )] + Var[ln(S0/ST )]/2
= E[− ln(ST /S0)] + Var[− ln(ST /S0)]/2
= −E[ln(ST )/S0] + Var[ln(ST /S0)]/2.

What we have now is
E[ln(ST /S0)] = T ln r + Var[ln(ST /S0)]/2.

But we know that Var[ln(ST /S0)] = σ2T , thus we have

E[ln(ST /S0)] = (ln r + σ2/2)T. (3.33)

c But ln r = rc Therefore by Combining (3.26) (3.33) and Ψ(a;N, q∗) converges to N (d1) For
Ψ(a;N, q) to converge to N (d2), recall that q = (R−D)

(U−D) , then R = qU + (1− q)D. Since Si = Si−1U
with probability q and Si = Si−1D probability 1 − q, then

E(Si)/Si−1 = qU + (1 − q)D.

Since

E(ST /S0) = E

N∏
i=1

(Si/Si−1) =
N∏

i=1

E(Si/Si−1)

=
n∏

i=1

[qU + (1 − q)D]

= [qU + (1 − q)D]N = RN = rT . (3.34)

By taking the logarithm

ln[E(ST /S0)] = E[ln(ST /S0)] + Var[ln(ST /S0)]/2 = T ln r. (3.35)

Thus we have
E[ln(ST /S0)] = T ln r − Var[ln(ST /S0)]/2 (3.36)

Recalling that Var[ln(ST /S0)] = σ2T , we have

E[ln(ST /S0)] = (ln r − σ2/2)T (3.37)

recall ln r = rc hence Ψ(a;N, q) converges to N (d2). Thus, the binomial model converges to Black-
Scholes.



Chapter 4

Numerical implementations

In this chapter we are going to analyse the numerical methods used to explain the rate and order
of convergence of the binomial model to the Black-Scholes model. We will explain three lattice
approaches developed simultaneously by Cox, Ross, and Rubinstein CRR(1979), Jarrow and Rudd
(1983), and Tian(1993)[2] to price derivative securities numerically. From the second chapter we
have seen that the formula for pricing options in the binomial model is given by the equation below,

C(S0, t) = S0Ψ(a;n, q∗) − XR−NΨ(a;n, q) (4.1)

where a =
⌊

ln(X/S0)−n lnD
lnU−ln D

⌋
, q = R−D

U−D and q∗ = qU
R and n is the number of periods. These authors

use different numerical approaches to improve the binomial option pricing model.

4.1 Parameters used in the CRR model

The numerical method developed by Cox, Ross and Rubinstein[79] used the following parameters;

U = exp
(
σ
√

T/n
)
, D = exp

(
−σ

√
T/n

)
and R = exp (rT/n)

where n is the number of steps used. T is the expiration date. The values of the parameters used
in running the simulations are as indicated in figure 4.1. The algorithms used to simulate the
oscillations are shown in the appendix. From figure 4.1 the oscillations and wave patterns indicate
results from option price from the binomial model. The straight line indicates the Black-Scholes
solution. At the beginning of the oscillations, the magnitude of the amplitude ranges from 9.78
to 10.29. It can be observed that as the number of steps increase the amplitudes of oscillations
decrease which shows that the binomial model converges to the Black -Scholes model.

4.2 Parameters used in the JR model

There exist many extensions of the CRR model. Jarrow and Rudd (1983)[2] JR, adjusted the CRR
model by adding the local drift term. They constructed a binomial model where the first two mo-
ments of the discrete and continuous time return processes match. As a consequence a probability
measure equal to a half results. Therefore the CRR and JR models are sometimes attributed as
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Figure 4.1: typical pattern resulting from option price for valuing call option calculations with
binomial model: example with CRR-Model with parameters: S = 100,X = 110, T = 1, r =
0.05, σ = 0.3, n = 10, . . . , 250

equal jump binomial trees and equal probabilities binomial trees [2]. Jarrow and Rudd(1983) used
the following parameters in their numerical implementation to simulate the oscillations of option
pricing in the binomial model.

U = exp
(
µT/n + σ

√
T/n

)
, D = exp

(
µT/n − σ

√
T/n

)
, µ = r − 1/2σ2

where n is the number of steps, µ is the expected return of the asset price, r is the risk-free
interest rate. The algorithms used to simulate the oscillations are as indicated in the appendix.
The figure resulted after running the simulation is shown in figure 4.2. At the beginning of the
oscillations, the magnitude of the amplitudes ranges from 9.72 to 10.29 which is slightly bigger
than the CRR model. Also it can be observed that as the number of steps increases the amplitudes
of the oscillations decrease. The option prices oscillate unsymmetrically with changing amplitude
around the Black-Scholes solution for the European call option.

4.3 Parameters used in TIAN model

Tian (1993) proposed binomial and trinomial models where the model parameters are derived
as unique solutions to equation systems, established from sufficient conditions to acquire weak
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Figure 4.2: typical pattern resulting from option price for valuing call option calculations with
binomial model: example with JR-Model with parameters: S = 100,X = 110, T = 1, r = 0.05, σ =
0.3, n = 10, . . . , 250

convergence. The parameters are as indicated below,

U =
Rν

2

(
ν + 1 +

√
ν2 + 2ν − 3

)
,D =

Rν

2

(
ν + 1 −

√
ν2 + 2ν − 3

)
, ν = exp

(
σ2T/n

)
, R = exp (rT/n)

The results obtained after running the simulation is as shown in figure 4.3. The straight line is the
value of the option calculated from the Black-Scholes formulae. At the beginning of the oscillations,
the magnitude of the amplitude ranges from 9.95 to 10.15 which shows a slight difference compared
to the CRR model and JR model. But as the number of steps increases, the magnitude of the
amplitudes decrease which indicates that the option price in the binomial model converges to the
Black-Scholes model.

Proposition 4.1 : The lattice-approaches proposed by CRR(1979), JR(1983), TIAN(1993) con-
verge with order one. The proof is shown in [2]

4.4 Odd-even binomial model

In the sections above, we have been dealing with the homogeneous binomial model in which there is
no distinction between the increments. In particular in the homogeneous binomial model, conver-
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Figure 4.3: typical pattern resulting from option price for valuing call option calculations with
binomial model: example with JTIAN-Model with parameters: S = 100,X = 110, T = 1, r =
0.05, σ = 0.3, n = 10, . . . , 250

gence in stock price implies convergence in option price.[4] In this section we describe the odd-even
binomial model in contrast to the homogeneous binomial model.

Definition 4.1 :

Generally a sequence of asset prices (Sn) is a binomial model if each discounted asset price process
(Sn) evolves as follows: for t ∈ [0, T ]

Sn
t = S0exp

⎛
⎝�nt�∑

k=1

ξn
k

⎞
⎠ (4.2)

where n is the number of periods, and k is the number of intervals, S0 > 0 is constant and
the increments (ξn

k ) of logarithmic discounted returns Xn
t =

∑�nt�
k=1 ξn

k form a row-wise independent
triangular array. The random variables ξn

k assume two values Un
k and Dn

k with positive probabilities
pn

k and 1 − pn
k , thus {

ξn
k = Un

k with probabilities pn
k ,

ξn
k = Dn

k with probabilities 1 − pn
k .

(4.3)

For k = 1, . . . , n and Dn
k < 0 and Un

k > 0. The model is called homogeneous if (Un
k ,Dn

k , pn
k) depend

on n but not on k. It is called an odd-even binomial model if these parameters depend on n
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and the parity of k.

In the odd-even binomial model, we find some convergence criteria. Since it has been difficult to
investigate the nature of convergence for some odd-even parameters of the binomial tree, it is not
easy to say numerically that the odd-even binomial model converges. This should depend on the
choice of the parameters of the binomial tree. Analytically, the odd-even binomial model under
risk-neutral probability converges to a geometric Wiener process[4]. See example 4.1. Thus, the
nature of convergence is as indicated in figure 4.4.

Example 4.1 : There is an odd-even model such that under the physical probability measures Pn

the sequence (Sn) converges in distribution to geometric Brownian(Wiener) motion with parameters
µ and σ2, and under the risk-neutral probability measure (Qn) the sequence of stock prices (Sn)
converges to the geometric Brownian motion with parameters −σ2/2 and σ.[4]

 5.3

 5.4

 5.5

 5.6

 5.7

 5.8

 5.9

 6

 0  50  100  150  200  250

op
tio

n 
pr

ic
es

number of periods

Figure 4.4: typical pattern resulting from option price for valuing call option calculations with odd-
even binomial model: with parameters: S = 100,X = 110, T = 1, r = 0.05, σ = 0.3, n = 10, . . . , 250

From the data obtained we can say that the stock price has the log-normal distribution which
agreed with the assumptions of the Black-Scholes model. The random variable has a log-normal
distribution if the natural logarithm of the random variable is normally distributed. The histogram
shows that the logarithm of the stock price is normally distributed.

Theorem 4.1 : Suppose a sequence of homogeneous binomial models (Sn) with Un
k → 0, Dn

k → 0
convergences in distribution under Pn to Black-Scholes model with parameters µ, σ2. Then under
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Figure 4.5: Histogram of the logarithmic of the stock price plotted against frequency

the corresponding martingale measures Qn the sequence {Sn|Qn} converges to the Black-Scholes
model with parameters −σ2/2, σ2

Proof

Given the following assumptions

n[Unpn + Dn(1 − pn)] → µ, n(Un − Dn)2pn(1 − pn) → σ2. (4.4)

where n is the number of steps of the binomial tree model, Un and Dn are tree parameters (binomial
model parameters). This follows from the central limit theorem. We claim that

σ2 = − lim nUnDn. (4.5)

By the assumption (4.4) we have, Unpn + Dn(1 − pn) = O(1/n). Therefore we can write

(Un − Dn)pn = −Dn + O(1/n), (Un − Dn)(1 − pn) = Un + O(1/n) (4.6)

Then by multiplying the equations in (4.6) you obtain the following;

n(Un − Dn)pn(1 − pn) = −nDnUn + O(Un) + O(Dn) + O(1/n) (4.7)

But from the Theorem (4.1)we consider models with Un → 0 and Dn → 0. Therefore from (4.4)
we have proved the claim that σ2 = − lim nUnDn

The risk-neutral probability measure is given by the familiar formula (Cox, Ross, and Rubin-
stein 1979[6]; Rachev, Rüschendorf 1994[11]; Shiryaev, Kramkov, and Mel’nikov 1994[14]; Pliska
(1997)[10]

qn
k =

1 − eDn
k

eUn
k − eDn

k
. (4.8)
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But the homogeneous binomial model depends on n and not on k, therefore we have

qn =
1 − eDn

eUn − eDn (4.9)

By doing the Taylor expansion and calculate the asymptotic expansion of the risk neutral proba-
bilities, we get the following expansion

qn =
−Dn

Un − Dn

[
1 − Dn

2
+ O(Un − Dn)2

]
. (4.10)

We find,

n(Un − Dn)2qn(1 − qn) = −nUnDn + O(DnUn(Un − Dn)) + O(
Un − Dn

n
). (4.11)

Finally equation (4.11) shows that n(Un − Dn)qn(1 − qn) → σ2. Also we can see that,

Unqn + Dn(1 − qn) =
DnUn

2
+ O(Un − Dn)3. (4.12)

Equation (4.12) shows that n(Unqn + Dn(1 − qn)) → −σ2/2. Hence the theorem proved.

In the financial market this theorem is useful, it explains why is it necessary to price option under
risk-neutral probability measure rather than the normal physical probability. This is because if the
option is wrongly priced it can allow the arbitrage opportunity (see prop.2.1), and this is obvious
when we price under physical probability measure.



Conclusion

In this essay we have seen how the option price in the binomial model converges to the option price
in the Black-Scholes model. We have also seen that the stock price in the binomial model converges
to the geometric Wiener process. These concepts have been possible through the application of
the Central limit theorem which says that the sum of independent, identically distributed random
variables with finite mean µ and variance σ2 is approximately normal as the sample size n becomes
large. For this case we have considered the stock price as log-normally distributed random variables
which are independent and identically distributed. We have used both analytical and numerical
approaches to prove the convergence criteria. In the numerical approaches we have seen the lattice
model developed by Jarrow and Rudd; and Tian models. These authors made some modifications
to the binomial model developed by Cox, Ross and Rubinstein by adding some parameters such as
the local drift term. The binomial model is a powerful discrete market model that converges to the
continuous market model as the length of the time step decreases. We have seen the homogeneous
binomial model as well as the odd-even binomial model. In the homogeneous binomial model there
is no difference between the increments of the parameters Un

k and Dn
k , that is for every n-period

model U and D are the constant for all the levels k of the tree, and in particular in the homogeneous
binomial model convergence in the stock price implies the convergence in the option price. In the
odd-even binomial model the parameters Un

k and Dn
k depend on n and the parity of k. Some of

the proof has been attached in the appendix as well as the programs for running the simulations
which were written in the octave programing language.



Appendix A

Derivation of Black-Scholes pricing
formula for European options

The Black-Scholes equation is

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (A.1)

as shown in chapter two. This equation must be solved with final condition depending on the
payoff, each contract will have different functional form prescribed at expiry t = T , depending on
whether it is a call or put. Let us change from the present to the future since we valuing the option
at the time t and payoff is received at time T . Then the value of an option in the future will be
given as

V (S, t) = e−r(T−t)U(S, t)

this takes our differential equation to

∂U

∂t
+

1
2
σ2S2 ∂2U

∂S2
+ rS

∂U

∂S
= 0

Because we are solving backward let τ = T − t so that

∂U

∂τ
+

1
2
σ2S2 ∂2U

∂S2
+ rS

∂U

∂S
= 0 (A.2)

Let ξ = log S then we find ∂
∂S = e−ξ ∂

∂ξ and ∂2

∂S2 = e−2ξ ∂2

∂ξ2 − e−2ξ ∂
∂2ξ thus equation (A.2) becomes

∂U

∂τ
=

1
2
σ2e2ξ

(
e−2ξ ∂2U

∂ξ2
− e−2ξ

∂U

∂ξ

)
+ reξ

(
e−ξ ∂U

∂ξ

)

∂U

∂τ
=

1
2
σ2 ∂2U

∂ξ2
+ (r − 1

2
σ2)

∂U

∂ξ

Note we change the problem from 0 ≤ S ≤ ∞ to one defined as −∞ ≤ ξ ≤ ∞; and all coefficients
are constant independent of the underlying. this is called the log-normality of the underlying asset.

Let’s write x = ξ + (r − 1
2σ2)τ and U = W (x, τ). This is just translation of the coordinate system.

Let y = τ so that for any arbitrary function f(ξ, τ)

∂f

∂ξ
=

∂f

∂x

∂x

∂ξ
+

∂f

∂y

∂y

∂ξ
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∂2f

∂ξ2
=

∂x

∂ξ

∂

∂x

(
∂f

∂x

∂x

∂ξ
+

∂f

∂y

∂y

∂ξ

)
+

∂y

∂ξ

∂

∂y

(
∂f

∂x

∂x

∂ξ
+

∂f

∂y

∂y

∂ξ

)
From these chain formula we have

∂U

∂τ
= (r − 1

2
σ2)

∂W

∂x
+

∂W

∂τ

∂U
∂ξ = ∂W

∂x and ∂2U
∂ξ2 = ∂2W

∂x2 so that we have:

∂W

∂τ
=

1
2
σ2 ∂2W

∂x2
(A.3)

Now we are going to derive an expression for the value of any option whose payoff is known
function of the asset price at expiry. The fundamental solution of equation A.3 has the form
W (x, τ) = ταf

(
x−x′
τβ

)
, where x′ is arbitrary constant. Need to find parameters α, β: Using the

composite function differentiation df [g(x)]
dx = f ′[g(x)] × g′(x) we have

∂W

∂τ
= τα−1

(
αf − β

(x − x′)
τβ

f ′
(

x − x′

τβ

))

Let η = x−x′
τβ then L.H.S

∂W

∂τ
= τα−1

(
αf − βη

∂f

∂η

)

and ∂W
∂x = τα

τβ f ′
(

x−x′
τβ

)
, ∂2W

∂x2 = ∂
∂x

(
τα

τβ f ′
(

x−x′
τβ

))
= τα

τ2β f ′
(

x−x′
τβ

)
= τα−2β ∂2f

∂η2 Thus equation A.1
becomes

τα−1

(
αf − βη

∂f

∂η

)
=

1
2
σ2τα−2β ∂2f

∂η2
(A.4)

Thus we can have solution if α − 1 = α − 2β that is β = 1
2

We want our ’special solution’ to have the property that its integral over all ξ is independent of
τ . To ensure this we require

∫∞
−∞ ταf

(
x−x′
τβ

)
dx to be constant. So we can write

∫∞
−∞ τα+βf(η)dη

and we need α = −β = 1
2 .

The function f now satisfies −f − η ∂f
∂η = σ2 ∂2f

∂η2 this can be written

σ2 ∂2f

∂η2
+

∂(ηf)
∂η

= 0

Integrate once you get

σ2 ∂f

∂η
+ ηf = a

(a is constant). for special solution we require a = 0 and on integration we have;

f(η) = be−
η2

2σ2

We choose the constant b in such away that the integral of f from −∞ to +∞ is equal to one.

f(η) =
1√
2πσ

e−
η2

2σ2
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This is the special function we were seeking then W (x, τ) = 1√
2πσ

e−
(x−x′)2

2σ2τ

This function can be approximated by Dirac delta function δ(x′ − x) as τ → 0 we know∫
δ(x′ − x)g(x)dx′ = g(x)

Thus in the limit as τ → 0 the function W becomes a delta function at x = x′. This means that;

lim
τ→0

1
σ
√

2πτ

∫ ∞

−∞
e−

(x−x′)2
2σ2τ g(x′)dx′ = g(x)

This property of special function and linearity of the Black-Scholes equation are all that we needed
to find some explicit solutions.

Now the payoff(S) is the value of option at time t = T . It is the final condition for the function
V , satisfying the Black-Scholes equation V (S, T ) = payoff(S) with our variable this function is
W (x, 0) = payoff(ex′

). But for τ > 0 it claimed that [9] W (x, τ) =
∫∞
−∞ Wf (x, τ ;x′)payoff(ex′

)dx′.

Referring to our steps to write our solution in terms of the original variables, we get

V (S, t) =
e−(T−t)

σ
√

sπ(T − t)

∫ ∞

0
e
− log( S

S′ )+(r−1
2 σ2)(T−t)2

2σ2(T−t) payoff(S′)
dS′

S′ (A.5)

We have x′ = log S′. This is exact solution for the option value in terms of the arbitrary payoff
function. c

A.0.1 Formula for Call option

payoff(S) = max(S − X, 0), using equation A.5 we have

e−r(T−t)

σ
√

2π(T − t)

∫ ∞

X
e
− log( S

S′ )+(r−1
2 σ2)(T−t)2

2σ2(T−t) (S′ − X)
dS′

S′

But x′ = log S′, then

e−r(T−t)

σ
√

2π(T − t)

∫ ∞

log X
e
−−x+log S+(r−1

2 )(T−t)2

2σ2(T−t) (ex′ − X)dx′

=
e−r(T−t)

σ
√

2π(T − t)

∫ ∞

log X
e
−−x+log S+(r−1

2 )(T−t)2

2σ2(T−t) ex′
dx′

− Ee−r(T−t)

σ
√

2π(T − t)

∫ ∞

log X
e
−−x+log S+(r−1

2 )(T−t)2

2σ2(T−t) dx′

Both of this integral can written as
∫∞
d e−

x′2
2 for some d. Thus the call option can be written as

C = SN (d1) − Xe−r(T−t)N (d2) (A.6)

with

d1 =
log( S

X ) + (r + 1
2σ2)(T − t)

σ
√

T − t
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d2 =
log( S

X ) + (r − 1
2σ2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t

When there is continuous dividend yield on the underlying,

C = Se−q(T−t)N (d1) − Xer(T−t)N (d2) (A.7)

where

d1 =
log( S

X ) + (r − q + 1
2σ2)(T − t)

σ
√

T − t

d2 =
log( S

X ) + (r − q − 1
2σ2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t

A.0.2 Formula for Put option

The put option has payoff
Payoff(S) = max(X − S, 0).

The value of put option can be found in the same way as in the case of call option.

P = −SN (−d1) + Xe−r(T−t)N (−d2) (A.8)

with the same d1 and d2.

When there is continuous dividend yield on the underlying,

P = −Se−q(T−t)N (−d1) + Xer(T−t)N (−d2) (A.9)

with the same d1 and d2 as equation A.6.



Appendix B

Numerical methods

%THE ALGORITHMS RUN BY OCTAVE PROGRAMING LANGUAGE TO SIMULATE
%CCR-MODEL,JR-MODEL AND TIAN-MODEL.
-------------------------------------------------------------------------------

%Simulation by using CRR model for valuing call option.
clear all;

s=100; %The current stock price
k=110; %Strike price
T=1;
r=0.05;
sigma=0.3;

out=fopen("converge.dat","w");
i=10;
while(i<100)
n=i;
u=exp(sigma*sqrt(T/n));
d=1/u;
R=exp(r*T/n);
p=(R-d)/(u-d); %Risk-neutral probability measure.
q=(u*p)/R;
a=floor((log(k/s)-n*log(d))/log(u/d));
%cn is the option price from the binomial pricing formula
cn=s*(1-binomial_cdf(a, n, q))-(k*(1-binomial_cdf(a,n,p)))/R^n;
fprintf(out,"%d\t%f\n",n,cn);
i=i+1;

endwhile
fclose(out);

-------------------------------------------------------------------------------
%Simulation by using JR[83] model for valuing call option.
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clear all;

s=100; %The current stock price
k=110; %Srike price
T=1;
r=0.05;
sigma=0.3;
mu=r-sigma^2/2;
out=fopen("JRmodel.dat","w");
i=10;
while(i<100)
n=i;

% u and d are the binomial tree parameters proposed by Jarrow and Rudd in 1983
u=exp(mu*T/n+sigma*sqrt(T/n));
d=exp(mu*T/n-sigma*sqrt(T/n));
R=exp(r*T/n);
p=(R-d)/(u-d);
q=(u*p)/R;
a=floor((log(k/s)-n*log(d))/log(u/d));
cn=s*(1-binomial_cdf(a, n, q))+(k*(1-binomial_cdf(a,n,p)))/R^n;
fprintf(out,"%d\t%f\n",n,cn);
i=i+1;

endwhile
fclose(out);

-------------------------------------------------------------------------------
%Simulation by using TIAN[93] model for valuing the call option.
clear all;

s=100; %The stock price at time zero
k=110; %The strike price
T=1;
r=0.05;
sigma=0.3;
out=fopen("TIANmodel.dat","w");
i=10;
while(i<120)
n=i;

% u and d are the binomial tree parameters proposed by Tian in 1993
R=exp(r*T/n);
v=exp(sigma^2*T/n);
u=R*v/2*(v+1+sqrt(v^2+2*v-3));
d=R*v/2*(v+1-sqrt(v^2+2*v-3));
p=(R-d)/(u-d);
q=(u*p)/R;
a=floor((log(k/s)-n*log(d))/log(u/d));
cn=s*(1-binomial_cdf(a, n, q))-(k*(1-binomial_cdf(a,n,p)))/R^n;
fprintf(out,"%d\t%f\n",n,cn);
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i=i+1;
endwhile
fclose(out);

-------------------------------------------------------------------------------
%PROGRAM TO RUN BROWNIAN MOTION BY USING OCTAVE PROGRAMING LANGUAGE
clear all;

out=fopen("pendo.dat","w");
i=0;
x=0;
dt=0.001;
mu=0.1; % mu is given
sigma=0.2; % also sigma

while( i < 3)
b=randn(1); %This generate random number from -1 to 1

%This is the log-normal random walk differential equation.
x= x + mu*dt + sigma * (sqrt(dt)*b);
fprintf(out,"%f\t%f\n",i,x);
i=i+dt;

endwhile

fclose(out);

-------------------------------------------------------------------------------
% THIS PROGRAM CONSTRUCTS THE ODD-EVEN BINOMIAL TREE
% as defined in [4], Definition 3.3
% References: [4] Hubalek and Schachermayer, "When does convergence of
% assest prices imply convergence of option prices?"
% Authors: Pendo Kiyiro, Diane Wilcox and Mike Pickles.
% Date: 23 May 2005
% Revision: 1.1

clear all;

% Initialise variables
s=100;
k=110;
T=1;
r=0.05;
sigma=0.3;
a=0.1 ;
out=fopen("ODDpendo2.dat","w");

for n=10:250
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disp(n); %how far has the program got?
%Construct tree with n periods
% determine u and d at ith level of n-period tree
% (for each n-period tree the u and d values will depend on n
% and on i, where i denotes the level in the n-period tree)

mu=0.1;
sigma1=0.3;
sigma2=0.2;

uodd= exp(sigma1/sqrt(n)+mu/n);
ueven=exp(sigma2/sqrt(n)+mu/n);
dodd = exp(-sigma2/sqrt(n)+mu/n);
deven= exp(-sigma1/sqrt(n)+mu/n);

qodd = (1-dodd)/(uodd-dodd);
qeven = (1-deven)/(ueven-deven);

if (qodd<0)
disp(’q negative!’);

endif
if (qeven<0)

disp(’q negative!’);
endif
% determine stock prices at ith level of n-period tree
neven=floor((n-1)/2);
nodd=floor(n/2);

S(1,1,1)=s;

S(2,1,1)=S(1,1,1)*dodd;
S(2,2,1)=S(1,1,1)*uodd;

for i=2:(n-1)

ieven=floor((i-1)/2);
iodd=floor(i/2);
if (rem(i,2)==0) %for even i the steps look like this
for jodd=1:iodd+1

for jeven=1:ieven+1
S(i+1,jodd,jeven+1)=S(i,jodd,jeven)*ueven;

endfor
S(i+1,jodd,1)=S(i,jodd,1)*deven;

endfor

endif

if (rem(i,2)==1) %for odd i the steps look like this
for jeven=1:ieven+1
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for jodd=1:iodd+1
S(i+1,jodd+1,jeven)=S(i,jodd,jeven)*uodd;

endfor
S(i+1,1,jeven)=S(i,1,jeven)*dodd;

endfor
endif

endfor %end of the for i=1..n loop

% determine option payoffs at nth period (expiry)
for jeven=1:neven+1

for jodd=1:nodd+1
C(n,jodd,jeven)=max(S(n,jodd,jeven)-k,0);

endfor
endfor

% evaluate option values at each level by iterating backwards through
% the tree

for i=n-1:-1:1

ieven=floor((i-1)/2)+1;
iodd=floor(i/2)+1;

if (rem(i,2)==1)
for jeven=1:ieven

for jodd=1:iodd
C(i,jodd,jeven)=qodd*C(i+1,jodd+1,jeven)+(1-qodd)*C(i+1,jodd,jeven);

endfor
endfor

endif

if (rem(i,2)==0)
for jodd=1:iodd

for jeven=1:ieven
C(i,jodd,jeven)=qeven*C(i+1,jodd,jeven+1)+(1-qeven)*C(i+1,jodd,jeven);

endfor
endfor

endif
cn=C(1,1,1);
endfor

fprintf(out,"%d\t %f\n ",n,cn);
endfor
fclose(out);

-------------------------------------------------------------------------------
%THE PROGRAM TO GENERATE THE LOG-NORMAL
%DISTRIBUTION OF THE STOCK PRICE
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%Author:Mike Pickles, Pendo Kivyiro and Diane Wilcox.
clear all;

n=100; %number of timesteps in one experiment
total=10000; %run total experiments
S0=100;
nodd=floor((n+1)/2);
neven=floor(n/2);
storeS=[];

p=0.5; %probability of moving down
mu=0.1;
sigma1=0.3;
sigma2=0.2;

uodd= exp(sigma1/sqrt(n)+mu/n);
ueven=exp(sigma2/sqrt(n)+mu/n);
dodd = exp(-sigma2/sqrt(n)+mu/n);
deven= exp(-sigma1/sqrt(n)+mu/n);
qodd = (1-dodd)/(uodd-dodd);
qeven = (1-deven)/(ueven-deven);
if (qodd<0)

disp(’q negative!’);
endif
if (qeven<0)

disp(’q negative!’);
endif
for j=1:total
S=S0;
for i=1:n %do n timesteps
test=rand(1);
if (test>p) %move up with probability 0.5
if (rem(i,2)==0) %i is even

S=S*ueven;
endif
if (rem(i,2)==1) %i is odd

S=S*uodd;
endif

endif
if (test<=p) %move down with probability 0.5
if (rem(i,2)==0) %i is even

S=S*deven;
endif

if (rem(i,2)==1) %i is odd
S=S*dodd;

endif
endif

endfor
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storeS=[storeS;S];
endfor
y=log(storeS) %changes to logarithm
sigma=sqrt(p*(1-p))*(sigma1+sigma2); %theoretical standard deviation
z = linspace(min(y)-0.5,max(y)+0.5,100) %an approximation to where
the histogram is.

z2=1/(20*sqrt(2*pi*sigma^2)) *
exp(-(z-(mu+log(S0))).*(z-(mu+log(S0)))/(2*sigma^2));

%The theoretical mean of log(storeS/S0)
hist(y,175,1) %use 175 bins, so each bin will be very narrow
hold on
plot(z,z2)
hold off
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Refinement CRRmodel JRmodel TIANmodel CRRerror JRerror TIANerror
10 10.292187 10.294023 10.142217 -0.272187 -0.274023 -0.122217
11 9.776203 9.727338 10.137172 0.243797 0.292662 -0.117172
12 10.242369 10.249297 10.143919 -0.222369 -0.229297 -0.123919
13 9.887574 9.843215 10.098915 0.132426 0.176785 -0.078915
14 10.199981 10.210896 10.142120 -0.179981 -0.190896 -0.122120
15 9.959455 9.921630 10.070905 0.060545 0.098370 -0.050905
16 10.163487 10.177631 10.138674 -0.143487 -0.157631 -0.118674
17 10.007212 9.974899 10.049512 0.012788 0.045101 -0.029512
18 10.131694 10.148523 10.134468 -0.111694 -0.128523 -0.114468
19 10.039445 10.011855 10.032642 -0.019445 0.008145 -0.012642
20 10.103695 10.122802 10.129952 -0.083695 -0.102802 -0.109952
100 10.045145 10.047339 10.033662 -0.025145 -0.027339 -0.013662
101 10.007846 9.990731 10.033165 0.012154 0.029269 -0.013165
102 10.043951 10.046732 10.032530 -0.023951 -0.026732 -0.012530
103 10.010961 9.994590 10.033758 0.009039 0.025410 -0.013758
104 10.042695 10.046046 10.031425 -0.022695 -0.026046 -0.011425
105 10.013823 9.998175 10.034295 0.006177 0.021825 -0.014295
106 10.041384 10.045289 10.030347 -0.021384 -0.025289 -0.010347
107 10.016449 10.001505 10.034781 0.003551 0.018495 -0.014781
108 10.040024 10.044468 10.029294 -0.020024 -0.024468 -0.009294
109 10.018855 10.004597 10.035219 0.001145 0.015403 -0.015219
110 10.038619 10.043588 10.028265 -0.018619 -0.023588 -0.008265
240 10.031088 10.028554 10.019904 -0.011088 -0.008554 0.000096
241 10.009649 10.020173 10.029287 0.010351 -0.000173 -0.009287
242 10.031069 10.028799 10.020233 -0.011069 -0.008799 -0.000233
243 10.008782 10.019520 10.029061 0.011218 0.000480 -0.009061
244 10.031029 10.029022 10.020550 -0.011029 -0.009022 -0.000550
245 10.007913 10.018862 10.028834 0.012087 0.001138 -0.008834
246 10.030970 10.029221 10.020856 -0.010970 -0.009221 -0.000856
247 10.007042 10.018199 10.028607 0.012958 0.001801 -0.008607
248 10.030892 10.029399 10.021151 -0.010892 -0.009399 -0.001151
249 10.007439 10.017531 10.028381 0.012561 0.002469 -0.008381

Table B.1: Some of the results generated from lattice methods developed by CRR, JR and TIAN
models. The exact values of the price of the option is 10.02 calculated from the Black-Scholes
pricing formula
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