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Abstract

The valuation of American options is a difficult problem. The basic reason is that

the asset price at which early exercise is optimal isn’t known in advance and has to be

found as part of the solution of the problem. In mathematical terms, a partial differential

equation known as Black–Scholes equation has to be solved with a moving boundary

condition. This is known in general as a moving boundary problem. Analytic solutions

of this kind of problems can be found only in very special cases (e.g. for the American

call on an asset paying a single discrete dividend during the lifetime of the option).

However, because of the practical importance of American options, their efficient and

accurate pricing is vital for option market participants. Finite difference methods can

be used to solve the differential equation numerically, but in order to obtain an accurate

solution, considerable computational effort is necessary. Therefore other, more efficient

methods have been developed.

In this thesis a comparison of numerical and approximative methods to solve this prob-

lem for equity (representing options on assets with discrete known payments) and FX

options (representing options on assets with a continuous dividend yield or holding

costs) is presented. The numerical methods are based on a binomial tree. A finite dif-

ference method the solution of which is considered exact is used as a benchmark all the

other methods are compared to. The result is an assessment when these methods can

be successfully applied.
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Chapter 1

Introduction

A (so called plain vanilla) financial option gives the holder the right to buy or sell the underlying

asset for a strike or exercise price X (that is fixed when the option is written) at a later time. If

the holder has the right to buy the asset, the option is a call, while a put gives the holder the right

to sell the asset. The use of this right by the holder is called exercise of the option. The option is

called European if it can be exercised only at a certain date (the expiration or maturity date T). An

American option can be exercised at any time before the expiration date. If an American option is

exercised before the expiration date, it is early exercised.

Becaue the option gives the holder the right, but not the obligation to buy or sell the asset, he

will only exercise the option if it is profitable for him, i.e. he will only exercise a call if the market

price of the asset is above the strike price or he will only exercise a put if the market price of the

asset is below the market price. The option provides its holder with the possibility of unlimited

profit at the risk of a limited loss. Therefore it has a value. Acquiring an option costs a premium.

The value of the option at expiry is the payoff of the option. It is zero if exercising the option

doesn’t provide a profit and positive otherwise. For plain vanilla options it can be written as

Pcall(S) = max(0;S�X) (1.1a)

Pput(S) = max(0;X�S): (1.1b)

At any time before expiry, the value of the option will be different from the payoff. For a European

option it will be the expectation value of the payoff at expiry discounted to the date the valuation is

done for (given the interest rate, the price and the volatility of the underlying asset).

Because an American option can be exercised at any time, its value can never be less than the

payoff. (Otherwise, it would be exercised immediately.) Furthermore, because the early exercise is

an additional right to the exercise at expiry, an American option is at least as valuable as a European

option. The exact determination of the value of the American option, however, is in general a

difficult task. Analytic closed–form solutions can be found only in rare special cases. A numerical

solution of this problem can be found (in principle) with arbitrary accuracy limited only by the

properties of the numerical scheme, but involving a significant computational effort.

Most of the options traded at exchanges are American. Therefore, an accurate and efficient

valuation of American options ist very important. Thus other ways must be found to find the option

1



2 CHAPTER 1. INTRODUCTION

value. All known methods are a compromise between computational efficiency and accuracy. In this

thesis the results of several popular methods are compared to the numerical solution. These methods

fall in one of the two categories: Binomial tree models (and variants) and analytic approximations.



Chapter 2

Foundations

2.1 Pricing of Financial Derivatives

In this chapter the notation used in the following chapters shall be introduced. The derivation of

the differential equation which is the basis of the discussion in the later chapters is outlined. The

purpose of this chapter is not a rigorous mathematical treatment of stochastic calculus. A good

introduction can be found e.g. in [1].

2.1.1 Wiener Processes

If the value of a variable changes over time in an uncertain way it is said to follow a stochastic

process. This process can be discrete or continuous in time (discrete time or continuous time pro-

cess) and in “space” (discrete or continuous variable). Although trading in financial markets isn’t

continuous in time (there is no trading outside business hours at exchanges) and asset price (e.g.

stock prices are quoted in fixed ticks), the continuous-time, continuous-variable process is a useful

model of financial asset prices for many purposes.

A Markov process is a stochastic process where only the present value of a stochastic variable is

relevant for the next value. The next value is independent of the path the present value is obtained. A

Wiener process is a particular Markov process with a mean change of 0 and variance 1. In physics

the process is often referred to as Brownian motion. If a random variable X follows a Wiener

process, its changes ∆X in discrete time steps ∆t can be written as

∆X = ε
p

∆t (2.1)

where ε is a random drawing from a standardised normal distribution1. In the limit ∆t ! 0 this can

formally be written as

dX = ε
p

dt (2.2)

If the development of a stochastic variable Swith time t can be described as a generalised Wiener

process, its differential equation can be written as

dS= Mdt +ΣdX (2.3)

1A normal distribution with mean 0 and variance 1

3



4 CHAPTER 2. FOUNDATIONS

where the parameters M and Σ are constant. M describes the drift of the process, and Σ is a measure

of its variation. The differential dX is a random variable drawn from a normal distribution with

mean 0 and variance dt (i.e. a Wiener process as in equation 2.2). The values of dX for different

times are independent.

The prices of financial assets are usually assumed to follow more general processes where the

parameters can depend on Sand t.

dS= M(S; t)dt +Σ(S; t)dX (2.4)

These processes are called Itô processes. For many financial assets (e.g. equities, FX rates) a log-

normal random walk2 of the asset price is assumed. In this case M(S; t) = µSand Σ(S; t) = σSwhere

σ and µ are constant. Equation 2.4 then can be written as

dS= µSdt +σSdX: (2.5)

The parameter σ is called volatility, µ is called drift.

2.1.2 Risk-neutral Valuation

A world in which investors don’t require a compensation for risk is called risk-neutral. In such a

world the expected return on any security is the risk-free rate. The Girsanov theorem can be used to

transform the random walk with drift µ in equation 2.5 to the risk–neutral random walk

dS= rSdt +σSdX: (2.6)

where the drift is equal to the risk–free rate r . If the asset pays a continuous dividend yield q, the

growth rate of the asset price has to be reduced by this amount in order to provide the same overall

return (dividend + capital gain) as an asset without dividends:

dS= (r�q)Sdt +σSdX: (2.7)

The following derivation will be based on this random walk.

2.1.3 Itô’s Lemma

Suppose a function V(Xt ; t) is given where the subscript t indicates that X is itself a function of time.

In “normal”3 calculus there is the chain rule how to calculate the total derivative of V with respect

to t:

dV
dt

=
∂V
∂X

dX
dt

+
∂V
∂t

: (2.8)

An equivalent formulation in terms of the differential is

dV =
∂V
∂X

dX+
∂V
∂t

dt: (2.9)

2The reason why it is called log-normal is explained in section 2.1.3.
3i.e. non-stochastic
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Itô’s lemma is the equivalent if the variable Xt is a stochastic variable following a Wiener process at

time t. Using a Taylor expansion of V to order dt neglecting all terms of higher order as dt ! 0, we

obtain

dV =
∂V
∂t

dt +
∂V
∂X

dX+
1
2

∂2V
∂X2 dX2

=

�
∂V
∂t

+
1
2

∂2V
∂X2

�
dt +

∂V
∂X

dX (2.10)

because the increment dX is drawn from a normal distribution with variance dt (implied by the fact

that X follows a Wiener process) and therefore dX2 is of the order of dt. If V is contingent on a

variable Sfollowing an Itô process 2.4, this can be generalised to

dV =

�
M(S; t)

∂V
∂t

+
1
2

Σ(S; t)2 ∂2V
∂S2

�
dt +

∂V
∂S

dS (2.11)

An application of Itô’s lemma that will later be useful is to consider the process in equation 2.7

and V(S) = lnS. Then

dV =
∂V
∂S

dS+
1
2

σ2S2 ∂2V
∂S2 dt

=
1
S
((r�q)Sdt +σSdX)� 1

2
σ2S2 1

S2 dt

=

�
r�q� σ2

2

�
dt +σdX

dln S=

�
r�q� σ2

2

�
dt +σdX (2.12)

The random variable lnS follows a normal generalised Wiener process4, but the drift has an addi-

tional volatility–dependent component.

2.1.4 Derivation of the Black Scholes Equation

The following assumptions have to be made for the derivation:

� The asset price is a continuous variable that can change continuously in time and follows a

random walk as in equation 2.7.

� Short selling of securities is permitted (with full use of the proceeds).

� There are no transaction costs, bid-ask spreads, or tax considerations.

� It is possible to adjust a portfolio continuously in time and asset quantity (i.e. the asset is

perfectly divisible).

� The asset doesn’t pay discrete dividends during the lifetime of the derivative.

4Therefore the process for S is called log-normal.
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� There is no arbitrage possibility.

� Borrowing and lending at the risk-free rate is possible.

� The risk-free rate is constant in time and independent of the maturity (i.e. the rate curve is

flat).5

� The liquidity of the market is unlimited.

� There is no counterparty/default risk.

Let Sbe the price of an asset with dividend yield q. Let V(S; t) be the price of a derivative on

this asset. The change of the derivative value can be expressed using Itô’s lemma 2.11 and based on

the random walk in equation 2.7 as

dV =
∂V
∂t

dt +
∂V
∂S

dS+
1
2

σ2S2 ∂2V
∂S2 dt (2.13)

A hedged portfolio with value Π is constructed containing the option on one unit of the asset

and the fraction �∆ of the asset itself:

Π =V�∆S (2.14)

In an infinitesimal time step dt, the value of the portfolio changes by dΠ. The asset value changes

by the (random) increment dS. Using equation 2.13 and assuming that ∆ is constant during dt we

obtain utilising Itô’s lemma (equation 2.11)

dΠ = dV�∆dS

=
∂V
∂t

dt +
∂V
∂S

dS+
1
2

σ2S2 ∂2V
∂S2 dt�∆dS:

The portfolio is risk-free if dΠ is independent of dS. This is accomplished by letting ∆ =∂V
∂S. Then

the return on the portfolio reduced by the dividend the portfolio holder has to pay on the asset he is

short should be equal to the risk-free rate.

dΠ�qS
∂V
∂S

dt =

�
∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 �qS

∂V
∂S

�
dt

= rΠdt

= r(V�∆S)dt

= r

�
V� ∂V

∂S
S

�
dt

Rearranging this result yields the Black-Scholes equation

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 +(r�q)S

∂V
∂S

� rV = 0: (2.15)

5This assumption can be relaxed as long as interest rates are deterministic. It only makes the formalism simpler.
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The payoff at maturity determines the option price at any time prior to expiry. For vanilla options

as described in chapter 1 it can be written as

Pcall(S) = max(0;S�X) (2.16a)

Pput(S) = max(0;X�S): (2.16b)

Thus, the value of the option is known at expiry. Let t be the instant of time at which the fair option

price V(S; t) is to be determined. This option price is the solution of the Black-Scholes equation.

The Black-Scholes equation is a parabolic equation that can be solved only for decreasing t. The

payoff is a ”final condition”. Using τ = T� t as the time variable, the Black-Scholes equation can

be solved as an initial value problem with the option payoff as the initial condition.

2.2 Solution of the Black Scholes Equation for European Options

2.2.1 Analytic solution

For European options, the Black-Scholes equation can be solved analytically by transforming it to

the heat equation. The algebra of this solution can be found e.g. in [4]. In the original Black-Scholes

equation the dividend yield q= 0, but conceptually this doesn’t make any difference. Therefore here

only the more general case is considered here.

2.2.1.1 Option on an Asset with a Continuous Dividend Yield

This case is valid for options on equity indices with a continuous dividend yield q, futures with

q = r , FX rates with q = r f (where r f is the foreign interest rate) and assets without dividends

(q= 0).

The price of a European Call is

Vcall = e�q(T�t)SN(d1)�e�r(T�t)XN(d2) (2.17)

with

d1 =
ln(S=X)+(r�q+σ2=2)(T� t)

σ
p

T� t
(2.18a)

d2 = d1�σ
p

T� t: (2.18b)

N(x) is the cumulative normal distribution as defined in equation D.1. The price of a European put

is

Vput = e�r(T�t)XN(�d2)�e�q(T�t)SN(�d1): (2.19)
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uS

dS

1-p

p

S

Figure 2.1: Binomial model with a single time step

2.2.1.2 Option on Equity with Discrete Dividends

If the asset underlying the options pays discrete dividends (known in advance), the process govern-

ing the asset price Scan be divided in a deterministic part D (the present value of all future dividends

falling into the lifetime of the option) and a stochastic process followed by S0 according to

dS0 = rS0dt +σ0S0dX (2.20)

The asset price is then S= S0+D The volatility of the modified process has in principle to be scaled

from the volatility of the process followed by S to σ0 = σ S
S�D . However for sake of simplicity in all

examples with discrete dividends it is assumed that the volatility of S0 is given as σ instead of the

volatility of S.

2.2.2 Numerical Solution of the Black-Scholes Equation

Because the Black-Scholes equation 2.15 is a parabolic equation, it can be solved by the usual

implicit or explicit finite difference methods [12]. A Crank-Nicolson scheme has been used that is

described in chapter 3. The numerical solution has the advantage over the analytic solution that it is

applicable to a much greater variety of options. For European options the analytic solution can be

used to assess the accuracy of the numerical solution.

2.2.3 Binomial Trees

The idea of the binomial tree is a simplified model of asset prices: after one time step δ, the asset

with price S at time t can only take one of two different values uSand dSwith probability p and

1� p, respectively, at time t + δ (see figure 2.1). The drift and the volatility of the continuous

process has to be matched by adjusting u, d and p. The valuation is done in a risk-neutral world,

i.e. the drift is r .6 The expected value of Sat time t +δ given S(t) is then (with E[XjY] denoting the

expected value of X given Y)

E[S(t +δ)jS(t)] = pS(t)u+(1� p)S(t)d

= e(r�q)δS(t) (2.21a)

6Therefore the probability p is a risk-neutral probability. It must not be confused with the “true” probability in the
real world.
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Having defined Ŝδ
t = E[S(t +δ)jS(t)], the variance of S is

E[(S(t +δ)� Ŝδ
t )

2jS(t)] = E[S(t +δ)2jS(t)]� Ŝδ2
t

= pS(t)2u2 +(1� p)S(T)2d2� (pS(t)u+(1� p)S(t)d)2

= S(t)2σ2δ (2.21b)

The two equations 2.21a and 2.21b can be simplified to obtain

e(r�q)δ = pu+(1� p)d (2.22a)

σ2δ= pu2 +(1� p)d2� (pu+(1� p)d)2 (2.22b)

One degree of freedom remains, leaving us with a choice. The choice made here is u = 1=d as

proposed by Cox, Ross and Rubinstein [2]. The solution of the nonlinear equations for u, d and p

can be approximated using the Taylor expansion of the exponential function to first order in δ. The

result is

u= eσ
p

δ (2.23a)

d = e�σ
p

δ (2.23b)

p=
e(r�q)δ�d

u�d
: (2.23c)

This model is too simple to be realistic with only one time step. Generally the time to expiry T of

an option is chopped into a number M of time steps such that δ = T=M. For 3 time steps we get

for the evolution of asset prices the picture in figure 2.2. In every time step k the nodes of the tree

represent asset prices Sk
i = Suidk�i . The tree of asset prices is built using u and d until the expiry

date of the option. Then the option price vMi for every asset price SM
i is calculated at expiry as the

payoff. Going back through the tree, the option price is calculated as

vk�1
i = e�rδ

�
pvk

i+1 +(1� p)vk
i

�
: (2.24)

Since p is interpreted as a probability, the condition 0 � p� 1 must be satisfied. This imposes

a stability condition of the method:

δ<
σ2

(r�q)2 (2.25)

If δ and therefore also the size of the step in the asset price is small enough, the continuous process

can be modeled accurately. The stability condition 2.25 has to be obeyed.

2.2.4 Treatment of Discrete Dividends with Binomial Trees

If discrete dividends are payed during the lifetime of the option, an adjusted process is used accord-

ing to equation 2.20 is used. Therefore the picture in figure 2.2 refers then to the process S0. For

every time step the present value of the future dividends until the expiry of the option is calculated
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Figure 2.2: Binomial tree with 3 time steps

and added to the asset prices during the time step. Therefore if a single dividend D is payed at time

τ with 0 < τ < T , the real stock price at node (i;k) is

Sk
i = S0ki +Θ(τ�kδ)De�r(τ�kδ) (2.26)

where Θ(:) is the Heaviside-function which is 1 when its argument is greater than 0 and zero else-

where. This formula can be generalised easily to assets with more than one dividend.

2.3 American Options

For American options a solution of the Black Scholes equation in general can’t be found analytically.

The reason is that the point at which early exercise of the option at any instant of time is optimal

is a priori unknown. In the framework of the PDE it can be treated as a free boundary problem.

The equality in equation 2.15 becomes an inequality: For the Delta–hedged portfolio Π the change

in value over time dt is dΠ. Arbitrage consideration show that it is impossible to have dΠ > rΠdt

because an investor could borrow money at the risk–free rate and invest in the risk–free portfolio Π
to make a risk–free profit. However, if dΠ < rΠdt, the equivalent strategy (short the portfolio and
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earn the risk–free rate on the money) is not always possible in the presence of early exercise. While

in the case of a European option the return on the option in a risk-neutral world must be equal to the

risk-free rate, in the case of the American option the following inequality holds:

dΠ =
∂V
∂t

dt +
1
2

σ2S2 ∂2V
∂S2 dt

� rΠdt

= r(V� ∂V
∂S

S)dt

, ∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 +(r�q)S

∂V
∂S

� rV � 0: (2.27)

An additional condition is that the option value is always greater or equal to the payoff p(S)

V � p(S): (2.28)

If the situation V < p(S) occured, the option would be exercised immediately, and its payoff (and

therfore also its value) would be p(S). If the option value V > p then early exercise doesn’t occur,

and therefore the portfolio can be shorted. Defining the operator

L =
∂
∂t

+
1
2

σ2S2 ∂2

∂S2 +(r�q)S
∂
∂S
� r; (2.29)

in this case LV = 0 must be satisfied. If LV < 0, the option should be exercised early, and therefore

V = p. This can be formulated as the linear complementarity problem:

LV � 0 (2.30a)

V� p(S)� 0 (2.30b)

(V� p(S))LV = 0 (2.30c)

For American calls on an asset without dividends it can be shown that early exercise is never

optimal because the option value is always higher than the payoff. In this special case the value of

the American option is equal to the value of the equivalent European option. If the asset pays dis-

crete dividends, early exercise of a call can be optimal only immediately before a dividend payment

in order to cash in the dividend. If there is only one dividend payment during the lifetime of the

option, an analytic solution does exist.

2.3.1 Analytic Solution for American Calls with one Discrete Dividend

For the case that the asset pays exactly one known discrete dividend during the lifetime of the option,

an exact solution of the Black-Scholes equation for an American call has been found by Roll, Geske
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and Whaley [6, 7, 8]. This is possible because early exercise is optimal only at one instance of time

(namely at the dividend payment date). With the dividend D at time t0 the solution is

Vcall =
�

S�De�r(t 0�t)
� 

N(b1)+M

 
a1;�b1;�

r
t 0� t
T� t

!!

�Xe�r(T�t)M

 
a2;�b2;�

r
t 0� t
T� t

!
� (X�D)e�r(t 0�t)N(b2) (2.31a)

where

a1 =
ln S�Der(t0�t)

X +(r +σ2=2)(T� t)

σ
p

T� t
(2.31b)

a2 =a1�σ
p

T� t (2.31c)

b1 =
ln S�Der(t0�t)

I +(r +σ2=2)(t0� t)

σ
p

t 0� t
(2.31d)

b2 =b1�σ
p

t 0� t; (2.31e)

N(x) is the cumulative normal distribution as defined in equation D.1, and M(x;y;ρ) is the cumula-

tive bivariate normal distribution as defined in equation D.4. The variable I is the critical ex-dividend

stock price I that solves

VBS
call(I ;X;T� t 0) = I +D�X (2.32)

where VBS
call is the value of a European call with stock price I and time to maturity T� t0. If D �

X(1�e�r(T�t 0)) or I = ∞, it won’t be optimal to exercise the option early. The price of the option is

then equal to the price of the equivalent European option.

2.3.2 Numerical Solution

The linear complementarity problem can be solved numerically in principal with arbitrary accuracy

limited only by computation time, machine accuracy, and the stability of the numerical scheme.

The details of the Crank-Nicolson scheme used for the work presented in this thesis are described

in chapter 3.

Because the numerical solution is (in principle) exact, it can be used as a benchmark for other

(faster) methods approximating the solution of the Black-Scholes equation.

2.3.3 Binomial Tree

The binomial tree can be used almost unchanged to value American option. Only equation 2.24 has

to be modified in the following way:

vk�1
i = e�rδmax

�
pvk

i+1 +(1� p)vk
i ;P(S

k�1
i )

�
; (2.33)
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Figure 2.3: Price of an American call option with one dividend calculated with binomial trees with
different numbers of time steps (solid line). The dashed line indicates the true price calculated with
the formula of Roll, Geske and Whaley. The parameters are S= X = 100, r = 0:04, σ = 0:4, D= 4,
the time to maturity is 0.915 years and the time to the ex–dividend date is 0.61 years.

where P(S) is the payoff of the option at the asset price S. Figure 2.3 shows how the price of an

American call option on an asset paying one discrete dividend varies with the number of steps in

the binomial tree. The price oscillates about the true price (indicated by the horizontal dashed line)

calculated with the analytic formula of section 2.3.1. The amplitude of these oscillations decays

only very slowly.

A better option price can generally by obtained by calculating it with two binomial trees with

step numbers N and N+ 1 and taking the average. In some cases this average is close to the true

option value.

2.3.4 Control Variate Technique

The error of the binomial tree can be reduced by using it only to calculate the difference between

the price of the American and the equivalent European option with the same strike and the same

time to maturity. The analytical solution of the Black-Scholes equation for European option is

then corrected with this difference, or in other words, the price of the European option is used as

a control variate for the price of the American option. Letting ve the Black-Scholes price of the

European option, vE the price of the European option calculated with the binomial tree, vA the price

of the American option calculated with the binomial tree, the improved price of the American option
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va is

va = ve+vA�vE (2.34)

2.3.5 Analytic Approximations

There are two important analytic approximations for the value of American options without discrete

dividends [5]. They both allow for a continuous dividend yield q. If q� 0, early exercise of an

American call is never optimal, and its value is equal to the value of a European call.

One of these approximations has been developed by Barone-Adesi and Whaley [9]. The formula

is shown in appendix A.1. The other later developed formula of Bjerksund and Stensland [10] is

supposed to be computationally more efficient and more accurate for long–dated options. The

formula can be found in appendix A.2.



Chapter 3

The Finite Difference Scheme

The differential equation to be solved is the Black Scholes equation

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 +(r�q)S

∂V
∂S

� rV = 0 (3.1)

The coefficients σ, r and q are assumed to be constant. The Black–Scholes equation is a parabolic

equation, similar to the heat or diffusion equation ∂u
∂t = ∂

∂x

�
D ∂u

∂x

�
.1 Thus it falls in the category

of the initial value problems which describe the evolution of an initial state with time. For the

numerical solution an important issue is the choice of a stable method (opposed to boundary value

problems where efficiency is the greater issue).

Various methods are discussed in reference [12]. For this kind of problems one could generally

choose any simple explicit or implicit method. While the implicit scheme is unconditionally stable,

for the explicit scheme the size of the grid in “space” and time must be made small enough to obtain

a numerically stable result. Both methods have a local truncation error of the order O(δt). For

the purpose of this project, the finite difference scheme used is the Crank–Nicolson scheme. It is

basically a combination of an implicit and an explicit scheme that effectively calculates a central

derivative in time for points in the middle of two time grid points. The local truncation error is of

the order of O(δt2). At the boundaries S= 0 and S= ∞, the second derivative ∂2V
∂S2 is set to 0.

The finite difference scheme should operate on an equally spaced grid in order to keep the

convergence properties. However the error is not only dependent on the grid spacing δS, but also on

the second derivative ∂2V
∂S2 . To improve the overall error without increasing the computational effort

it would make sense to make the grid finer where the second derivative is large, i.e. where the asset

price is close to the strike price. Both goals can be accomplished by transforming the asset price

with a non–linear invertible function to the new variable

s̃= asinh(S�k)� asinh(�k) (3.2)

(based on an idea from [11]) and using a homogeneous grid in s̃. The grid in S is then compressed

near S= k and stretched if S is far away from k (see figure 3.1). For the purpose of this calculation,

1Actually by some variable transforms, the Black–Scholes equation can be reduced to the heat equation.

15
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S

s̃

0 k

Figure 3.1: Non-linear transform of S (equation 3.2). It can be seen how a constant spacing in s̃
leads to a compression of the grid in S about k and a stretching at large S.

k is set equal to the strike X . The Black Scholes equation 3.1 can be written in terms of this new

variable as

∂V
∂t

+
1
2

σ2T (s0)2 ∂2V
∂s̃2 +

�
r�q� 1

2
σ2T (s0) tanh s0

�
| {z }

=: f (s0)

T (s0)
∂V
∂s̃
� rV = 0 (3.3)

with the definitions

c = asinh(�k) (3.4a)

s0 = s̃+ c (3.4b)

T (x) =
sinhx+ k

cosh x
(3.4c)

3.1 Discretisation

The function V is mapped to a grid in “space” S2 and time t. The number N of steps in S determines

together with the lower boundary Smin and the upper boundary Smax the size of a step in S δS =

(Smax�Smin)=N, and the number M of time steps determines with the lifetime T of the option to be

valued the size of a time step δt = T=M. The values Si = Smin + iδS with 0 � i � N mark the grid

points in S, the values tk = kδt with 0� k �M mark the time steps. The function values on the grid

are V k
i where i represents the space dimension and k represents the time dimension. The following

2At this point it shall be left open how this space variable is related to the asset price.
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discrete approximations for the partial derivatives of V are used:

∂V
∂t

=
V k+1

i �V k
i

δt
+O(δt) (3.5a)

∂V
∂S

=
V k

i+1�V k
i�1

2δS
+O(δS2) (3.5b)

∂2V
∂S2 =

V k
i+1�2V k

i +V k
i�1

δS2 +O(δS2): (3.5c)

The discretisation of equation 3.3 with the Crank Nicolson scheme yields

V k+1
i �V k

i

δt
+

1
2

σ2T (s0i)
2V k

i+1�2V k
i +V k

i�1 +V k+1
i+1 �2V k+1

i +V k+1
i�1

2δs̃2

+ f (s0i)T (s0i)
V k

i+1�V k
i�1 +V k+1

i+1 �V k+1
i�1

4δs̃
� r

2
(V k

i +V k+1
i ) = 0 (3.6)

with a local truncation error of the order O(δt2;δs̃2) Collecting the terms, multiplying by δt and

rearranging the equation to have all variables of a time step on the same side one gets for the points

inside the grid (0 < i < N)

AiV
k+1

i�1 +(1+Bi)V
k+1

i +CiV
k+1
i+1 =�AiV

k
i�1 +(1�Bi)V

k
i �CiV

k
i+1 (3.7)

The coefficients Ai, Bi and Ci are independent of the time step k because the coefficients of equation

3.1 are constant in time. Their definition can be found as equation B.2 in appendix B.1.

The method is well–suited for diffusion equations. If, however, the coefficient of ∂V
∂S is very

large compared to the coefficient of ∂2V
∂S2 , the equation describes more a transport than a diffusion

problem, and the discretisation scheme will not find the right solution because the central difference

for ∂V
∂S can’t describe the flow of information correctly. Therefore the condition�����

1
2 σ2T (s0)2δs̃

2 f (s0)T (s0)

�����< 1 (3.8)

is checked during the calculation of the coefficients of the difference equation. If this condition is

violated at a point Si, an adaptive–upwind discretisation [13] is used making the following modifi-

cation to the discretisation scheme 3.5:

∂V
∂S

�

8><
>:

V k
i �V k

i�1

δs̃
f (s0i)T (s0i)< 0

V k
i+1�V k

i

δs̃
f (s0i)T (s0i)> 0

: (3.9)

This approximation is only accurate to order O(δs̃), but it has to be used only in corners of the

parameter space that aren’t too important for the valuation of real–world options (very low volatility

and high interest rates). The coefficients in this case can be found in equations B.4 and B.5 in

appendix B.2.
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3.1.1 Boundary Conditions

At the boundary of the grid one off-grid point VN+1 and V�1, respectively, is required at any time

step. This off-grid point is expressed in terms of the points at the boundary by assuming ∂2V
∂S2 = 0

at the upper bound Smax and the lower bound Smin. Because the grid isn’t uniform in S but in s̃, the

condition reads

∂2V
∂S2 =

1

cosh2 s0
∂2V
∂s̃2 �

tanh s0

cosh2 s0
∂V
∂s̃

= 0: (3.10)

From equation 3.10 follows after some arithmetic the difference equation

Vi�1�2Vi +Vi+1 =
δs̃ tanh s0i

2
(Vi+1�Vi�1) : (3.11)

At the upper boundary,

VN+1 =
1

βN
(2VN �αNVN�1) (3.12)

with

αi = 1+
δs̃ tanh s0i

2

βi = 1� δs̃ tanh s0i
2

:

The calculation of the coefficients at the boundary can be found in appendix B.3. Their definition is

written down in equation B.7.

Analogously one can for the lower boundary deduce from equation 3.11

V�1 =
1
α0

(2V0�β0V1) (3.13)

and the result for the coefficients is shown in appendix B.3 in equation B.8.

3.1.2 Time steps

Equation 3.7 for i = 0; : : : ;N can be summarised as the matrix equation

M1V
k+1 = M0V

k (3.14)

with the matrices

M1 =

0
BBBBBBBBBBB@

1+B0 C0 0 � � � 0
A1 1+B1 C1 0 � � � 0

0 A2 1+B2 C2 0
...

... 0
. . . . . . . . .

... 0
0 � � � 0 AN�1 1+BN�1 CN�1

0 � � � 0 AN 1+BN

1
CCCCCCCCCCCA
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M0 =

0
BBBBBBBBBBB@

1�B0 �C0 0 � � � 0
�A1 1�B1 �C1 0 � � � 0

0 �A2 1�B2 �C2 0
...

... 0
. . . . . . . . .

... 0
0 � � � 0 �AN�1 1�BN�1 �CN�1

0 � � � 0 �AN 1�BN

1
CCCCCCCCCCCA

We are progressing backwards in time, i.e. given is Vk+1 and we have to solve equation 3.14 for

V k. This equation is actually a linear equation system with a tridiagonal matrix. Such an equation

system can be solved efficiently with iterative procedures of which the Jacobi method is the simplest.

More efficient is the SOR method. It is shortly outlined in the following paragraphs.

We want to solve the equation Ax = y where A is a quadratic n� n matrix and x;y are vectors

of length n. The matrix A can be decomposed into three matrices A = L+D+R with the lower

left triangular matrix L3, the diagonal matrix D and the upper right triangular matrix R. An initial

estimate x0 for the solution has to be guessed. (For the subsequent solutions of the equation for

every time step, the vector that solved the linear equation in the time step before will be a good

guess, e.g. in order to solve for Vk, V k+1 is a good initial vector.) Let xn be the last calculated

estimate of the solution of the linear equation system. Then the vector xn+1 of the next iteration is

calculated as

xn+1 = ωD�1(y�Lxn+1�Rxn)+(1�ω)xn (3.15)

where ω is a parameter. It can be shown that 0 <ω< 2 must be satisfied for the method to converge.

A useful range is 1 �ω< 2.

Within this range there is an optimal value ω0 with fastest convergence. Because the matrix A is

constant in time and the vector y changes only little from one time step to the other, the optimisation

is done by starting with ω= 14 in the first time step and increasing ω in every time step until the

number of iterations necessary to solve the equation system starts increasing again. The value ω0

is chosen as the ω with the smallest number of iterations and kept constant for the rest of the time

steps.

A stopping criterion for the iteration defines when the solution of the linear equation system is

considered to be accurate enough. To measure the accuracy, the difference between two subsequent

iterations is calculated using the vector norm

kxk2 =
1
n

s
n

∑
i=0

xi (3.16)

for the vector x = (x0; : : : ;xn). With the given tolerance ε, the iterations therefore stop when

kxn+1� xnk2 < ε: (3.17)

3All matrix elements above the main diagonal of the matrix are 0.
4This choice reduces the method to the Gauss-Seidel method
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For the desired accuracy of the solution of the PDE in the order of < 10�3 with up to � 1000 time

steps, in every time step an accuracy of at least ε = 10�6 is required (assuming that errors roughly

add up linearly).

For American options, a variant of the SOR method, the projected SOR method is used. In

every step of the SOR method the result of equation 3.15 is for every component of xn+1 compared

to the option payoff. If the payoff is greater, the component of the vector is set equal to the payoff,

i.e. for every component i of the estimated solution xn+1,

x̂i
n+1 =

�
ωD�1(y�Lxn+1�Rxn)+(1�ω)xn

�i
(3.18a)

xi
n+1 = max

�
x̂i

n+1;P(Si)
�
: (3.18b)

Thus, the complementarity problem is solved consistently within every time step.

3.1.3 Choice of the Grid

To value an option with a defined accuracy, the spot price of the underlying asset at valuation time

has to lie on a grid point, since the error estimates are valid only on the grid point. The cutoff point

Smax should be far enough away from the spot that the probability of the asset price arriving outside

the cutoff region is small. Here this probability was chosen to be less than 0.27%. This can be

accomplished by choosing

Smax = Se(r�σ2=2)(T�t)+3σ
p

T�t (3.19)

where S asset price of the valuation day. The lower cutoff value for the asset price is set to Smin = 0.

Therefore the uniform grid is adjusted according to the following algorithm:

1. Given are a number of steps in the space dimension n and a cutoff value Smax.

2. Calculate the grid size δS = Smax=n.

3. Calculate the number of steps between 0 and the spot price of the asset and round to the

nearest integer number n1 = round(S=δS).

4. Calculate a new grid size δS0 = S=n1.

5. Calculate a new upper cutoff value S0max = δS0 �n.

If the option value is to be calculated for a number of asset prices at the same time, this procedure

can be skipped. For performance reasons the option price is calculated on the given grid in S. For

the option price at a point in between, linear interpolation is used. The cutoff parameter Smax is

chosen according to equation 3.19 where S is the highest asset price for which an option price shall

be calculated.

For the comparisons to be done here, the interpolation error is avoided by first solving the PDE

on the grid and then calculating the values from the other methods to be studied on the given grid

points.
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3.2 Optimisation of the Grid

Because the accuracy of the Crank-Nicolson scheme depends on the grid size in s̃ and t, it can’t be

improved alone by refining the grid only in one direction. For every spot grid size δs̃ there is an

optimal time step size δtopt. The accuracy of the numerical solution of the PDE can’t be improved

by reducing δt further without reducing δs̃. Therefore δtopt can be determined as a function of δs̃.

When δs̃ and δt are decreased, at some point the accuracy of the solution is limited by the

accuracy of the solution of the linear equation system 3.14 that has to be solved iteratively in every

time step. A further improvement would then require tightening the stopping criterion (equation

3.17).

To measure the quality Q of the solution of the PDE, the average deviation relative to the option

price from the analytically known solution for the case of a European call and put (without divi-

dends) and for American calls with a single discrete dividend is calculated. The parameters σ= 0:4,

r = 0:05, T = 0:91 and X = 100 are kept constant at typical values while the asset price S varies be-

tween 0 and 200. The average is calculated ignoring asset prices at which the option value is < 10�2.

With V (S) being the option price as a function of the asset price S and G = fSij i = 0; : : : ;Ng, Q can

be written as

Q =
1

#fS 2 GjV (S)> 10�2g

vuuut ∑
S2G

V (S)>10�2

�
V num(S)�V ana(S)

V ana(S)

�2

(3.20)

For various δS, the time step size δt is decreased and Q is determined for every combination of

δS and δt until Q doesn’t improve any more. Equivalently to δS and δt we use here the number of

steps in S nS and the number of steps in t nt (while Smax and T are fixed). To the optimal time step

δtopt corresponds an optimal number of time steps nopt
t . The result for European and American calls

is shown in table 3.1. It has turned out that for European puts with the given financial parameters

the quality Q is almost insensitive to the grid size at the optimal accuracy around 0:1 �10�3. For the

further discussion only one relation between the number of steps in t and s̃ shall be used. Therefore

EC AC
nS nopt

t Q �103 nopt
t Q �103 nopt;EC

t Q �103

100 100 7.7 100 7.8
200 100 1.7 150 1.7 100 1.9
300 100 0.74 150 0.73 100 1.1
400 150 0.41 150 0.41
500 200 0.28 300 0.31 200 0.41
600 250 0.25 300 0.27 250 0.35
700 300 0.27 300 0.31

Table 3.1: Optimisation of the grid for European and American calls. The last two columns show
how Q changes for the American call if the optimal nt of the European case is used.
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Parameter Values
S 50, 70, 80, 90, 100, 110, 120, 140, 160, 200
σ 5%, 10%, 20%, 40%, 60%, 80%
r 1%, 2%, 4%, 8%, 16%, 25%
T 2D, 2W, 1M, 2M, 6M, 1Y, 2Y, 5Y

Table 3.2: Parameters for validation scan. The total number of combinations is 2880.

the last two columns show how Q changes for the American call if the optimal nt of the European

case is used. The deterioration is acceptable for the gain in simplicity to use only one relation

nopt
t = max(100;(ns̃�100)=2) (3.21)

with an appropriate scaling for the time to maturity of the option. There isn’t much to gain beyond

500 steps in s̃ because the accuracy of the solution of the linear equation system 3.14 is the limiting

factor. Therefore ns̃ = 500 is chosen for all further studies.

3.3 Validation of the Numerical Solution

A large scale validation of the scheme has been done for equity options. There, analytical solutions

exist for European calls and puts and for American calls with a single discrete dividend. The pa-

rameters shown in table 3.2 were scanned for the validation. Like in the definition of the quality

Q in equation 3.20, only parameter combinations at which the analytical price is above 10�2 are

considered to be not too sensitive to numerical artefacts. The following sections give a summary of

the results. The numbers are summarised in table 3.3. The average deviation is the average of the

relative deviations defined as����V num
i �V ana

i

V ana
i

����
for all parameter combinations i with Vana

i > 0:01.

For other option underlyings (FX rates, futures), several parameter combinations have been

probed without performing such an extensive study. The tests showed for European options good

agreement so that we can assume that the method is correctly implemented also including continu-

ous dividend yields.

3.3.1 European Calls

For the European calls, 2390 of the 2880 parameter combinations were accepted with option values

above 10�2. The average relative deviation from the analytical solution was 0:28 �10�3, the largest

deviation 16% at an option value of 0.025. Deviations larger than 1% occur only at σ = 5% and

high interest rates r � 16% at the money forward.
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AC EC EP
samples total 1440 2880 2880
used 1263 2390 2129
average deviation (�10�3) 0.53 0.28 0.70
RMS (�10�3) 3.4 3.5 10
maximal deviation (%) 9.1 16 43

Table 3.3: Deviation of the finite difference solution from the analytical solution.

3.3.2 European Puts

For European puts, 2129 parameter combinations were accepted. The statistical quantities (espe-

cially RMS and maximal deviation) in table 3.3 are dominated by a single large deviation of 43% at

an option value of 0.40 with the parameters σ = 5%, r = 16%, T = 5Y and S = 50:5. The average

deviation with 0:7 �10�3 is still well below the goal of 10�3. Deviations above 1% occur only at the

money forward at σ = 5% with high interest rates r � 16% and at r = 8% with T � 2Y .

3.3.3 American Calls on Equity with one Discrete Dividend

A dividend of 4 is payed 6 weeks after the valuation date for the American case. (For European

options, the dividend makes conceptually no difference.) The last and the first three maturities were

skipped for the American call because for the short maturities the dividend wouldn’t fall in the

option lifetime, and for the long maturity the early dividend is of little interest. Therefore only 1440

parameter combinations remain of which 1263 were accepted with option values above 10�2.

The average deviation is with 0:53 � 10�3 slightly higher than for the European calls, but the

RMS and the maximal deviation are comparable. From the total parameter set probed only 7 lead

to deviations > 1%, all at the money forward with σ = 5% or σ = 10% and r � 8%.

3.3.4 Conclusion

The numerical scheme for the valuation of options has been validated by comparing the results with

the analytical solutions for European puts and calls and American calls on equity. An overall (aver-

age) accuracy better than 10�3 has been achieved over a wide variety of parameter combinations.

Most of the numerical scheme is independent of the presence of continuous dividend yields.

There for it is sufficient to check that the yields are correctly implemented with some isolated

parameter combinations. This test has been performed successfully.

With the achieved accuracy this finite difference scheme can serve as a benchmark the other

methods to value American options can be compared to.



Chapter 4

Application of the Methods

Several methods outlined in chapter 2 and defined in the following paragraphs separately for equity

and FX options have been compared to the finite difference scheme described in chapter 3 and

selected as a benchmark pricing tool. In the first step the overall performance of the methods was

compared for all parameters and in domains of parameter space (section 4.1). As a second step

those domains were identified in which the methods yield the largest error and where they should

not be applied (section 4.2).

The parameters have been set to all combinations of the values shown in table 4.1. The results

of all models viable for the option/underlying combinations were compared to the option value

calculated with the finite differences.

The particular role of equity options in this study is that they can have discrete dividends. The

following methods for pricing American equity options have been compared to the benchmark:

� Binomial models with a moderate (200) and a very high (1000) number of time steps in the

binomial tree. They will be called BIN200 and BIN1000, respectively.

� The average of binomial trees with 200 and 201 steps as described in section 2.3.3. This

method will be called AVERAGE.

� The control variate technique described in section 2.3.4 with a binomial tree with 200 time

steps. The symbol for this method will be CONVAR.

Parameter Values
S 50, 70, 80, 90, 100, 110, 120, 140, 160, 200
σ 5%, 10%, 20%, 40%, 60%, 80%
r 1%, 2%, 4%, 8%, 16%, 25%
T 2D, 2W, 1M, 2M, 6M, 1Y, 2Y, 5Y
b -10%, 0, 10%

Table 4.1: Parameters for the comparison of the methods. The parameter b is varied only for FX
options, and the foreign interest rate is set to q = max(r�b;0).

24
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low domain medium domain high domain
T < 0:5y 0:5y � T < 2y T � 2y
S < 90 90 � S � 110 S > 110
r < 4% 4%� r � 8% r > 8%

σ < 20% 20% � σ� 40% σ > 40%
b < 0 b = 0 b > 0

Table 4.2: Parameter domains

The number of time steps of the binomial tree was chosen such that the binomial tree was stable for

all studied parameter combinations (i.e. the up–probability p was in the range 0 � p� 1).

The models considered for FX options are:

� Binomial models BIN200 and BIN1000.

� The average of binomial trees with 200 and 201 steps AVERAGE

� The control variate technique CONVAR.

� The analytic approximation of Barone–Adesi and Whaley (BAW)

� The analytic approximation of Bjerksund and Stensland (BJST)

4.1 Comparison of the Methods

The performance of the methods in terms of accuracy and computational efficiency is compared

over a broad range of parameters. Also the edges of the realistic parameter space are explored in

order to find the limitations of the different methods. The “true” option value is determined with the

finite difference scheme described in chapter 3.

A first comparison of the methods is done on global quantities: The mean of the relative de-

viation from the benchmark over all parameter sets, the RMS of the relative deviation, and the

maximal relative deviation. In order to study the dependence of the accuracy of the methods on the

parameters, each parameter set is divided in three domains. These domains are shown in table 4.2.

4.1.1 Equity Options

In figure 4.1 the result for American calls is shown as a histogram. The abscissa shows the relative

deviation

vmodel� vFD

vFD
(4.1)

where vFD denotes the value of the option calculated with the finite difference scheme and vmodel the

value calculated with the model indicated in the histogram titles. Each histogram has 2366 entries,

and a range of deviations of �10% is shown. The statistical quantities can be found in the right

upper corner.
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Figure 4.1: Comparison of the call prices calculated with the method indicated in the histogram
titles with the finite difference solution with a logarithmic scale for the ordinate. Each histogram
has 2366 entries.

Some more statistical data can be found in table 4.3. The average deviation is the average of

quantity defined in equation 4.1 over all parameter combinations i with VFD
i > 0:01. Obviously, the

binomial models BIN200 and AVERAGE tend to yield too low values. The methods CONVAR and

BIN1000 are on average very close to the finite difference solution. The RMS shows that these two

have about the same accuracy globally. The means don’t differ significantly. However, in terms of

computation time1, the method CONVAR is about 28 times more efficient.

The analysis of the parameter domain shows that BIN1000 is superior to CONVAR only for

short–term at–the–money calls at high rates and low volatility, for medium term at–the–money and

in–the–money calls at low rates and medium volatility, and for long–term in-the-money calls at low

rates and low volatility.

1All computation times are measured on a K6-III/400 system running Linux kernel 2.2.5 and the GNU compiler suite
egcs-2.91.66.
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Method BIN200 AVERAGE CONVAR BIN1000

average deviation (�10�3) -0.96 -0.99 0.11 -0.05
RMS of deviations (�10�2) 0.57 0.61 0.34 0.35
number of deviations > 1% 108 96 15 23
largest deviation 33% 33% 10% 14%
computation time (s) 29 60 28 777

Table 4.3: Statistical data for calls on equity

Method BIN200 AVERAGE CONVAR BIN1000

average deviation (�10�3) -1.27 -1.28 -0.49 0.28
RMS of deviations (�10�2) 0.68 0.67 0.58 0.27
number of deviations > 1% 130 126 68 18
largest deviation 47% 47% 47% 7%
computation time (s) 29 61 29 795

Table 4.4: Statistical data for puts on equity

The methods BIN200 and AVERAGE deviate at 108 and 96 parameter combinations, respec-

tively, from the benchmark by more than 1%. These parameter combinations are scattered over a

wide domain of parameter space; therefore their distribution hasn’t been studied further.

The 15 parameter combinations for CONVAR with deviations above 1% are shown in appendix

C.1.1. Almost all these combinations have a low volatility � 10% and a high interest rate r � 16%.

These combinations are unrealistic for most practical purposes. Only three combinations occur at

lower rates, but also at the low volatility σ = 5% out of the money.

In Appendix C.1.2 the parameter combinations are summarised for which method BIN1000

yields a deviation greater than 1%. The overall distribution of these parameter combinations is

similar to that of CONVAR. All the additional critical parameter combinations occur far out of the

money at low volatility and high rate or long time to maturity.

Figure 4.2 shows the equivalent results for puts on equity. The summarising statistical data are

displayed in table 4.4. All methods are significantly less accurate than for calls. Especially method

CONVAR has a maximal deviation of the same size as BIN200 and AVERAGE. As can be seen in

the table of appendix C.2.1, the prices of in-the-money options with long times to maturity are not

very good, in addition to the critical regions of the calls. The reason is that for equity puts, early

exercise of the American option is much more important than for calls. Therefore, the difference

between the price of an American put and a European put is larger than between the price of an

American call and a European call. As this difference gets large, the correction introduced by the

binomial tree calculation of American and European put gets larger, and the numerical error (of the

same magnitude as in BIN200 and AVERAGE) becomes more important. However, the average

deviation and the RMS are still significantly better than for those two methods, and the number of

parameter combinations with deviations > 1% is only half as big.
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Figure 4.2: Comparison of the put prices with the finite difference solution with a logarithmic scale
for the ordinate. Each histogram has 2189 entries.

Compared with BIN1000, CONVAR performs much worse in many parameter domains. These

domains are scattered all over the parameter space. Clearly the best method for puts on equity is

BIN1000 that yields even less deviations than for calls, at the cost of a high computational effort.

4.1.2 FX Options

The methods considered here have already been summarised in the beginning of this chapter. There

is yet another parameter to be varied, the foreign interest rate (or dividend yield for index options)

q. This parameter has been chosen to be q = max(r�b;0) where the cost of carry b was chosen as

-10%, 0 (corresponding to futures options) and +10%. Therefore there are in total 8640 parameter

combinations.

For 7022 combinations the call price is > 0:01. The overall result for calls is shown in table

4.5. The distributions of deviations are shown in figure 4.3. All models based on binomial trees
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Figure 4.3: Distribution of deviations for American calls on FX rates rates with a logarithmic scale
for the ordinate. Histograms (a)-(e) have 7022 entries, histogram (f) has 6996 entries.
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Method BIN200 AVERAGE CONVAR BIN1000 BAW BJST

average deviation (�10�3) -0.81 -0.75 0.09 0.07 5.61 -2.52
RMS of deviations (�10�2) 0.51 0.48 0.28 0.26 1.60 0.52
# deviations > 1% 231 233 49 44 1338 523
largest deviation 49% 49% 13% 22% 554% 98%
computation time (s) 85 172 82 2307 0.5 0.27

Table 4.5: Statistical data for the call on an FX rate

have a similar global performance for calls on FX rates as for calls on equity. The mean deviation is

about 30% smaller, the fraction of parameter combinations for which the deviation is > 1% is 30%

or more smaller for the low-accuracy methods BIN200 and AVERAGE. The higher deviations are

scattered all over the parameter space, but with higher density at the money with b =�10% and out

of the money with b � 0. The highest deviations occur for long–term out–of–the–money calls. For

the higher accuracy binomial models CONVAR and BIN1000, the parameter sets with deviations

> 1% are shown in appendix C.3. BIN1000 is significantly more accurate than CONVAR at low

volatility for short–dated in–the–money calls at high rates and for long–dated out–of–the–money

calls at low rates.

BAW doesn’t work well for out–of–the–money calls for all values of q, r and σ. In 198 cases

errors above 10% are observed. The problem gets bigger with increasing time to maturity. If the

time to maturity is longer than 1 year, even in–the–money calls get more and more affected. Because

of the large number of high deviations, no table is shown in appendix C.3. BJST shows generally a

reasonable behaviour, but with negative option prices for at–the–money and somewhat out–of–the–

money calls with b = �10% and time to maturity 1 year or more. These obviously wrong results

were omitted for the calculation of the quantities in table 4.5. Therefore the number of entries in

the histogram and contributing to the statistics is only 6996. Neglecting those parameter sets, it is

obvious from the means in table 4.5 and figure 4.3 (e) and (f) that BAW tends to too high option

values while BJST tends to too low option values. Generally, BAW is slightly better than BJST only

for short term calls at the money.

The strength of the analytic approximations is clearly the high computational efficiency. How-

ever, the accuracy is generally only of the order of 1%. The table in appendix C.3.3 show only

parameter sets with deviations > 10%. This table contains mainly those parameter combinations

where a negative call price is obtained.

The put price is > 0:01 for 6700 parameter sets. The distribution of the deviation for the six

methods can be found in figure 4.4, and the summary in table 4.6. Again the model BJST produces

negative option values for six parameter combinations. Therfore only the remaining 6694 parameter

sets are considered in the further study.

For the lower accuracy binomial models the picture is very similar to the calls. The average

deviation is about twice the average for the calls, and the number of samples with deviations > 1% is

about 50% higher. These cluster again out of the money scattered over wide ranges in the remaining
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Figure 4.4: Distribution of deviations for American puts on FX rates with a logarithmic scale for
the ordinate. Histograms (a)-(e) have 6700 entries, histogram (f) has 6694 entries.
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Method BIN200 AVERAGE CONVAR BIN1000 BAW BJST

average deviation (�10�3) -1.45 -1.39 0.05 0.28 8.04 -3.02
RMS of deviations (�10�2) 0.67 0.66 0.17 0.35 1.83 0.56
# deviations > 1% 355 353 33 52 1649 559
largest deviation 33% 33% 5% 9% 680% 99%
computation time (s) 86 176 83 2324 25 0.25

Table 4.6: Statistical data for the put on an FX rate

variables. The method CONVAR deviates from the benchmark by more than 1% only at the money

and out of the money for low volatilities σ� 10% and with long time to maturity and higher interest

rate at b = 10%. There’s only one single case for b = 0. These parameter sets are shown in appendix

C.4.1. For BIN1000 most of the cases occur at b = �10% and lower volatilities σ � 20% out of

the money. The parameter sets for which BIN1000 deviates by more than 1% from the benchmark

are shown in appendix C.4.2. A more detailed analysis shows that BIN1000 is only better than

CONVAR for long–dated options at high interest rates and low volatility.

For BAW, deviations above 10% occur mainly for long–term at– and out–of–the–money puts,

at interest rates of 16% or above and b � 0 also for in–the–money puts. Method BJST performs

generally much better, with real problems mainly at long time to maturity out of the money when

b = 10% and σ� 20%, for b � 0, long time to maturity and σ = 80% in the money. The table in

appendix C.4.3 shows the 19 parameter sets at which the deviation of BJST is greater than 5%. The

six combinations with negative option price can be found in the table; they all occur at 5 years to

maturity, volatility σ� 10% and r� 16%. A direct comparison of the two methods shows that BAW

is superior to BJST for short–dated at–the–money and out–of–the–money puts at high volatility and

low rate, but nowhere else.

The computational efficiency of BJST for the puts is about the same as for the calls, but it’s

amazing that BAW takes 50 times longer for the puts than for the calls, and is only 3 times faster

than the much more accurate method CONVAR. The reason is that the solution of equation A.6

takes far more iterations than its equivalent for calls.

4.2 Problematic Domains

The parameter domains defined in table 4.2 have been investigated separately for all applicable

methods2 and the four classes of options (call and put on equity and FX). For every combination

of method and option class, the most problematic parameter domains defined by the RMS of the

deviation of the result of the method from the finite difference result have been identified and are

summarised in table 4.7.

2except BIN200 and AVERAGE having a much worse accuracy than CONVAR with the same computational effort
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Call on equity Put on equity Call on FX Put on FX
T S r σ T S r σ T S r σ b T S r σ b

BIN1000 o+ - + - -+ = + - + = o+ - + + = o+ - +
+ = + - + = o - + = -o+ - - o = + - +

o = - - - + - o - +
+ = + - + o - - - +
o - + - + o = o - +

CONVAR o+ - + - -+ = + - + = o+ - + + -= + - +
- = + - + = + - + = -o+ - - + - -o+ - -

+ = o - o - + - + - = + - +
+ = + o + - - - - o - -o+ - -
+ + + -

BAW + - + - o+ + - + - -o
+ - + o o + - o - -
o - + o - o - + o +

o+ - -o -o - + - + o o+
+ - o -o +

BJST + = o - + o+ - -o+ - -
o+ - -o+ - + -+ = + - +
-+ = -o+ - -

Table 4.7: Problematic regions of the different methods. Legend: for all columns except S: - low,
o medium, + high domain; for columns S: - out of the money, = at the money, + in the money.

4.2.1 Options on Equity

For calls on equity, both methods CONVAR and BIN1000 are generally good, and there are only

two domains in parameter space where both methods yield less accurate results than on average. In

these parameter domains, rates are high and volatility is low. Both methods are less accurate than

on average for out–of–the–money calls with medium to long time to maturity. Method BIN1000 is

worse for long–term at–the–money calls, method CONVAR for short–term calls.

Both methods yield for at–the–money puts on equity at high rates and low volatility and for

long–term at–the–money puts at medium rates and low volatility less accurate results than on av-

erage. There are a few clustered domains where the method CONVAR shows less accurate results

than the method BIN1000, namely for puts with long time to maturity at the money and in the

money at high rates and low volatility.

Therefore (and considering the results from section 4.1.1) for reasonable accuracy at high com-

putational efficiency the method CONVAR can generally be used for American options on equity

paying discrete dividends, except for short–term at–the–money calls, at–the–money and in–the–

money puts with long time to maturity at high rates and low volatility.

4.2.2 Options on FX rates

In the following discussion it should be well understood that the methods CONVAR and BIN1000

are both much more accurate (in general) than the methods BAW and BJST. Comparisons should

be read as relative to the average of the respective method.
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Both binomial methods CONVAR and BIN1000 have problems in domains clustered at low

volatility for at– and out–of–the–money calls with medium to long time to maturity. BAW shows

rather poor results for out of the money calls while the method BJST is weaker than on average only

for at and out of the money calls at low volatility.

For applying BIN1000 to puts the problematic regions are limited to q < r (b > 0) and low

volatility at and out of the money. Method CONVAR is less accurate for out–of–the–money puts at

low volatility and b < 0 and for at–the–money puts at high rates, low volatility and b > 0. The main

problem of BAW is the valuation of long–term out–of–the–money puts at medium to high rates and

low to medium volatility. BJST is problematic at the valuation of at– and out–of–the–money puts at

low volatility.

In the case of FX options, no cluster of regions can be found where one of the methods CONVAR

and BIN1000 is better than the other. BAW generally performs rather bad for out of the money

options. Therefore, if for computational efficiency an analytic approximation for the pricing of

American FX options is desired, BJST should be generally preferred in this case.

It should be noted that for both, calls and puts, the case b = 0 doesn’t occur amongst the prob-

lematic regions of the methods CONVAR, BIN1000 and BJST (and only rarely amongst the prob-

lematic regions of method BAW). Therefore all methods work rather well for futures options, while

still CONVAR and BIN1000 are more accurate than BJST.



Chapter 5

Conclusions

In this thesis, a comparison of various method for the pricing of American options is discussed.

Because an analytic solution to this problem isn’t known, a Crank–Nicolon finite difference scheme

was used to compute a benchmark option price considered as exact.

The finite difference scheme uses a non–uniform grid in direction of the underlying price in

order to reduce the truncation error close to the strike price of the option without increasing the

computational complexity of the problem by making the grid finer. In order to assess the accuracy

of the finite difference scheme, its solutions were compared to option prices obtained analytically in

cases where this is possible, i.e. for European options and American calls on an underlying paying

a single discrete dividend.

In total, up to six methods to approximate the price of American options on equity and FX rates

have been compared to the numerical solution of the Black–Scholes equation over a large number

of combinations of parameter values covering the part of parameter space relevant for practical

purposes. Two of the methods are plain Binomial Trees (with 200 and 1000 time steps), two are

based on the Binomial Tree approach (the average of Binomial Trees with 200 and 201 steps, and

a control variate technique), and two methods are popular analytic approximations which are not

applicable to options on assets paying discrete dividends.

A general result is that the averaging of two subsequent, lower accuracy Binomial Trees doesn’t

improve as much over the plain Binomial Tree with the same number of time steps as the con-

trol variate technique with the same computational effort. Therefore more detailed studies have

been limited to the high–resolution Binomial Tree, the control variate technique and the analytical

approximations.

As one would expect, the high resolution Binomial Tree yields indeed the highest accuracy of

the proposed methods. However, the control variate technique gets in most cases rather close to

this accuracy at much lower computational effort. The analytic approximations yield significantly

less accurate results and should only be used if computation time is much more critical than pricing

accuracy.
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Appendix A

Analytic Approximations

A.1 Approximation of Barone-Adesi and Whaley

According to [9], the value of an American call is approximated by

Vcall =

�
V BS

call(S;X ;T )+A1(S=S�)q1 S < S�

S�X S � S�
(A.1)

with

A1 =
S�

q1

�
1� e�q(T�t)N (d1(S

�))
�

(A.2a)

d1(S) =
ln(S=X)+(r�q+σ2=2)(T � t)

σ
p

T � t
(A.2b)

q1 =
�(2(r�q)=σ2�1)+

q
(2(r�q)=σ2�1)2 + 8r

σ2(1�e�r(T�t))

2
(A.2c)

S� is the asset price for which the call price satisfies

S��X =V BS
call(S

�;X ;T)+
1� e�q(T�t)N (d1(S�))S�

q1
(A.3)

The value of an American put is

Vput =

�
V BS

put (S;X ;T )+A2(S=S��)q2 ; S > S��

S�X ; S � S��
(A.4)

with

A2 =�S��

q2

�
1� e�q(T�t)N (�d1(S

��))
�

(A.5a)

q2 =
�(2(r�q)=σ2�1)�

q
(2(r�q)=σ2�1)2 + 8r

σ2(1�e�r(T�t))

2
(A.5b)

S�� is the asset price for which the call price satisfies

S���X =V BS
put (S

��;X ;T )� 1� e�q(T�t)N (d1(S��))S��

q2
(A.6)
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A.2 Approximation of Bjerksund and Stensland

The Approximation of Bjerksund and Stensland [10] can be written as

Vcall = αSβ�αΦ(S;T � t;β; I; I)+Φ(S;T � t;1; I; I)�Φ(S;T � t;1;X ; I)

�XΦ(S;T � t;0; I; I)+XΦ(S;T � t;0;X ; I) (A.7)

with
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β =

�
1
2
� b

σ2

�
+

s�
b
σ2 �

1
2

�2

+2
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σ2 (A.8b)

b = r�q (A.8c)

The function Φ is given by
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(A.8f)

κ =
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σ2 +(2γ�1) (A.8g)
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(A.8h)
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X (A.8j)

B0 = max

�
X ;

r
q

X

�
(A.8k)

The value of an American put in this approximation can be written as a transformation of the formula

for a call:

Vput(S;X ;T;r;q;σ) =Vcall(X ;S;T;q;q� r;σ) (A.9)



Appendix B

Coefficients for the Finite Difference
Scheme

B.1 Inside the Grid

Rearranging equation 3.6 to have all terms belonging to one time step on the same side yields
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The definitions
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allow to write equation B.1 as concise as in equation 3.7.

B.2 Adaptive Upwind Differencing

If the relation�����
1
2 σ2T (s0)2δs̃

2 f (s0)T (s0)

�����< 1 (B.3)
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is violated, B.2 is modified as follows if f (s0i)T (s0i)< 0:
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If f (s0i)T (s0i)> 0, the coefficients are calculated according to
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B.3 Boundary Conditions

Inserting equation 3.12 into B.1 yields�
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Extending the scheme 3.7 to the boundary i = N,
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At the lower boundary, equation 3.13 is inserted in equation B.1 to obtain

A0 = 0 (B.8a)
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Appendix C

Tables of Large Deviations

This appendix summarises the parameter combinations of calls on equity for which the deviation

from the benchmark is greater than 1% (for the high accuracy binomial methods) and 10% (for

the analytic approximations), respectively. The asset price is rounded to the next integer for better

readability of the tables. The binomial tree methods with 200 steps are not listed here because they

show about 100 deviations above 1% at parameter combinations scattered widely over the entire

parameter space.

In all tables, the first four columns show the parameters, the next two columns the option price

calculated with the method indicated in the heading, and the last column shows the absolute value

of the relative deviation����V num
i �V FD

i

V FD
i

����
C.1 Calls on equity

C.1.1 Control Variate

With the control variate technique with 200 steps there are 15 parameter combinations with devia-
tions greater than 1%.

T S r σ Control Variate FD Deviation
1.003 90 0.04 0.05 0.024 0.024 0.01758
5.005 70 0.04 0.05 0.096 0.098 0.01284
2.003 80 0.08 0.05 0.126 0.128 0.01409
0.005 100 0.16 0.05 0.161 0.159 0.01050
0.501 90 0.16 0.05 0.025 0.026 0.05325
1.003 80 0.16 0.05 0.016 0.017 0.08333
1.003 70 0.16 0.10 0.014 0.014 0.01108
2.003 70 0.16 0.05 0.211 0.216 0.02707
5.005 50 0.16 0.05 2.737 3.039 0.09944
0.005 100 0.25 0.05 0.194 0.191 0.01403
0.167 90 0.25 0.10 0.018 0.019 0.05789
2.003 50 0.25 0.10 0.074 0.076 0.01708
5.005 140 0.25 0.05 107.640 108.810 0.01075
5.005 160 0.25 0.05 127.160 128.700 0.01197
5.005 200 0.25 0.05 167.490 169.880 0.01407
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For a discussion of the result, see section 4.1.1.

C.1.2 Binomial Tree with 1000 steps

All parameter combinations for which the deviation from the benchmark is greater than 1% are
shown here. Their total number is 23.

T S r σ Binomial (1000) FD Deviation
1.003 90 0.04 0.05 0.024 0.024 0.02748
5.005 70 0.04 0.05 0.095 0.098 0.03148
5.005 50 0.04 0.10 0.023 0.023 0.01690
1.003 90 0.08 0.05 0.161 0.164 0.01758
2.003 80 0.08 0.05 0.124 0.128 0.03202
5.005 50 0.08 0.10 0.247 0.251 0.01456
0.005 100 0.16 0.05 0.161 0.159 0.01068
0.501 90 0.16 0.05 0.024 0.026 0.08003
0.501 70 0.16 0.20 0.035 0.036 0.01180
1.003 80 0.16 0.05 0.015 0.017 0.13712
1.003 70 0.16 0.10 0.013 0.014 0.03694
2.003 70 0.16 0.05 0.201 0.216 0.07243
5.005 50 0.16 0.05 2.687 3.039 0.11579
0.005 100 0.25 0.05 0.194 0.191 0.01408
0.501 90 0.25 0.05 0.484 0.495 0.02114
0.501 80 0.25 0.10 0.036 0.037 0.02938
1.003 80 0.25 0.05 0.801 0.822 0.02591
1.003 70 0.25 0.10 0.151 0.155 0.02673
1.003 50 0.25 0.20 0.018 0.019 0.02686
2.003 50 0.25 0.10 0.070 0.076 0.06830
5.005 140 0.25 0.05 107.640 108.810 0.01075
5.005 160 0.25 0.05 127.160 128.700 0.01197
5.005 200 0.25 0.05 167.490 169.880 0.01407

C.2 Puts on equity

C.2.1 Control Variate

With the control variate technique with 200 steps there are 68 parameter combinations with devia-
tions greater than 1%.

T S r σ Control Variate FD Deviation
5.005 100 0.04 0.05 3.418 3.473 0.01583
0.005 100 0.08 0.05 0.166 0.164 0.01379
1.003 110 0.08 0.05 0.010 0.010 0.01139
2.003 110 0.08 0.05 0.014 0.014 0.01452
5.005 90 0.08 0.05 12.515 12.691 0.01387
5.005 100 0.08 0.05 2.962 3.137 0.05575
5.005 110 0.08 0.05 0.013 0.014 0.06811
5.005 90 0.08 0.10 12.695 12.862 0.01298
5.005 110 0.08 0.10 0.848 0.858 0.01133
5.005 140 0.08 0.10 0.012 0.012 0.01380
0.005 100 0.16 0.05 0.146 0.142 0.02767
0.038 100 0.16 0.05 0.247 0.244 0.01123
0.088 100 0.16 0.05 0.297 0.294 0.01102
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T S r σ Control Variate FD Deviation
1.003 100 0.16 0.05 2.110 2.165 0.02550
2.003 100 0.16 0.05 2.111 2.181 0.03228
2.003 100 0.16 0.10 2.788 2.817 0.01008
2.003 110 0.16 0.10 0.167 0.170 0.01535
5.005 70 0.16 0.05 31.601 31.957 0.01114
5.005 80 0.16 0.05 21.524 21.880 0.01627
5.005 90 0.16 0.05 11.483 11.839 0.03007
5.005 100 0.16 0.05 1.605 1.961 0.18142
5.005 70 0.16 0.10 31.740 32.071 0.01032
5.005 80 0.16 0.10 21.494 21.844 0.01602
5.005 90 0.16 0.10 11.633 11.989 0.02969
5.005 100 0.16 0.10 2.747 2.932 0.06306
5.005 110 0.16 0.10 0.153 0.164 0.06679
5.005 70 0.16 0.20 31.752 32.078 0.01016
5.005 80 0.16 0.20 21.372 21.707 0.01543
5.005 90 0.16 0.20 12.335 12.557 0.01768
5.005 100 0.16 0.20 5.718 5.797 0.01359
5.005 120 0.16 0.20 1.268 1.284 0.01246
5.005 140 0.16 0.20 0.340 0.345 0.01509
5.005 160 0.16 0.20 0.107 0.108 0.01542
5.005 200 0.16 0.20 0.014 0.014 0.02382
0.005 100 0.25 0.05 0.127 0.122 0.03429
0.038 100 0.25 0.05 0.172 0.166 0.03587
0.088 100 0.25 0.05 0.179 0.173 0.02963
0.501 100 0.25 0.05 1.077 1.098 0.01913
1.003 100 0.25 0.05 0.977 1.065 0.08250
1.003 100 0.25 0.10 1.835 1.879 0.02342
1.003 110 0.25 0.10 0.036 0.037 0.02707
2.003 100 0.25 0.05 0.925 1.064 0.13085
2.003 100 0.25 0.10 1.899 1.965 0.03344
2.003 110 0.25 0.10 0.032 0.035 0.07337
2.003 120 0.25 0.20 0.407 0.412 0.01042
2.003 140 0.25 0.20 0.049 0.049 0.01523
5.005 51 0.25 0.05 49.649 50.212 0.01121
5.005 70 0.25 0.05 29.974 30.541 0.01857
5.005 80 0.25 0.05 20.199 20.749 0.02651
5.005 90 0.25 0.05 10.286 10.835 0.05067
5.005 100 0.25 0.05 0.630 1.197 0.47407
5.005 50 0.25 0.10 50.243 50.775 0.01048
5.005 70 0.25 0.10 29.946 30.496 0.01804
5.005 80 0.25 0.10 20.293 20.842 0.02634
5.005 90 0.25 0.10 10.343 10.893 0.05049
5.005 100 0.25 0.10 1.626 1.951 0.16656
5.005 110 0.25 0.10 0.030 0.038 0.20433
5.005 70 0.25 0.20 29.931 30.467 0.01759
5.005 80 0.25 0.20 20.258 20.805 0.02629
5.005 90 0.25 0.20 10.682 11.130 0.04025
5.005 100 0.25 0.20 4.115 4.249 0.03151
5.005 110 0.25 0.20 1.283 1.324 0.03089
5.005 120 0.25 0.20 0.420 0.436 0.03625
5.005 140 0.25 0.20 0.055 0.058 0.06070
5.005 160 0.25 0.20 0.010 0.011 0.08881
5.005 50 0.25 0.40 50.134 50.641 0.01001
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T S r σ Control Variate FD Deviation
5.005 70 0.25 0.40 30.700 31.146 0.01432
5.005 80 0.25 0.40 22.283 22.519 0.01048

C.2.2 Binomial Tree with 1000 Steps

All parameter combinations for which the deviation from the benchmark is greater than 1% are
shown here. Their total number is 18.

T S r σ Binomial (1000) FD Deviation
0.005 100 0.08 0.05 0.166 0.164 0.01355
1.003 110 0.08 0.05 0.010 0.010 0.01734
2.003 110 0.08 0.05 0.014 0.014 0.01775
5.005 110 0.08 0.05 0.014 0.014 0.01317
0.005 100 0.16 0.05 0.146 0.142 0.02753
0.038 100 0.16 0.05 0.247 0.244 0.01201
0.088 100 0.16 0.05 0.298 0.294 0.01214
5.005 100 0.16 0.05 1.912 1.961 0.02514
5.005 100 0.16 0.10 2.901 2.932 0.01061
0.005 100 0.25 0.05 0.127 0.122 0.03331
0.038 100 0.25 0.05 0.172 0.166 0.03581
0.088 100 0.25 0.05 0.179 0.173 0.03061
0.501 100 0.25 0.05 1.114 1.098 0.01494
5.005 100 0.25 0.05 1.112 1.197 0.07157
5.005 100 0.25 0.10 1.906 1.951 0.02292
5.005 110 0.25 0.10 0.037 0.038 0.03276
5.005 140 0.25 0.20 0.058 0.058 0.01279
5.005 160 0.25 0.20 0.011 0.011 0.01524

C.3 Calls on FX Rates

C.3.1 Control Variate

With the control variate technique with 200 steps there are 49 parameter combinations with devia-
tions greater than 1%.

T S r q σ Control Variate FD Deviation
0.005 100 0.01 0.11 0.05 0.156 0.153 0.01665
0.088 100 0.01 0.11 0.05 0.331 0.327 0.01017
5.005 100 0.01 0.11 0.05 0.466 0.490 0.04876
5.005 80 0.01 0.11 0.10 0.015 0.015 0.02898
5.005 90 0.01 0.11 0.10 0.181 0.186 0.02231
0.005 100 0.02 0.12 0.05 0.094 0.092 0.02216
0.088 100 0.02 0.12 0.05 0.335 0.332 0.01128
5.005 100 0.02 0.12 0.05 0.417 0.443 0.06053
5.005 80 0.02 0.12 0.10 0.015 0.015 0.02888
5.005 90 0.02 0.12 0.10 0.186 0.191 0.02613
0.005 100 0.04 0.14 0.05 0.095 0.093 0.02310
0.088 100 0.04 0.14 0.05 0.345 0.341 0.01050
5.005 100 0.04 0.14 0.05 0.483 0.500 0.03277
5.005 80 0.04 0.14 0.10 0.014 0.014 0.02707
5.005 90 0.04 0.14 0.10 0.180 0.185 0.02628
0.005 100 0.08 0.18 0.05 0.096 0.094 0.02510
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T S r q σ Control Variate FD Deviation
0.038 100 0.08 0.18 0.05 0.218 0.216 0.01024
2.003 100 0.08 0.18 0.05 0.432 0.441 0.02236
5.005 100 0.08 0.18 0.05 0.416 0.443 0.06042
5.005 80 0.08 0.18 0.10 0.013 0.013 0.02847
5.005 90 0.08 0.18 0.10 0.167 0.171 0.02654
0.005 100 0.16 0.26 0.05 0.100 0.097 0.02966
0.038 100 0.16 0.26 0.05 0.235 0.233 0.01091
2.003 100 0.16 0.26 0.05 0.403 0.408 0.01154
5.005 100 0.16 0.26 0.05 0.406 0.429 0.05393
5.005 80 0.16 0.26 0.10 0.010 0.011 0.03133
5.005 90 0.16 0.26 0.10 0.147 0.152 0.02943
0.005 100 0.25 0.35 0.05 0.104 0.100 0.03595
0.038 100 0.25 0.35 0.05 0.256 0.253 0.01365
0.088 100 0.25 0.35 0.05 0.334 0.330 0.01201
2.003 100 0.25 0.35 0.05 0.398 0.405 0.01587
5.005 100 0.25 0.35 0.05 0.411 0.436 0.05828
5.005 90 0.25 0.35 0.10 0.130 0.135 0.03436
5.005 70 0.25 0.35 0.20 0.314 0.317 0.01097
0.005 100 0.16 0.16 0.05 0.119 0.117 0.01376
0.005 100 0.25 0.25 0.05 0.123 0.121 0.01883
5.005 70 0.02 0.00 0.05 0.035 0.035 0.01023
2.003 80 0.04 0.00 0.05 0.052 0.052 0.01341
0.501 90 0.08 0.00 0.05 0.037 0.038 0.02464
5.005 50 0.08 0.00 0.05 0.009 0.010 0.13493
0.005 100 0.16 0.06 0.05 0.144 0.142 0.01095
0.501 90 0.16 0.06 0.05 0.091 0.092 0.01477
1.003 80 0.16 0.06 0.05 0.011 0.012 0.05768
2.003 70 0.16 0.06 0.05 0.022 0.023 0.05466
5.005 51 0.16 0.06 0.05 0.099 0.104 0.05088
0.005 100 0.25 0.15 0.05 0.149 0.147 0.01522
0.501 90 0.25 0.15 0.05 0.088 0.089 0.01588
2.003 70 0.25 0.15 0.05 0.022 0.023 0.05170
5.005 50 0.25 0.15 0.05 0.052 0.055 0.06377

C.3.2 Binomial Tree with 1000 Steps

All parameter combinations for which the deviation from the benchmark is greater than 1% are
shown here. Their total number is 55.

T S r q σ Binomial (1000) FD Deviation
0.005 100 0.01 0.11 0.05 0.156 0.153 0.01646
1.003 100 0.01 0.11 0.05 0.469 0.463 0.01203
5.005 100 0.01 0.11 0.05 0.495 0.490 0.01127
0.005 100 0.02 0.12 0.05 0.094 0.092 0.02240
2.003 100 0.02 0.12 0.05 0.423 0.415 0.01755
0.005 100 0.04 0.14 0.05 0.095 0.093 0.02324
5.005 100 0.04 0.14 0.05 0.509 0.500 0.01856
0.005 100 0.08 0.18 0.05 0.096 0.094 0.02493
0.005 100 0.16 0.26 0.05 0.100 0.097 0.02986
0.038 100 0.16 0.26 0.05 0.235 0.233 0.01143
2.003 100 0.16 0.26 0.05 0.413 0.408 0.01157
0.005 100 0.25 0.35 0.05 0.104 0.100 0.03525
0.038 100 0.25 0.35 0.05 0.256 0.253 0.01357
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T S r q σ Binomial (1000) FD Deviation
0.088 100 0.25 0.35 0.05 0.333 0.330 0.01050
0.501 100 0.25 0.35 0.05 0.453 0.448 0.01251
5.005 100 0.25 0.35 0.05 0.443 0.436 0.01577
0.167 50 0.01 0.01 0.60 0.011 0.011 0.01001
0.005 100 0.16 0.16 0.05 0.119 0.117 0.01401
0.005 100 0.25 0.25 0.05 0.123 0.121 0.01891
0.167 50 0.01 0.00 0.60 0.011 0.012 0.01003
5.005 70 0.02 0.00 0.05 0.034 0.035 0.02142
5.005 50 0.02 0.00 0.10 0.017 0.018 0.01146
2.003 80 0.04 0.00 0.05 0.051 0.052 0.02270
5.005 70 0.04 0.00 0.05 0.301 0.306 0.01459
5.005 50 0.04 0.00 0.10 0.064 0.065 0.01130
0.501 90 0.08 0.00 0.05 0.036 0.038 0.03439
2.003 80 0.08 0.00 0.05 0.612 0.618 0.01022
5.005 50 0.08 0.00 0.05 0.008 0.010 0.21508
5.005 50 0.08 0.00 0.10 0.560 0.566 0.01040
0.005 100 0.16 0.06 0.05 0.144 0.142 0.01116
0.167 90 0.16 0.06 0.10 0.021 0.021 0.01040
0.501 90 0.16 0.06 0.05 0.090 0.092 0.02248
0.501 80 0.16 0.06 0.10 0.015 0.015 0.01472
1.003 80 0.16 0.06 0.05 0.011 0.012 0.08738
1.003 70 0.16 0.06 0.10 0.012 0.012 0.02183
2.003 70 0.16 0.06 0.05 0.021 0.023 0.09995
5.005 51 0.16 0.06 0.05 0.093 0.104 0.10793
0.005 100 0.25 0.15 0.05 0.149 0.147 0.01536
0.167 80 0.25 0.15 0.20 0.013 0.014 0.01093
0.501 90 0.25 0.15 0.05 0.087 0.089 0.02387
0.501 80 0.25 0.15 0.10 0.013 0.014 0.01759
1.003 70 0.25 0.15 0.10 0.011 0.012 0.02295
2.003 70 0.25 0.15 0.05 0.021 0.023 0.09367
5.005 50 0.25 0.15 0.05 0.049 0.055 0.12468

C.3.3 Bjerksund and Stensland

Here only parameter sets for which the deviation is > 10% are shown. Most of the 36 table entries
are those where the option price becomes negative.

T S r q σ Bjerksund and Stensland FD Deviation
1.003 100 0.01 0.11 0.05 0.043 0.463 0.90769
2.003 100 0.01 0.11 0.05 0.150 0.511 0.70688
5.005 100 0.01 0.11 0.05 0.110 0.490 0.77498
5.005 80 0.01 0.11 0.10 -0.698 0.015 47.21344
5.005 90 0.01 0.11 0.10 -8.212 0.186 45.25338
5.005 100 0.01 0.11 0.10 0.061 1.805 0.96631
1.003 100 0.02 0.12 0.05 0.124 0.498 0.75110
2.003 100 0.02 0.12 0.05 -0.089 0.415 1.21473
5.005 100 0.02 0.12 0.05 -0.020 0.443 1.04483
5.005 80 0.02 0.12 0.10 -0.706 0.015 48.17877
5.005 90 0.02 0.12 0.10 -8.640 0.191 46.24323
5.005 100 0.02 0.12 0.10 -0.112 1.732 1.06447
1.003 100 0.04 0.14 0.05 -0.013 0.426 1.03113
2.003 100 0.04 0.14 0.05 -0.190 0.384 1.49443
5.005 100 0.04 0.14 0.05 0.146 0.500 0.70871
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T S r q σ Bjerksund and Stensland FD Deviation
5.005 80 0.04 0.14 0.10 -0.702 0.014 50.34107
5.005 90 0.04 0.14 0.10 -8.778 0.185 48.36765
5.005 100 0.04 0.14 0.10 -0.092 1.724 1.05330
1.003 100 0.08 0.18 0.05 -0.013 0.415 1.03126
2.003 100 0.08 0.18 0.05 -0.017 0.441 1.03909
5.005 100 0.08 0.18 0.05 -0.007 0.443 1.01589
5.005 80 0.08 0.18 0.10 -0.692 0.013 54.66592
5.005 90 0.08 0.18 0.10 -8.875 0.171 52.76134
5.005 100 0.08 0.18 0.10 0.063 1.753 0.96430
1.003 100 0.16 0.26 0.05 -0.012 0.389 1.03151
2.003 100 0.16 0.26 0.05 -0.096 0.408 1.23536
5.005 100 0.16 0.26 0.05 -0.027 0.429 1.06358
5.005 80 0.16 0.26 0.10 -0.685 0.011 64.29237
5.005 90 0.16 0.26 0.10 -9.325 0.152 62.54095
5.005 100 0.16 0.26 0.10 0.030 1.687 0.98224
1.003 100 0.25 0.35 0.05 -0.012 0.380 1.03186
2.003 100 0.25 0.35 0.05 -0.096 0.405 1.23827
5.005 100 0.25 0.35 0.05 0.013 0.436 0.97095
5.005 90 0.25 0.35 0.10 -10.039 0.135 75.34644
5.005 100 0.25 0.35 0.10 -0.066 1.597 1.04135
5.005 50 0.08 0.00 0.05 0.009 0.010 0.13493

C.4 Puts on FX Rates

C.4.1 Control Variate

With the control variate technique with 200 steps there are 33 parameter combinations with devia-
tions greater than 1%.

T S r q σ Control Variate FD Deviation
1.003 120 0.01 0.11 0.05 0.109 0.111 0.01263
2.003 140 0.01 0.11 0.05 0.072 0.073 0.01966
5.005 199 0.01 0.11 0.05 0.223 0.226 0.01599
1.003 120 0.02 0.12 0.05 0.102 0.104 0.01452
2.003 140 0.02 0.12 0.05 0.076 0.078 0.01847
5.005 200 0.02 0.12 0.05 0.196 0.200 0.01652
1.003 120 0.04 0.14 0.05 0.107 0.109 0.01317
2.003 140 0.04 0.14 0.05 0.071 0.072 0.01959
5.005 199 0.04 0.14 0.05 0.187 0.190 0.01697
1.003 120 0.08 0.18 0.05 0.099 0.100 0.01420
2.003 140 0.08 0.18 0.05 0.061 0.063 0.01885
5.005 200 0.08 0.18 0.05 0.144 0.146 0.01769
1.003 120 0.16 0.26 0.05 0.100 0.102 0.01423
2.003 140 0.16 0.26 0.05 0.058 0.059 0.01981
5.005 200 0.16 0.26 0.05 0.098 0.100 0.01923
0.005 100 0.25 0.35 0.05 0.207 0.204 0.01228
1.003 120 0.25 0.35 0.05 0.081 0.083 0.01581
2.003 140 0.25 0.35 0.05 0.050 0.051 0.02024
5.005 200 0.25 0.35 0.05 0.060 0.062 0.02134
0.005 100 0.25 0.25 0.05 0.175 0.173 0.01314
0.005 100 0.08 0.00 0.05 0.166 0.164 0.01379
5.005 120 0.08 0.00 0.10 0.104 0.105 0.01133
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T S r q σ Control Variate FD Deviation
0.005 100 0.16 0.06 0.05 0.157 0.154 0.01971
5.005 100 0.16 0.06 0.05 0.426 0.451 0.05453
5.005 110 0.16 0.06 0.10 0.245 0.249 0.01689
5.005 120 0.16 0.06 0.10 0.038 0.039 0.03528
0.005 100 0.25 0.15 0.05 0.152 0.149 0.02437
0.038 100 0.25 0.15 0.05 0.273 0.270 0.01187
0.088 100 0.25 0.15 0.05 0.336 0.332 0.01221
5.005 100 0.25 0.15 0.05 0.410 0.430 0.04597
5.005 110 0.25 0.15 0.10 0.214 0.218 0.01851
5.005 120 0.25 0.15 0.10 0.032 0.033 0.03529
5.005 160 0.25 0.15 0.20 0.257 0.259 0.01003

C.4.2 Binomial Tree with 1000 Steps

T S r q σ Binomial (1000) FD Deviation
0.088 140 0.01 0.11 0.40 0.011 0.012 0.01059
0.501 110 0.01 0.11 0.05 0.179 0.182 0.01493
1.003 120 0.01 0.11 0.05 0.108 0.111 0.02761
1.003 140 0.01 0.11 0.10 0.035 0.035 0.01802
1.003 200 0.01 0.11 0.20 0.011 0.012 0.01506
2.003 140 0.01 0.11 0.05 0.069 0.073 0.05507
2.003 160 0.01 0.11 0.10 0.169 0.171 0.01252
5.005 199 0.01 0.11 0.05 0.209 0.226 0.07803
0.501 110 0.02 0.12 0.05 0.173 0.175 0.01351
1.003 120 0.02 0.12 0.05 0.101 0.104 0.03173
1.003 140 0.02 0.12 0.10 0.033 0.034 0.01577
1.003 200 0.02 0.12 0.20 0.012 0.012 0.01381
2.003 140 0.02 0.12 0.05 0.073 0.078 0.05470
2.003 160 0.02 0.12 0.10 0.167 0.169 0.01246
5.005 200 0.02 0.12 0.05 0.184 0.200 0.08125
0.501 110 0.04 0.14 0.05 0.160 0.163 0.01589
1.003 120 0.04 0.14 0.05 0.106 0.109 0.02800
1.003 140 0.04 0.14 0.10 0.033 0.034 0.01706
1.003 200 0.04 0.14 0.20 0.011 0.011 0.01735
2.003 140 0.04 0.14 0.05 0.068 0.072 0.05485
2.003 160 0.04 0.14 0.10 0.156 0.158 0.01306
5.005 199 0.04 0.14 0.05 0.175 0.190 0.07930
0.501 110 0.08 0.18 0.05 0.167 0.169 0.01473
1.003 120 0.08 0.18 0.05 0.097 0.100 0.03019
1.003 140 0.08 0.18 0.10 0.031 0.031 0.01557
1.003 200 0.08 0.18 0.20 0.011 0.011 0.01486
2.003 140 0.08 0.18 0.05 0.059 0.063 0.05486
2.003 160 0.08 0.18 0.10 0.152 0.154 0.01276
5.005 200 0.08 0.18 0.05 0.134 0.146 0.08317
0.501 110 0.16 0.26 0.05 0.149 0.152 0.01577
1.003 120 0.16 0.26 0.05 0.099 0.102 0.02989
1.003 140 0.16 0.26 0.10 0.029 0.029 0.01634
2.003 140 0.16 0.26 0.05 0.056 0.059 0.05630
2.003 160 0.16 0.26 0.10 0.123 0.124 0.01327
5.005 200 0.16 0.26 0.05 0.092 0.100 0.08333
0.005 100 0.25 0.35 0.05 0.207 0.204 0.01238
0.088 140 0.25 0.35 0.40 0.011 0.011 0.01028
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T S r q σ Binomial (1000) FD Deviation
0.501 110 0.25 0.35 0.05 0.156 0.159 0.01412
1.003 120 0.25 0.35 0.05 0.080 0.083 0.03290
1.003 140 0.25 0.35 0.10 0.026 0.027 0.01647
2.003 140 0.25 0.35 0.05 0.049 0.051 0.05527
2.003 160 0.25 0.35 0.10 0.102 0.104 0.01351
5.005 200 0.25 0.35 0.05 0.056 0.062 0.08724
2.003 120 0.01 0.01 0.05 0.011 0.011 0.01331
0.005 100 0.25 0.25 0.05 0.175 0.173 0.01320
0.005 100 0.08 0.00 0.05 0.166 0.164 0.01355
0.005 100 0.16 0.06 0.05 0.157 0.154 0.01958
5.005 100 0.16 0.06 0.05 0.458 0.451 0.01456
0.005 100 0.25 0.15 0.05 0.152 0.149 0.02383
0.038 100 0.25 0.15 0.05 0.273 0.270 0.01153
0.088 100 0.25 0.15 0.05 0.335 0.332 0.01067
5.005 100 0.25 0.15 0.05 0.437 0.430 0.01593

C.4.3 Bjerksund and Stensland

Here only parameter sets for which the deviation is > 10% are shown. There are 19 entries, 6 of
which the Bjerksund and Stensland method yields a negative result.

T S r q σ Bjerksund and Stensland FD Deviation
5.005 100 0.04 0.00 0.05 0.914 1.067 0.14392
5.005 110 0.04 0.00 0.05 0.039 0.045 0.12373
2.003 100 0.08 0.00 0.05 0.017 0.572 0.96984
5.005 100 0.08 0.00 0.05 0.007 0.565 0.98755
5.005 100 0.08 0.00 0.10 1.875 2.187 0.14296
5.005 110 0.08 0.00 0.10 0.408 0.472 0.13616
5.005 120 0.08 0.00 0.10 0.092 0.105 0.12684
1.003 100 0.16 0.06 0.05 0.156 0.509 0.69385
2.003 100 0.16 0.06 0.05 0.096 0.486 0.80223
5.005 100 0.16 0.06 0.05 0.027 0.451 0.93954
5.005 100 0.16 0.06 0.10 -0.030 1.733 1.01729
5.005 110 0.16 0.06 0.10 -9.877 0.249 40.70652
5.005 120 0.16 0.06 0.10 -1.980 0.039 51.68875
1.003 100 0.25 0.15 0.05 0.168 0.509 0.67112
2.003 100 0.25 0.15 0.05 0.096 0.480 0.79909
5.005 100 0.25 0.15 0.05 -0.013 0.430 1.02946
5.005 100 0.25 0.15 0.10 0.066 1.706 0.96129
5.005 110 0.25 0.15 0.10 -10.010 0.218 46.97226
5.005 120 0.25 0.15 0.10 -2.046 0.033 62.34101



Appendix D

Basic Functions

In this appendix some basic statistical functions are summarised.

D.1 Cumulative Normal Distribution

N(x) is the cumulative normal distribution:

N(x) =
1p
2π

xZ

�∞

e�y2
dy (D.1)

The numerical approximation from [14] with an accuracy of 10�6 is

N(x) =

(
1�N 0(x)

�
a1k+a2k2 +a3k3 +a4k4 +a5k5

�
x � 0

1�N(�x) x < 0
(D.2)

where

N 0(x) =
1p
2π

e�x2=2 (D.3a)

and

k =
1

1+γx
(D.3b)

γ= 0:2316419

a1 = 0:319381530

a2 =�0:356563782

a3 = 1:781477937

a4 =�1:821255978

a5 = 1:330274429

D.2 Cumulative probability in Bivariate Normal Distribution

M(x;y;ρ) is the cumulative bivariate normal distribution with correlation coefficient ρ:

M(x;y;ρ) =
1

2π
p

1�ρ2

xZ

�∞

yZ

�∞

e
� x2

�2ρxy+y2

2(1�ρ2) dxdy: (D.4)
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It can be approximated according to [15] by

M(a;b;ρ) =
p

1�ρ2

π

4

∑
i; j=1

AiA j f (Bi;B j) (D.5)

where

f (x;y) = exp
�
a0(2x�a0)+b0(2y�b0)+2ρ(x�a0)(y�b0)

�
(D.6a)

a0 =
ap

2(1�ρ2)
(D.6b)

b0 =
bp

2(1�ρ2)
(D.6c)

A1 = 0:3253030

A2 = 0:4211071

A3 = 0:1334425

A4 = 0:006374323

B1 = 0:1337764

B2 = 0:6243247

B3 = 1:3425378

B4 = 2:2626645

for a� 0, b � 0 and ρ� 0. In other cases the following identities can be used:

M(a;b;ρ) = N(a)�M(a;�b;�ρ) (D.6d)

M(a;b;ρ) = N(b)�M(�a;b;�ρ) (D.6e)

M(a;b;ρ) = N(a)+N(b)�1+M(�a;�b;ρ): (D.6f)

If abρ > 0, the identity

M(a;b;ρ) = M(a;0;ρ1)+M(b;0;ρ2)�δ (D.6g)

with

ρ1 =
(ρa�b)sgn(a)p

a2�2ρab+b2
(D.6h)

ρ2 =
(ρb�a)sgn(b)p

a2�2ρab+b2
(D.6i)

δ=
1� sgn(a)sgn(b)

4
(D.6j)

can be used.
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