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Creating Order Out of Chaos

Carol Alexander and Ian Giblin,  University of Sussex, UK.

One of the characteristics of a chaotic dynamical system is that points on neighbouring

trajectories grow apart from each other exponentially, at least in the short term. Think

of  these points as forecasts from mathematical models based on chaotic dynamics, and

you have a fair insight about what may be happening in the new, high-tech. research

into chaos in capital markets.

Opinions are mixed about the ability of mathematical models to identify a chaotic

system underlying a financial time series, and/or to exploit consequent investment

opportunities. Articles in the press hint at both success (Investors Chronicle, 10 July

1992, Economist, 9 October 1993) and failure (Financial Times, 19 April 1993) .

Amongst books and academic articles on the subject there are those that claim to have

found chaos in financial markets (Peters 1991, De Grauwe et. al. 1993), those that

claim not (Hseih, 1991, Tata and Vassilicos, 1991) and those that are undecided

(Scheinkman and LeBaron, 1989, Liu et. al., 1992). For the most part this research is

based on derivatives of the correlation exponent1 algorithm devised by Grassberger

and Procaccia (1993a,b), for which there are a number of key parameters:

                                                       
1 The correlation dimension (or exponent) ν of a time series {xt} of length N is a measure of
the rate of growth of the correlation integral C(ε), being the number of points in a ball of radius ε, as

N increases and ε→0. Thus C(ε) ≈ εν for small ε. ν is calculated by first finding a finite
approximation to each of the correlation integrals

C(ε) = lim {number of pairs (i,j) such that  xi - xj  < ε} / N2   as N → ∞
and then estimating dlnC(ε)/dlnε. C(ε) is approximated by embedding the time series in ℜm  where m
is chosen so that m > ν.
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• the sample size may need to be huge - upwards of 100,000 points - if the

algorithms are to work with any degree of accuracy. Erroneous conclusions might

be drawn even with quite long data sets (see Vassilicos et. al. 1992);

• the data must not contain much noise - these methods cannot detect underlying

chaos when mixed with even a small amount of noise (see Liu et. al. 1992);

• correlation exponent algorithms depend on counting the number of points inside a

small ball in m-dimensional space, and results can be quite sensitive to the choice of

diameter for this ball (also in Liu et. al. 1992);

• the time series must be stationary2 if results are to be correctly interpreted

(Casdagli, 1992).

Thus very long time series are necessary for these correlation exponent methods, but

on the other hand unfiltered tick-by-tick data, or even daily data, would not be suitable

because of the high level of noise3. Since no weekly series of sufficient length are

available, filtering the noise out of data is the only alternative. Also, in many cases a

suitable stationarity transform needs to be employed. Not all the literature mentioned

above is based on empirical methods which meet these stringent criteria - and those

that are shouting 'chaos' the loudest may be the most lacking.

A new generation of algorithms

Martin Casdagli has pioneered work on the application of radial basis functions,

which have many features in common with neural networks but take much less time to

                                                       
2 A (weakly) stationary stochastic process {xt} is one in which the unconditional mean and
variance are (finite) constants and for which the covariance of  xt and xt-l is independent of time and
depends only on the lag l.

3 In high frequency data noise may be accounted for by reporting errors, or other errors of
measurement such as would be introduced by non-synchronous trades.
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run (Casdagli, 1989). This work has given rise to a new and more efficient type of

algorithm which can effectively distinguish chaos from random behaviour in time-series

of 10d data points, where d is the dimension of the attractor. Hence low-dimensional

chaotic systems may be detected with only a modest amount of data, say 1000 data

points. These new algorithms can also provide accurate short-term forecasts if the time

series is found to be chaotic, and are therefore loosely termed time delay prediction

methods.

The basic time delay prediction method approach to identifying chaotic series is based

on a theorem of Takens (1981), which shows that it is possible to estimate the

dimension of any chaotic attractor by embedding the time series in m-dimensional

space as follows: map each point xt in the time series to a point

xt = (xt, xt-τ, xt-2τ, ...., xt-(m-1)τ )

where the lag τ is some positive integer4 and m is chosen to be larger than the

dimension of the attractor. Having embedded the series in m-dimensional space ℜm, a

library of patterns in Λ ∈ ℜm is generated from the first half of the data set. Then this

library is used to forecast points in the second half of the data set, r steps ahead for

r=1,2,3,...

The method of forecasting varies: in Casdagli (1992) the forecasts are based on

parametric linear regression; Nychka et. al. (1992) use nonparametric regression to

find consistent estimates of the Liapunov exponent5; Sugihara and May (1990) suggest

                                                                                                                                                              

4 Sugihara and May (1990) find that results are largely independent of the choice of lag, and
for the most part stick with τ=1. De Grauwe et. al. (1993) suggest that τ should be chosen a small as
possible, but large enough to minimize autocorrelation between the components of x. This also sugests
that, for our purposes, a lag of one is sufficient.

5 The Liapunov exponent measures the average rate of exponential divergence of neigbouring
trajectories along the line of greatest divergence, so it is a measure of sensitivity to initial conditions.
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a non-parametric simplex projection method; Alexander and Giblin (1993) modify the

Sugihara and May algorithm to use barycentric coordinates6. In all of these methods, if

the system is chaotic the correlation between actual and forecasted values will decline

as r increases, and very short term forecasts will be quite accurate. On the other hand,

if the system is purely random no such decrease in prediction accuracy will be evident,

and for many financial returns series even the one step ahead predictions will be

uncorrelated with the actual returns.

Consider first the r-step ahead forecast of a point xt in the second half of the series, for

a fixed positive integer r. A simplex projection algorithm locates the smallest simplex σ

in Λ which contain xt . The vertices of σ are then projected r steps ahead to get a new

simplex σr, and a point xt+r in σr which is 'equivalent' to the point xt in σ is taken as

the forecast of xt in ℜm . Now the r-step ahead forecast of xt is the first coordinate of

xt+r, xt+r.

                                                                                                                                                              
Assuming independence of initial conditions (see Wolff, 1992) the largest Liapunov exponent is given
by

λ = lim (lndf r/dx/r) as r→∞,

where the trajectory of x is {x, f(x), f 2(x),.....}. Hence df r/dx ≈ exp(rλ) and, by Taylor
linearization, this is approximately equal to the difference between x and x+ε after m iterations, i.e.

f r(x+ε)  -  f r(x) ≈  exp(rλ).ε

A positive exponent implies that trajectories tend to separate, with a negative exponent trajectories
converge.

6 The barycentric coordinates of a point xt with respect to the simplex σ in ℜm are m+1
distances from the sides of the simplex, b1, b2, ... bm+1, normalized so that they sum to unity. If each
bi lies between 0 and 1 then xt lies within the simplex.
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In chaotic systems both prediction error and standard error of prediction grow

exponentially fast, since the simplex σr has a larger volume than σ due to separation of

initially nearby trajectories. This will not be the case if the time series is random noise.

Figure 1 represents our forecasting method graphically, for the case m=3.

Now that we have r-step ahead forecasts of each point in the second half of the time

series, we calculate the correlation coefficient between the forecast xt+r and the actual

series xt+r, and call this number ρ(r). Then a simple plot of ρ(r) against r should reveal

a downward trend if the time series is deterministic chaos, and an approximately

horizontal line if the time series is purely stochastic.

The barycentric coordinate method

The power of this simplex projection method to distinguish chaos, even in noisy data

sets of less than 1000 data points, can be illustrated with a chaotic deterministic map

into which we can mix a controlled amount of noise. We choose  the tent map on 0.5,

also called white chaos because its autocorrelation function has similar properties to a

white noise stochastic process7. The dynamics are given by

            2xt-1               if  0 ≤ xt-1 < 0.5

                                    xt  =

        2(1-xt-1)        if 0.5 ≤ xt-1 ≤ 1.

                                                       
7 Sakai and Tokumaru (1980) show that the tent map has the same correlogram as an AR(1)
process, and for a near to 0.5 these autocorrelations are close to those of a white noise process. For
this reason the tent map with a=0.5 is called 'white chaos'. Rounding errors in binary arithmetic imply
that the tent map on exactly 0.5 is difficult to generate on a computor because it rapidly converges to a
boundary. The value of 0.4999 gives the required dynamics for this example.
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and we can generate time series of a suitable length - say 1000 data points - from this

map to demonstrate the algorithm. The correlation dimension of a tent map is known

to be one, so we assume that the optimal embedding dimension is m=2. Figure 2(a)

shows how the r-step ahead correlations (between actual and predicted values in the

last 500 data points) decrease monotonically with respect to r, which indicates a

chaotic system.   Figure 2(b) repeats these calculations on the first differences of the

tent map series, and it is clear that this does not alter the conclusion8.

In a chaotic system such as this the algorithm also provides more accurate short term

forecasts than standard parametric regression: the r-step ahead correlations obtained by

using a first order autoregressive model based on the first 500 data points of the white

chaos map is shown in figure 2(c). Since the autocorrelations of the series are similar

to those of white noise, it is not surprising that r-step ahead predictions have very low

correlations with the actual series. In fact autoregressive model predictions will yield

correlations that are uniformly below those obtained with our prediction method,

whatever the parameter in the tent map.

The 'white chaos' tent map that we've just analysed may be indistinguishable from

white noise in many ways (hence its name), but prediction methods can distinguish the

two. Figure 2(d) illustrates the correlation plot (based on m=3, τ=1) obtained from our

barycentric coordinate algorithm for a Gaussian white noise process. The correlation

between actual and predicted values in the last half of the data is approximately zero

                                                                                                                                                              

8 Correlation plots of other chaotic maps, such as the logistic map, or sums of several
independent chaotic maps, also reveal a negative trending pattern which is characteristic of chaos.
More details are given in Alexander and Giblin, 1993.
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for all values of r, so the algorithm has not identified any chaotic system underlying this

time series.

One of the problems with correlation exponent methods is that they fail to detect chaos

when mixed with even a small amount of noise (Liu et. al., 1992). Our prediction

method can identify chaos in noisy systems - but only if the signal to noise ratio is

sufficiently large. Figure 3 illustrates correlation plots for a sequence of time series of

the form

zt = αxt + (1-α)yt

where xt is a white chaos map and yt is Gaussian white noise, for values of α between

1 and 0.7. In time series with more than 10% noise, no evidence of chaos is found, but

the underlying chaos is clear when a small amount of noise is introduced.

 Evidence of chaos.....?

The empirical literature on detecting chaos in financial data is rather ambiguous, and

clearly more research needs to be done. Amongst the authors who claim to have found

evidence of chaos are: Edgar Peters (1991), who finds positive fractal dimensions in

four of the major world stock markets, viz. the US, UK, Germany and Japan9;

                                                       
9 However this analysis may be open to question because the Morgan Stanley Capital Indices
for the UK, Germany and Japan have been detrended with a deterministic time trend, but the
detrended series may still have a stochastic trend. Indeed it is possible, even probable, that the Morgan
Stanley indices are I(1) processes, rather than the I(0) + trend processes that he assumes them to be.

The S&P 500 is 'detrended' by the US consumer price index to remove any inflationary trend.
Although economically meaningful, this process need not have any empirical meaning because the
S&P 500 and the CPI may be non-cointegrated I(1) processes. Given Casdagli's remarks about
searching for chaos in non-stationary series, and the different conclusions from first differences and
levels of our data, we do not find it surprizing that Peters has apparently identified a fractal dimension
of 2.33 for the S&P 500.

Another questionable aspect of Edgar Peters methods is whether the number of data points he
uses is sufficient for the correlation dimension approach, and we would agree that less than 500 data
points is unlikely to be regarded as adequate by most practitioners.
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Scheinkman and LeBaron (1989), who find weak evidence of  chaos in weekly S&P

500 returns with a correlation dimension of about six10;   and finally De Grauwe et. al.

(1993) find evidence of chaos with correlation dimension of about 2 in the daily Cable

rate between 1973 and 1981, and in the YEN/$ rate between 1973 and 1990 with

estimated correlation dimension 2.211. However Liu et. al. (1992) use daily IBM S&P

500 returns from July 2 1962 to December 31 1985 and are unable to draw any firm

conclusion  - their results are consistent with either stochastic white noise or a true

dimension of about six  - and  Hseih (1991) and Vassilicos, et.al. (1992) report results

which suggest no underlying low-dimensional chaotic system in some dollar

denominated currency and stock returns.

We apply the barycentric coordinate prediction algorithm to daily data on the S&P 500

from January 1 1987 to May 5 1993 (a total of 1655 observations - see figure 4(a))12.

The data needs to be logged and then first differenced in order that it be stationary

before the prediction algorithm is applied13.  Since the basic shape of our correlation

plots remains unchanged when the embedding dimension is increased from 2 up to 6,

and when the lag is increased from 1, we illustrate results in figure 4(b) for m=3 and τ

                                                                                                                                                              

10 However their results might suffer from insufficient data. Vassilicos et. al. (1992) have used
Charles Goodhart's enormously long series of S&P 500 daily stock returns and of German Mark/
dollar FX rates, finding no evidence of an underlying chaotic system.

11 The cable results are based on only 2250 data points, which may lead to inaccuracies in
correlation exponent methods, as we have seen. In none of this work are standard errors quoted for
correlation dimension estimates, and so supposedly 'large' estimates of correlation dimension could, in
fact, be insignificantly different from zero. Correlation dimension methods indicate no chaos in the
DM/$ returns, but all three exchange rates exhibit some evidence of chaos when estimates of the Hurst
coefficient are found.

12 Many thanks to Andrew Johnson of S.G. Warburgs for supplying the data on the S&P 500.

13 One of the reasons for taking logarithms is that first differences yield approximate stock
returns, so that the series we are analysing has economic meaning.
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=1.   The correlations do not show any sign of decreasing with r, and so we conclude

that there is too much noise in the data for the algorithm to identify an underlying

chaotic system - if indeed such a system exists!

Weekly returns on the  S&P 500 may be analysed, to see whether the consequent

reduction in noise makes any difference. Data in figure 4(c) are from January 1 1969 to

February 19 1993 (1260 observations), and we have used the same lag and embedding

dimension as for the daily series. Figure 4(d) shows the correlation plot - and there is

no evidence of chaos. Thus our findings support those of the LSE financial markets

group (Vassilicos et. al. 1992) who find no evidence of chaos in the S&P 500, and

contradict those of Peters (1991) who claims to have found a fractal dimension of 2.33

in weekly S&P data, and Scheinkman and Le Baron (1989) who find weak evidence of

a chaotic attractor of dimension about 6 in the S&P 500.

Figure 5(a) illustrates London daily closing bid rates of the German mark/$ from

January 2 1982 to December 10 1992 (excluding bank holidays, so a total of 2768

observations)14. As before, we take first differences of the logarithms (that is,

approximate currency returns) to ensure stationarity of the data, and assume the

parameters τ=1 and m=3 for the usual correlation plot of ρ(r) against r15. Figure 5(b)

shows  no notable downwards trend, and so the algorithm has not detected any low-

dimensional chaotic attractor underlying the data.

                                                                                                                                                              

14 Thanks to State Street Global Advisors, London, for providing these data, and similar data
on Cable.

15 De Grauwe et. al. (1993) find evidence of chaotic attractors with dimensions between 0.8 and
2.2 for two of the three polar exchange rates.
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Figure 5(c) shows a correlation plot (with the same parameters as above) which would

be obtained if we were to apply the algorithm to the levels of the log DM/$ rate, but it

would be erroneous to conclude 'chaos' from this. If a non-linear chaotic system had

generated the data, the application of a linear filter such as a first difference would not

have had much effect on the correlation plot (see Broomhead et. al. (1992)). But

earlier we showed that when taking first differences yields a marked change in

correlation plots, such as in figures 5(b) and 5(c), the relevant plot is the one which

applies to stationary data, i.e. figure 5(b)16.

In some ways (for example, in GARCH modelling) the Cable rate in figure 5(d)

behaves very differently from other dollar rates17 and it is possible that this could be

due to differences in some deterministic system which underlies these rates. Certainly

de Grauwe et. al. (1993) find stronger evidence of chaos in the Cable rate than in the

Yen or German Mark dollar rates. We therefore apply the same prediction method to a

daily $/£ rate over the same period. Figures 5(e) and 5(f) are the correlation plots for

first differences and levels of the Cable rate. Again there is again no evidence of chaos

(note that the levels plot is not valid because data are non-stationary)18.

                                                       
16 We have used parameters m=3 and τ=1for all plots. With a longer lag length, the
monotonicity of the levels correlation plots will be less evident, so this should be taken into account
when interpreting the correlation plot.

17 For this reason Gallant, Hseih and Tauchen (1991) have termed it a 'recalcitrant' series.

18 Similar remarks hold for any non-stationary transform of the S&P 500. Although the levels
S&P 500 correlation plots are not shown, they also display the distinctive shape of chaotic maps, but
nothing should be inferred from this.
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Concluding Remarks

Previous empirical research into chaos in financial markets, which has mostly been

based on correlation exponent algorithms, has suffered from a number of sample size

and/or noise problems  - and in some cases there are also methodological defects. The

results are conflicting and  a consensus opinion seems a long way off! To add to the

increasing body of evidence against chaos, we have used a barycentric coordinate

version of the Sugihara and May simplex projection method for detecting chaos in

reasonably short noisy time series. We have found no evidence of chaos in daily or

weekly data on the S&P 500, in the German Mark dollar rate, or the Cable rate.

The two most important advantages of prediction methods over correlation exponent

tests are that they need far less data, and are able to distinguish chaos in data with a

small amount of noise. Weekly series on markets with a relatively low trading volume

are the most likely data to reveal any chaotic deterministic system underlying the noise.

Such series will not, as present, be long enough for the correlation exponent approach,

and we maintain that prediction methods will therefore provide a way forward in this

research.

Time delay prediction methods such as the one that we have described have been the

subject of some interest in the recent financial press. It is the opinion of the authors

that these methods will prove far more useful in the provision of simple non-parametric

forecasts than for the detection of chaos in financial markets.
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