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Abstract: This paper empirically tested the one factor and two factor arbitrage-free interest
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the stochastic volatility risks.
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1 Introduction

Arbitrage-free interest rate models such as Ho-Lee (1986, 2005), Heath, Jarrow and Mor-

ton (1992) HJM, Brace, Gatarek and Musiela (1997) BGM have broad applications in

securities valuation. In particular, they are used extensively to value interest rate con-

tingent claims such as derivatives and balance sheet items with embedded interest rate

options. The models are also used to determine the key rate durations or PV 01 to specify

the dynamic hedging strategies in managing interest rate risks by measuring the interest

rate derivatives sensitivities to the key rates along the yield curve.

However, interest rate derivatives value can be significantly affected by the changes in

∗ E-mail: tom.ho@thomasho.com
† E-mail: blessingmudavanhu@yahoo.com



2 Ho and Mudavanhu / Financial Mathematics Manuscript (2005) 1–34

the volatility, or that the vega measure is not negligible. Heidari and Wu (2003) uses

the principal component analysis and shows that the volatility surface of swaptions has

three orthogonal movements, independent of the principal movements of the yield curve.

Collin-Dufresne and Goldstein (2002) uses interest rate straddles to provide empirical

evidence of “unspanned stochastic volatility” showing that interest rate derivatives can-

not be dynamically hedged or replicated by bonds (with no embedded options), because

of the significant presence of the volatility risk. Other empirical studies of interest rate

models have shown that the implied volatilities are stochastic (Amin and Morton (1994),

De Jong, Driessen, and Pelsser (2001)). Further Amin and Ng (1997) has shown that

the implied volatilities have informational content in predicting the future interest rate

volatilities. Therefore, vega measure should be used to manage the volatility risk in hedg-

ing, risk reporting, integrating market risks on the trading floor or on the enterprise level.

To date, there are significant challenges to determine the vega buckets for interest rate

derivatives. The first challenge is the computational intensity required in determining the

measurement. Pietersz and Pelsser (2003) uses the BGM model to determine the vega

buckets confining to swaptions on the anti-diagonal buckets (where the sum of expiry

and tenor is 31 years) of the swaption volatility surface and that process requires 1 to

5.8 million scenario paths. However, Heidari and Wu shows that the volatility risk is not

confined to the anti-diagonal buckets of the volatility surface. The entire surface gener-

ates the independent movements. Therefore, to extend the key rate duration measures

to the volatility surface poses a practical problem.

Another challenge is the use of interest rate models. To determine the vega measure,

we require the interest rate model to be (1) accurate in pricing the swaptions, (2) stable

in the estimated parameters without overspecification, and (3) computationally efficient.

Despite the prevalent use of arbitrage-free interest rate models, thus far, there is a lack

of empirical evidence of an interest rate model that has the above three attributes.

Most empirical studies to date are limited to test the models using short dated interest

rate derivatives or over a short sample period (Amin and Morton (1994), Mathis and

Bierwag (1999), Gupta and Subrahmanyam (2005), Flesaker (1993)). And these tests

assume non-stochastic term structure of volatilities in these tests. As a result, scant em-

pirical studies have provided insights into the current practical use of the arbitrage-free

interest rate models in valuing the long dated swaptions and measuring the vega, though

some recent papers begin to deal with these issues.

Han (2005) and Jarrow, Li and Zhao (2004) extend the string model and the HJM model

respectively to incorporate the unspanned stochastic volatility. These approaches require

four stochastic factors for the yield curve movements and three stochastic factors for the

volatility risks, and over ten parameters have to be estimated. Extensive computation

may be required to compute the sensitivities of interest rate derivatives. These papers

have not addressed these issues.
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The purpose of this paper is to fill this void by providing a solution to manage the volatil-

ity risk. We do so by using the generalized Ho-Lee model (2005). We first show that

the model has high explanatory power for the observed swaption prices across 1- 10 year

expiry and 1-20 year tenor (the entire volatility surface), using a one factor and two factor

model with four and five parameters, respectively. Then we show that the volatility sur-

face movements can be represented by the movements of two volatility curves (“implied

volatility functions”) analogous to the yield curve in the volatility space. We can reduce

the movement of the volatility surface to the movements of two curves. As a result, we

can determine the vega at the key points on these curves, the “key rate vega”. Finally,

the recombining lattice framework of the generalized Ho-Lee model provides a computa-

tion efficient model to value interest rate derivatives. As a result, this paper, combining

the use of key rate duration, provides a practical solution to manage the risk of interest

rate derivatives.

This paper contributes to the extensive literature in interest rate modeling in several

ways. First, this paper extends the empirical investigation. We examine the one factor

and two factor generalized Ho-Lee models on the a broad range of swaptions, which are

central to the derivatives market, over a five year period across three major currencies,

U.S. dollar (USD), Euro (EUR), and Japanese yen (JPY). This extension provides the

important validation of the model for a key segment of the derivatives market, over a

longer sample period, in the major currencies. Second, we empirically specify the sto-

chastic movements of the implied volatility functions to specify the principal movements

of the volatility surface. As a result, this paper provides the empirical implications of the

use of arbitrage-free interest rate models in the capital markets both in valuation and in

managing the yield curve risks.

Our main results based on calibrating 91 at-the-money swaptions of the volatility sur-

face show that (1) the time series of residual mean square errors of both the one factor

and two factor are generally less than two Black volatility points, within typical bid-ask

spreads for at-the-money swaptions in USD and EUR, and generally less than three Black

volatility points in JPY; (2) the two factor model provides a slightly higher explanatory

power, and both the one and two factor models have the least valuation errors in the

USD market; (3) the implied volatility function has three orthogonal movements for each

currency, together explaining over 95% of the implied volatility function movements; (4)

the model parameters are stable, providing an effective key rate vega measure for risk

management.

Our results can also provide some insights into the previous empirical literature. De Jong,

Driessen, and Pelsser (2001) investigates the BGM model by studying the swaption re-

turns. Our result shows that such tests have to control the vega risk. Our approach is

similar to that of Amin and Morton in calibrating the implied volatility function. We

differ in our sample. We analyze the swaptions and not the short dated Euro futures

options, as in their test. Longstaff, Santa-Clara and Schwartz (2001) calibrates a four
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factor string model to 34 at-the-money swaptions, as opposed to 91 swaptions in this

paper, with their errors ranging between 2% to 16%. Han (2005) extends the string

model to incorporate an additional three stochastic volatility factors with lower errors.

The performance of these models in fitting the swaption prices can be explained by the

alternative approaches in modeling that we take in this paper.

The generalized Ho-Lee model differs from these models by calibrating (1) the correla-

tions of the key rates, implying the yield curve movements from the swaption prices, and

(2) the interest rate stochastic distribution ( switching between two processes used in this

paper), inferring a mix of “lognormal” and “normal” distributions also from the market

prices. This approach is entirely consistent with the basic premise of the arbitrage-free

rate movement models. This way, the model incorporates the continually changing views

of the market in the yield curve movements, in the rates correlation and the distribu-

tion. By way of contrast, both the string model and the market model use historical

correlations and pre-specified interest rate distributions. Such an approach would not

incorporate the conditional expectation of the yield curve movements, for example, the

anticipation of the change of yield curve steepening and the behavior of the tails of the

distribution, to the valuation model.

The paper proceeds as follows. Section 2 describes the generalized Ho-Lee model, which

provides the theoretical framework to specify the implied volatility function. Section 3

describes the empirical estimation method and the data. Section 4 presents the empiri-

cal results of the estimated errors and the specification of the implied volatility function

movements for the one factor model of the three currencies. Section 5 compares the

results of the two factor models to those of the one factor models. Section 6 introduces

the key rate vega measure. Section 7 contains the conclusions.

2 Theoretical Model

Our approach is consistent with current practice of valuing interest rate contingent claims

and the management of interest rate risks. Brace Gatarek and Musiela (1997) and

Jamshidian (1997) proposed the market models, which are arbitrage-free models that

fit not only the spot yield curve but also the caps/floors (LIBOR model) or a sample

of swaptions (Swaption Model). In essence, these models fit the model volatilities to

the benchmark options over the entire range of tenors instead of calibrating the implied

volatility function to a sample of options as in Amin and Morton. The growing inter-

ests in such market models in capital markets underscore two important aspects of the

arbitrage-free models assumed in practice.

First, the market benchmark options, for example, the caps/floors and at-the-money

swaptions (“volatility surface”), are liquid. To many practitioners, the volatility surface

is as important as the term structure of interest rates in valuing the interest rate deriv-

atives. The entire market volatility surface, and not a volatility number, is often used
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to value derivatives, and therefore the arbitrage-free interest rate model must necessar-

ily be consistent with these benchmark options. Second, the volatility function of the

arbitrage-free model is not perceived to be constant. It is implicitly assumed that “prices

in stochastic volatility models are of similar form to those in a constant volatility model,

with volatility terms in the latter replaced by their conditional expected levels in the sto-

chastic volatility environment. [Hull and White (1987)]” Thus, using a constant volatility

model with market-implied volatility parameters achieves nearly the same effect.

2.1 Implied Volatility Function

Arbitrage-free interest rate models can be uniquely specified by the term structure of

volatilities, a function of time and states. The parameters of the function can be implied

from the observed prices of the traded options. Such a function is called the “implied

volatility function”, which can be interpreted as the market perceived interest rate un-

certainties into the future.

Specifically, interest rate models may be specified as follows:

dr(t) = α(t, r)dt + σ(t, r(t))dW (t) (1)

where r is the instantaneous interest rate, α(t, r) is the drift term that fits the model

to the observed spot curve, σ(t, r(t)) is the implied volatility function and dW is the

standard Brownian motion.

Some examples of the implied volatility function are:

• Absolute (Ho-Lee): σ(·) = σ0

• Square Root (Courtedon) : σ(·) = σ0r(t)
1/2

• Proportional (Cox, Ingersoll, Ross): σ(·) = σ0r(t)

• Linear Absolute: σ(·) = σ0 + σ1(t)

• Exponential (Vasicek): σ(·) = σ0 exp(−c(t))

The generalized Ho-Lee model that we study empirically in this paper has the implied

volatility function is given by

σ(a, b, c, d, R) = ((a + b(t)) exp(−c(t)) + d) min[r(t), R] (2)

where R is called the threshold rate, enabling the model to switch from a normal model

to a lognormal model when interest rates are low. This switch of regime would determine

a lower bound for and disallow explosive rise of interest rates. If R is an arbitrarily large

constant, then the model is a lognormal model. Conversely, if R is an arbitrarily small
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constant, then the model is a normal model. Figure 1 below depicts the behavior of the

one factor generalized Ho-Lee model. The lattice shows that the interest rates rise linearly

on the top boundary (a normal model) and the rates fall proportionally on the bottom

boundary (a lognormal model). For the empirical test, we will fix the threshold rate.

For clarity of the exposition, and without loss of generality, we will refer to the function

below as the “implied volatility function” for the generalized Ho-Lee model. The level

of the threshold rate R only affects the distribution of interest rates and not the specific

shape of the implied volatility function. For this reason, keeping R constant does not

affect the main conclusions of the paper.

σ(a, b, c, d) = (a + b(t)) exp(−c(t)) + d (3)

The parsimonious specification of the implied volatility function, using only four para-
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Fig. 1 The one factor generalized Ho-Lee model lattice. The lattice is constructed
for quarterly step sizes with volatility parameters (a, b, c, d) equal to (0.389, 0.042, 0.126, 0.096)
respectively.

meters, avoids over specification of the model. In principle, any curve fitting methods

using multiple parameters can be used to perfectly fit the implied volatility function to

observed prices of the benchmark securities. See Lee and Choi (2005), which is akin to

that employed by the market models. However, the purpose of this paper is not to show

that the interest rate model can fit the spot curve and the volatility curve perfectly. The

purpose of this paper is to show that the model with few parameters can explain many



Ho and Mudavanhu / Financial Mathematics Manuscript (2005) 1–34 7

observed swaption prices over an extensive sample period. And for this reason, we are

testing the functional form of equation (3) empirically.

The parameters (a, b, c, d) can be interpreted as follows. When interest rates are below

the threshold rate, (a− d) and d are the instantaneous and long term short rate volatili-

ties, respectively. The constant c is the exponential decay rate which is directly related

to the extent of the mean reversion process, and b determines the size of the hump of the

volatility curve.

2.2 The Model

Intuitively, the model can be described as follows. The recursive construction of the

recombining lattice is similar to that of the Black Derman and Toy (1990) BDT model.

At each time step, ensuring the lattice to recombine, equation (2) is used to determine the

local volatility at each node point, instead of requiring a lognormal distribution. Then

an algebraic relationship is determine to fit the observed spot yield curve instead of using

a Newton Ralphson’s approach to calibrate the lattice. The lattice is then recursively

constructed over n steps.

In the discrete time model, as usual, we assume the usual perfect capital market conditions

and that everyone trades at the discrete time, 0 ≤ i ≤ n. At each node, there are only

two possible outcomes in the next period. The building blocks of the binomial model

are the binomal volatilities δn
i , for 0 ≤ i ≤ n. δn

i is the proportional decrease in the one

period bond value P n
i from state i to i + 1 at time n at the end of a binomial period.

Without loss of generality, we assume that the bond price decreases, and the bond yield

increases, with state i, and hence δn
i < 1. When δn

i = 1, by definition, there is no risk at

the binomial node with respect to the upstate and downstate outcomes. More generally,

let δn
i (T ) denote the binomial volatility of a T term bond. Since cash, bond with zero

maturity, has no risk, by convention, we have

δn
i (0) = 1 (4)

The implied volatility function equation (3) in the binomial lattice framework is re-written

as

σ(n) = (a + b · n∆t) exp(−c · n∆t) + d (5)

where ∆t is the interval of one period, for 0 ≤ i ≤ n. For example, if one period (the

step size of the lattice) is one month, then ∆t is 1/12.

The binomal volatilities δn
i are defined by the volatility function σ(n) in the equation (5),

as follows‡:
δn
i = exp(−2σ(n) min[− log P n

i , R∆t]∆t1/2) (6)

‡ Since this is a discrete time model, the interest rates can still become negative as a result of
the discrete time approximation, even for some small volatilities when the rates are low. Equa-
tion (6) cannot ensure that δn

i are always bounded by one. For implementation, we use δn
i =

exp(−2σ(n)max[min[− log Pn
i , R∆t]∆t1/2, ε]) for some small ε , say, 0.0001 or 1 basis point, effectively
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R is the threshold rate, as explained in the previous section. Equation (6) translates the

volatility measure as the standard deviation of the proportional change in rates to the

proportional change in prices.

By the construction of the arbitrage-free rate model, the binomial volatilities have to

satisfy the recursive equation

δn
i (T ) = δn

i δn+1
i (T + 1)

[
1 + δn+1

i+1 (T − 1)

1 + δn+1
i (T − 1)

]
(7)

The binomial volatilities in equation (7) specifies the one period bond pricing model at

node (n, i):

P n
i =

P (n + 1)

P (n)

n∏

k=1

(1 + δk−1
0 (n− k))

(1 + δk−1
0 (n− k + 1))

i−1∏
j=0

δn−1
j (8)

This system of recursive equations (4)–(8) defines the binomial model of the generalized

one factor Ho-Lee model.

The two factor Ho-Lee model can be specified analogously, below

P n
i,j(T ) =

P (n + 1)

P (n)
×

n∏

k=1

(1 + δk−1
0,1 (n− k))

(1 + δk−1
0,1 (n− k + 1))

× (1 + δk−1
0,2 (n− k))

(1 + δk−1
0,2 (n− k + 1))

×
i−1∏

k=0

δn−1
k,1 (T )×

j−1∏

k=0

δn−1
k,2 (T ) (9)

where

δn
i,1(T ) = δn

i,1δ
n+1
i,1 (T + 1)

[
1 + δn+1

i+1,1(T − 1)

1 + δn+1
i,1 (T − 1)

]

(10)

δn
i,1(T ) = δn

i,2δ
n+1
i,2 (T + 1)

[
1 + δn+1

i+1,2(T − 1)

1 + δn+1
i,2 (T − 1)

]

and by extending the specification of δn
i to the two factor model, we have,

δn
i,1 = exp(−2σ1(n) min[− log P n

i,1, R∆t]∆t1/2) (11)

Similarly, we can define δn
i,2 for the other factor, and we have

δn
i,2 = exp(−2σ2(n) min[− log P n

i,2, R∆t]∆t1/2) (12)

The two factor generalized Ho-Lee model specifies the dynamics of the yield curve as

two orthogonal movements. Figure 2 below depicts such a binomial interest rate lattice

where one movement is a parallel movement and the other as a steepening movement.

The steepening movement results in a stronger mean reversion behavior of the short term

rate, as it is apparent at the elevation side when compared to the back side of the lattice.

switching the model to a normal model with an arbitrarily low volatility and determines a lower bound
of the negative rates. See Ho and Lee (2005) for further extension of the model in controlling the extent
of exhibiting negative rates of the model.
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Fig. 2 Graphical representations of the two-dimensional recombining generalized
Ho-Lee interest rate lattice. The lattice is constructed for annual step sizes with the first
term structure of volatility parameters (a, b, c, d) equal to (0.152, 0.077, 0.164, 0.125) and a flat
second volatility of 0.083.

2.3 The Empirical Model

The empirical model is based on the one factor generalized Ho-Lee model (equations (4)–

(8)) and the two factor model (equations (9)–(12)). The models are tested by the sample

observations for each observation date (τ ′), given the information set θ(τ ′). Hence the

implied volatility function of the one factor model (equation (5)) for the empirical model

is re-expressed as:

σ(n|θ(τ ′)) = (a(τ ′) + b(τ ′) · n∆t) exp(−c(τ ′) · n∆t) + d(τ ′) (13)

That is, empirically, we assume that the volatility function is updated by the conditional

expected levels at each observation date.

Analogously, for the two factor model, we specify the implied volatility functions as:

σ1(n|θ(τ ′)) = (a(τ ′) + b(τ ′) · n∆t) exp(−c(τ ′) · n∆t) + d(τ ′) (14)

and

σ2(n|θ(τ ′)) = e(τ ′) (15)

That is, we assume that the second principal movement is a parallel movement.
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3 Data and the Empirical Estimation Methodology

3.1 Swaps and Swaptions

The empirical tests are based on the swaption prices. To describe the sample data, we

begin with an overview of the swaption markets to exposit the market conventions and

terminologies used in this paper. The swaptions are based on the vanilla swaps, where

two parties agree to exchange a stream of cash flows over some specific period of time,

where the time to the termination date is the tenor. At the time the swap is initiated,

the coupon rate on the fixed leg of the swap is specified. This rate is chosen to make

the present value of the fixed leg equal to the present value of the floating leg. The

fixed rate at which a new swap with tenor T can be executed is known as the swap rate

and we denoted it by S(0, 0, T ), where the first argument refers to time zero, the second

argument denotes the start date which is time zero for a standard swap, and T is the

termination date of the swap.

Once a swap is executed, the fixed payments of S(0, 0, T )/2 are paid semi-annually at

times 0.50, 1.00, 1.50, · · · , T − 0.50 and T . Floating payments follow the convention of

quarterly payments at times 0.25, 0.50, 0.75, · · · , T − 0.25, and T and are equal to 0.25

times the three-month LIBOR rate at the beginning of the quarter. A floating rate note

paying three-month LIBOR quarterly must worth par at each quarterly LIBOR reset

date. Since the initial value of the swap is zero, the initial value of the fixed leg must also

worth par. The swap rates are available from a variety of sources, such as Bloomberg

Financial Services, for standard swap tenors such as 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 25 and 30

years, in real time.

We use vanilla European swaptions in this paper. The holder of the swaption has an

option to enter into a swap and receive (or pay) fixed payments. The holder of the option

has a right at time τ to enter into a swap with a remaining term T − τ , and receive (or

pay) the fixed annuity of c. This option is called a τ into T − τ receivers (or payers)

swaption, where τ is the time to expiration of the option and T − τ is the tenor of the

underlying swap.

The convention in the swaptions market is to quote prices in terms of their implied

volatilities relative to the Black (1976) model as applied to the forward swap rate. The

Black model implies that the value of a τ by T European payers swaption at time zero is

V (0, τ, T, c) =
1

2
A(0, τ, T )

[
S(0, τ, T )Φ(d)− cΦ(d− σ

√
τ)

]
(16)

where

d =
ln(S(0, τ, T )/c) + σ2τ/2

σ
√

τ
(17)

where Φ(·) is the cumulative standard normal distribution function and σ is the volatility

of the forward swap rate, and A(0, τ, T ) is the present value of the annuity interest
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payments. In the special case where the swaption is at the money the above valuation

formula reduces to

V (0, τ, T, S(0, τ, T )) = (D(0, τ)−D(0, T ))
[
2Φ(σ

√
τ/2)− 1

]
(18)

Since this receiver swaption is at-the-money forward, the value of the corresponding

payers swaption is identical. Note that when an at-the-money swaption is quoted at an

implied volatility σ, the actual price that is paid by the purchaser of the swaption is given

by substituting σ into equation (18).

The sample period we have chosen is 7/21/2000-6/21/2005, based on monthly data.

We have chosen this period because this period has experienced significant volatilities

including the burst of the internet bubble, the September 11 tragedy that led to the

dramatic fall in interest rates, particularly the short term rate leading to significant

steepening of the yield curve, and the subsequent rise in interest rates. The significant

yield curve movements over the period are depicted in Figure 3 for USD and in Appendix

B for EUR and JPY.

The swaption prices and interest rates for this paper are obtained from Bloomberg

Financial Services, which collects and aggregates market quotations from a number of

brokers and dealers in the derivatives market. We use three major currencies: USD,

EUR and JPY, and the swaption are at-the-money options with expiration 1, 2, 3, 4,

5, 7,10 years and tenor 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 12, 15, 20 years. Therefore there are

approximately 91 swaption observations for each month. There are 60 observation dates

in three currencies, in total 16,380 swaption observations. A summary description of the

data is provided in Appendix A. Figure 4 depicts the volatility surface of the USD market

on four sample dates.

These figures plot the quoted volatilities of USD swaptions on four different dates of

the sample. Each figure shows the quotes for the swaptions with tenors between one

month and ten years on the underlying swaps with the times to expiration of the options

between one and thirty years. The volatility surfaces show that the volatilities tend to

decrease with the time to expiration of the options and the tenor. At time, the surface

exhibits a hump for the short time to expiration and tenor. Such observations motivate

the specification of the functional form of the implied volatility functions of equation (5).

3.2 Empirical Methodology

The empirical test seeks to estimate equations (13) (14) (15) using the Ho -Lee model

(equations 4–12) to fit the observed swaption prices.

In our estimation, we fix the threshold rates R to be 3%, 5% and 7% for USD, EUR

and JPY respectively. They are chosen to minimize the errors over the sample period.

The threshold rates may also be used to calibrate the model for each sample date. But

the additional complexity does not significantly affect the main results of this paper, as
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Fig. 3 Time Series of USD zero rates. The data set consists of monthly observations of
USD zero curves with terms of one month to thirty years, for the period from June 2000 to June
2005. All data are obtained from Bloomberg Financial Services.

explained earlier in equation (3).

We minimize the sum of squared percentage price error of the swaptions by searching for

the optimal parameters of the volatility function. Specifically, the function is:

F (a, b, c, d, e) =
n∑

i=1

(
Pobserved

i − Pmodel
i

Pobserved
i

)
(19)

where P is the price of swaption in dollars. The parameter (e) is not used for the one

factor model.

The estimation procedure of the implied volatility function is similar to that used by

Amin and Morton. For each date and each currency, we use the Levenberg-Marquardt

algorithm, a non-linear estimation procedure, to minimize the objective function.

We use the percentage error instead of the volatility point error that Amin and Morton
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Fig. 4 Examples of USD Swaption Volatility Surfaces. Figures in the appendix show the
corresponding swaptions surface for JPY and EUR.

uses because our measure enables us to appropriately compare across swaptions across

the currencies. Since we do not fit the volatility function to the observed swaption prices,

the goodness of the implied volatility function can be measured by the percentage errors

of the Black volatilities converted from the swaption prices. Specifically, we define the

error to be

Errori =

(
νobserved

i − νmodel
i

νobserved
i

)
(20)

for each swaption, at each date, for each currency, ν is the Black volatility measured in

percent.

4 One Factor Model Empirical Results: the Model Errors and

the Implied Volatility Function Movements

4.1 Analysis of the Model Errors

The result shows that the average percentage absolute errors over the sample period are

2.55, 3.36 and 5.74 for the USD, EUR and JPY respectively. These estimation errors are

within the bid-ask spreads in the market. To clarify the measure of errors, consider a

numerical illustration. Suppose a swaption value is quoted as 30 (Black) volatility points,
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then 1% error as quoted in this paper is only 0.3 volatility point. This calibration is an

optimal search over only four parameters to fit 91 swaptions in most of the dates.

The results also show that the model can fit the USD market better than the EUR market,

which in turn is better than the JPY market. However, the coefficient of variations

(standard deviation/mean) are similar in magnitude, with the JPY value being lowest.

They are 0.34, 0.40 and 0.26 for USD, EUR and JPY respectively.

Next we analyze the errors in terms of the swaption tenor over the sample period. Table

1 below presents the average percentage absolute errors over the sample period grouped

by the tenor. The results show that the percentage errors are largest for the one and the

Swap Tenor (years)

Currency 1 2 3 4 5 6 7 8 9 10 15 20

USD 3.66 2.64 2.21 1.81 1.85 1.94 1.73 2.37 2.69 2.73 2.67 3.12

EUR 6.50 4.39 2.94 2.29 2.49 2.41 2.33 2.33 2.29 2.57 2.25 3.46

JPY 7.94 6.19 4.54 3.92 4.73 4.56 5.20 4.85 4.73 4.77 6.00 8.46

Table 1 Average absolute swaption price percentage errors by swap tenor

20 year term for all three currencies.

Similarly, we consider the percentage errors as a function of the time to expiration of the

swaptions in Table 2 below. The results show that the percentage errors appear highest

Option Term (years)

Currency 1 2 3 4 5 7 10

USD 4.30 2.66 2.12 2.03 2.09 1.92 2.03

EUR 3.77 3.48 2.75 2.35 2.33 2.49 3.98

JPY 8.43 5.23 4.37 5.24 4.83 5.19 5.15

Table 2 Average absolute swaption price percentage errors by option term

for the options expiring in one year. However, the errors remain reasonable given the

market bid-ask spreads.

4.2 Analysis of the Errors over Time

Given the significant change in the interest rate levels over this sample period, one may

expect that the model errors change over time. The results below depict the average of

the swaption errors across the time to expiration and tenor for each date and currency.

The plots of the percentage errors over the sample period for the three currencies are

presented in the figure below. For the most part the absolute Black volatility points
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Fig. 5 Time series of average absolute swaptions price errors of the generalized one
factor Ho-Lee model for USD, EUR and JPY. The absolute swaptions price errors are
the difference between the Ho-Lee model swaption prices and the market prices expressed as a
percentage of the market prices.

are below one volatility point for USD and EUR, and below 3 volatility points for JPY.

Most trading desks tolerate a bid-ask spread of below 2 volatility points for USD and

EUR. The volatility errors for the JPY are heavily influenced by the short term which

has very high volatility. For example a 5% error on a 100% volatility would translate for

5 volatility points, whereas the same percentage error on 30% volatility would translate

to 1.5 volatility points.

The results show that the errors have decreased in recent months. This observation may

be explained by the relative calm of the markets in recent months. The level of errors

tends to be correlated to the market volatility, and this may be explained by the positive

correlation of the volatility of the market to the bid-ask spreads. In general, we find that

the USD and EUR swaptions have lower errors than those of the JPY swaptions. This

again may be explained by the relative illiquidity of the JPY market resulting in higher

bid-ask spreads.
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Fig. 6 Time series of absolute swaptions Black volatilities unit difference of the gen-
eralized one factor Ho-Lee model for USD, EUR and JPY. The absolute volatility unit
difference the difference between the Ho-Lee model swaptions Black model implied volatilities
and the quoted market volatilities expressed as a percentage.

4.3 Empirical Results on the Implied Volatility Function Movements

This section proceeds to analyze the estimated implied volatility function and its move-

ments for each currency. The implied volatility function is estimated for each date and

each currency.

Table 3 presents the mean and standard deviations of the estimated parameters of the

implied volatility functions for the one factor model for each currency. The results show

that on average over the sample period, the instantaneous short term volatility for the

USD, EUR and JPY, as measured by (a + d) are 48.5%, 26.3%, 95.2% respectively. And

the “long term volatility” (d) are 9.6%, 10.7%, 22.8%, showing that the short term volatil-

ities are higher than the long term volatilities. The decay rates (c) are 12.6%, 25.5% and

40.2% for the USD, EUR and JPY respectively. The implied volatility functions have a

hump in all the currencies, as measured by the positive value of (b). All the parameters

show significant coefficient of variations, and hence the implied volatility functions change

in shape and level over time.

The average implied volatility function over the sample period is depicted in Figure 7

below. The result shows that the implied volatility functions decline exponentially, with
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Estimated Vol. Fcn. Parameters

Currency a b c d

USD Average 0.389 0.042 0.126 0.096

Std. dev. 0.188 0.031 0.038 0.056

EUR Average 0.156 0.008 0.255 0.107

Std. dev. 0.087 0.016 0.080 0.024

JPY Average 0.724 0.307 0.402 0.228

Std. dev. 0.554 0.402 0.133 0.044

Table 3 Implied volatility functions of the three currencies
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Fig. 7 The average implied volatility functions of the three currencies.

the JPY function shows a hump in the one year range.

Given the estimated parameters of the implied volatility function for each date, we can

determine the estimated volatility function for each date over the sample period. Fig-

ure 8 below depicts the dynamic nature of the implied volatility function for the USD.

The results show that the implied volatility function is stochastic and at the same time

the function does not fluctuate wildly suggesting that the model is reasonable in its

specification. Given the dynamic movements of the implied volatility function, we can
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Fig. 8 Movements of the implied volatility function. The implied volatility function
changes not only in the level but also the shape, with the short term volatility rises significantly
in year 2001.

further specify the movements in terms of their principal components. The proportions

of the percentage errors explained by the principal components are presented Table 4 be-

low. The results show that the first three principal components explain 98.12%, 98.13%,

Principal Components

Currency 1st 2nd 3rd Sum

USD 68.53% 24.55% 5.04% 98.12%

EUR 63.37% 26.34% 8.41% 98.13%

JPY 62.89% 21.79% 12.92% 97.61%

Table 4 The principal component of the implied volatility functions

97.61% of the movements in USD, EUR, and JPY respectively. The third component is

quite significant for the JPY, while much less important for the USD.

These principal movements are depicted by the factor loadings, and these results are

depicted in Figure 9a, 9b, 9c below. The results show that the first principal component

for USD and EUR is “level”, representing the change of the level of the volatility across

the term spectrum. There is a slightly higher volatility for the short (less than 3 years)
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Fig. 9 Factor loading of the principal components of the implied volatility functions
for the three currencies.

and the long ends (exceeding 15 years.) However, such is not the case with JPY. The

first principal component for JPY is the short term volatility.

The second principal component represents the short term and “long term” volatilities for

USD and EUR, while it is the “level” movement for JPY. We should note that the “long

term” volatilities are implied mainly from the long dated option delivering a swap with

long tenor. The 30 year volatility is estimated from the volatility of a 10 year expiration

option on a 20 year swap. This combining of the two terms leads to a particular volatility

movement.
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5 A Comparison of the One Factor and Two Factor Models

Thus far, we have presented the errors of the one factor model. We now compare these

results with the two factor model. Table 5 shows that the two factor model provides lower

absolute percentage errors. This is particularly the case for the USD swaptions where

the use of the two factor model leads to a 16.44% reduction in error. This reduction is

particular significant considering that the two factor model and the one factor model for

the case of USD use the same number of parameters in the calibration. In all the cases,

the standard deviations of the errors are quite small. Next we analyze the variation of

Currency

USD EUR JPY

average % error 2.19 3.04 5.43

std. dev. 0.70 1.25 1.63

error reduction 16.44% 9.50% 5.40%

Table 5 Two factor model percentage average errors

the absolute errors over time. Figure 9 shows that the two factor model for USD does

well particularly over the 2002–2004 period. During this period the interest rate risks

were higher. By way of contrast, the interest rate volatility is low in recent months, and

the difference between the two models is relatively small. However, the improvements

using a two factor model is relatively small for EUR and JPY. The results confirm that

the use of one factor model can be quite robust for valuation. The percentage errors

for EUR and JPY over the sample period are provided in Appendix B. In comparing

the two factor model and the one factor model for the USD, we find that the model is

over specified, with parameter d providing little explanatory power. For this reason, we

restrict the parameter d to be zero. Table 6 provides the estimates of the parameters

of the implied volatility functions. In comparing the estimates of the parameters of the

Volatility 1 Volatility 2

Currency a b c d e

USD Average 0.401 0.050 0.128 0.046 0.099

Std. dev. 0.211 0.027 0.034 0.062 0.049

EUR Average 0.225 0.008 0.189 0.066 0.112

Std. dev. 0.096 0.011 0.039 0.048 0.014

JPY Average 0.739 0.399 0.430 0.159 0.122

Std. dev. 0.516 0.314 0.088 0.065 0.044

Table 6 The estimated parameters of the implied volatility functions
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Fig. 10 Comparison of the percentage absolute errors of the one factor and two
factor models.

implied volatility function for the two factor and the one factor model, we see that the

implied volatility functions do not change significantly for USD and JPY. For the EUR,

the parameters a and b have changed but the qualitative behavior of the function remains

unchanged.

Following the analysis on the one factor model, we now proceed to analyze the dynamics of

the implied volatility function using the principal components of the movements. Consider

the results in Table 7. By introducing a second stochastic factor, the second principal

component becomes more significant in all the currencies, providing explanatory power of

more than 26% in all cases. Meanwhile, the first principal component remains significantly

dominant, exceeding 50% for all the currencies. The dynamic movements of the implied

volatility functions of the two factor model for USD are depicted below. The results show

that the volatility functions are quite dynamic, exhibiting higher volatility in the short

term.

This result is confirmed by estimating the factor loading of the principal components.

Figure 10 shows that the variation in the short term is captured by the first principal
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Principal Components

Currency 1st 2nd 3rd Sum

USD 59.35% 32.56% 5.94% 97.86%

EUR 62.19% 26.7% 9.67% 98.56%

JPY 50.15% 27.55% 14.05% 91.75%

Table 7 Explanatory power of the principal components

components. We have described the results for the USD swaptions so far. However, these

observations also apply to the EUR and JPY swaptions, whose results are provided in

Appendix C.
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Fig. 11 Factor loading of the principal components of the USD two factor model.

6 Implications and Key Rate Vega

The empirical results have important implications in the valuation of interest rate con-

tingent claims. The results show that for the major currencies, interest rate contingent

claims can be valued relative to the observed spot curve and the swaptions. The implied

volatility function can be specified quite simply by four parameters in the one factor
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model or five parameters of the two factor model.

The results also have important implications to hedging interest rate derivatives. Der-

man and Taleb (2005) have shown that delta hedging is often not effective in hedging

equity options using the underlying stocks because of the vega effect. Our paper suggests

that the volatility surface is also stochastic, consistent with previous empirical studies,

and that the duration hedging of some interest rate derivatives also may not be effective

because of the vega effect in the interest rates. This paper suggests that both swaps and

swaptions should be used in hedging interest rate derivatives. Furthermore, in hedging

the volatility risk, we cannot use one vega measure. For example, we cannot use a short

dated option to hedge the volatility risk of a long dated option. Instead, we need to mea-

sure the value sensitivity of an option to the change in the implied volatility function.

The vega buckets can be defined along the implied volatility functions.

The construction of these changes is analogous to the construction of the changes on

the yield curve to determine the key rate durations. These value sensitivities are called

“key rate vegas”. The result shows that in hedging an interest rate option, we should

match the option to a portfolio of swaps and swaptions, such that the sets of both key

rate durations and key rate vegas are matched. In managing the volatility risk using

swaptions, the effectiveness of the hedge should improve. Our result suggests that three

key rate vegas would be effective.

We here describe the key rate vega for the one factor model. Key rate vegas for the two

factor model can be defined analogously. The shift of the implied volatility function is

depicted in Figure 12. The first key rate shift is a shift at the nearby term and linearly

decline to the key rate. The second key rate shift is the shift of the key rate, with a

linearly decline in the shift in either directions of the key rate. The third key are shift is

the shift of the long volatility point and the shift linearly decline to the key rate on the

left hand side and stays constant on the right hand side. The shifts are then added to

the initial implied volatility function as depicted in Figure 12. Then a key rate vega is

defined as the proportional change of the security value per unit change in the implied

volatility function at a key term. Specifically, we define KRV(i) the ith key rate vega to

be

KRV (i) =
∆V

V
/∆σ(i) (21)

where V is the value of the interest rate derivative and ∆σ(i) is a small shift of the

implied volatility function at the ith term.

Intuitively, equation (21) suggests that the shift ∆σ(i) is a small increase in the volatility

of forward short rate at the ith term. For example, if the second key rate vega is specified

as the 7th year shift in the volatility (as depicted in figure 12), then the shift increases

the 7th year short rate forward volatility. To the extent that we may consider the 7th

year forward short rate as a “key rate”, then the proportional change in the interest rate

derivatives to this increase in volatility is the “key rate vega”.
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Given this definition, we conclude with a few observations. As noted before, the implied

volatility function is related to the Black volatilities. To the extent that trading floor

vega buckets are measured in terms of Black volatilities, key rate vega can be converted

to vega buckets, just as key rate durations can be converted to PV 01. Also note that

the sum of the three key rate vegas equals to a unit parallel shift of the implied volatility

function and key rate vegas can identify the difference of the vega risk between a short

dated option and a long dated option. Specifically, a short dated option would have a

high short term key rate vega and a low long term key rate vega. Conversely, the long

dated options would have a significant long term key rate vega. The key rate vegas should

enable the managers to control the vega risks of interest rate derivatives.
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Fig. 12 Key rate vega. The left graph shows the shift of key rate vega and the right graph
shows the shifted implied volatility function using key rate vega.

7 Conclusions

This paper uses monthly data of swaptions in three major currencies to study the robust-

ness of the generalized Ho Lee models, their implied volatility functions and movements.

The empirical results show that the implied volatility functions are stochastic and they

can be used to define key rate vega to manage the volatility risk of interest rate deriva-

tives.

Specifically, we show that the implied volatility function exhibits movements with three

significant components. This result shows that the use of durations to implement dy-

namic hedging of derivatives or the use of short term options to hedge the vega of the

long dated options may not be effective. A more effective hedging approach would employ

also the swaptions that would match all the principal movements of the implied volatility

function, as well as the yield curve movements.
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Appendix A

In the table below, we present the summary statistics (mean, minimum, maximum and

standard deviation) for at-the-money European swaption volatilities used for our empir-

ical study. The data consists of 60 monthly observations from July 21, 2000 to June 21,

2005 of mid-market implied Black model volatilities.
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Option Swap USD EUR JPY

Term Tenor mean min max std mean min max std mean min max std

1 1 33.4 13 56.2 13.2 22.6 12.9 33.3 5.6 90.5 52.5 115 15.1

3 1 24.7 14.8 35.1 5.6 17.7 12.8 22.9 2.7 62.1 44.9 80.5 8.2

5 1 21 14.6 27.1 3.1 15 12.1 18.3 1.6 44.9 28.5 64 7.7

7 1 15.7 12.5 20 1.6 12.1 10.1 15 1 27.5 19.8 40.8 4.8

1 3 28.3 13.4 45.9 8.8 19.2 12.2 27.9 3.9 64.5 43.3 93 10

3 3 22.6 14.2 31.1 4.4 15.5 11.4 19.7 2.2 47.4 29 66.5 8

5 3 19.6 13.9 25 2.7 13.4 10.8 16.9 1.5 35.3 23 55 7

7 3 14.7 11.3 18.6 1.5 11 8.9 14 1 24.4 17.8 36.5 4.3

1 5 25.5 13.2 38.6 6.9 16.8 11 24.2 3.2 53.6 33.8 72.5 8.8

3 5 21.2 13.4 28.1 3.6 13.9 10.4 18.1 1.8 38.8 24.5 56.5 7.3

5 5 18.5 13.4 23.5 2.3 12.3 9.9 16.1 1.3 30.2 21.5 47 6

7 5 13.9 10.5 17.6 1.4 10.3 7.5 13.9 1.1 22.3 17 33.8 3.9

1 7 23.6 13.2 33.8 5.5 15.1 10.6 21 2.5 45.3 28.5 64 8.4

3 7 20 13.5 26.6 3.1 13 9.8 17.2 1.6 33.2 22.4 50 6.3

5 7 17.6 12.7 22.4 2.1 11.8 9.5 15.6 1.3 27.4 20 42.3 5.1

7 7 13.3 10.2 17.1 1.3 10 7.9 13.8 1.2 21.3 16.3 31.5 3.5

1 10 21.6 13.2 29.4 4.2 13.6 10 18.2 2 35.6 24.4 59.5 7.3

3 10 18.8 13.2 24.6 2.5 12.2 9.1 16.4 1.5 28.9 21.4 45.3 5.3

5 10 16.6 12.5 21 1.7 11.3 9 15.2 1.2 25.2 19.7 39 4.4

7 10 12.7 9.9 16.4 1.3 9.8 7.6 13.7 1.2 20.7 15.8 30.3 3.3

1 15 19.4 15.6 25.2 2.5 12.7 9.5 16.9 1.6 29.7 21 44 6.1

3 15 17 14 22 1.7 11.6 8.7 15.4 1.2 25.9 20.3 38.1 4.3

5 15 15.1 13 19.1 1.2 10.8 8.2 14.6 1.2 23.8 18.4 35.7 3.9

7 15 11.7 9.5 15.2 1.1 9.5 7 13.1 1.2 20.6 15.4 31 3.1

1 20 17.9 14.5 23 2.1 11.9 9 15.7 1.4 27.4 18.5 43 5.8

3 20 15.8 13.3 20.2 1.5 11 8.1 14.9 1.2 24.4 19.3 36.5 4.1

5 20 14 12 17.6 1.2 10.3 7.5 14.2 1.2 22.7 17.2 33.3 3.6

7 20 11 8.7 14.2 1.1 9.2 6.5 12.5 1.2 20.3 15 29.5 3.1

Table 8 Swaption values measured in Black volatility points (%) change significantly
over the sample period for all currencies
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Fig. 13 Examples of EUR Swaption Volatility Surfaces. Each figures shows quotes for
swations with maturities 0.5 and 10 years on underlying swaps with horizons at the maturity of
the options between 1 and 20 years. All data is obtained from Bloomberg Financial Services.
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Fig. 14 Examples of JPY Swaption Volatility Surfaces. Each figures shows quotes for
swations with maturities 0.5 and 10 years on underlying swaps with horizons at the maturity of
the options between 1 and 20 years. All data is obtained from Bloomberg Financial Services.
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Fig. 15 Time series of EUR zero rates. The data consists of monthly observations of zero
rates starting at 1 month to 30 years, for the period from July 2000 to June 2005. All data is
obtained from Bloomberg Financial Services.
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Fig. 16 Time series of JPY zero rates. The data consists of monthly observations of zero
rates starting at 1 month to 30 years, for the period from July 2000 to June 2005. All data is
obtained from Bloomberg Financial Services.
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Fig. 17 Movements of the implied volatility functions of the two factor model in USD.
The dynamic movements of the implied volatility functions show that the one-factor function
exhibits downward sloping behavior when the market has high implied volatility. Otherwise, the
function shows a slight hump in the short end of the interest rate spectrum.

The average shape of the implied volatility functions of the two factor models in USD,

EUR and JPY are given in the figure below. JPY implied volatility function on average

shows a significant hump in the short term.
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Fig. 18 The average implied volatility functions of the two factor model for all three
currencies.


