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1 The Normal Distribution

Because the future price of a stock at time t cannot be predicted with cer-
tainty, we model it as a random variable, denoted here by S(t). Since random
variables are characterised by their distribution functions it is useful to have
a notation to express this concept.

Definition 1.1 We use the symbol X
D= Y to mean that the random vari-

ables X and Y have the same distribution,i.e.,

P (X ≤ t) = P (Y ≤ t), −∞ < t < ∞

Of the many distributions that the reader is likely to encounter in finance
it is the normal and log normal distributions defined below, that are the most
important.

Definition 1.2 A random variable X with distribution function given by

F (x) = P (X ≤ x) =
∫ x

−∞

1
σ
√

2π
e−(t−µ)2/2σ2

dt

is said to have a normal distribution with E(X) = µ and V (X) = σ2. We
express this by writing X

D= N(µ, σ2).

We will prove later in these notes that ln(S(t)§0) D= N(tµ, tσ2), that is,
the stock price has a log normal distribution in the sense of the following
distribution.

Definition 1.3 We say that the non negative random variable W has a log
normal distribution if ln(W ) D= N(µ, σ2).
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It can be shown, we omit the details, that

E(W ) = e(µ+σ2/2) (1)

V (W ) = e(2µ+σ2)(eσ2 − 1) (2)

The probability density function of the normal distribution depends on
two parameters µ and σ and is defined by the equation

f(x;µ, σ) =
1

σ
√

2π
e−(x−µ)2/2σ2

; −∞ < x < ∞, (3)

where
−∞ < µ < ∞; 0 < σ < ∞.

Using techniques from advanced calculus one can verify that∫ ∞

−∞

1
σ
√

2π
e−(x−µ)2/2σ2

dx = 1,

and that E(X) = µ, V (X) = σ2; we omit the details.
The graph of the normal pdf is a bell shaped curve called the normal

curve. Its importance for statistics and finance rests on the fact that the
relative frequency histograms of many data sets, including stock market
returns, can be approximated by a normal curve. In the physics and engi-
neering literature the normal distribution is also called the Gaussian distri-
bution.

Definition 1.4 A normally distributed random variable with µ = 0 and
σ = 1 is said to have the standard normal distribution. We denote it by the
letter Z.

The pdf of Z is given by:

f(x) =
1√
2π

e−x2/2; −∞ < x < ∞. (4)

Its df Φ(z) is defined by the definite integral

Φ(z) =
∫ z

−∞

1√
2π

e−x2/2 dx. (5)

Remark: It is easy to verify, we omit the details, that the random variable

X = µ + σZ
D= N(µ, σ2)

In figure 1.1 we display the graphs of two normal curves with the same
mean (µ1 = µ2 = 3) but different variances ( σ1 = 2 and σ2 = 0.5.)
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Figure 1.1

In figure 1.2 we display the graphs of two normal curves with different
means (µ1 = 1.5 < 2.5 = µ2) but the same variance ( σ1 = σ2 = 0.5.)

3



Figure 1.2

Figures 1.1 and 1.2 give us some insight into the significance of the
constants µ and σ.

1. The maximum value of f(x;µ, σ) occurs at x = µ and its graph is
symmetric about µ.

2. Looking at figure 1.1 we see the spread of the distribution is determined
by σ. A small value of σ produces a sharp peak at x = µ; consequently,
most of the area under this normal curve is close to µ. A large value
of σ, on the other hand, produces a smaller, more rounded bulge at
x = µ. The area under this normal curve is less concentrated about µ.
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2 The Central Limit Theorem (CLT)

Let X1, . . . , Xn denote a random sample of size n, taken from the same
(parent) distribution F (x). This means that the X ′

is are independent and
identically distributed (abbreviated iid), with P (Xj ≤ x) = F (x), E(Xj) =
µ, V (Xj) = σ2, j = 1, . . . , n,. We are interested is describing the distribu-
tion of the sample mean X and sample total T defined as follows:

X =
∑

1≤j≤n Xj

n
and T =

∑
1≤j≤n

Xj

assuming only that our random sample comes from a general distribution
F (x) with (population) mean µ and (population) variance σ2.

Proposition 2.1 Let X1, . . . , Xn denote a random sample of size n, with
common mean µ and variance σ2. Then

E(X) = µ; (6)

σ(X) =
σ√
n

; (7)

E(T ) = nµ; (8)
σ(T ) = σ

√
n. (9)

Proof of proposition 2.1: Since X = 1
n

∑
1≤i≤n Xi, it follows from the

addition rule that

E(X) =
1
n

∑
1≤i≤n

E(Xi) =
1
n
× nµ = µ.

Similarly, it follows from the addition rule for the variance of a sum of
independent random variables that

σ2(X) = V


 ∑

1≤i≤n

Xi

n


 = n × σ2

n2
=

σ2

n
, and therefore σ(X) =

σ√
n

.

The computations of E(T ) and σ(T ) proceed along the same lines and
are left to the reader.

Theorem 2.1 The Central Limit Theorem(CLT): Let X1, . . . , Xn be a ran-
dom sample from a distribution with mean µ and variance σ2. Then, for n
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sufficiently large, the distribution of T is approximately normal with mean
nµ and standard deviation σ(T ) = σ

√
n. More precisely,

lim
n→∞

P

(
a ≤ T − nµ

σ
√

n
≤ b

)
= P (a ≤ Z ≤ b) = Φ(b) − Φ(a) (10)

The distribution of the sample mean X is also approximately normal
with E(X) = µ and σ(X) = σ/

√
n.

The CLT is particularly useful because it yields a computable approximation
to the distribution of the sample mean in terms of the normal distribution. It
is a far reaching and remarkable generalization of the normal approximation
to the binomial. The only conditions imposed are : (i) the random variables
X1, . . . , Xi, ... are iid and (ii) that their means and variances are finite. A
sequence of iid Bernoulli random variables is just an important special case.

Example (A volatile stock):
Consider a stock with initial price S0 = $100 and

u = 1.04, d =
1
u

= 0.96, p = 0.53; ln 1.04 = 0.04, ln 0.96 = −0.04

Note: Some computations are rounded to two decimal places. According
to the binomial lattice model, the price Si at the beginning of the ith week
(i = 1, 2, . . . n) is either uSi−1 (u for up) with probability p, or dSi−1 (d for
down) with probability 1 − p, i.e.,

P (Si = uSi−1) = p and P (Si = dSi−1) = 1 − p

Assume that the weekly returns Xi = ln(Si/Si−1), i = 1, 2, . . . 52 are iid
random variables.

1. Show that E(Xj) = 0.0024 and σ(Xi) = 0.040 (some numerical results
rounded to 2 decimal places).

Solution: According to the binomial lattice model Xi has the follow-
ing distribution:

P (Xi = 0.04) = 0.53, P (Xi = −0.04) = 0.47

Therefore E(Xi) = 0.04 × 0.53 − 0.04 × 0.47 = 0.0024. Similarly,
V (Xi) = E(X2

i ) − 0.00242 = 0.042 − 0.00242 = 0.001594, so σ(Xj) =√
0.001594 = 0.040.
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2. Estimate the probability that the year-end price of the stock is less
than the initial price S0 = $100.
Solution: Let S denote the year-end price, which corresponds to
n = 52 periods. Applying the central limit theorem to T = ln(S/100)
with µ = 0.0024, σ = 0.040, n = 52 we have to calculate

P (ln(S/100) < 0) = P (T < 0) = P

(
T − 52 × 0.0024

0.04 ×
√

52
<

−0.1248
0.288

)
= P (Z < −0.43) = 0.3336

3 An Application of the CLT to the random walk
model of Stock Prices

Empirical studies of actual returns for many stocks suggest that the rate of
return for the next period is obtained from the current one by first flipping
a coin and then adding to the current return an amount U > 0 if the coin
come up heads, or or an amount D < 0 if the coin comes up tails. This
is the random walk model for the price fluctuations of stocks, a model that
apparently fits the facts, but not the prejudices of investors, most of whom
believe they are more intelligent than the “market”. The argument for the
random walk model of stock market prices is based on the assumption that
the current price of a stock always reflects all available information, and
will change only with the arrival of new information. Since new information
cannot be predicted, neither can a future change in price. This, in a nutshell,
is the efficient market hypothesis.

It is important to note, however, that even though we cannot predict
in advance the result of a coin toss, we can give an explicit formula for
the distribution of the number of heads in n tosses of a coin (binomial
distribution), and, for n large an approximate formula given by the central
limit theorem. An interesting consequence of our model is that the logarithm
of the stock price at time t has a normal distribution with mean value µt
and variance tσ2. We turn now to the mathematical details, which are of
independent interest.

Let S0 denote the initial price of a stock and S(t) its price at a future time
t. We divide the time axis into units of length equal to 1/n and assume that
the stock price at time tj = j/n increases by a factor u > 1 with probability
p, or decreases by a factor d < 1 with probability 1 − p. That is

P (S(j/n) = uS((j − 1)/n) = p; P (S(j/n) = dS((j − 1)/n) = 1 − p
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Denote the rate of return over the time interval tj − tj−1 = 1/n by Xn
j ,

defined in the usual way as

Xn
j =

S(j/n) − S((j − 1)/n)
S((j − 1)/n)

We claim that for n large enough, so the interval of time is small enough,
that

Xn
j

.= ln
(

S(j/n)
S(j − 1/n)

)
(11)

where the symbol a
.= b means that a is approximately equal to b and

ln(t) = loge(t), the natural logarithm of t. To see this we use the approxi-
mation

ln(t) .= 1 + t, t small (12)

Examples of the approximation:

ln(1.02) = ln(1 + 0.02) = 0.01980 .= 0.02
ln(0.97) = ln(1 − 0.03) = −0.03046 .= −0.03
ln(1.05) = ln(1 + 0.05) = 0.04879 .= 0.05

Derivation of Equation (11):

Xn
j =

S(j/n) − S((j − 1)/n)
S((j − 1)/n)

.= ln
(

1 +
S(j/n) − S(j − 1/n)

S((j − 1/n))

)
(using Eq. (12))

.= ln
(

S(j/n)
S((j − 1)/n)

)

A CLT for lnS(t)
We are going to show, using the CLT (Proposition (2.1) and the efficient

market hypothesis, that the distribution of ln(S(t)/S0) is normal with mean
tµ and variance tσ2. In other words, S(t)/S0 has a log normal distribution.
Since S0 is a constant it follows that S(t) itself has a log normal distribution.

The basic idea of the proof is to represent ln(S(t)/S0) as a sum of inde-
pendent, identically distributed random variables so that the central limit
theorem can be brought to bear. We begin with the algebraic identity

S(t)
S0

=
S(1/n)

S0
× S(2/n)

S(1/n)
· · · S(k/n)

S((k − 1)/n)
× S(t)

S(k/n)
,
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where k/n ≤ t < (k + 1)/n; that is k = [nt], and [x] is the floor function, or
the greatest integer function. Note that [nt] ≤ nt < [nt] + 1 and therefore
[nt]/n ≤ t < ([nt] + 1)/n. Consequently,

lim
n→∞

[nt]
n

= t (13)

Since the rate of return over a time interval of length 1/n goes to zero
as n → ∞ it follows that limn→∞ ln(S(t)/S([nt]/n)) = 0. Taking logarithms
of both sides we see that

ln
(

S(t)
S0

)
=

∑
1≤j≤[nt]

ln
(

S(j/n)
S((j − 1)/n)

)
+ ln

(
S(t)

S([nt]/n)

)

.=
∑

1≤j≤[nt]

ln
(

S(j/n)
S((j − 1)/n)

)

=
∑

1≤j≤[nt]

Xn
j (see Eq. (11))

Under the assumptions of the random walk model the returns Xn
j are inde-

pendent, identically distributed random variables with E(Xn
j ) = µn, V (Xn

j ) =
σ2

n; that is, the mean returns and risks are functions of the length of the time
period 1/n. Thus,

E

(
ln

(
S(t)
S0

))
= E


 ∑

1≤j≤[nt]

Xn
j


 = [nt]µn

V

(
ln

(
S(t)
S0

))
= V


 ∑

1≤j≤[nt]

Xn
j


 = [nt]σ2

n

Using the fact that limn→∞[nt]/n = t it follows that

lim
n→∞

[nt]µn = lim
n→∞

([nt]/n)(nµn) = t lim
n→∞

(nµn) (14)

lim
n→∞

[nt]σ2
n = lim

n→∞
([nt]/n)(nσ2

n) = t lim
n→∞

(nσ2
n) (15)

Looking at Equations (14, 15) we see that these limits exist only if the limits
limn→∞ nµn = µ and limn→∞ nσ2

n = σ exist. We therefore make the rea-
sonable assumption that the rate of return and its variance are proportional
to the length of the time interval 1/n; that is we assume

µn =
µ

n
; σ2

n =
σ2

n
, σn =

σ√
n

9



Consequently,

lim
n→∞

[nt]µn = tµ

lim
n→∞

[nt]σ2
n = tσ2

We now apply the central limit theorem (see Eq. (10) to

T =
∑

1≤j≤[nt]

Xn
j

.= ln(S(t)/S0)

with [nt] instead of n, µ/n and σ/
√

n instead of µ and σ2, respectively.
Therefore,

lim
n→∞

P

(∑
1≤j≤[nt] Xn

j − [nt](µ/n)√
[nt](σ/

√
n)

≤ z)

)
= lim

n→∞
P

(∑
1≤j≤[nt] Xn

j − tµ

σ
√

t
≤ z)

)

= P (Z ≤ z)

In other words, for large n we have∑
1≤j≤[nt] Xn

j − tµ

σ
√

t

.= Z

in the sense that the distribution of the random variable on the left is ap-
proximately the same as a standard normal distribution. This is equivalent
to the assertion that

ln(S(t)/S0)
.=

∑
1≤j≤[nt]

Xn
j

.= tµ + σ
√

tZ

In particular, as limn→∞, we have equality, that is the distribution of ln(S(t)/S0)
is equal to that of tµ + σ

√
tZ. This completes the proof.
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