Option Valuation

Options Markets

Option Valuation

Option Valuation

- What determines option values?
" stock price, $\mathrm{S} \quad$ (C goes up with S)
" strike price, $\mathrm{X} \quad$ (C goes down with X)
" volatility, $\sigma \quad$ (C goes up with σ)
" time to maturity, T (C goes up with T)
" interest rate, $r_{f} \quad\left(C\right.$ goes up with $\left.r_{f}\right)$ " dividends, D (C goes down with D)
- Why do these relations hold?

Option Valuation

- In this lecture we talk about how to value different options.
- We will value options by assuming that no arbitrage opportunities exist.
- Remember put-call parity.
- To value put options, we just have to value call options and apply PC parity.

Option Valuation

- Restrictions on option values:
" C > 0 - why?
" If a call expires in the money, you can replicate its payoff by buying 1 share of stock and borrowing PV (X + D).
" The payoff to this would be ($\mathrm{S}_{\mathrm{T}}-\mathrm{X}$).
" This strategy has downside risk.
» Thus, $C>S_{0}-P V(X)-P V(D)$.
" $\mathrm{C}<\mathrm{S}_{0}$ - why?

Option Valuation

Option Valuation

Option Valuation

- If $\mathrm{D}=0$ and you want to reverse your position, sell your call but don't exercise.
- European $\mathrm{C}=$ American C when $\mathrm{D}=0$.
- What if the stock pays a dividend?
- What if it pays a liquidating dividend?
- If D is high enough, it can be optimal to exercise your call option early.

Option Valuation

- Most option pricing is done with a binomial "tree" model.
- In a binomial tree, we assume that prices either go up or go down.
- For example, suppose we knew that the price of $\$ 100$ stock would either go to $\$ 50$ or $\$ 200$ by year-end.

Option Valuation

- When does a call holder want to exercise?
- First consider a call on a stock with $\mathrm{D}=0$.
- There are 2 ways to reverse a call position:
" exercise early
" sell the option
- Since $C>\left[S_{0}-P V(X)\right]>\left(S_{0}-X\right)$, it is never optimal to exercise an American call early.

Option Valuation

- When does a put holder want to exercise?
- Unlike calls, it can be optimal to exercise American puts early when $\mathrm{D}=0$.
- What if, for example, $S=\$.10, X=\$ 100$, and $T=1$ year?
- The time-value of the strike price can be greater than the potential gain from waiting.
- What if the stock is going to pay dividends?

Option Valuation

This is our "binomial tree"

Option Valuation

- A call option with strike price $\$ 125$ would have a payoff structure like:

Option Valuation

- Since this strategy costs you $\$ 26.85$ today and its payoff is equal to the call's payoff, the call must cost $\$ 26.85$.
- Why is this true?
- This is basically how "trees" work.

Option Valuation

- Suppose C = 30 (not 26.85), $r_{f}=8 \%$.
- We can make an arbitrage chart:

Position	Initial CF	$S=50$	$S=200$
Write 2 C	60	0	-150
Buy 1 S	-100	50	200
Borrow 40	40	-43.20	-43.20
Total	0	6.80	6.80

Option Valuation

- We can replicate the call option with a position in the stock and in 8\% T-bills.
- Suppose, for example, that you buy $1 / 2$ share of the stock and borrow $\$ 23.15$
- Your payoff at year-end will depend on S_{T}.
- If $S_{T}=50$ then it is $=25-1.08^{*} 23.15=0$.
- If $S_{T}=200$ then it is $=100-25=75$.
- This position costs you $50-23.15=26.85$.

Option Valuation

- Binomial trees construct a riskless position out of stock, options and "cash."
- The payoff of the options plus cash is perfectly correlated with the stock price.
- In the example, holding $1 / 2$ share and writing 1 call produces a risk-free position.
- The payoff to this position is always $\$ 25$.
- It costs you $\$ 26.85$ today to get $\$ 25$ at T.

Option Valuation

- An important concept for option pricing is the "hedge ratio," or delta.
- The hedge ratio is defined as the number of shares of stock held for each call option written in the risk-free portfolio.
- The hedge ratio for this example is $1 / 2$.
- We'll talk more about deltas later.

Option Valuation

- What if you assumed the price could only go up to 200 or down to 50 but you were wrong?
- In general, there are many more steps in a tree than just 2.
- By having more steps, we make the model much more realistic.

Option Valuation

- When we have a more complicated tree,we just solve the problem at each node of the tree starting at the end.
- We get a new hedge ratio at each node.
- The more nodes we add, the smaller the jump between each node needs to be.
- On Wall Street, analysts use computer programs with many nodes.

Option Valuation

Option Valuation

- Numerical example:

Stock Price Tree

Let's see how to value a call option with $X=100$ using this tree and $r_{f}=2 \%$

Option Valuation

- Numerical example:

Option Price Tree

We need to solve for each of the C values in this diagram. C_{1} is particularly easy.

Option Valuation

- Numerical example:

Option Price Tree

To get C_{h} we need to calculate a hedge ratio. The ratio is:

$$
H=\frac{C+-C-}{S+-S-}=1
$$

Option Valuation

Option Valuation

- Now we know that we could write 1 call and hold 1 stock and the payoff in the last node (assuming $S=102$) is riskless.
- Since this is a half period, $r_{f}=1 \%$
- So (S - C) = PV(100).
- $102-C=99$.
- C = 102-99 = 3 .
- Back to the tree diagram.

Option Valuation

- Now we know that we could write 1 call and hold .75 stock and the payoff in the first node is riskless.
- Since this is a half period, $r_{f}=1 \%$
- If we short 1 call and buy .75 shares:
" We get $(.75)(98)=\$ 73.50$ if S goes down.
" We get $(.75)(102)-3=\$ 73.5$ if S rises.

Option Valuation

- Numerical example:

- Numerical example:

Option Price Tree

Option Valuation

- With .75 shares and 1 short call, we get $\$ 73.50$ no matter what.
- So (.75)S - C = PV(73.5).
- $75-\mathrm{C}=72.77$.
- C = 75-72.77 = \$2.23.
- Back to the tree diagram.

Option Valuation

- You do not need to know how to construct trees exactly like this.
- If you ever use a tree algorithm, you should know what it is doing.
- The tree model uses dynamic hedging.
- When we allow for infinitely many nodes, this model converges to the Black-Scholes option pricing model.

To get C we need to find delta again.
$\mathrm{H}=\frac{\mathrm{C}+-\mathrm{C}-}{\mathrm{S}+-\mathrm{S}-}=.75$

Option Valuation

Remember this tree?

How many paths are there to each node?

Option Valuation

- The Black-Scholes formula:

$$
\begin{aligned}
& \mathrm{C}_{0}=\mathrm{S}_{0} N\left(\mathrm{~d}_{1}\right)-\mathrm{Xe} e^{-T} N\left(\mathrm{~d}_{2}\right) \\
& \mathrm{d}_{1}=\frac{\ln \left(\mathrm{S}_{0} \mathrm{X}\right)+\left(\mathrm{r}+\sigma^{2} / 2\right) \mathrm{T}}{\sigma \sigma^{(1 / 2)}} \\
& \mathrm{d}_{2}=\mathrm{d}_{1}-\sigma \mathrm{T}^{(1 / 2)}
\end{aligned}
$$

Option Valuation

- Using C, we get put prices with PC parity.
- The BS model makes many assumptions. " The stock pays no dividends.
$» r$ and σ are constant over the life of the call.
" Stock prices are continuous - no jumps.
" Constant dynamic hedging is possible.
- More complicated models drop these.
- Binomial trees usually work.

Option Valuation

With many nodes, the distribution of prices becomes lognormal.

Option Valuation

- Components of the formula:
" $\mathrm{C}_{0}=$ call price, $\mathrm{S}_{0}=$ stock price, $\mathrm{X}=$ strike.
" $N\left(\mathrm{~d}^{*}\right)=$ cumulative normal distribution.
" $e=2.71828 \ldots$, In = natural logarithm.
" $r=$ risk-free rate, $T=$ maturity.
" $\sigma=$ standard deviation of log returns.
- You can calculate this with a calculator as long as you know the normal distribution.

Option Valuation

- We can observe all the components of the BS formula except for σ.
- Often we will calcuate the value of σ implied by one option value and apply it to valuing other options.
- Volatilities calculated this way are called implied volatilities.

Option Valuation

- One way to adjust BS for dividends and possible early exercise is to calculate BS values assuming early exercise and exercise at maturity.
- After calculating both types of call values, we pick the maximum value.
- Its probably better to use a tree model for possible early exercise.

Option Valuation

Option Valuation

Summary:

- Option values depend on lots of variables.
- We can place bounds on option values.
- Early exercise is never optimal for a call that does not pay dividends.
- If a call pays large dividends, early exercise may be optimal.
- Puts with $\mathrm{D}=0$ may require early exercise.

Option Valuation

- We can get the hedge ratio, delta, quite easily from the BS formula.
- With BS, delta $=N\left(\mathrm{~d}_{1}\right)$.
- We can interpret delta as $\Delta \mathrm{C} / \Delta \mathrm{S}$.
- This means that delta is just the slope of the graph that we saw before.

Option Valuation

- The delta of a call is the number of shares we need to be hedged with 1 call written.
- The delta of a call is positive.
- The delta of a put is always negative.
- The delta of a put is $\Delta \mathrm{P} / \Delta \mathrm{S}=N\left(\mathrm{~d}_{1}\right)-1$.
- The put's delta is the percentage of our stock holdings we need to put in T-bills to create a synthetic protective put position.

Option Valuation

Summary:

- Binomial tree models are used to value call options.
- With lots of nodes, a binomial tree becomes the Black-Scholes model.
- The delta of a call is $\Delta \mathrm{C} / \Delta \mathrm{S}=N\left(\mathrm{~d}_{1}\right)$.
- The delta of a put is $\Delta \mathrm{P} / \Delta \mathrm{S}=N\left(\mathrm{~d}_{1}\right)-1$.

