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Abstract

We investigate the pricing problem for pure endowment contracts whose life contin-

gent payment is linked to the performance of a tradable risky asset or index. The

heavy tailed nature of asset return distributions is incorporated into the problem

by modeling the price process of the risky asset as a finite variation Lévy process.

We price the contract through the principle of equivalent utility. Under the as-

sumption of exponential utility, we determine the optimal investment strategy and

show that the indifference price solves a non-linear partial-integro-differential equa-

tion (PIDE). We solve the PIDE in the limit of zero risk aversion, and obtain the

unique risk-neutral equivalent martingale measure dictated by indifference pricing.

In addition, through an explicit-implicit finite difference discretization of the PIDE

we numerically explore the effects of the jump activity rate, jump sizes and jump



skewness on the pricing and the hedging of these contracts.
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1 Introduction

In recent years equity-indexed annuities (EIAs) have increased in popularity and have broken

the US $6 billion per annum mark. Under these contracts, the insured makes an initial

deposit (or several deposits) and during the deferral period the interest accrual on the fund

is linked to the performance of a stock or index, typically the Standard and Poors (S&P) 500

Index. The popularity of these contracts is due mainly to the guaranteed minimum return

that the insured receives; this guarantee allows her to benefit from the upside potential of

equity growth without full exposure to the downside risk. Tiong (2000) studied the pricing

of the embedded financial option in such contracts with the asset price following a geometric

Brownian motion. The author carried out the analysis in a risk-neutral framework through

Esscher transforms (Gerber and Shiu, 1994) and developed explicit pricing results within

that framework. Although the mortality risk component was ignored in the paper, it was

the first published results for pricing EIA products.

EIA products are fairly complicated instruments and untangling the role that mortality

risk plays is best studied by first analyzing their basic building blocks: equity-linked pure

endowments. The economic market for such products is incomplete due to the presence of

mortality risk and standard no-arbitrage arguments do not provide unique prices. Early work

on pricing equity-linked contracts using a combination of no-arbitrage arguments and actu-

arial principles was carried out by Brennan and Schwartz (1976, 1979a,b). Option pricing in

incomplete markets has been studied by many authors including: Föllmer and Sondermann

(1986); Föllmer and Schweizer (1991); Schweizer (1996) who introduce the so-called risk-

minimization hedging schemes (later used by Møller (1998, 2001) for equity-linked insurance

products); Carr, Geman, and Madan (2001) who put forward a new methodology which in-

terpolates between no-arbitrage pricing and expected utility maximization; and Bühlmann,

Delbaen, Embrechts, and Shiryaev (1996) who use Esscher transformations methods to sin-
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gle out a particular measure from the collection of equivalent martingale measures under

incomplete markets. Young (2003) uses the principle of equivalent utility (Bowers, Gerber,

Hickman, Jones, and Nesbitt, 1997) to investigate the pricing problem for equity-linked life

insurance policies with fixed premium and death benefit linked to the performance of an

underlying index rather than interest accrual. She demonstrated that the single benefit pre-

mium for such products satisfies a Black-Scholes-like PDE with an additional non-linearity

term due to the presence of mortality risk. Moore and Young (2003) then elaborated on

Young’s earlier work and developed various analytic bounds for the premiums, in addition

to providing a qualitative analysis of the effects of the force of mortality, and the insurer’s

risk preference on the premium.

In this paper we follow the approach of Young (2003); however, we introduce an additional

source of market incompleteness in an attempt to capture the heavy-tailed nature of the

distribution of asset returns. Such a generalization is not only theoretically interesting, it is

also practically relevant as it is well known that the historical distribution of asset returns

have significant heavy-tails. Furthermore, the implied risk-neutral distributions from put

and call option prices indicate that investors require a significant premium for taking on

the risk of these heavy tails. In this paper we choose to model the asset dynamics via an

exponential Lévy process, containing diffusive and jump components, as this class is very

large and contains many well known and widely used models; furthermore, they also provide

some level of analytical tractability. In section 2 we provide a brief review of finite variation

exponential Lévy processes. Lévy processes have been used extensively for pricing financial

derivatives without insurance risk exposure; see for example Chan (1999), Benhamou (2000),

Gallucio (2001) and Lewis (2001). Jaimungal (2004) studied the pricing problem for various

EIA products with jumps in the underlying risky asset. In that work, the asset dynamics is

assumed to follow an exponential Lévy process directly under the risk-neutral measure and

mortality risk was treated via the actuarial present value principle. Within this framework,
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he obtains closed form solutions for the premium and the analogs of the Black-Scholes

Greek hedging parameters. This paper extends on that work as well, as we use the principle

of equivalent utility as the fundamental pricing principle to incorporate the insurer’s risk

preference and the asset dynamics is modeled directly in the real world probability measure.

Several authors have used utility methods for option pricing in the presence of transaction

costs (Hodges and Neuberger, 1989; Davis, Panas, and Zariphopoulou, 1993; Barles and

Soner, 1998); while others have used utility methods for hedging when the underlying asset

is not tradable but an asset correlated with the underlying is (Henderson and Hobson, 2002;

Musiela and Zariphopoulou, 2003) (for a comprehensive review of indifference pricing and

its applications see Carmona (2005)). Young and Zariphopoulou (2002, 2003) used utility

methods to price insurance products that contained uncorrelated insurance and financial

risks. In this paper, the pure endowment payment at maturity (contingent on survival) is an

explicit function of the underlying asset or index and, as such, contains combined insurance

and financial risk. In section 3 and 4 we obtain the Hamilton-Jacobi-Bellman (HJB) equation

which the value function in the absence and presence of the insurance risk satisfies. We

then focus on the case of exponential utility for two reasons: (i) the results are, to an

extent, analytically tractable and (ii) the premiums obtained are independent of the insurer’s

initial wealth. Delbaen, Grandits, Rheinlander, Samperi, Schweizer, Schweizer, and Stricker

(2002), generalizing results of Rouge and El Karoui (2000), study indifference pricing with

exponential utility in a general semi-martingale context through a dual representation for the

pricing problem. They illustrate that the indifference price can be obtained by minimizing a

relative entropy minus a correction term, which depends on the option value, and also obtain

the optimal investment strategy. We choose to analyze the problem using HJB equations

through the so-called primal approach.

In section 5 we find that the indifference price satisfies a non-linear HJB equation due to the
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presence of the jump and mortality risk components. We then show that in the limit of zero

risk-aversion, the price can be written in terms of a discounted expectation in a particular

risk-neutral measure and obtain the explicit hedging strategy that an insurer would follow.

Finally, in section 6, we use an implicit-explicit finite-difference scheme to perform numerical

experiments on the pricing problem and explore the effects of the force of mortality, the jump

sizes, the jump activity rate and the insurer’s risk preference on the pricing and hedging of

the pure endowment contract. We find that jumps can introduce significant corrections to

the diffusive case.

2 Lévy Processes for Modeling Asset Prices

Assume that the insurer invests in a riskless Money-market account whose price process is

denoted {Mt = e
∫ t

0
r ds}0≤t≤T with the short rate, or force of interest, r a strictly positive

constant. Also, the insurer is able to invest in a risky asset whose price process is denoted

{St}0≤t≤T . Let (Ω, F, P) denote a probability space with the natural filtration F = {Ft}0≤t≤T

generated by St. In this paper we assume that St is a geometric Lévy process with the

canonical decomposition into a drift, a pure diffusion and a pure jump process; that is,

St = S0 exp {µ t + σ Xt + Jt} . (1)

In the above, {Xt}0≤t≤T is a P-standard Brownian motion and {Jt}0≤t≤T is a pure P-Lévy

jump process with random jump measure µ(dy, dt). The jump measure µ(dy, dt) counts the

number of jumps arriving in the time interval [t, t+dt) of magnitude [y, y+dy). The process

Jt can be written

Jt =

t∫
0

∞∫
−∞

y µ(dy, ds) . (2)
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The predictable compensator At of the jump component is defined as the Ft-adapted process

which makes Jt−At a P-martingale. This process is expressed in terms of the Lévy measure

(or density) ν(dy), which is independent of t because of the stationarity of Lévy processes

(see Sato, 1999), as follows:

At = t

∞∫
−∞

ν(dy) . (3)

We assume that the jump process has finite variation, that is,

∞∫
−∞

|y| ν(dy) < +∞ . (4)

The Lévy-Khintchine representation of the log-stock process is (µ, σ, ν), and the character-

istic function of Yt ≡ ln(St) is given by

ΦYt(z) = E [ exp{izYt} ] = exp{t ΨYt(z)} , (5)

where the cumulant ΨYt(z) is provided by the Lévy-Khintchine theorem resulting in

ΨYt(z) = iµz − 1
2
σ2z2 +

∞∫
−∞

(
eizy − 1

)
ν(dy) . (6)

The diffusion parameter µ is chosen so that the price process St has an observed drift of µ̂.

This can be achieved by setting

µ̂ = ΨYt(−i) ⇒ µ = µ̂− 1
2
σ2 −

∞∫
−∞

(ey − 1) ν(dy) , (7)

where we have further assumed the integrability condition

∞∫
−∞

(ey − 1) ν(dy) < +∞ (8)

on the Lévy density. To ensure the absence of arbitrage in the market we assume that the

observed drift µ̂ is greater than the force of interest r. The class of models introduced above
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is very large and encapsulates many of the well known processes. Here are a few examples:

• The Black-Scholes Model. Choosing a vanishing jump measure leads to the classical

model of Black and Scholes (1973).

• A Toy Jump-Diffusion Model. Consider a compound Poisson process with arrival

rate υ > 0. Conditional on a jump occurring, it is of size ln |1 + ε| > 0 with probability

0 ≤ p ≤ 1 and of size ln |1 − ε| < 0 with probability (1 − p), with 0 < ε � 1. The

parameter p corresponds to an asymmetry in the frequency of the two kinds of jumps.

The Lévy density corresponding to this choice is

ν(dy) = υ

(
p δ(y − ln|1 + ε|) + (1− p) δ(y − ln|1− ε|)

)
dy , (9)

where δ(·) represents the Dirac delta function.

• The Merton Jump-Diffusion Model. This model, introduced in Merton (1976), con-

sists of a diffusion component plus a compound Poisson process with arrival rate υ > 0;

conditional on a jump occurring, its size is normally distributed about η ∈ R with variance

ζ2 > 0. The corresponding Lévy jump measure is

ν(dy) =
υ√
2πζ2

exp

{
−(y − η)2

2ζ2

}
dy . (10)

• The Variance-Gamma Process. The variance-Gamma (VG) process was first intro-

duced by Madan and Seneta (1990). This process corresponds to setting the diffusion

coefficient σ = 0 in (1) and keeping only the drift term, while the jump component has

Lévy density

ν(dy) =
1

ν|y|
exp (b y − a |y|) dy , (11)

for y ∈ R/{0}, with

a =

 2

νσ2
+

(
θ

σ2

)2
1/2

, b =
θ

σ2
and ν > 0 . (12)
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In the limit ν → 0, the VG model reduces to the Black-Scholes model with volatility σ.

• The Normal Inverse Gaussian Process. The normal inverse Gaussian process has

been studied in Rydberg (1997) and Bandorff-Nielsen (1998). It is obtained by setting

σ = 0 and has Lévy density

ν(dy) = δα
K1(α|y|) eβy

|y|π
0 ≤ |β| < α , (13)

where K1(·) is the modified Bessel function of the second kind of order 1.

Up to this point we have focused on describing the dynamics of the logarithm of the risky

asset’s price process ln(St); however, to determine the indifference price we will need the

dynamics of the risky asset’s price St itself. This can be obtained by applying Itô’s Lemma

for jump processes:

dSt = S0 d (exp{µt + σXt + Jt})

=
(
µ + 1

2
σ2
)
St−dt + σSt−dXt + St−dJt +

∞∫
−∞

[St−ey − St− − y St−] µ(dy, dt)

= St−

(µ + 1
2
σ2
)

dt + σdXt +

∞∫
−∞

[ey − 1] µ(dy, dt)


= St−

{(
µ + 1

2
σ2
)

dt + σdXt + dJ̃t

}
. (14)

where {J̃t}0≤t≤T denotes a new jump process with random jump measure µ̃(dy, dt), and

the t− subscript represents the process just prior to any jump at time t. The process J̃t

undergoes a jump of size ey − 1 whenever Jt undergoes a jump of size y. In terms of the

random jump measure µ(dy, ds) the process J̃t can be defined as

J̃t ≡
t∫

0

∞∫
−∞

(ey − 1) µ(dy, ds) =

t∫
0

∞∫
−∞

y µ̃(dy, ds) . (15)

The predictable compensator Ãt of J̃t can be written

Ãt = t

∞∫
−∞

(ey − 1) ν(dy) = t

∞∫
−1

y ν̃(dy) , (16)
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where

ν̃(dy) =
f (ln(1 + y))

1 + y
I{y>−1} dy . (17)

In the above the original Lévy measure was assumed to be of the form ν(dy) = f(y) dy.

Notice that the jumps of J̃t are strictly greater than −1 which prevents the process St from

reaching zero.

We assume that the insurer can trade in both the risky and riskless assets. Let w > 0

denote the initial wealth of the insurer at time t, {πs}t≤s≤T denote the amounts invested

in the risky asset at time s, and {πM
s }t≤s≤T denote the amounts invested in the money-

market account at time s. The wealth process of the insurer at time s is Ws = πs + πM
s

and we restrict the class of admissible trading strategies {(πs, π
M
s )} to those that are Ft-

adapted and self-financing. Due to the self-financing restriction, the wealth dynamics is

dWs = (dSs/Ss−) πs− + (dMs/Ms−) πM
s− resulting in


dWs =

[
r Ws− +

(
µ + 1

2
σ2 − r

)
πs−

]
ds + σ πs− dXs + πs− dJ̃s , ∀s ≥ t ,

Wt = w .

(18)

Now that the wealth dynamics is known, we focus on determining the maximum expected

utility of terminal wealth first in the absence of and then in the presence of the insurance

risk.

3 Value Function without the Insurance Risk

The insurer seeks to maximize its expected utility of wealth at the end of the term T of

the pure endowment. Merton (1971, 1969) was the first to study the optimal investment
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problems associated with utility maximization and our calculations reduce to these classic

results in the appropriate limit. Corcuera, Guerra, Nualart, and Schoutens (2004) analyze

the optimal investment problem for Lévy processes by introducing a complete set of so called

power-jump assets. We refrain from introducing additional assets and instead focus on the

problem where only the riskless and risky assets as tradable. Define the value function of

the insurer who does not accept the insurance risk as follows:

V (w, t) = sup
{πs}∈S

E [u(WT )|Wt = w] , (19)

in which the function u is an increasing concave utility function of wealth representing the

insurer’s risk preference and S is the set of square integrable self-financing trading strategies

for which
∫ T
t π2

s ds < +∞. This further restriction ensures uniqueness of (18) and avoids non-

degenerate solutions of the ensuing Hamilton-Jacobi-Bellman (HJB) equation. For details

on the rigorous derivation of the HJB equations and technical integrability conditions see

for example Fleming and Soner (1993).

To obtain an HJB equation, let {πs} be fixed at π on [t, t + h], with h � 1, after which it

follows the optimal process {π∗s}. Then, by the dynamic programming principle,

V (w, t)≥E
[
V
(
W π

(t+h)−, t + h
)∣∣∣Wt = w

]
= V (w, t) + E

 t+h∫
t

dV (Ws−, s)

∣∣∣∣∣∣Wt = w

 . (20)

Apply Itô’s Lemma to V to obtain

dV (Ws−, s) =
[
Vt(Ws−, s) +

(
r Ws− +

(
µ + 1

2
σ2 − r

)
π
)
Vw(Ws−, s) + 1

2
σ2π2 Vww(Ws−, s)

]
ds

+πσ Vw(Ws−, s) dXs +

∞∫
−∞

[V (Ws− + πy, s)− V (Ws−, s)] µ̃(dy, ds). (21)

where as usual,

Vt ≡
∂

∂t
V , Vw ≡

∂

∂w
V , and Vww ≡

∂2

∂w2
V . (22)
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Plugging equation (21) into (20) and maximizing over π leads to the HJB equation,

Vt + rw Vw + maxπ

[(
µ + 1

2
σ2 − r

)
π Vw + 1

2
σ2π2 Vww

+

∞∫
−∞

[V (w + πy, t)− V (w, t)] ν̃(dy)

 = 0,

V (w, T ) = u(w).

(23)

Suppose that the utility u is exponential; specifically, write u(w) = − 1
α
e−αw, for some α > 0.

The parameter α is the absolute risk aversion rα(w) = −u′′(w)/u′(w) = α as defined by

Pratt (1964). The optimal investment problem with exponential utility for assets whose price

process follow semi-martingales was investigated by Delbaen, Grandits, Rheinlander, Sam-

peri, Schweizer, Schweizer, and Stricker (2002). The aithors develop a dual representation

for the pricing problem in terms of minimizing a relative entropy minus a correction term.

We continue with the primal approach using exponential utility and we find the following

expression for V ,

V (w, t) = − 1

α
exp

[
−α w er(T−t) −m0 (T − t)

]
, (24)

in which

m0 =
(
µ + 1

2
σ2 − r

)
π̄0 − 1

2
σ2 π̄2

0 −
∞∫

−∞

[
e−π̄0(ey−1) − 1

]
ν(dy), (25)

and π̄0 is implicitly defined by

π̄0 −
1

σ2

∞∫
−∞

e−π̄0(ey−1) (ey − 1) ν(dy) =
µ + 1

2
σ2 − r

σ2
, (26)

or by imposing (7), we have

π̄0 −
1

σ2

∞∫
−∞

[
e−π̄0(ey−1) − 1

]
(ey − 1) ν(dy) =

µ̂− r

σ2
. (27)
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Note that because µ̂ > r, it follows that π̄0 > 0. The optimal investment in the risky asset

is given by

π∗0 =
π̄0

α
e−r(T−t) , (28)

independent of wealth because the absolute risk aversion is constant - a well known property

of exponential utilities. In the limit of vanishing jump measure we obtain the results of

Merton (1971), namely

π̄0 →
µ̂− r

σ2
. (29)

It is interesting to determine the behavior of π̄0 as the arrival rate of jumps increases, as the

size of the jumps increases, and as the skewness becomes more negative. To this end, write

the Lévy density as follows:

ν(dy) =
{
υ− f−

(
y

s−

)
I(y < 0) + υ+ f+

(
y

s+

)
I(y > 0)

}
dy , (30)

with υ± and s± strictly positive constants, and with f−(y) ≥ 0 on (−∞, 0) and f+(y) ≥ 0 on

(0,∞) such that ν(dy) satisfies conditions (4) and (8). Adjustments to υ− (υ+) correspond

to adjustments in the arrival rate of negative (positive) jumps, while keeping the jump sizes

themselves fixed. Furthermore, the jump sizes can be scaled by changing s±, while keeping

the arrival rates constant. With this representation for the Lévy density, the first order

condition (26) becomes

π̄0−
υ−
σ2

0∫
−∞

(
e−π̄0(ey−1) − 1

)
(ey − 1) f−(y/s−) dy

− υ+

σ2

∞∫
0

(
e−π̄0(ey−1) − 1

)
(ey − 1) f+(y/s+) dy =

µ̂− r

σ2
, (31)

where we have imposed the drift matching condition (7) on µ. The partial derivatives with
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respect to the various parameters are

∂

∂υ−
π̄0 =

0∫
−∞

(
e−π̄0(ey−1) − 1

)
(ey − 1) f−(y/s−) dy

σ2 +

∞∫
−∞

e−π̄0(ey−1) (ey − 1)2 ν(dy)

≤ 0 , (32)

∂

∂υ+

π̄0 =

∞∫
0

(
e−π̄0(ey−1) − 1

)
(ey − 1) f+(y/s+) dy

σ2 +

∞∫
−∞

e−π̄0(ey−1) (ey − 1)2 ν(dy)

≤ 0 , (33)

∂

∂s−
π̄0 =−

υ−
s2
−

0∫
−∞

(
e−π̄0(ey−1) − 1

)
(ey − 1) y f ′−(y/s−) dy

σ2 +

∞∫
−∞

e−π̄0(ey−1) (ey − 1)2 ν(dy)

, (34)

∂

∂s+

π̄0 =−

υ+

s2
+

∞∫
0

(
e−π̄0(ey−1) − 1

)
(ey − 1) y f ′+(y/s+) dy

σ2 +

∞∫
−∞

e−π̄0(ey−1) (ey − 1)2 ν(dy)

. (35)

Equations (32) and (33) imply that as the jump activity increases, the optimal investment

in the risky asset decreases, regardless of whether those jumps are positive or negative. This

result seems somewhat surprising at first, after all if the jumps are only positive why should

one invest less in the risky asset? The resolution to the seeming paradox is that we have

calibrated the diffusive drift so that the realized drift of the asset is fixed at µ̂ (see (7)).

Consequently, with only positive jumps, when the jump activity increases, the calibrated

diffusive drift decreases and this overpowers the contribution of the upward jump movements

and pushes the optimal investment downwards.

To extract the behavior of the optimal investment as the size of the jump increases, we must

focus on (34) and (35). If f ′−(y) > 0 on (−∞, 0) and f ′+(y) < 0 on (0,∞), then (34) and

(35) are both strictly negative. This implies that if the skewness in the jump distribution
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is increased the position in the risky asset decreases, regardless of whether the skewness is

positive or negative. The effects of the increase in negative skewness is easily understood since

increasing negative skewness, increases the downward jump sizes themselves. The increase

in positive skewness causes a decrease in the optimal investment because, as before, such an

increase directly reduces the diffusive drift component through (7). The above conditions on

the Lévy density are satisfied for example by the the VG model (see (11)) and the Normal

Inverse Gaussian model (see (13)). In general, the jump measure is not monotonic on the

half-lines, and such cases must be treated individually. We find that the toy jump-diffusion

model (9) leads to a decrease in the optimal investment as the positive or negative jump

sizes increase. Other more general cases will not be considered further at this time.

In Figure 1, the optimal investment ratio π̄0 is obtained using the toy model defined by (9).

The parameters are chosen to illustrate the dependence of π̄0 on the jump activity rate, the

jump size and the jump skewness. Notice that as the activity rate and jump sizes increase,

the optimal investment decreases (as dictated by the above analysis). Furthermore, as the

process is made more asymmetric by increasing the upward-jump probability p the optimal

investment increases; however, for all jump sizes, the Merton result (29) provides an upper

bound.

4 Value Function with the Insurance Risk

Again, the insurer seeks to maximize its expected utility of wealth at time T , the end of the

term of the pure endowment. If the insured is still alive at time T , then the insurer will pay

to the insured g(ST ). In this case, the value function of the insurer is given by

U(w, S, t) = sup
{πs}∈S

E [u(WT − g(ST ))|Wt = w, St = S] . (36)
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By adapting the argument from the preceding section, we obtain the following HJB equation

for U :



Ut + rwUw +
(
µ + 1

2
σ2
)
SUS + 1

2
σ2S2USS + λx(t)(V − U)

+ maxπ

[ (
µ + 1

2
σ2 − r

)
πUw + 1

2
σ2Uww + σ2πSUwS

+

∞∫
−∞

[U(w + πy, S + Sy, t)− U(w, S, t)] ν̃(dy)

]
= 0 ,

U(w, S, T ) = u(w − g(S)) ,

(37)

in which λx(t) is the deterministic hazard rate, or force of mortality, for the buyer of insur-

ance at age (x + t). The term λx(t)(V − U) arises because when the individual dies (with

instantaneous probability λx(t)), then the insurer no longer faces the insurance risk and U

reverts to V .

As in the previous section, suppose the utility is exponential; then, U can be written as

U(w, S, t) = V (w, t)φ(S, t), in which φ solves

φt +
(
µ + 1

2
σ2
)
SφS + 1

2
σ2S2φSS + λx(t)(1− φ)

+ m0φ−max
π

[ ((
µ + 1

2
σ2 − r

)
πα(t)− 1

2
σ2π2α2(t)

)
φ + σ2πSα(t)φS

−
∞∫

−∞

[
e−πα(t)(ey−1)φ(Sey, t)− φ(S, t)

]
ν(dy)

]
= 0, (38)

where α(t) = α er(T−t), and the boundary condition becomes φ(S, T ) = eαg(S). It is now

possible to obtain the optimal investment strategy in the presence of the insurance risk.

However, we differ that calculation to the next section where the insurer’s indifference price

is obtained.
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5 Indifference Price of the Equity-Indexed Pure Endowment

Indifference pricing was first introduced by Hodges and Neuberger (1989) for pricing claims

in the presence of transaction costs. In the present context, the insurer’s indifference price is

the price P = P (w, S, t) for accepting to insure the pure-endowment at time t which makes

the insurer indifferent between accepting the risk with additional wealth P or not insuring

the risk (with no additional wealth). That is, P solves

U(w + P, S, t) = V (w, t). (39)

Suppose that utility is exponential, then P is independent of wealth and is related to φ via

P (S, t) =
1

α(t)
ln φ(S, t), (40)

or equivalently, φ(S, t) = exp {α(t)P (S, t)} , from which it follows that

φt = φ α(t) (−rP + Pt) , (41)

φS = φ α(t) PS , (42)

φSS = φ α(t)
(
PSS + α(t)P 2

S

)
. (43)

By plugging these expressions into equation (38), we obtain

rP = Pt +
(
µ + 1

2
σ2
)
SPS + 1

2
σ2S2

(
PSS + α(t)P 2

S

)
+

λx(t)

α(t)

(
e−α(t)P − 1

)
+

m0

α(t)
−max

π

[ (
µ + 1

2
σ2 − r

)
π − 1

2
σ2π2α(t) + σ2πSα(t)PS

− 1

α(t)

∞∫
−∞

{
eα(t)(P (Sey ,t)−P (S,t)−π(ey−1)) − 1

}
ν(dy)

]
, (44)

where the boundary condition is now P (S, T ) = g(S). Equation (44) is consistent with the

results of Moore and Young (2003) in the limit of vanishing jump measure. The optimal
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investment π∗ solves the first-order necessary condition

π − 1

σ2α(t)

∞∫
−∞

eα(t)(P (Sey ,t)−P (S,t)−π(ey−1)) (ey − 1) ν(dy) =
µ + 1

2
σ2 − r

σ2α(t)
+ S PS , (45)

or by imposing the drift matching condition (7), we have

π − 1

σ2α(t)

∞∫
−∞

[
eα(t)(P (Sey ,t)−P (S,t)−π(ey−1)) − 1

]
(ey − 1) ν(dy) =

µ̂− r

σ2α(t)
+ S PS . (46)

The optimal investment can be reduced to the calculation of the additional investment in

the risky asset due to the presence of insurance risk. That is, write the optimal investment

as π∗ = π̄0

α(t)
+ π1, then π1 satisfies

π1 −
1

σ2α(t)

∞∫
−∞

[
eα(t)(P (S ey)−P (S)−π1(ey−1)) − 1

]
(ey − 1) ν̂(dy) = S PS , (47)

where a new Lévy density ν̂(dy) has been introduced. The new Lévy density is related to

the original Lévy density via

ν̂(dy) = exp {−π̄0 (ey − 1)} ν(dy) . (48)

It is interesting that the realized drift of the asset µ̂ does not appear explicitly in (47);

however, the optimal investment without insurance risk π̄0 does depend explicitly on µ̂ (see

(26)) and this implicitly affects π1. Solving (44) is notoriously difficult and in general one

must resort to numerical methods. In section 6 we do just that, but first we obtain the

solution in two particular cases: (i) a risk-neutral insurer and (ii) a pure endowment.
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5.1 Particular Solutions

5.1.1 Risk Neutral Insurer

Consider the ratio of the difference between the optimal investment with and without in-

surance risk and the stock price,

∆(S, t) ≡ π∗ − π∗0
S

=
π1

S
. (49)

This ratio represents the optimal number of units of the risky asset that account for the

insurance risk, and it is the analog of the Black-Scholes Delta hedging parameter ∆(S) = PS.

In the limit as α ↘ 0 the insurer becomes risk-neutral, and (47) can be solved explicitly

leading to the insurer investing the following additional amount in the risky asset due to

the insurance risk:

π1 =
S PS + 1

σ2

∫∞
−∞ (P (S ey, t)− P (S, t)) (ey − 1) ν̂(dy)

1 + 1
σ2

∫∞
−∞(ey − 1)2 ν̂(dy)

. (50)

The insurer’s indifference Delta hedging parameter is therefore

∆(S, t) =

PS +
1

σ2

∞∫
−∞

P (S ey, t)− P (S, t)

S
(ey − 1) ν̂(dy)

1 +
1

σ2

∞∫
−∞

(ey − 1)2 ν̂(dy)

. (51)

The term in the denominator accounts for the additional variance in the process due to the

presence of jumps, while the additional term in the numerator accounts for change in value

of the contract due to jumps. If there are no jump components in the asset dynamics, then

the Delta reduces to the Black-Scholes result. Also, if the price function is independent of

S, such as when the endowment is not linked to the asset return, the Delta is exactly zero.

Furthermore, if the price function is linear in S, P (S, t) = a S h(t), then ∆(S) = a h(t), the
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same result as the Black-Scholes case.

It is instructive to investigate the deviations from the Black-Scholes result by using a familiar

pay-off function. Consider the price function at maturity for a call pay-off struck at K, so

that P (S, T ) = g(S) = max(S − K, 0). In this case, the indifference pricing methodology

dictates that just prior to maturity the insurer hold the following additional number of units

of the risky in excess due to the pure endowment:

∆(S, T ) =



∞∫
ln(K/S)

(ey − 1) (ey − K
S

) ν̂(dy)

σ2 +

∞∫
−∞

(ey − 1)2 ν̂(dy)

, S < K ,

σ2 −
ln(K/S)∫
−∞

(ey − 1) (1− K
S

) ν̂(dy) +

∞∫
ln(K/S)

(ey − 1)2 ν̂(dy)

σ2 +

∞∫
−∞

(ey − 1)2 ν̂(dy)

, S ≥ K .

(52)

Without jumps, this reduces to the Black-Scholes Delta ∆(S, T ) = I(S ≥ K); however, the

presence of upward and downward jumps modifies the strategy. The Delta in the out-of-

the-money region (S < K) is only zero if upward jumps are absent; otherwise, it is strictly

positive. Similarly, the Delta in the in-the-money region (S ≥ K) reaches unity only if all

jumps are absent.

In Figure 2, we have computed the Delta of a call option struck at K = 100, just prior

to maturity, using the toy jump-diffusion model (9) for several model parameters. As the

upward jump probability increases, the Delta in both the out-of-money and the in-the-money

regions increases and is due to the increasing chance that asset will jump into the in-the-

money region. Although the curves as a function of activity rate in the bottom panel appear

similar to those in the top panel the behavior is quite different. For a fixed jump probability,
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the Delta increases with the activity rate in the out-of-the money region, while it decreases

in the in-the-money region. This behavior is also reasonable, since if the asset price is in the

out-of-the money region, an increase in the activity rate increases the probability that the

asset will jump into to the in-the-money region; on the other hand, if the asset price is in

the in-the-money region, an increase in the activity rate corresponds to a higher probability

that the asset will jump out-of-the money.

Now that the optimal investment is obtained, we find that in the limit of zero risk-aversion

α ↘ 0 the HJB equation (44) reduces to,



(r + λx(t))P = Pt + (r − η) S PS + 1
2
σ2S2PSS +

∞∫
−∞

[P (Sey, t)− P (S, t)] ν̂(dy)

P (S, T ) = g(S)

(53)

where the drift compensator for jumps η is,

η =

∞∫
−∞

(ey − 1) ν̂(dy). (54)

The Feynman-Kač theorem for Lévy processes now supplies a solution to the pricing equation

(53) in expectation form,

P (S, t) = EQ
[
e−
∫ T

t
(r+λx(s)) ds g(ST )

∣∣∣∣Ft

]
, (55)

where the asset price process St can be written in terms of a pure diffusion and pure jump

process as follows:

St = S0 exp
{(

r − 1
2
σ2 − η

)
t + σ X̂t + Ĵt

}
. (56)
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Under the Q-measure X̂t is a standard Brownian process and Ĵt is a pure Lévy jump process

with Lévy density ν̂(dy) and corresponding random jump measure µ̂(dy, dt),

Ĵt =

t∫
0

∞∫
−∞

y µ̂(dy, ds) . (57)

Equivalently,

dSt

St−
= (r − η) dt + σ dXt +

∞∫
−∞

(ey − 1) µ̂(dy, dt) . (58)

Consequently, by comparing (56) with (1) it is possible to identify the change of the model

parameters that transform the real world measure P to the risk-neutral measure Q under

the indifference pricing principle. The mapping can be summarized as follows:

{µ, σ, ν(dy), λx(s)} 7→
{
r − 1

2
σ2 − η, σ, exp {−π̄0 (ey − 1)} ν(dy), λx(s)

}
(59)

Notice that this mapping preserves the finite activity and/or finite variation properties of the

real-world Lévy density. Furthermore, under the Q-measure the asset return has relatively

more frequent negative jumps and relatively less frequent positive jumps than under the

original P-measure. Very large negative jumps gain a factor of eπ̄0 in their activity rate,

while large positive jump components of size y are heavily suppressed by a factor of e−π̄0ey
.

It is well-known that in incomplete markets there exist many equivalent martingale mea-

sures Harrison and Pliska (1981); however, imposing additional criteria (such as indifference

pricing) may force a particular measure to stand out. Indeed, the Radon-Nikodym derivative

process which induces the measure change described above is uniquely given as follows:

(
dQ
dP

)
t

= exp

−1

2

(
µ− r

σ

)2

t−
(

µ− r

σ

)
Xt − t

∞∫
−∞

(H(y)− 1) ν(dy)

 ∏
s≤t

H(∆Js) ,(60)
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where

H(y) = exp {−π̄0 (ey − 1)} . (61)

By applying (7) we find that EQ[ST |Ft] = er(T−t)St verifying that the measure Q is a risk-

neutral measure.

To illustrate the effects of the measure change induced by indifference pricing consider the

toy model described by (9). Under the risk-neutral measure Q, the possible jump sizes do

not change; however, the activity rate and upward jump probabilities become respectively,

υQ = υ
{
e−π̄0 ε p + eπ̄0 ε (1− p)

}
and pQ =

e−π̄0 ε p

e−π̄0 ε p + eπ̄0 ε (1− p)
. (62)

Recall that π̄0 implicitly depends on υ and p through equation (26). In Figure 3 the risk-

neutral upward jump probabilities pQ are display as a function of the jump size ε and real-

world activity rate υ. The real-world upward jump probability was set fixed at p = 50% for

all curves. The general trend is that pQ decreases as υP increases. This implies that the risk

neutral distribution of returns becomes more skewed to the downside as the rate of arrival

of jumps increases even though in the real world the distribution of jumps is symmetric.

5.1.2 Pure Endowment

It is often useful to redefine the pricing problem in terms of the “moneyness” parameter z =

ln(S) by introducing the function P̄ (z, t) ≡ α(t) P (ez, t) and the scaled optimal investment

ratio π̄ = α(t)π. In this case the HJB equation (44) becomes

0 = P̄t + µP̄z + 1
2
σ2
(
P̄zz + P̄ 2

z

)
+ λx(t)

(
e−P̄ − 1

)
+ m0 −max

π̄

[ (
µ + 1

2
σ2 − r

)
π̄ − 1

2
σ2π̄2 + σ2π̄P̄z
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−
∞∫

−∞

{
eP̄ (z+y,t)−P̄ (z,t)−π̄(ey−1)) − 1

}
ν(dy)

]
, (63)

with boundary condition P̄ (z, T ) = α g(ez). The first order condition becomes

π̄ − 1

σ2

∞∫
−∞

[
eP̄ (z+y,t)−P̄ (z,t)−π̄(ey−1) − 1

]
(ey − 1) ν(dy) =

µ̂− r

σ2
+ P̄z, (64)

with the optimal investment in the risky asset being

π∗ =
π̄

α
e−r(T−t) . (65)

Suppose that the pay-off at maturity is independent of the asset level g(ST ) = B, that is, a

guaranteed payment of B upon survival to T . In this case, P̄ (z, t) is independent of z, (64)

reduces to (26) and the HJB equation (63) reduces to,

0 = P̄t(z, t) + λx(t)
(
e−P̄ (z,t) − 1

)
, P̄ (z, T ) = α B. (66)

The above ordinary differential equation can be solved by quadratures resulting in a price

at time t of

P (S, t) =
1

α
e−r(T−t) ln

{
1 +

(
eα B − 1

)
T−tpx+t

}
, (67)

where the actuarial symbol for survival probability has been introduced:

tpx = exp
{
−
∫ t
0 λx(s) ds

}
. (68)

As a consequence of the insurer’s risk preference, the premium is not a linear function of the

endowment size. It is therefore interesting to investigate the behavior in the limit of large

and small endowment sizes. When the endowment is small, B � 1,

P (S, t) = e−r(T−t)
T−tpx+t

{
B +

1

2
T−tqx+t B2

}
+ o(B2) , (69)
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in which tqx = 1− tpx. When the endowment is large, B � 1,

P (S, t) = e−r(T−t)
{
B − T−tpx+t

α

}
+ O

(
e−α B

)
. (70)

In the limit as α → 0, the price reduces to the actuarial present value of a pure endowment

of size B,

P (S, t) = T−tpx+t e
−r(T−t) B . (71)

This result is consistent with the risk-neutral expectation in (55).

6 Numerical Experiments

In this section, we discretize the indifference pricing equation (63) by using a combination of

implicit and explicit finite differences. Let P̄
(n)
i = α(T−n∆t) P (exp(−zmin+i∆z), T−n∆t),

where the (z, t) plane has been discretized into blocks of size (∆z, ∆t); −zmin represents the

minimum x value; and there are M points in the z-direction and N points in the t-direction.

The maximization term will be valued explicitly, and let m
(n)
i denote its value at the point

z = −zmin + i∆z, t = T − n∆t. We employ an implicit scheme for the first and second

derivatives of P̄ , while the non-linear exponential term and the quadratic term P̄ 2
z are

evaluated explicitly. The resulting finite-difference scheme is

−1− θ

2
(µ̃ + σ̃2)P̄

(n+1)
j+1 +

(
1 + (1− θ)σ̃2

)
P̄

(n+1)
j − 1− θ

2
(−µ̃ + σ̃2) P̄

(n+1)
j−1

= +
θ

2
(µ̃ + σ̃2)P̄

(n)
j+1 +

(
1− θσ̃2

)
P̄

(n)
j +

θ

2
(−µ̃ + σ̃2) P̄

(n)
j−1

+
σ̃2

8

(
P̄

(n)
j+1 − P̄

(n)
j−1

)2
+ λ

(n)
j ∆t

(
e−P̄

(n)
j − 1

)
+ (m0 −m

(n)
j )∆t , (72)
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where 0 ≤ θ ≤ 1 is the arbitrary implicit-explicit interpolation parameter, and the scaled

drift and variances have been introduced as follows:

µ̃ =
∆t

∆z
µ and σ̃2 =

∆t

(∆z)2 σ2 . (73)

When θ = 1, the fully explicit method is recovered, while θ = 0 corresponds to the fully

implicit method. For PDEs that are linear in spatial derivatives, θ = 1
2

provides results that

are second order in both ∆z and ∆t. Although the HJB equations are not linear in spatial

derivatives, we use a value of θ = 1
2
, which was found to give good convergence results.

We perform numerical experiments using a pay-off function which provides the return on

the risky asset with a floor protection and a cap on the return,

g(ST ) =



S0 eγ(T−t), 1
T−t

ln(ST

S0
) < γ ,

ST , γ ≤ 1
T−t

ln(ST

S0
) < κ ,

S0 eκ(T−t), 1
T−t

ln(ST

S0
) ≥ κ .

(74)

Asymptotically far from z = 0, the pay-off function is flat; consequently, we impose the

following two boundary conditions:

P̄
(n)
0 = P̄

(n)
1 , P̄

(n)
M−2 = P̄

(n)
M−1 . (75)

These conditions corresponding to setting the partial derivative of the premium with respect

to the asset level to be zero on the boundaries of the discretized (z, t)-plane.

Figure 4 shows the price and hedging position in the risky asset for a 10-year pure endowment

with risk-aversion parameter α = 0.1. The toy model with Lévy density (9) was used as the

driving jump process. For large spot values, the premium decreases as the jump activity

rate increases; while for small spot values, the premium increases as the jump activity rate
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increases. Furthermore, the hedging position decreases as the jump activity rate increases.

Figure 5 shows the price and hedging position in the risky asset for a 10-year pure endowment

for various risk-aversion parameters. As the insurer becomes more risk-averse, the premium

increases while the hedging position decreases. Both of these results are consistent with

intuition.

7 Conclusions

In this paper, we analyzed the problem of pricing equity-linked pure endowments when the

underlying risky asset follows a Lévy process. We derived the PDE that the indifference price

satisfies under exponential utility and obtain the explicitly solution in the limit in which the

investor becomes risk-neutral. The main pricing result is that the price is obtained by com-

puting a discounted expectation in a particular risk-neutral measure. We explicit construct

the unique equivalent Martingale measure induced by the indifference pricing principle, in

the limit of zero risk aversion. For a general risk-averse investor, we investigated the sensi-

tivity of the optimal investment in the risky asset to jump sizes, jump activity and jump

asymmetry and numerical confirm the sensitivity calculations. In general we do not analyt-

ically solve the PDE; however, we implement a explicit-implicit finite-difference scheme to

carry out numerical experiments, and the qualitative results indicate that jumps can signif-

icantly change the dynamic positions in the risky asset that an insurer would hold. These

results are all consistent with our intuition on how heavy-tailed return distributions affect

pricing and hedging. Future research directions include incorporating stochastic volatility

into the asset dynamics and including the effects of stochastic interest rates.
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Black, F., and M. Scholes, 1973, “The Pricing of Options and Corporate Liabilities,” The

Journal of Political Economy, 81, 637–659.

Bowers, N., H. Gerber, J. Hickman, D. Jones, and C. Nesbitt, 1997, Actuarial Mathematics,

2nd ed., Society of Actuaries.

Brennan, M., and E. Schwartz, 1976, “The Pricing of Equity-Linked Life Insurance Policies

with an Asset Value Guarantee,” Journal of Financial Economics, 3, 195–213.

Brennan, M., and E. Schwartz, 1979a, “Alternative Investment Strategies for the Issuers of

Equity-linked Life Insurance with an Asset Value Guarantee,” Journal of Business, 52,

63–93.

Brennan, M., and E. Schwartz, 1979b, “Pricing and Investment Strategies for Guaranteed

Equity-Linked Life Insurance,” Discussion paper, Wharton School, University of Pennsyl-

vania, Philadelphia.
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Fig. 1. These diagrams depict the optimal investment ratio π̄0 as a function of the jump size with

r = 5%, µ̂ = 12%, σ = 20% using the toy jump-diffusion model. In the top panel, the jump

probability is fixed at p = 50% with varying activity rates; while in the bottom panel, the activity

rate is fixed at υ = 0.1 with varying jump probabilities.
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Fig. 2. These diagrams depict the Delta of a call struck at K = 100 prescribed by the indifference

pricing principle using the toy jump-diffusion model. In the top panel, the jump activity rate is

fixed at υ = 1; while in the bottom panel, the upward jump probability is fized at p = 50%. In

both panels the jump size ε = 0.1.
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Fig. 3. This diagram depicts the change in the jump probabilities induced by the measure change

induced by the indifference pricing principle using the toy jump-diffusion model. The real-world

jump probability p = 50% and the jump size ε = 0.1.
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Fig. 4. These diagrams depict the price and hedging position in the risky asset with varying activity

rates. The term of the contract is 10 years with α = 0.1, λx(t) = 0.1, r = 5%, µ̂ = 12%, σ = 20%,

ε = 0.1, p = 50%, γ = 6% and κ = 12%.
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Fig. 5. These diagrams depict the price and hedging position in the risky asset with varying risk

aversion parameters. The term of the contract is 10 years with λx(t) = 0.1, r = 5%, µ̂ = 12%,

σ = 20%, ε = 0.1, υ = 10, p = 50%, γ = 6% and κ = 12%.
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