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Abstract

This article shows how to value the optimal stopping time for any Markovian process in finite discrete time. Specifically,
the article focuses on the valuation of American options using simulations of stochastic processes. It also shows that the
estimation of the decision rule to exercise early is equivalent to the estimation of a series of conditional expectations. For
Markov processes, these conditional expectations can be estimated with nonparametric regression techniques. This article
shows how to approximate the conditional expectations and the resulting early-exercise decision rule with spline and local
regression.

Keywords: American options; Markov processes; Stopping times; Arbitrage-free pricing; Martingales; Splines; Locally weighted
regression

1. Introduction

This article shows how to value the early exercise privilege for American options in finite discrete time. In fact,
the technique that we present can be used to approximate the optimal stopping for any Markovian process in discrete
time. For an introduction to options, consult Boyle (1992).

Using the theory of stopping times, we present a backward induction algorithm that allows us to calculate the
value of the early exercise privilege. This algorithm is based on the successive calculation of conditional expectations
that are usually difficult to evaluate explicitly. We suggest that these conditional expectations can be approximated
with a nonparametric regression on simulated data. The paper also compares our method to the one given in Tilley
(1993).

The article by Tilley (1993) dispels the belief that American options cannot be valued efficiently through simula-
tion. Tilley’s article presents a general algorithm for estimating the value of American options in an arbitrage-free
setting.

A weakness of the Tilley algorithm is the biased nature of the estimator. This paper shows why the bias exists but
more importantly it shows how to construct an unbiased estimator. Next, Tilley’s article provides scant justification
for the form of the algorithm. In contrast, this paper uses the theory of optimal stopping to justify the form of our
algorithm which is a sequential regression algorithm.
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2. The intrinsic value of an option

In this section, we define the intrinsic values of various options and we present some notation and basic definitions.
We assume that investors can buy or sell risk-free bonds and risky assets like commodities, stocks and derivatives.
We assume that the number of commodities, stocks and derivatives is finite. All commodities, stocks and derivatives
are tradable and their prices are random. Investors are allowed to hold any portfolio of securities with no budget
constraints. This means that an investor, with no money, can borrow from the bond market to finance investments
in the stock market. We also assume that investors are risk-neutral. This means that if the price for two securities
are the same, then an investor is indifferent to them.

Our asset-pricing model is a model in finite discrete time which means that assets can only be bought and sold
at the timesn = 0,1,..., N. Let 1 > v, > 0 denote the price of a risk-free bond at time O that matures at time
n at a unit redemption value. Usually vgp = 1 and v, > v,4. The price of an individual commodity or stock at
time # is denoted as S, > 0 while the value of the early exercise option for an individual derivative at time O is
denoted as Vy > 0. We assume that all investors have access to information in the form of the observed variables
H,. The information contained in H,, includes all the prices of tradable securities at time » and other data as well.
The past history of these observed variables is denoted as H, and we assume that H, is equal to the sub-o-field
H, = o{Hy|0 < k < n}.

The main focus of this paper is the problem of valuing the early exercise privilege of an option in finite discrete
time. Let 1, = I,,(H,) denote the intrinsic value of the option at time n. The intrinsic value /, is the amount that the
investor would get at time n if the investor exercised the early exercise option. Let us give examples of the intrinsic
value function. The American call option is a derivative security where the intrinsic value is I, = max {0, S, — K}
forn =0,1,..., N. The value K denotes the strike price while S, denotes the stock price. Another example of a
derivative security is an European put option. In this case the intrinsic value function is equal to I, = 0ifn < N
and Iy = max{0, K — Sy}. An example of an exotic American put option is one where the intrinsic value is

1, = max{0, K, — min(Sy,1, Sp,2)} = max{0, K, — Sp.1, Kn — Su 2}

forn = 0,1,..., N. In this case S, 1 and S, > denote stock prices while K, denotes a nonconstant strike price.
This type of exotic option was investigated by Tang and Vetzal (1994). Generally, the intrinsic value of an option is
any function of the observed variables H,,.

3. The value of random cash flows under risk neutrality

In this section, we show how to value cash flows at time n = 0 when investors are risk neutral. The ideas in
this section are well-known but are presented for completeness. Consider a portfolio of risk-free bonds where the

number of bonds maturing attimen = 0, 1, ..., N is fixed at x,, € R. In a perfect market, the price of this portfolio
at time # = 0 is simply equal to
N
Z Uy X Xp. G.D
n=0
Next, consider a random cash flow X = (Xp, ..., Xy)7 € RY where |E{X,|Ho}| < oc for all n. In a risk-neutral

market, investors are indifferent to the random cash-flow X and the sure cash flow E(X) = {E(Xo|Hp), ...,
E(Xn|HM0))7, which implies that the price paid for X is the same as the price paid for E(X). Therefore the price
paid for X or E(X) is simply equal to

N
P = v, E(X,s|Ho). 3.2)
n=0
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because in a perfect market the investor can borrow P and purchase the sure cash-flow E(X) by issuing E(X,|Hop)
bonds that mature at the timesn =0, 1, ..., N.

Consider the implications of (3.2) with respect to the term structure of interest rates. Let v, ,, denote the price of a
risk-free bond at time » that matures at time m at a unit redemption value. Consider the cash flow where X, = —v,
and X, = 1. This represents a situation where the investor lends out an amount of v, ,, at time » and is repaid an
amount of 1 at time m. In out market, an investor always has the privilege of lending money at no cost. This means
that the value or price of this transaction at time 0 is simply 0. Using (3.2), we find that 0 = —v,, X E(vp n |Ho) + V.
Therefore,

E(vn.m|Ho) = Um/Vn. 3.3)

In other words, our valuation method is consistent with the Local Expectations Hypothesis of the term structure of
interest rates. The reader can consult Cox, et al. (1981) for an extensive discussion of this hypothesis. They show
that it is the only term structure model that obtains in equilibrium for a market model in continuous time. They also
have a discussion on the hypothesis of discrete time.

Let us discuss the implications for pricing the early exercise privilege of an option when a random exercise
strategy is used. At any time, the holder of a derivative security can exercise the early exercise option. This decision
must be made on the basis of the observed variables Hy, ..., H, and not the future variables Hy,1, H,47 ... This
means that the exercise time is a stopping time, which is denoted as t, and at the exercise time the cash flow to
the holder of the derivative is /;. This means that the random cash flow at time » is equal to 7, x 1(t = n) which
implies that the value (at n = 0) of the strategy based on t > O is

N
Zv,, E (I, x 1(t = n)|Ho}
n=0
N
=F Zv,, x I, 1(r = n)|Hy
n=0
= E{v; x I;|Ho}. (3.4

This valuation formula assumes that v, is not random because the information set Hg contains this information.
Tilley (1993) presents a more general form of (3.4), where v, is random.

4. Valuation using an optimal stopping time

In this section, we give a backward induction algorithm for optimal stopping in finite discrete time and we relate
it to the valuation of the early exercise option for derivative securities.

Letn =0,1,..., N and let H, denote the observed variables at time n. Suppose that a reward R, = R, (H),) is
a function of the observed variables. In our application, the reward at time # is the discounted intrinsic value and so
R, =v, x I. “.1)

Consider the history or sub-o-field H, = o{H|0 < k < n} and the stochastic sequence {Rj, 7'{,1},’:’:0 where R,
is integrable. In this discussion, we focus on stopping times, t, that assume values on the integers 0, 1, ..., N. A
stopping time is simply a random variable with the property that the event {t = n} is in the set H,, for all n. Let C,,
denote the class of all stopping times T such that Pr(n <t < N) = 1. Next, let

Vo= SUp;ec, E(R:[Hy),

N
Re=) Ry x 1t =k} (4.2)
k=n
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Note that V,, n > 1, is not the value of the early exercise option at time n because we are discounting to time 0.
Next, define

N
Tw=) kx1{Vy> Ryforn <h<kand Vi = Ry). (4.3)

k=n

The backward induction theorem from Chow et al. (1971) states that the stopping time 1, is optimal. The backward
induction theorem is as follows.

Theorem 1.

(i) Vv =Rpandifn=0,1,...,N — | then V, = max{R,, E(V,11|Hn)}.
(ii) T € Cp and Vy = E{Run|Ha}Vn =0, 1,..., N,
(iii) E(ValHnm) = sup,ec, E(R I Hm)VO <m < n < N.

The proof of this result can be found in Chow et al. (1971, p. 50), a treatise about optimal stopping times. The
backward algorithm is actually described in part (i) of theorem 1. Theorem 1 essentially states that the value of the
early exercise option for a derivative is equal to

N
Vo = E{Ry|Ho} = E [ v x In X I{(tg = n)|Ho § 4.4)
n=0

where 1y is the first time n = 0, 1,..., N such that v, x I, > E(V,4) | H,). In this representation, Vy1; = 0.
Note that usually E{Ry, | Ho} > E{Ro|Ho} = Ro and so Vo = E(V||Hp) and we never exercise at time n = 0.

Let us give an equivalent representation of the backward algorithm. This alternate way of finding the optimal
stopping time was used by Tilley (1993). Define

Vi=Vy/vn and dy = vpy/vn. (4.5)
Then we must have V3 = Iy and forn = N —1,..., 1, 0, we must have

V) =max({l,, d, E(V, ||Hn)}. (4.6)
The optimal stopping time 7y can now be described as the firsttimen = 0, 1, ..., N such that /,, > d, E (V,;"+ 1 IH,).

In conclusion, we find that

V5 = V. 4.7
During our simulations, we found that the approximations of V; based on V,* were almost identical to those based
on V. Differences between the two were attributed to roundoff errors during the approximation process.

4.1. Valuation of European options

For European options, the intrinsic value function is equal function is equal to [, = 0ifn < N. Butifn = N
then

_ | max{0, K — Sy} (put option),

N= { max{0, Sy — K} (call option), 4.8)

assuming a constant strike price. Using the algorithm in Theorem (i), we immediately find that in all cases, tp = N,
and so

Vo = { vy x E{max{0, K — Sy}|Ho} (put option), (4.9)

vy x E{max{0, Sy — K}|Ho} (call option).
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4.2. Valuation of an American call option

In this section, we show that the formula for an American call option is the same as the formula for the European call
option, shown in (4.9). This classical result obtains when we assume that the discounted price process {v, x Sy} ,Zlv=0
is a martingale adapted to the history #,. As Schachermayer (1992) shows, this is equivalent to arbitrage-free
pricing. Assuming that we have a martingale, we find that 1o = N. This is true because if n = 0,1,..., N — 1,
then

E ( Vay1lHy)
= E(max{vp4+1 X Iny1, E(Vpy2|Hny 1)} H,)
> E(upt1 X In+1[Hn)
= E(vy41 x max{0, S,4+1 — K}Hy)
> max{0, E(un41Sp+11Hn) — va41 K}
=max{0, vy, Sy — v+ 1K}
> VUn X Iy,

assuming that the conditional density of S,41 given S, is absolutely continuous and greater than 0 on the positive
reals. In other words, V,, > R, forall n = 0,1,..., N — 1. In the case of an American put option, the optimal
stopping time usually cannot be described simply and so no explicit formula for Vjy exists. This is also true of other
derivative securities like exotic options. We now show how V{ can be approximated in these cases.

5. The sequential approximation algorithm

In this section, we present our simulation algorithm for calculating the value, Vj, of the early exercise option for
derivative securities. Let M = 1, 2, ... denote the total number of sample paths generated in the simulation study
and let

X = Hom. - ... Hn.m), G.1)

denote the mth sample path and let H, ,, denote the observed variables at time n from the mth replication of the
process. We assume that X, Xa, ... are independent and identically distributed random processes. These simu-
lated data are used to approximate the conditional expectations E(V,4+1|H,) forn = 0,1,..., N — 1. Define
H, = H, . To simplify the analysis, we assume that the process {H,, H,,},’!V:O 18 Markovian. This implies that
E(Vat1lHy) = E(Vpt1|Hp), which implies that V,, = V,(H},) is a function of H, because R, = R,(H,) and
Vi = max{Ry, E(V,+Ha)}.

Fix n and suppose that we know the function V,4;(:). Theoretically, we can use nonparametric regression
analysis to estimate E(V, | (H,+)|Hy) with the simulated variables {Hy n, Vot (Hps1m)},m = 1,..., M. A
good reference for nonparametric regression is Hardle (1990). An extensive discussion of spline techniques, a
type of nonparametric regression method, can be found in Seber and Wild (1989). The local regression techniques
presented in Cleveland and Devlin (1988) may also be used for nonparametric regression. Obviously, we do not
know V,,11(-) and so it must also be approximated. This leads to a recursive algorithm. At this point, it may be
instructive to note that the “bundling” algorithm presented by Tilley (1993) is actually a regression method using a
crude kernel smoothing techniques. Let V,, denote the approximation of V,,. To approximate Vy, we simply calculate
the sequence VN, e, ‘}0 Where VN(-) = Ry(-) and

. 1 M.
=— Y Vi(Hin), .
Vo M"; \ (Hy ) (5.2)
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and the estimates Vi (), ..., Vy_| (-) are based on the regression function estimators. Using this sequence, we can
generate M replications of the optimal stopping time as follows:

N
fom =Y xI [Vh(Hh,m) > Ry(Hpm). 0 < h <k, Vi(Him) = Rk(Hk.m)] - (5.3)
k=0

Define I, ,, = I,(H, ;) and 2,,,n = 1{Zp,» = n}. Using the empirical analog of (4.4), we get another way of
estimating Vjp. This is

ZZVnXImXan 5.4)

m—-ln

Tilley (1993) recommends estimators of the form Vo to approximate Vj and so do we. Later, we will compare the
estimators Vy and Vo and find that VO is biased while Vj, is less biased than Vo

5.1. Calculating unbiased estimates

The statistic V, will be biased for all n < N. It is sufficient to prove this whenn = N — 1. Let H, denote the
estimate of E(V,4+1|H,) and suppose that H,_ is an unbiased estimator of E(Vy|Hy—_1) = E(Ry|Hn-1), then
E ( Vn-1|Hy-1)
= E[max{Ry—1, Hy-1)[Hy-1]
> max{Ry—1, E(Hy_1/Hn-1)}
=max{Ry—1, E(E(VN|Hn-D)IHNn-1)}

=VN-1.
In general, we believe that the expected value and variance of f/o has the forms shown in (5.5) and (5.6):
E(Vo) = Vo +a/m+0(1/M?), (5.5)
Var(Vo) = v2/M + O(1/M?). (5.6)

In our application (Section 6), we give evidence that Vo behaves according to (5.5) and (5.6). Let V(M) denote the
estimator of Vg based on M| replications. Consider, the following estimator:
My x V(M) — M; x V(M)

punb _ ) 57
0 M M, (5.7

We find that E(I;’(;‘"b) = Vo + O(1/M?) and so %““P is nearly unbiased. Let « = M;/(M; + M>) and suppose
V(M7) is independent of V (M3), then

(v?/M)
Vemh) = ——= + 0(1/M?). 5.8
Var (V™) = (=502 * O/M?) (5:8)
This variance indicates that a larger variance for the estimator is the penalty that we must pay for removing the
first-order bias. But if we let @ = 0.10 then the standard deviation only increases by 25%, an acceptable amount.

5.2. Regression with g-splines

In this section, we describe how to calculate of ﬁ,,(-) forn =1,..., N — 1 using a g-spline when H,, = S, is
price of a stock at time n. Consult Seber and Wild (1989) for more details about regression splines. For a general
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treatise on splines, read Schumaker (1981). Let S, ,, denote the observed stock price at time n from replication

m=1,...,M. Let ﬁn() denote an estimate of H,(-), where H,(S,) = E(Vn+1|Sx) = E(Vuq1{Hy). To start the
algorithm, we let

Vn(s) = vy x In(s). (5.9)

Forn=1,...,N — 1, we define

Vas1(s) = max{Ly41(5), o1 (). (5.10)
Consider the simulated data {S,,,m,f/nH(S,,H,m)}. Let min, (S, »} = x0 < 1 < -+ < kp_1 < kp =

max,, {S, »} denote the knots for the spline. In the next section, the knots were chosen so that the number of
observations between two knots is nearly constant. The formula for the g-spline is

q D—1
H, = quj x s+ Z &4 x max{0, (s — xq)7}. (5.11)
j=0 d=1

This spline is a piecewise polynomial of degree g with ¢ — 1 continuous derivatives at the interior knots. The
parameters ¢y, ..., ¢4 and &, ..., Ep_ are those values that minimize the sum of squares

S5(¢o, ... 9. 61, Ep=-1)
2

M
=3 (V1 Sn1m) = Bn(Sn)) (5.12)
m=1

This estimation problem can easily be put in matrix form because (5.11) is linear in the parameters. Therefore, the
solution that minimizes (5.12) can readily be found with classical linear regression formulas.

5.3. Regression with a local polynomial smoother

Another way to calculate of I-}n (+) is to use local polynomial regression. Consult Cleveland et al. (1988) for more
details about this method. The advantage of this method over splines is that it requires fewer calculations, making
it faster. In this case, we let

q
Hy(s) =) ¢;(s) x s. (5.13)
=0
The parameters ¢g(s), ..., ¢, (s) are those values that minimize the sum of squares

SS ( ¢o(s), ..., Py (s))

~ “ 2
= Z (Vn+l(Sn+l.m) e Hn(Sn,m)) ) (514)
mel(s)
where I'(s) is an index set equal to
Fs)={m=1,....M: d(s) < Sp.m — 5 < e(s)}, (5.15)

and 0 < d(s) < e(s) are parameters that define the local region of regression. Estimation is straightforward because
this problem fits the classical linear regression paradigm.
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6. Approximating the value of an American put option

In this section, we illustrate out methods with an American put option. In this case I, = max{0, K — S,}. We let
N =12, K =45,8 =40,i = 0.07, 8 = log,(1 + i), v = exp{—én}, 0 = 0.3, and

Sp=S,_1 X exp{%é — édz + %GZ"},
n=1,...,12, (6.1)

and Z, ~ N(0, 1), and Z,, Z3, ... are stochastically independent. In this example, n is the number of quarter
years while & is the annual force of interest. Moreover, we let H, = S, and H, = o{S; |0 < k < n}. Clearly,
the process {Sn},llzz o is Markovian. Moreover, the process v, x S, is a martingale because E{v, X Sy |Hn—1} =
Sn—1 exp{—38(n — D}E{exp(— 302 + 30 Zu)} = va_1 X Sy_1.

Let S, denote the observed stock price at time » from replication m = 1,..., M. For n = 0, we find that
Vo > Roand Vg = E(V| | Hy) = E(V1 | Sy) = Hp . So, we let

. 1 M.
Vo= — Vi(Sim). 6.2
0 MmZ::l 1(S1.m) (6.2)

The function V; (s) is found recursively using (5.9) and (5.10). Consulting (5.3), the approximate optimal stopping
time is

N A A

7o = Zk x 1 [H;,(Sh) > vpIp(Sy) for0 < h < k and Hp(Sk) < v i (Si) ¢ . (6.3)
k=0

Using (5.4) along with (6.3), evaluated at each of the sample paths, yields an estimator, ‘70, that exhibits a smaller
bias than Vp when M is large. This point is investigated in the next section.

6.1. Comparison of estimators

We estimated Vy four different ways. Let V! denote an approximation of Vj based on Eq. (6.2) using a linear
spline (g = 1, D = 7) and let V4 denote an approximation of V; based on Eq. (6.2) using a quadratic spline (g =
2, D = 7). Next, let V/ denote an approximation of ¥y based on Eq. (5.4) using a linear spline (¢ = 1, D = 7) and
let V9 denote an approximation of Vj based on Eq. (5.4) using a quadratic spline (¢ = 2, D = 7). We generated
these estimates with M = 4000 sample paths of the process. To examine the properties of these estimators we
repeated the experiment I' = 1000 times and we generated the statistics V!, V;/, V., V)f fory = 1,..., I". The
four statistics were calculated with the same simulated data. Let \7,, denote any of the four estimates. Then an
estimate of E(Vy) i

-1 K.
V= — V., 6.4
F2 (64)

while an estimate of the standard deviation ‘/Var(f/y) is

.
b= F;(Vy—V)z. (6.5)

Using (6.4) and (6.5), we calculated Z-statistics for the two-sided hypothesis that the four estimators are equal to the
true value of Vp = 7.941 (Tilley, 1993). The results are summarized in Table 1. All computations for this simulation
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Table 1

Tests of biasedness

Null hypothesis 1% D 1Z| Decision
E(W!y=17.941 7.9507 0.0937 3.28 Reject
E(V9) =7.941 7.9481 0.0933 2.40 Reject
E(V)) =7941 7.9398 0.0991 0.38 Accept
E(V4)=7941 7.9413 0.0998 0.10 Accept

were done with the computer language GAUSS. All decisions are based on a 5% level of significance. Examining
Table 1, we can conclude that the V estimators are biased but we cannot reject the hypothesis of unbiasedness for
the V estimators. Actually V is biased but when M is large the bias is very small. We did another experiment with

= 2500 and M = 500. In this case we found V = 8.030 and © = 0.293 and we rejected the null hypothesis
E (f/q) = 7.941. It also seems that the quadratic estimators are different than the linear ones. Table 2 shows that
this conclusion is supported by the data. The Z-statistic was calculated the same way as before except that the mean
and standard deviation calculations were based on the differences, \A/}f — V{, for example.

6.2. Properties of the estimator Ve

Let us show that the estimator, V7, behaves according to (5.5) and (5.6). To examine the properties of this
estimator we repeated the experiment I' = 7200 times and we calculated VM and Dy using (6.4) and (6.5) assuming
that we had M = 500, 1000, .. ., 5000 sample paths. These statistics are analyzed in Fig. 1. This graph reveals that
(Vi — Vo)~ ! ~ M/a and (f),%,)‘1 ~ M/v?, as hypothesized. This behavior was also observed for the estimator
V4. All graphs were done with the computer language GAUSS.

6.3. Hlustration of the quadratic spline

Fig. 2 illustrates the shape of the quadratic spline with 12 graphs. Specifically, this figure plots each quadratic
spline function, H (),n=1,. 11 Moreover, this figure also plots the paired observations {S, ,,, ,,+1(S,,+1 m)}
forn=1,...,11andm = 1, ..., M = 1000, that were used for estimating the spline. For n = 12 we plotted the
pairs {S12,m, v12 X 112(S12.m)} form =1,...,M =1000.

6.4. Unbiased estimation

In this section, we investigate the unbiased estimator f/&"’b, given in (5.7). In that formula, the biased estimator V
denotes the estimator V9. In our experiments, M> was always fixed at 500 while M) increased from 1000 to 5000 in
increments of 500. To calculate V and ¥, we repeated the experiment I' = 2500 times. The results are given in Table
3. At the 5% level of significance, we found that we could never reject the two-sided hypothesis E (V““b) = 7.941.
In conclusion, we find that (5.7) yields unbiased estimates.

6.5. A comparison of the spline and local regression methods

In conclgsion, we compared the quadratic spline estimator ‘7‘1, based on formula (5.11), with the local quadratic
estimator V'°@! based on formula (5.13). We generated estimates with M = 2000 sample of the process. To

Table 2

Tests of equality of means

Null hypothesis |Z| Decision
E(VY) = E(V') 9.25 Reject

E(Vd) = E(V)) 2.49 Reject
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Fig. 1. A plot of (Vs — Vg)~! (y-axis) and (ﬁM)‘l (y-axis) for M = 500. ..., 5000 (x-axis). Regression lines are also shown.

examine the properties of these estimators we repeated the experiment 7 = 100 times and we calculated \7;’ and
V}l"cal fory = 1,...,T'. The two statistics were calculated with the same simulated data. To test the null hypothesis

E{Vi} = E {Viecaly " we calculated a Z-statistic that was based on the differences, Vﬁ - V}loca'. We found that
|Z| = 0.88 and concluded that the two methods were similar.
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time=9

time=11 time =12

0 2 L) & L] 100 0 A 0 60 80 100

Fig. 2. A plot of the quadratic spline, H,(-), and the observations {Sn.m. \7,,+1 (Sn+1.m)}. The spline function is shown as a solid line
while paired data is given as a scatterplot.

7. Summary

The article starts by defining the intrinsic value of various derivative securities like options. Next, the paper
shows how to value cash flows when investors are risk neutral. This valuation method is consistent with the Local
Expectations Hypothesis of the term structure of interest rates. Next, we give a backward induction algorithm for
optimal stopping in finite discrete time and we relate it to the valuation of the early exercise privilege for American
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Table 3

Tests of the hypothesis, E(V3™) = 7.941

M, Vv D |Z| Decision
1000 7.9415 0.5110 0.04 Accept
1500 7.9482 0.2901 1.23 Accept
2000 7.9364 0.2137 1.08 Accept
2500 7.9382 0.1774 0.79 Accept
3000 7.9431 0.1532 0.69 Accept
3500 7.9416 0.1349 0.23 Accept
4000 7.9405 0.1240 0.19 Accept
4500 7.9397 0.1167 0.55 Accept
5000 7.9387 0.1074 1.09 Accept

options. Using this result, we show that the formula for an American call option is the same as the formula for the
european call option, assuming no arbitrage opportunities exist.

Also, we present a simulation algorithm for approximating the value of the early exercise option for derivative
securities. The algorithm uses a regression function to approximate conditional expectations. We also present an
unbiased algorithm for approximating the value of the early exercise option. Finally, we illustrate the simulation
and regression techniques with an American put option.
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