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0. Introduction 

 

Option pricing models were first presented by Black and Scholes (1973), and 

Merton (1973). It is well-known that an American call option on a stock that pays no 

dividends during the life of the option will not be exercised early, and hence can be 

evaluated as a European stock option with the standard Black-Scholes formula. If the 

underlying stock does pay a dividend during the life of the option, however, early 

exercise could possibly be an optimal choice and further investigation becomes 

interesting. Moreover, the pricing of American options becomes more complicated as 

the randomness of the interest rates becomes further involved. Therefore, most pricing 

models for such American options are either constructed by numerical methods or by 

approximation solutions.  

American options were analytically evaluated as early 1977 by Roll (1977) who 

constructed a replicating portfolio, and presented a pricing model for American stock 

call options with given dividends; later, Geske (1979) modified the Roll (1977) model 

to evaluate compound options for an underlying stock paying a single dividend during 

the life time of the option. This model is called the Roll-Geske-Whaley model, 

referring to Roll (1977), Geske (1979, 1981), and Whaley (1981).  

    The randomness of the influence of interest rates on option pricing, on the other 

hand, has been discussed by Ho and Lee (1986). Assuming the log-normal distribution 

property of the stock price process and combining this with an appropriate discount 

factor process, Wilhelm (2001) derived a closed-form solution to the modeling of 

European call stock options under stochastic interest rates.  

    The purpose of this article is to developed closed form pricing formula for 

American stock call options with one given dividend, subject to the Ho-Lee stochastic 

interest rates model. The correlation between the underlying stock price and the 

discount factor is explicitly expressed. And numerical analyses illustrate that the 

correlation between the underlying stock price and the discount factor imposes a 

discernible influence on both the dynamics of the option price and the delta hedge 

ratio. Furthermore, the impacts of the dynamic for distinct initial stock prices, are 

inspected as well. These offer profitable information that can be applied in the real 

financial market. 

The remainder of this article is organized as follows. In the next section the 

valuation model is established, and the conditions and closed-form formulae for 

finding the option pricing and delta hedge ratio for the discussed American stock call 

option are derived. Numerical illustrations for comparative analyses, for both pricing 

and delta hedging, are then conducted. In the final section some conclusion are 

discussed. Parts of the detailed proof of the closed-form pricing formula are relegated 
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to the Appendix. 

 

1. Review of Some Related Models 

 

In this article, an analytical pricing formula for an American call option with one 

known dividend D  to be disposed of at time t , before the maturity date T , under 

the discussed stochastic interest rate considerations is derived. Before introducing the 

two above mentioned models separately, some notations employed throughout this 

article are stated as follows: 

 

S : the underlying stock price 

K : the constant strike price 

D : the fixed amount of the cash dividend 

t : time to the ex-dividend date 

( ),K,vSc
uu

: the European stock call option price with constant interest rate at time  

u , with underlying stock price uS , strike price K , and time to maturity v  

( )K,v,BSC vuuu ,, : the European stock call option price with stochastic interest rate  

at time u , with underlying stock price uS , strike price K , time to maturity  

v , and ,vBu  being present price of a zero-coupon bond at time u , with time  

expiration v  

( )⋅1ϕ : the density function of a uni-variate standard normal random variable 

( )⋅Φ
1
: the cumulative distribution function of a uni-variate standard normal random 

variable 

( )2
1
,σµN : the cumulative distribution function of a uni-variate normal random 

variable, with mean µ  and variance 2σ  

( )ρ;,
2
⋅⋅Φ : the cumulative distribution function of a bi-variate standard normal  

random vector with correlation coefficient ρ  

( )ρσσµµ ;,., 2

2

2

1212
N : the cumulative distribution function of a bi-variate normal 

random vector, with means iµ , variances 
2

iσ , and correlation coefficient ρ  

 

1.1 Stochastic Interest Rate model 

 

Wilhelm (2001) considered option prices with stochastic interest rates. They 

unified Black and Scholes (1973) and the term structure model by Ho and Lee (1986). 

The randomness in the model is based on a well-defined probability space ),,( µAΩ  

and a suitable filtration, { }
u
A . An economy where all the securities evolve is assumed 
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to be governed by a stochastic discount factor, so a positive stochastic process, 

denoted by{ }
v

Q , is adapted to the given filtration,{ }
u
A . For any security which pays 

the
u
A for the measurable random amount 

u
p at time u , the price at time u<τ , is 

determined by  

                   







⋅= τ

τ
τ Ap

Q

Q
Ep

u

u | . 

Suppose that the discussed security does not pay out any cash during the period 

),( uτ . For simplicity, the dynamic behavior of the stochastic discount factor can be 

specified as  

                      ( )
uQQuu

ZmQ σ−−= exp , 

where { }
uQ,

Z  represents Brownian motion with mean zero and variance u . Then 








 +−= umQE
Quu

2

2

1
exp)( σ . It is obvious that if 1

0
=Q , then 0

0
=m . Moreover, 

assume that the initial term structure of the interest rates 
u

r
,0
, and the stochastic 

discount factor to zero-bond-prices 
u

B
,0
 are related by  

( ) ( )urBQE
uuu ,0,0

exp −== .  

Then, after substitution, the following result is obtained: 








 −−=
uQ,QQ,u

u ZσuσB
Q

Q 2

0

0
2

1
exp . 

Let 
0

Q

Q
W u

u
= , and uσBµ

Q,uuW

2

0
2

1
ln −= , hence 

u
W  follows the log-normal distribution, 

say 

( )u~NW
QWu u

2

1
,ln σµ .                        (1) 

Since there is a fixed cash dividend of D  dollars at time t , the underlying 

stock price prior to t  will involve the effect of paying the dividend. To evaluate the 

option at time 0, the associated stock price at time 0 must be adjusted so that the 

dynamics of the stock price throughout its life time can be modeled. Let the stock 

price containing dividends be denoted by S , and the stock price without dividends be 
'S . Since the value of 'S

0
 is equal to 

0
S  then after subtracting the present value of 

the dividend, that is, ( )DWESS
t

' −=
00

, it follows that 
,t

' DBSS
000

−= .  

In this article, the dynamics of Q  and S  at the expiration date T , are 

expressed by 
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( )
















 +−=

−
=








 −−=

,2
2

1
exp

1

,
2

1
exp

2

0000

2

0

0

T

T

SSSSQ

,T,t

T

'

T

QQQ,T

T

ZσT σσρσ
BDBS

S

S

S

ZσTσB
Q

Q

 

where ( ) ( )ρT,T,NZZ
d

SQ TT
;,00~,

2
. 

Adopting the aforementioned notation, define 
0

Q

Q
W T

T
= ,  

2

1
ln 2

0
TσBµ

Q,TWT
−= , 

and ( ) TTBDBSµ
SSQ,T,tST

2

000
2

1
lnln σσρσ −+−−= . It follows that  

      ( ) ( )ρTT,,,µµNWS
QSWS

d

TT TT
;~ln,ln 22

2
σσ .                   (2) 

Therefore, the joint relation between S  and Q , after the setting of stochastic interest 

rates, can be established by expression (2). Here, ρ  is the correlation coefficient 

between the two processes, { }TSln  and { }TWln . 

 

1.2 Replicating portfolio for the American stock call option with one known dividend 

 

Following the Roll-Geske-Whaley development, but with a constant interest rate, 

usually an American stock call option with dividend disposed at time t , can be 

replicated by the following combination of European stock call options: 

 

(a) A long position in a European stock call option with time to maturity T  and 

exercise price K , where the underlying asset is the same stock as the 

replicated American call targets. 

(b) A short position in a European compound stock call option with time to 

maturity t  and exercise price KDS
t

−+
~

, where the underlying asset is the 

same as the European stock call option defined in portfolio (a). Here 
t
S
~
 is the 

unique solution to the equation, ( ) KDSt,K,TSc ttt −+=−
~~

. 

(c) A long position in a European stock call option with time to maturity t  and 

exercise price 
t
S
~
, and again the underlying asset is the same stock as the 

replicated American call targets. 

 

It is easy to determine that the synthetic portfolio of the stated European options 

(a), (b) and (c) is a replicating portfolio when used for the American stock call option, 

with known dividends and constant interest rate. And the closed form pricing formula 

for each investment can be explicitly obtained.  
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2. Proposed Model  

2.1 Replicating portfolio for the discussed American stock call option  

 

For simplicity, the current time is assumed to be zero. For the underlying stock, 

with maturity date T , a fixed cash dividend of D  dollars is paid at time t , where 

( ),Tt 0∈ . That is, there is only one known dividend paid; the amount of the dividend 

is D , and the time scale in years until the ex-dividend date is t . Moreover, in this 

article, the interest rate is supposed to be stochastic and governed by a suitable 

discount factor process, instead of a constant interest rate. Some modifications of the 

portfolios mentioned in subsection 1.1 are made in order to provide a synthetic 

portfolio with a combination of the following stated options:   

(A). A long position in a European stock call option with time to maturity T  and 

exercise price K , where the underlying asset is the same stock as the replicated 

American call option. 

(B). A short position in a European compound stock call option with time to maturity 

t  and exercise price KDS
t

−+∗ , where the underlying asset is the same as the 

European call option defined in portfolio (A), and ∗
tS  is the “unique” solution 

to the equation, ( ) KDStK,T,BSC
tTttt

−+=− ∗∗ ,
,

. 

(C). A long position in a European stock call option with time to maturity t  and 

exercise price *

t
S . Again the underlying asset is the same stock as the replicated 

American call option. 

 

2.2 Some analytical results 

 

In this subsection, the equivalence of the aforementioned synthetic portfolio, 

combining (A), (B) and (C), and the discussed American stock call option, will be 

proved analytically under some conditions. First, at time zero, prices for each of the 

European options, (A), (B) and (C), denoted by )(

0

AC , )(

0

BC  and )(

0

CC , respectively, 

are obtained as follows: 

 

Theorem 1: 

( ) ( ) ( ) ( ) ( )cKBaTσρσDBSC
,TSQ,t

A

101000
2exp Φ−Φ−=                            (3) 

( ) ( ) ( ) ( ) ( ) ( ) ( )dBKDSdcKBbaTσρσDBSC
,tt,TSQ,t

B

10202000
;,;,2exp Φ−+−Φ−Φ−= ∗υν  (4) 

( ) ( ) ( ) ( ) ( )dBSbtσρσDBSC
,ttSQ,t

C

101000
2exp Φ−Φ−= ∗                            (5) 
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where 
Tσ

Tσσρσ
KB

DBS

a

S

SSQ

,T

,t 






 ++








 −

=

2

0

00

2

1
2ln

, 
tσ

tσσρσ
BS

DBS

b

S

SSQ

,tt

,t 






 ++








 −

=
∗

2

0

00

2

1
2ln

, 

Tσac
S

−= , tσbd
S

−= , and 
T
t=ν , a fixed number.  

Proof. Cf. Appendix 1. 

 

Corollary 1: At time t , the ex-dividend date, the price of the European option (A) is 

( ) ( ) [ ] ( ) ( )
21,11,

)(2exp,,, dKBdStTtTKBSCC
TttSQTttt

A

t
Φ−Φ−=−= σρσ , where 













−






 ++










−
= )(

2

1
2ln

1 2

1
tTσσρσ

KB

S

tTσ
d

SSQ

t,T

t

S

, and tTσdd
S

−−=
12

. 

Proof. Adopted from Theorem 1 immediately. 

 

To prove that the synthetic portfolio of the defined European stock call options 

(A), (B) and (C), is a replicating portfolio for the discussed American stock call option, 

it is sufficient to show that ( )
t
Sf  is an increasing function of 

t
S , where 

( ) ( ) ),,,( , tTKBSCDXSSf Tttttt −−+−= .   

Since 
1

1
11

11 )(
)(

S

d
d

S

d

t ∂
∂

=
∂
Φ∂

ϕ , 
tTSS

d

S

d

Sttt −
=

∂
∂

=
∂
∂

σ
1

12 , 

( ) ( ) ,
2

1
exp 2

11121 






 −−−= tTtTddd
SS

σσϕϕ  ( ) ( ) [ ])(2exp
1121,

tTdSdKB
SQtTt

−= σρσϕϕ , 

after algebra, the following partial derivative is obtained,  

{ } ( )
11

)(2exp1
)(

dtTσρσ
S

Sf
SQ

t

t Φ−−=
∂

∂
.  

If we define { } ( )
11

)(2exp1)( dtTσρσg
SQ

Φ−−=ρ , then 

( ) { } ( ) { } ( )
ρ

ϕ
ρ
ρ

∂
∂

⋅−−Φ−−−=
∂

∂
1

1111
)(2exp)(2exp)(2

)( d
dtTσρσdtTσρσtTσσ

g
SQSQSQ

   

{ } ( ){ })()()(2exp)(2
1111
ddtTtTσρtT

SSQQ
ϕσσσ +Φ−⋅−−−= . 

It is obvious that 0
)(
<

∂
∂
ρ
ρg

, and since 0)0( ≥g , therefore 0
)(
≥

∂
∂

t

t

S

Sf
, when 0≤ρ . 

That is, )(
t
Sf  is an increasing function of 

t
S , as 0≤ρ . When 0>ρ , the sign of 

t

t

S

Sf

∂
∂ )(

 is uncertain. However, since 
t

t

S

Sf

∂

∂ )(
 is a continuous function of ρ , thus 
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there exists 0>∗ρ , which is function of Sσ , ,
Q

σ
Tt

t

KB
S

,

 and tT − , such that 

0|
)(

=
∂

∂
∗=ρρ

t

t

S

Sf
. Let ∗ρ  satisfy the equation { } ( ) 1)()(2exp

11
=Φ− ∗∗ ρdtTσσρ

SQ
, then 

0>∗ρ . The results can be summarized as follows: 

 

Corollary 2: If we set ∗ρ  to satisfy the equation { } ( ) 1)()(2exp
11

=Φ− ∗∗ ρdtTσσρ
SQ

, 

then )(
t
Sf  is an increasing function of 

t
S , when the value of ρ  satisfies the 

inequality
∗

< ρρ .  

 

For simplicity, we suppose that
∗

< ρρ ; therefore )(
t
Sf  is an increasing function 

of 
t
S in the following discussion. Furthermore let *

tS  be the unique solution 

satisfying ( ) 0* =tSf , that is, ),,,(
,

* tTKBSCDXS
Ttttt

−=+− ∗ .The discussed American 

stock call option shall be exercised if ),,,(
,

TKBSCDXS
Ttttt

>+− , that is *

tt SS > ; 

otherwise it will be held to maturity, if ),,,(
,

TKBSCDXS
Ttttt

≤+− , that is *

tt SS ≤ .  

To prove that the synthetic portfolio of the defined European stock call options 

(A), (B) and (C) is a replicating portfolio for the discussed American stock call option, 

each payoff function can be reduced to two exclusive cases expressed by cash flows.  

 

 (I). Direct Cash flows of the discussed American stock call option 

At time t  if *

tt SS > , then ( ) 0>
t
Sf , and the option will be exercised 

immediately. The value of the discussed American stock call option is thus 

DXS
t

+− . However, if *

tt SS ≤ , then ( ) 0≤
t
Sf , and consequently, the option will 

be held to maturity, with the value ( )tTKBSC
Tttt

−,,,
,

. 

(II). Cash flows of the discussed replicating portfolio 

At time t , if *

tt SS > , then DXStTKBSCtTKBSC
tTtttTttt

+−=−>− ∗∗ ),,,(),,,(
,,

.  

Therefore, the cash flow of the European compound option (B) is 
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( ){ } ( )DXStTKBSCDXStTKBSC
tTttttTttt

+−−−=+−−− *

,

*

,
),,,(0,),,,(max . 

Similarly, since { } 00,max * >−
tt
SS , the cash flow of the European stock call option (C)  

at time t  is *

tt
SS − . In summary, the total cash flows of the replicating portfolio are  

( ){ } XDSSSDXStTKBSCtTKBSC
ttttTtttTttt

+−=−++−−−−− **

,,
),,,(),,,( . 

This value is exactly the same as that computed by directly analyzing the cash flows 

for the discussed American stock call option. 

    On the other hand, if *

tt SS ≤ , then 

DXStTKBSCtTKBSC
tTtttTttt

+−=−≤− ∗∗ ),,,(),,,(
,,

. 

Therefore, both options in (B) and (C) are zero and the total cash flows of the 

replicating portfolio are ),,,(
,

tTKBSC
Tttt

− . Again, this value is exactly the same as 

that computed by directly analyzing the cash. The stated cash flows at time t  are 

summarized in Table 1. 

 Therefore, when the condition that ∗< ρρ  holds, irregardless of whether 

*

tt
SS >  or *

tt SS ≤ , the value of the replicating portfolio is always equal to that of the 

discussed American stock call option. Therefore the synthetic portfolio defining by 

European stock call options (A), (B) and (C) can be regarded as a replicating portfolio 

for the discussed American stock call option. To evaluate the price of the discussed 

American stock call option, it is sufficient to evaluate the discussed European stock 

call options (A), (B), (C), respectively. The results are summarized as follows: 

 

Theorem 2: Suppose that ∗< ρρ , then the synthetic portfolio combining by, the 

European options (A), (B) and (C), is a replicating portfolio for the discussed 

American stock call option, with price 
0

C , which is ( ) ( ) ( )CBA CCCC
0000

+−= .  

 

Theoretically, the existence of a replicating portfolio for the discussed American 

stock call option is proved. Unfortunately, the value of ∗ρ  depends upon t
S , the 

stock price at time t , which is unknown when the current time is at time zero. 

Nevertheless, Theorem 2 is definitely applicable when 0≤ρ . Usually, in most 

situations, the value of the correlation coefficient ρ  will be negative, thus the price 

of the discussed American stock call option is ( ) ( ) ( )CBA CCCC
0000

+−= . The result can be 

stated as follows: 

 

Corollary 3: When 0≤ρ , the correlation between the stock price process and the 

discount factor process, is negatively correlated. The time zero price of the discussed 

American stock call option, with a fixed cash dividend of D  dollars paid at time t , 

before the maturity date T , under the discussed stochastic discount factor process, is 
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then given by 

( ) ( ) ( ) ( ) ( )



 −−Φ+Φ−= υσρσσρσ ;,2exp2exp

21000
baTbtDBSC

QSQS,t
 

   ( ) ( ) ( )dBDKdcKB
tT 1,02,0

;, Φ−−−−Φ− υ  .                         (6) 

Proof. Adopted from Theorem 2 immediately, where a , b , c  and d  are defined 

in Theorem 1. 

 

    When interest rate is uncertain, hedging becomes rather complicated and cannot 

done on stock price sensitivity basis only. However, a closed formula for the latter is 

easily to obtain. For simplicity, in this article only hedging on stock price is 

considered.  Differentiating 
0

C  with respect to 
0
S  results in the delta hedge ratio, 

expressed by the following analytical formula: 

 

Theorem 4. (Delta hedge ratio) When 0≤ρ , the time zero delta hedge ratio for the 

discussed American stock call option is given by  

( ) ( ) ( ) ( )υ−−Φ+Φ=
∂

∂
=∆ ;2exp2exp

21

0

0 ba,Tσρσbtσρσ
S

C
SQSQS

 

( ) ( ) ( ) ( ) ( ) ( )






















 −

−
−

+−+
tσS

b,ah

TσS

ba,h
Tσρσ

tσS

b
tσρσDBS

SS

SQ

S

SQ,t

000

1

00
2exp2exp

ϕ
 

( ) ( ) ( ) ( )
tσS

d
BDK

tσS

d,ch

TσS

dc,h
KB

S

,t

SS

,T

0

1

0

00

0

ϕ
−−











 −

−
−

− ,           .    (7) 

where ( ) 







−=
2

exp
2

1
2

1

x
x

π
ϕ , ( ) ( )dyyx

x

11
ϕ∫

∞−

=Φ , and ( ) )(
1

1
2

1
x

yx
x,yh ϕ

ν

ν









−

+
Φ= .  

 

The most significant difference between the Roll-Geske-Whaley model and our 

proposed model lies in the assumption of random interest rates. The randomness of 

the interest rates is carried out by a discount factor process motivated by Wilhelm 

(2001). In addition the correlation between the discount factor and the underlying 

stock price is established via the correlation coefficient ρ . Without the stochastic 

interest rate assumption, we may set 0=Qσ , (or 0=ρ ), and the price of the 

zero-coupon bond to be ru

u
eB −=

,0
. Then 

tt
SS
~

=∗  and the result of Corollary 3 will be 

simplified. In fact, the reduced formula is exactly equal to that of the 

Roll-Geske-Whaley model, as follows:  
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Proposition 1. The time zero price of the American stock call option in the 

Roll-Geske-Whaley model is given by 

( ) ( ) ( ) ( ) ( ) ( )deDKdcKebabDeSC rtrTrt ~
;
~

,~;
~

,~
~~

122100
Φ−−−−Φ−



 −−Φ+Φ⋅−= −−− υυ ,   (8) 

where 
Tσ

Tσ
Ke

DeS

a
S

SrT

rt
20

2

1
ln

~
+






 −

=
−

−

, 
tσ

tσ
eS

DeS

b
S

Srt

t

rt

20

2

1
~ln

~
+








 −

=
−

−

 , Tσac
S

−= ~~ ,  

tσbd
S

−=
~~

, and 
t
S
~
 satisfying ),,

~
(

~
tTKScDXS

ttt
−=+− .  

 

Proposition 2. The time zero delta hedge ratio for the American stock call option in 

the Roll-Geske-Whaley model is given by  

( ) ( )υ−−Φ+Φ=
∂

∂
=∆ ;

~~~
~

~
21

0

0 b,ab
S

C
S

( ) ( ) ( ) ( )






















 −

−
−

+−+ −

tσS

a,bh

TσS

b,ah

tσS

b
DeS

SSS

rt

000

1

0

~~~~~
ϕ

  

  
( ) ( ) ( ) ( )

tσS

d
eDK

tσS

c,dh

TσS

d,ch
Ke

S

rt

SS

rT

0

1

00

~~~~~ ϕ−− −−










 −

−
−

− .          (9) 

 

3. Numerical Illustrations 

 

Static analyses of the closed-form solutions for both option pricing and delta 

hedge ratio are offered in this section with the goal of offering detailed insight into 

their sensitivity to the some various parameter settings. A set of parameters, called the 

base case, is: 5.1=D , 25=K , 25.0=t , 15.0=r , )exp(
,0

ruB
u

−= , 5.0=T , 5.0=
S

σ , and 

01.0=Qσ . Three distinct initial stock values, { }20,25,30
0
=S , are set for call options 

whose statue stays in-the-money, at-the-money, and out-of-the-money, respectively.  

It is worthy to note that the sufficient condition, ∗< ρρ , stated in Theorem 2, is 

useful to theoretically verify that ( )
t
Sf  is an increasing function of 

t
S , and 

furthermore to guarantee that the synthetic portfolio of the defined options (A), (B) 

and (C), is a replicating portfolio for the discussed American stock call option. 

Actually, 
t

t

S

Sf

∂

∂ )(
 is a decreasing function of either KS

t
 or ρ . For numerical 

demonstrations, instead of simply computing values of ∗ρ  in terms of KS
t

, under 

the discussed base case, the values of 
t

t

S

Sf

∂

∂ )(
 are tabulated, according to different 

values of KSt  and ρ , to examine the increasing phenomena of ( )
t
Sf . The results 

listed in Table 2 show that as long as the stock price at time t  is a moderate in-the 

money situation, say, 8.1≤KS
t

 , also 8.0≤ρ , the increasing property of ( )
t
Sf  in 
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t
S , is ensured; furthermore, the price of the discussed American stock call option 

defined by equation (6), could be straightforwardly applied.  

 

The following numerical illustrations are presumed to be under the condition that 

the stock price at time t  satisfies 8.1≤KS
t

. The variation in the American stock 

call option prices under various amounts of cash dividends and correlation 

coefficients with different stock values is illustrated in Figure 1. At all option-value 

statues, the option price decreases as the cash dividend increases; for a fixed 

correlation the difference is about 1 dollar when the amount of the cash dividend 

ranges from 0.5 to 5.5. This is because a larger cash dividend causes a lower 

post-dividend stock price, thereby resulting in a diminishing call option price. On the 

other hand, the option price increases as the correlation coefficient increases. This 

agrees with the commonly accepted economic principle that a boom in the stock 

market goes along with a sag in the short-term interest rate market. The impact of the 

correlation, however, is not as dominant as the cash dividend; for a fixed amount of 

cash dividends, the extreme variation is around 0.1 dollar when the correlation ranges 

from -0.8 to 0.8. 

In the following numerical analyses we focus on the difference between the 

Roll-Geske-Whaley model and the results derived from our model. The ρ  parameter, 

the correlation coefficient between the stock price and the discount factor, plays an 

important role in the comparisons. The percentage difference between equation (6) 

and (8), called the price difference, is defined by 

%100
~~
000
×













 −= CCCdC , 

and the percentage difference between equations (7) and (9), called the delta hedge 

ratio difference, is defined by 

%100
~~

×







∆






 ∆−∆=∆

SSS
d . 

The variation of the option price difference under various correlation coefficients 

and values is illustrated in Figure 2. For all option-value statues, the option price 

difference increases as the correlation coefficient increases; in fact, the price 

difference is negative under a negative correlation coefficient, and it turns positive 

whenever the stock price and the discount factor are positively correlated. This means 

that when the stock price and discount factor are negatively correlated, the theoretical 

option price should be lower than the one computed from Roll-Geske-Whaley model; 

on the other hand, when they are positively correlated, the theoretical option price 

may be underestimated by Roll-Geske-Whaley model. In addition, the largest price 

difference occurs when the stock price and the discount factor are highly correlated, 
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reaching an absolute amount of 3%. 

The sensitivity of the option price difference with respect to the correlation 

coefficient, as illustrated in Figure 2 and Figure 3, also relies on the state of the initial 

stock price. When the initial stock price is low, the price difference of the 

out-of-the-money American stock call option is more sensitive to the variation of the 

correlation coefficient; in contrast, the sensitivity of the option price difference with 

respect to the change of correlation coefficient is smaller when the option is 

at-the-money or in-the-money. This is because the option is of the American type and 

so would be exercised early if the stock price is high enough. Nonetheless, when the 

American option is out-of-the-money at present, it should be held, to wait for a more 

benign evolution of the stock price. Since the out-of-the-money option depends on the 

uncertainty of future market behavior, the correlation coefficient between the stock 

price and the discount factor imposes a rather heavier impact on it. 

The dynamics of the delta hedge ratio difference under various correlation 

coefficients at distinct stock values are demonstrated in Figure 4 and Figure 5. Similar 

to the price difference pattern, the delta hedge ratio difference increases as the 

correlation coefficient enhanced, for all option-value statues. Although the largest 

delta hedge ratio difference still occurs when the stock price and the discount factor 

are highly correlated, the extreme absolute amount, reaching around 2.5%, is smaller 

than that aforementioned the price difference. 

In addition, the sensitivity of the delta hedge ratio difference with respect to the 

correlation coefficient is also reliant on the state of the initial stock price. The delta 

hedge ratio difference of the out-of-the-money option is more sensitive to a variation 

in the correlation when the initial stock price is low; when the option is at-the-money 

or in-the-money, on the other hand, the sensitivity of the delta hedge ratio difference 

with respect to changes in the correlation coefficient is smaller. The analysis of this 

pattern is analogous to that for the price difference. Furthermore, the dynamics of the 

delta hedge ratio difference are rather stable; in particular, the delta hedge ratio 

difference remains steady when the option is in-the-money, and the initial stock price 

is 35. 

 

4. Conclusions 

 

In this article, an analytical formula for evaluating American stock call options 

with a given dividend under stochastic interest rates is derived. By fabricating the 

proper correlation between the underlying stock price process and the discount factor 

process, we can construct an equivalent replicating portfolio under suitable conditions, 

and the closed-form solutions for both option price and delta hedge ratio can then be 
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analytically derived. 

As indicated by the numerical illustrations, the discussed American stock call 

option is sensitive to variations in the cash dividend amount and the introduced 

correlation coefficient. The dynamics of the call option value varies for different stock 

prices, and is most influenced by changes in the cash dividend amounts. Numerical 

analyses show that a positive correlation brings a higher option price and delta hedge 

ratio, and a negative correlation leads to a lower one. In particular, absolute values of 

both price difference and delta hedge ratio difference reach a maximum when the 

stock price and the discount factor are highly correlated. Moreover, despite the fact 

that both the option price and delta hedge ratio dynamics are affected by variations in 

the correlation coefficients, the numerical results reveal that it is the option price 

rather than the delta hedge ratio that is more sensitive to a change in the correlation 

coefficient, in all cases. These results should help researchers and participants be 

better informed and make accurate decisions for dealing with this specific American 

stock call option in the real financial market. 

 

Appendix 

Before developing the proofs, for convenience, some preliminary notations and 

facts are stated without proof as follows: 

 

Fact 1:  Suppose ( ) ( )ρuu,,µµNWS
QSWS

d

uu uu
;,~ln,ln 22

2
σσ , then 

(1) ( )[ ]22

1
1~lnlnln ρσ −= u,mNwWS

SS

d

uuu u
,  

 (2) ( )[ ]22

1
1~lnlnln ρσ −= u,mNsSW

QW

d

uuu u
, where 

( )
uuu WuSS

µwµm −+= ln α , ( ) uuBDBSµ
SQS,u,tSu

2

000
2

1
lnln σσρσ −+−−= , 

Q

S

σ

ρσ
=α , 

uBµ
Q,uWu

2

0
2

1
ln σ−= , ( )

uuu SuWW
µsµm −+= ln δ , and 

S

Q

σ

ρσ
=δ ,  for Tut << .  

 

Fact 2: Let ( ) ( )( )∫∫
∞−∞−









+−

−
−

−
=Φ

yx

dudvvuvuyx 22

22
2

2
12

1
exp

12

1
;, ρ

ρρπ
ρ , then 

(1) ( )ρϕ
ρ

ρ
;,)(

1
21

2
1 yxdzz

zyx

Φ=














−

−
Φ∫

∞−

,   
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.(2) ( ) ( )ρρ ;,;,
22

xyyx Φ=Φ , 

.(3) ( ) ( ) ( )ρρ ;,;,
221

xxx ∞Φ=∞Φ=Φ , and   

 .(4) ( ) ( )ρρ −−Φ=Φ−Φ ;,;,)(
221

yxyxx  

 

Fact 3: Let Y  be a random variable and distributed as ( )2
1

ln
YY

,σµY~N , then  

(1)  The density function of Y  is ( ) 






 −
=

Y

Y

Y

Y
σ

µy

y
yf

ln1
1ϕσ

. 

(2) ( ) 







+=
2

exp
2

Y
YYE

σ
µ . 

(3) ( )[ ] ( ) ( ) ( )






 −

Φ−






 −

+Φ=−
Y

Y

Y

Y
Y

KK
YEKYE

σ
µ

σ
µ

σ
lnln

0,max 11 . 

 

Lemma 1: Let Y  be log-normal distributed, say ( )2
1

ln
YY

,σµY~N . Define 

22

YY
pσµζ += , and 2

YY
pσµψ += , with 0>p , then for any Rq∈ , 

{ }[ ] ( )














++

+−
Φ=+Φ∞<<

2222
21

1
;

1
,

ln
exp)ln(

Y

Y

YY

Ys

p

q

q

q

rqs
prYqIYE

σ

σ

σ

ψ
σ

ψ
ζ , 

where 
}{⋅I  is an indicator function. 

Pf): { }[ ] ( ) dy
σ

µy

y
ryqyrYqIYE

Y

Y

Y

p

s

Ys

p








 −
⋅+Φ=+Φ ∫

∞

∞<<

ln1
ln)ln(

111
ϕ

σ
 

( ){ } ( ){ } ( )dzzrzqzp YYYY

s

Y

Y

11

ln

exp ϕµσµσ

σ
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++Φ+= ∫
∞

−

 

( ) ( ){ } ( )dzpzrzqp YYY

s

Y

Y

σϕµσζ

σ
µ

−++Φ= ∫
∞

−
11

ln

exp  

( ) ( ) ( )dxxrqxqp Y

s

Y

11

ln

exp ϕψσζ

σ
ψ

++Φ= ∫
∞

−
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( ) ( ) ( )dxxrqxqp Y

s

Y

11

ln

exp ϕψσζ
σ

ψ

++−Φ= ∫

−

∞−

 

After some algebra, together with result (1) of Fact 2, Lemma 1 is obtained.  .   □ 

 

Lemma 2: Under the same assumption and notations stated in Lemma 1, the following 

special results are reduced and stated as follows: 

 (1) [ ] ( )














+

+
Φ=+Φ

22
11

1
exp)ln(

Y

p

q

rq
prYqYE

σ

ψ
ζ   

(2) { }[ ] ( ) 
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Φ=∞<<

Y
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pIYE

σ
ψ

ζ
ln

exp
1

  

       

                             Appendix A 

Proof of equation (1) of Theorem 1:  

( ) ( ) ( ) ( ) ( )cKBaTσρσDBSC
,TSQ,t

A

101000
2exp Φ−Φ−= ,  

where  
Tσ

Tσσρσ
KB

DBS

a

S

SSQ

,T

,t 






 ++








 −

=

2

0

00

2

1
2ln

  and  Tσac
S

−= .  

Pf): By assumption of the European stock call option (A),  

( )[ ] ( )[ ]{ }
TTWSTWTT
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−=−= .  
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Therefore, 
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K
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2
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2

)(

0
  

( ) ( )[ ] ( )[ ]ηγθγβα +Φ−+Φ+=
TTWTTTW

WWKEWWWE
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lnlnlnexp
11

,  
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where 
TS

λ
αγ = , 

2

2

TS

WS

λ
µµ

TT
+−= αβ , 

( )
T

TT

S

WS

λ

Kµµ ln−−
=

α
η , and ηθ +=

TS
λ . 

Define 1+=αp , γ=q , and θ=r , then by result (1) of Lemma 2, we have 

( ) ( )[ ] ( )[ ]θγβθγβα α +Φ=+Φ+ +
TTWTTTW

WWEWWWE
TT

ln)exp(lnlnexp
1

1

1
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+
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1
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θσαµγσα
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( ) ( ) ( ) ( ) )(2exp2exp
1,0010
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QStQS

' Φ−=Φ= σρσσρσ . 

Similarly, set 1=p , γ=q , η=r , then  
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TTW
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22
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+=

σγ

ησµγσ
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Therefore, ( ) ( ) ( ) ( ) ( )cKBaTσρσDBSC
,TSQ,t

A

101000
2exp Φ−Φ−= .            .        □ 

. 

Appendix B 

Proof of equation (2) of Theorem 1:  

( ) ( ) ( ) ( ) ( ) ( ) ( )dBKDSdcKBbaTσρσDBSC
,tt,TSQ,t

B

10202000
;,;,2exp Φ−+−Φ−Φ−= ∗υν , 

where 
tσ

tσσρσ
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b

S

SSQ
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,t 
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 −

=
∗

2

0

00

2

1
2ln

, tσbd
S

−= , and 
T
t=ν .  

Pf): Let KDSX
t

−+= * , the exercise price of the European compound option price, 

defined in (B), then the option price is  

     ( ) ( )[ ]ttSW

A

tS

B SWEX,CEC
ttt

0max )()(

0 −=   

( ) ( )























+−+−=
2

lnexp0max
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StW
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[ ]{ }0max
2

exp )(
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X,CSEµ A

ttS
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+−= δλ

δµ . 

From the expression of )( A

t
C  in Corollary 1, the second term is re-written as:  
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[ ]{ } { }[ ]{ }XCISEX,CSE A

tSStS

A

ttS
tttt

−=−
∞<<
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{ } ( ) ( ) ( )[ ]{ }XdKBdStTISE
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∞<< 21,11
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The remaining work is to respectively compute the three conditional expectations:  
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, then 
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Again, let δ=p , qrr 1
12
−= , then 

22
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+= , and by Lemma 1, 
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Finally, by result (2) of Lemma 2, the last term becomes 
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Moreover, after some algebra, the following results are obtained: 
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•  t
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W

SW B
t

µ
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t

tt ,0

222

2
exp

2
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+−

σδ
δµ

λ
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Since TTtt BBB ,0,,0 = , therefore 

( ) ( ) ( ) ( ) ( ) ( ) ( )dBKDSdcKBbaTσρσDBSC
,tt,TSQ,t

B

10202000
;,;,2exp Φ−+−Φ−Φ−= ∗υν . 

This completes the proof.                                              □ 

                           

Appendix C 

Proof of equation (3) of Theorem 1: 

( ) ( ) ( ) ( ) ( )dBSbtσρσDBSC
,ttSQ,t

C

101000
2exp Φ−Φ−= ∗ , 

where b  and d  are defined in the proof of equation (2) of Theorem 1,     

Pf): Similar to the proof of equation (2), the result follows.                   □ 
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Table 1.  Cash flows under the assumption that 
∗

< ρρ  

Value at time t  
*

tt
SS >  *

tt
SS ≤  

The discussed 

American call option 

DXS
t

+−  ( )tTKBSC
Tttt

−,,,
,

 

Option (A) ( )tTKBSC
Tttt

−,,,
,

 ( )tTKBSC
Tttt

−,,,
,

 

Option (B) ( ){ }DXStTKBSC
tTttt

+−−−− *

,
),,,(  0 

Option (C) 
*

tt
SS −  0 

Replicating portfolio 

=(A)+(B)+(C) 

DXS
t

+−  ( )tTKBSC
Tttt

−,,,
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            Table 2. Increasing property of ( )
t
Sf : values of 

t

t

S

Sf

∂

∂ )(

                KSt    

ρ  0.6 0.8 1.0 1.4 1.8 

-0.8 0.982 0.825 0.518 0.100 0.014 

-0.6 0.981 0.824 0.516 0.098 0.013 

-0.4 0.981 0.823 0.514 0.096 0.012 

-0.2 0.981 0.822 0.512 0.095 0.011 

0 0.981 0.821 0.510 0.093 0.010 

 0.2 0.981 0.819 0.508 0.092 0.009 

0.4 0.980 0.818 0.506 0.090 0.008 

0.6 0.980 0.817 0.504 0.089 0.007 

0.8 0.980 0.816 0.502 0.087 0.006 

Notes: 1. All the entries are positive, that means under the conditions, 8.1≤KS
t

 and 8.0≤ρ , 

)( tSf  is an increasing function of tS . 

2. { } ( )
11

)(2exp1
)(

dtTσρσ
S

Sf
SQ

t

t Φ−−=
∂

∂
  and  













−






 ++










−
= )(

2

1
2ln

1 2

1 tTσσρσ
KB

S

tTσ
d SSQ

t,T

t

S

 

 

 



 22

 

 

 

 

Figure 1. 

Price dynamics for different cash dividend and correlation at distinct stock values 

 

 

 

Figure 2. 

Price difference analysis 
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Figure 3. 

Price difference at distinct initial stock values 

 

 

 

 

Figure 4. 

Delta hedge ratio difference analysis 
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Figure 5. 

Delta hedge ratio difference at distinct initial stock values 

 

 

 

 

 

 

 

 

 

 


