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Abstract. The convergence of a penalty method for solving the discrete regularized American
option valuation problem is studied. Sufficient conditions are derived which both guarantee conver-
gence of the nonlinear penalty iteration and ensure that the iterates converge monotonically to the
solution. These conditions also ensure that the solution of the penalty problem is an approximate
solution to the discrete linear complementarity problem. The efficiency and quality of solutions
obtained using the implicit penalty method are compared with those produced with the commonly
used technique of handling the American constraint explicitly. Convergence rates are studied as the
timestep and mesh size tend to zero. It is observed that an implicit treatment of the American con-
straint does not converge quadratically (as the timestep is reduced) if constant timesteps are used.
A timestep selector is suggested which restores quadratic convergence.

Key words. American option, penalty iteration, linear complementarity

AMS subject classifications. 65M12, 65M60, 91B28

1. Introduction. The valuation and hedging of financial option contracts is a
subject of considerable practical significance. The holders of such contracts have the
right to undertake certain actions so as to receive certain payoffs. The valuation
problem consists of determining a fair price to charge for granting these rights. A
related issue, perhaps of even more importance to practitioners, is how to hedge the
risk exposures which arise from selling these contracts. An important feature of such
contracts is the time when contract holders can exercise their rights. If this occurs
only at the maturity date of the contract, the option is classified as “European”. If
holders can exercise any time up to and including the maturity date, the option is
said to be “American”. The value of a European option is given by the solution of
the Black-Scholes PDE (see, e.g. [20]). An analytical solution can be obtained for
cases with constant coefficients and simple payoffs. However, most options traded on
exchanges are American. Such options must be priced numerically, even for constant
coefficients and simple payoffs. Note also that the derivatives of the solution are of
interest since they are used in hedging. More formally, the American option pricing
problem can be posed as a differential linear complementarity problem (LCP).

In current practice, the most common method of handling the early exercise
condition is simply to advance the discrete solution over a timestep ignoring the
constraint, and then to apply the constraint explicitly. This has the disadvantage
that the solution is in an inconsistent state at the beginning of each timestep (i.e. a
discrete form of the LCP is not approximately satisfied). As well, this approach can
obviously only be first order correct in time.

Another technique is to solve the discrete LCP using a relaxation method [20]. In
terms of complexity, this method is particularly poor for pricing problems with one
space-like dimension. A lower bound for the number of iterations required to solve the
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LCP to a given tolerance with a relaxation method would be the number of iterations
required to solve the unconstrained problem using a preconditioned conjugate gradient
method. Assuming that the mesh spacing in the asset price S direction is O(∆S) and
that the timestep size is O(∆t), then the condition number of a discrete form of the
parabolic option pricing PDE is O

[
∆t/(∆S)2

]
. Let N be the number of timesteps.

If we assume that ∆S = O(∆t) = 1/N , then the number of iterations required per
timestep would be O(N1/2).

To overcome the problems with relaxation techniques, methods based on linear
programming have been suggested [7, 11]. However, the computational complexity of
this approach increases rapidly for problems having more than one space-like dimen-
sion.

A multigrid method has been suggested in [4] to accelerate convergence of the
basic relaxation method. Although this is a promising technique, multigrid methods
are usually strongly coupled to the type of discretization used, and hence are complex
to implement in general purpose software.

It is well known that an LCP (or equivalently, a variational inequality) can be
posed as a penalty method [8, 18, 15, 9, 6]. An advantage of this approach is that
standard methods can be used to solve the resulting nonlinear algebraic equations.
In this article, we will explore some aspects of using penalty methods for pricing
American options. We will restrict attention to one dimensional problems, which
are more amenable to analysis. However, we have successfully used penalty methods
for two dimensional problems [22]. In this work, the nonlinear discrete penalized
equations are solved using Newton iteration. This is closely related to the Newton
methods in [5]. Note that relaxation methods are frequently used to solve the discrete
penalized nonlinear equations [6].

The advantage of the penalty method is that a single technique can be used for
one dimensional or multi-dimensional problems, and standard sparse matrix software
can be used to solve the Jacobian matrix. This technique can be used for any type of
discretization, in any dimension, and on unstructured meshes. In particular, there is
no difficulty in handling cases where the early exercise region is multiply-connected,
as in [22]. As well, a single method can be used to handle American options and other
nonlinearities, such as uncertain volatility and transaction cost models [20, 1].

The objective of this article is to analyze the properties of penalty methods for
solution of a discrete form of the LCP. We will also study the convergence of these
methods as the timestep and mesh size are reduced to zero. We will determine suf-
ficient conditions for smooth convergence of the penalty method in one dimension.
The conditions require that certain properties of the discretization hold, and there
are limitations on the timestep size. It may be possible to require weaker conditions
perhaps using the methods in [15]. However, option pricing problems are typically de-
generate parabolic, and in non-conservative form. This can be expected to complicate
the methods in [15].

In practice, we observe that the penalty method works well for multi-factor op-
tions, with no timestep restrictions. In other words, although the conditions we derive
are sufficient, they do not appear to be necessary. Consequently, it appears that the
penalty method can be used for more general situations. In addition, we will compare
the penalty method (where the LCP is approximately solved at each timestep) with
an explicit technique for handling the American constraint.

If constant timesteps are used, we observe that second order convergence is not
obtained as the timesteps and mesh size tend to zero. This phenomenon can be
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explained by examining the asymptotic behavior of the solution near the exercise
boundary. A timestep selector is developed which restores second order convergence.

Asymptotically, the second order method is superior to the commonly used bi-
nomial lattice technique [12]. However, it is of practical interest to determine at
what levels of accuracy a second order PDE method will be computationally more
efficient than the lattice method. We present numerical comparisons to assist in this
determination.

2. Formulation. Consider an asset with price S which follows the stochastic
process

dS = µSdt+ σSdz (2.1)

where µ is the drift rate, σ is volatility, and dz is the increment of a Wiener process.
We wish to determine the value V (S, t) of an American option where the holder can
exercise at any time and receive the payoff V ∗(S, t). Denote the expiry time of the
option by T , and let τ = T − t. Then the American pricing problem can be formally
stated as an LCP [20]

LV ≥ 0
(V − V ∗) ≥ 0
(LV = 0) ∧ (V − V ∗ = 0) (2.2)

where

LV ≡ Vτ −
(
σ2

2
S2VSS + rSVS − rV

)
(2.3)

and r is the risk free rate of interest. A put option is a contract which gives the holder
the right to sell the asset for K (known as the “strike”). A call option is similar except
that the holder has the right to buy the asset for K. The payoff for a put is

V ∗(S) = V (S, τ = 0) = max(K − S, 0). (2.4)

The boundary conditions are

V (S, τ) = 0 ; S →∞, (2.5)
LV = Vτ − rV ; S → 0. (2.6)

Condition (2.5) follows from the payoff (2.4), while (2.6) is obvious given (2.3).

3. The Penalty Method. The basic idea of the penalty method is simple: we
replace problem (2.2) by the nonlinear PDE

Vτ =
σ2

2
S2VSS + rSVS − rV +Q(V, V ∗), (3.1)

where the penalty term Q(V, V ∗) equals zero if V ≥ V ∗ and is positive if V < V ∗.
Intuitively, we can see how this would work. If Q(V, V ∗) = 0, then we have

V ≥ V ∗,

Vτ =
σ2

2
S2VSS + rSVS − rV. (3.2)
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If instead Q(V, V ∗) > 0, then Q(V, V ∗) is defined so that

|V − V ∗| < ε ; ε� 1

Vτ −
(
σ2

2
S2VSS + rSVS − rV

)
= Q(V, V ∗) > 0. (3.3)

4. Discretization. We will now discretize equation (3.1) and select a suitable
form for the discrete penalty term. Let V (Si, τn) = V ni be the discrete solution to
equation (3.1) at asset value Si, and time (going backwards) τn. Applying a standard
finite volume method with variable timeweighting [22] then gives

FV n+1
i = qn+1

i , (4.1)

where

FV n+1
i ≡ Ai

(
V n+1
i − V ni

∆τ

)

+ (1− θ)

∑
j∈ηi

γij(V n+1
j − V n+1

i ) +
∑
j∈ηi

~Lij ·UiV
n+1
ij+1/2 −AirV

n+1
i


+ θ

∑
j∈ηi

γij(V nj − V ni ) +
∑
j∈ηi

~Lij ·UiV
n
ij+1/2 −AirV

n
i

 . (4.2)

Fully implicit and Crank-Nicolson discretizations correspond to cases of θ = 0 and
θ = 1/2 respectively, and

Ai = (Si+1 − Si−1)/2
ηi = {i− 1, i+ 1}

∆τ = τn+1 − τn

γij =
σ2S2

i

2|Sj − Si|
V n+1
ij+1/2 = value of V at the face between nodes i and j

Ui = (−rSi)̂i

~Lij =

{
−î if j = i+ 1
+î if j = i− 1

î = unit vector in the positive S direction. (4.3)

The discrete penalty term qn+1
i in equation (4.1) is given by

qn+1
i =

{
(Ai/∆τ)(V ∗i − V

n+1
i )Large if V n+1

i < V ∗i
0 otherwise,

(4.4)

where Large is the penalty factor (this will be related to the desired convergence
tolerance below in §4.1). The face value V n+1

ij+1/2 can be evaluated using either central
weighting or, to ensure non-oscillatory solutions, a flux limiter [23]

V n+1
ij+1/2 =

{
(V n+1
i + V n+1

j )/2 if γn+1
ij + ~Lij ·Ui/2 > 0

second order flux limiter [23] otherwise.
(4.5)
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In general, for standard options with typical values for σ, r, central weighting can
be used at most nodes (except perhaps as S → 0). In order to determine sufficient
conditions for the convergence of the nonlinear iteration for the penalized Ameri-
can equation, we require that the coefficients of the discrete equations have certain
properties. We will ensure that these conditions are satisfied by using central or up-
stream weighting. (In practice, we have observed that even if these conditions are not
met, convergence of the penalty method is still rapid). If we use central or upstream
weighting in the following, then equation (4.1) becomes

V n+1
i − V ni = (1− θ)

∆τ
∑
j∈ηi

(
γ̄ij + β̄ij

)
(V n+1
j − V n+1

i )− r∆τV n+1
i


+ θ

∆τ
∑
j∈ηi

(
γ̄ij + β̄ij

)
(V nj − V ni )− r∆τV ni


+ Pn+1

i (V ∗i − V n+1
i ), (4.6)

where

Pn+1
i =

{
Large if V n+1

i < V ∗i
0 otherwise,

(4.7)

and where

γ̄ij =
σ2S2

i

2Ai|Sj − Si|

β̄ij =

{
~Lij ·Ui/2Ai if γij + ~Lij ·Ui/2 ≥ 0

max( ~Lij ·U, 0)/Ai otherwise.

For future reference, we can write the discrete equations (4.6) in matrix form. Let
V n+1 =

[
V n+1

0 , V n+1
1 , . . . , V n+1

m

]′
, V n = [V n0 , V

n
1 , . . . , V

n
m]′, V ∗ = [V ∗0 , V

∗
1 , . . . , V

∗
m]′,

and

[M̂V n]i = −

∆τ
∑
j∈ηi

(
γ̄ij + β̄ij

)
(V nj − V ni )− r∆τV ni

 . (4.8)

Note that the first and last rows of M̂ will have to be modified to take into account the
boundary conditions. (An obvious method for applying conditions (2.5-2.6) results in
the first and last rows of M̂ being identically zero except for positive entries on the
diagonal.) In the following, we will assume that upstream and central weighting are
selected so that γ̄ij + β̄ij ≥ 0. This implies that the matrix M̂ is an M-matrix, i.e.
a diagonally dominant matrix with positive diagonals and non-positive off-diagonals.
Note that all of the elements of the inverse of an M-matrix are non-negative.

Let the diagonal matrix P̄ be given by

P̄ (V n+1)ij =

{
Large if V n+1

i < V ∗i and i = j

0 otherwise.
(4.9)

We can then write the discrete equations (4.6) as[
I + (1− θ)M̂ + P̄ (V n+1)

]
V n+1 =

[
I − θM̂

]
V n +

[
P̄ (V n+1)

]
V ∗. (4.10)
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4.1. Solution of the Discrete LCP. The discrete form of the LCP (2.2) can
be written as

FV n+1
i ≥ 0

V n+1
i − V ∗i ≥ 0

(FV n+1
i = 0) ∧ (V n+1

i − V ∗i = 0), (4.11)

where F is given by equation (4.2). On the other hand, the discrete solution of the
penalized problem (4.10) has the property that either

V n+1
i − V ∗i ≥ 0 (⇒ qn+1

i = 0 and FV n+1
i = 0), (4.12)

or

V n+1
i − V ∗i ≤ 0 (⇒ qn+1

i > 0 and FV n+1
i > 0). (4.13)

However, from equation (4.11) the exact solution of the discrete LCP has V n+1
i −V ∗i =

0 at those nodes where FV n+1
i > 0. In order to obtain an approximate solution of

(4.11) with an arbitrary level of precision, we need to show that the solution of (4.10)
satisfies V n+1

i − V ∗i → 0 as Large → ∞ for nodes where FV n+1
i > 0. This follows if

we can show that the term

Pn+1
i (V ∗i − V n+1

i ) (4.14)

in equation (4.6) is bounded independent of Large. It is also desirable that the bound
be independent of the timestep and mesh spacing, so that Large can be chosen without
regard to grid and timestep size. In Appendix A we determine sufficient conditions
which allow us to bound (4.14). The results can be summarized as:

Theorem 4.1 (Error in the penalty formulation of the discrete LCP). Under the
assumptions that the matrix M̂ in equation (4.10) is an M-matrix and that timesteps
are selected so that conditions (A.9) and (A.10) are satisfied, the penalty method (4.10)
solves

FV n+1
i ≥ 0 (4.15)

V n+1
i − V ∗i ≥ −

C

Large
; C > 0 (4.16)

(FV n+1
i = 0) ∧

(
|V n+1
i − V ∗i | ≤

C

Large

)
(4.17)

where C is independent of Large, ∆τ , and ∆S.
In other words, we can obtain an approximate solution to the original discrete

LCP (4.11) to any desired degree of precision. In practice, we can use the following
heuristic argument to estimate the size of Large in terms of the relative accuracy
required. In equation (4.10), suppose that (1−θ)M̂V n+1 and (I−θM̂)V n are bounded
independent of Large. Then, as Large →∞, equation (4.10) reduces to

V n+1
i '

(
Large

1 + Large

)
V ∗i (4.18)

for nodes where V n+1
i < V ∗i . If V ∗i 6= 0, then we have∣∣∣∣V n+1

i − V ∗i
V ∗i

∣∣∣∣ ' 1
Large

. (4.19)
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Therefore, if we require that the LCP be computed with a relative precision of tol for
those nodes where V n+1

i < V ∗i then we should have Large ' 1/tol .
Note that in theory, if we are taking the limit as ∆S,∆τ → 0, then we should

have

Large = O

(
1

min [(∆S)2, (∆τ)2]

)
. (4.20)

This would mean that any error in the penalized formulation would tend to zero at
the same rate as the discretization error. However, in practice it seems easier (to us
at any rate) to specify the value of Large in terms of the required accuracy. In other
words, we specify the maximum allowed error in the discrete penalized problem. We
then reduce ∆S,∆τ until the discretization error is reduced to this level of accuracy.

5. Penalty Iteration. Typically, a relaxation method is used to solve the dis-
crete penalized equations [18, 6]. However, as noted earlier, such a technique suffers
from poor complexity. We take a different approach, and simply apply full Newton
iteration to the discrete nonlinear equations. Of course, due regard must be paid to
the discontinuous derivative which appears in the penalty term.

Consistent with equation (4.9), we define

∂Pn+1
i

∂V n+1
i

=

{
Large if V n+1

i < V ∗i
0 otherwise,

(5.1)

so that Newton iteration applied to equation (4.10) yields the following algorithm.
Let (V n+1)k be the kth estimate for V n+1. If (V n+1)0 = V n, then

Penalty American Constraint Iteration
For k = 0, . . . until convergence[

I + M̂ + P̄
(
(V n+1)k

)]
(V n+1)k+1 =

[
I − M̂

]
V n + P̄

(
(V n+1)k

)
V ∗ (5.2)

if max
i

|(V n+1
i )k+1 − (V n+1

i )k|
max(1, |(V n+1

i )k+1|)
< tol quit

EndFor.
Note that from definition (4.7) we have effectively replaced ∂Pn+1

i /∂V n+1
i at V n+1

i =
V ∗i by the limit as V n+1

i → (V ∗i )+.
It is worthwhile at this point to determine the complexity of the above iteration,

compared to an explicit evaluation of the American constraint. Assuming that all
of the coefficients are stored, that Crank-Nicolson timestepping is used with non-
constant timesteps, and that there are I nodes in the S direction, each iteration of
the penalty algorithm requires

(i) 6I multiplies to evaluate the right hand side of equation (5.2), where we have
made the pessimistic assumption that

[
P̄ (V n+1)

]
V ∗ requires I multiplies. This step

also determines the entries in M̂ , assuming all possible quantities are precomputed
and stored.

(ii) 2I multiply/divides to factor the matrix in equation (5.2).
(iii) 3I multiply/divides for the forward and back solve.
(iv) I divides for the convergence test. (This is also pessimistic, since we can

skip the test on the first iteration, or if no constraint switches have occurred.)
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This gives a total of 12I multiply/divides per penalty iteration. If constant timesteps
are used, 4I multiplies are needed to evaluate the right hand side of (5.2), leading to
a total of 10I multiply/divides per penalty iteration.

If an explicit method is used to evaluate the constraint, then there is only one
matrix solve per timestep. To be precise here, an explicit method for handling the
constraint is

Explicit American Constraint Timestep[
I + (1− θ)M̂

]
V̂ n+1 =

[
I − θM̂

]
V n (5.3)

V n+1 = max(V̂ n+1, V ∗).

For constant timesteps (assuming that all coefficients are precomputed and stored),
(i) 3I multiply/divides are required to evaluate the right hand side of equation

(5.3), assuming that P̄ = 0;
(ii) assuming that the matrix is factored once and the factors stored, 3I multi-

ply/divides are required for the forward and back solve;
giving a total of 6I multiply/divides per timestep. For non-constant timesteps,

(i) 5I multiply/divides are required to evaluate the right hand side of equation
(5.3), assuming that P̄ = 0;

(ii) 2I multiply/divides are required to factor the matrix;
(iii) 3I multiply/divides are required for the forward and back solve;

giving a total of 10I multiply/divides per timestep.

6. Convergence of the Penalty Iteration. For notational convenience, we
will define P̄ k ≡ P̄

(
(V n+1)k

)
and V̄ k ≡ (V n+1)k so that the basic penalty algorithm

(5.2) can be written as[
I + M̂ + P̄ k

]
V̄ k+1 =

[
I − M̂

]
V n + P̄ kV ∗. (6.1)

In Appendix B, we prove the following result:
Theorem 6.1 (Convergence of the nonlinear iteration of the penalized equa-

tions). Under the assumptions that the matrix M̂ in equation (4.10) is an M-matrix
and that timesteps are selected so that condition (A.10) is satisfied, the nonlinear iter-
ation (5.2) converges to the unique solution to equation (4.10). Moreover, the iterates
converge monotonically, i.e. V̄ k+1 ≥ V̄ k for k ≥ 1.

In [22], it was demonstrated experimentally that using a smooth form of the
penalty function (4.4) did not aid convergence of the solution of the nonlinear equa-
tions. Intuitively, this is somewhat surprising. It might be expected that the switch
type penalty function (4.4), which has a discontinuous derivative, might cause oscil-
lations during the iterations. However, the above result concerning monotonic con-
vergence explains why the penalty iteration works so well, even with a non-smooth
derivative. Since V̄ k+1 ≥ V̄ k for k ≥ 1, in the worst case we have V̄ 0

i ≥ V ∗i , V̄ 1
i < V ∗i ,

V̄ pi > V ∗i for some p ≥ 2. No further constraint switches will occur. In other words,
for any given node, the iteration will not oscillate between V̄ ki > V ∗i and V̄ k+1

i < V ∗i
(k ≥ 1).

7. Numerical Examples. In order to carry out a careful convergence study,
we need to take into consideration the fact that the payoff function (2.4) has only
piecewise smooth derivatives. This can cause problems if Crank-Nicolson timestepping
is used. Specifically, oscillatory solutions can be generated [24]. For example, if we
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consider a simple European put option, then we know that the asymptotic solution
near the expiry time τ = 0 and close to the strike K is [20]

put value = O
(
τ1/2

)
. (7.1)

This would suggest that Vttt = O(τ−5/2). The local finite difference truncation error
for a Crank-Nicolson step (near τ = 0) would then be O

[
Vttt(∆τ)3

]
. If we set

τ = ∆τ (the first step) then the local error would be O[(∆τ)1/2], resulting in poor
convergence. Fortunately, this analysis is a bit too simplistic. The behavior of the
solution in equation (7.1) is due to the non-smooth payoff near K, which causes VSS
to behave (near τ = 0, S = K) as O

(
τ−1/2

)
[20]. This large value of VSS causes a

very rapid smoothing effect due to the parabolic nature of the PDE. Consequently,
if an appropriate timestepping method is used, we can expect the initial errors to be
damped very quickly. However, there is a problem with Crank-Nicolson timestepping.
Crank-Nicolson is only A-stable, not strongly A-stable. This means that some errors
are damped very slowly, resulting in oscillations in the numerical solution.

Since a finite volume discretization in one dimension can be viewed as a special
type of finite element discretization, we can appeal to the finite element analysis
in [16]. This analysis was specifically directed towards the case of parabolic PDEs
with non-smooth initial conditions. Essentially, in [16] it is shown that if we take
constant timesteps with a Crank-Nicolson method, then second order convergence (in
time) can be guaranteed if (i) after each non-smooth initial state, we take two fully
implicit timesteps, and then use Crank-Nicolson thereafter (payoffs with discontinuous
derivatives qualify as non-smooth); and (ii) the initial conditions are l2 projected onto
the space of basis functions. In our case, this means that the initial condition should
be approximated by continuous, piecewise linear basis functions. This corresponds to
the folklore in the finance literature about smoothing initial conditions [10].

However, consider the case of a simple payoff such as that for a put option.
Although this has a discontinuous derivative at K, no smoothing is required provided
we have a node at K. This is because we have a piecewise linear representation of the
initial condition, consistent with the implied basis functions used in the finite volume
method. This also explains why binomial lattice methods (see §12) have non-smooth
convergence behavior (there is no node at K if the number of timesteps is odd). In the
case of a discontinuous initial condition, smoothing is necessary since this is not in the
space of continuous piecewise linear basis functions. Finally, we remark that although
second order convergence does not guarantee that the solution is non-oscillatory, in
practice the above methods work well.

We can demonstrate the effectiveness of the simple idea of taking two fully implicit
methods at the start and Crank-Nicolson thereafter (which we will henceforth refer
to as Rannacher smoothing [16]) for a European put option with known solution.
We will use the rather extreme value of σ = .8 for illustrative purposes. Results
are provided in Table 7.1, which demonstrates that the solution with no smoothing
converges erratically as the grid spacing and timestep size are reduced. In contrast,
the smoothed solution shows quadratic convergence.

The reason for the poor convergence of the non-smoothed runs can be be ex-
plained by examining plots of the value V , delta (VS), and gamma (VSS), as shown
in the left side of Figure 7.1. (Recall that it is of practical importance to determine
delta and gamma for hedging purposes [12]). Note that although the value appears
smooth, oscillations appear in delta (near the strike) and are magnified in gamma.
The same problem was run using Rannacher smoothing, and the results are shown in
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No Smoothing Rannacher Smoothing
Nodes Timesteps Value Change Ratio Value Change Ratio

68 25 14.50470 14.41872
135 50 14.41032 .09438 14.44357 .02485
269 100 14.43238 .02215 4.3 14.44982 .00625 4.0
539 200 14.44246 .01008 2.2 14.45138 .00156 4.0
1073 400 14.44726 .00480 2.1 14.45177 .00039 4.0

Table 7.1

Value of a European put, σ = .8, T = .25, r = .10, K = 100, S = 100. Exact solution (to seven
figures): 14.45191. Change is the difference in the solution from the coarser grid. Ratio is the ratio
of the changes on successive grids.

the right side of Figure 7.1. The oscillations in delta and gamma have disappeared.
All subsequent runs will use Rannacher smoothing.

It might appear appropriate to use a timestepping method with better error damp-
ing properties, such as a second order BDF method [2]. However, our experience with
this method for complex American style problems (see [21]) was poor. We conjecture
that this is due to a lack of smoothness in the time direction, causing problematic
behavior for multistep methods. This effect will be addressed in some detail below.

8. Implicit and Explicit Handling of the American Constraint. We will
now compare an implicit treatment of the American constraint (using the penalty
technique) with an explicit treatment (see pseudo-code (5.3)). In these examples we
use constant timesteps, a convergence tolerance of tol = 10−6 (see pseudo-code (5.2)),
and consequently a value of Large = 106. As an additional accuracy check, for all
runs we also monitored the quantity

max American error = max
n,i

max[0, (V ∗i − V ni )]
max(1, V ∗i )

. (8.1)

This is a measure of the maximum relative error in enforcing the American constraint
using the penalty method. In all of the following examples, the observed value of
equation (8.1) was ' 10−9 if the penalty method was used with tol = 10−6.

Two volatility values were used in these examples: σ = .2, .8. We truncate the
computational domain at S = Smax, where condition (2.5) is applied. The grid for
σ = .2 used Smax = 200, while the grid for σ = .8 used Smax = 1000. Both grids
were identical for 0 < S < 200. The grid for σ = .8 added additional nodes for
200 < S < 1000.

Table 8.1 compares results for implicit (penalty method) and explicit handling of
the American constraint with constant timesteps. First, we note that for the penalty
method the total number of nonlinear iterations is roughly the same across the two
values of σ at each refinement level. This indicates that the volatility parameter has
little effect on the number of iterations required. Now consider the results for the case
where σ = .2. Taking into account the work per unit accuracy, the implicit method
is slightly superior to the explicit technique. However, note that the implicit method
does not appear to be converging quadratically (the ratio of changes is about 3 instead
of 4, which we would expect for quadratic convergence). The explicit method appears
to be converging at a first order rate (ratio of 2). Now consider the high volatility
(σ = .8) results. Taking into account the total work, it would appear that in this
case the explicit method is a little better than the implicit method. The latter seems
to have an error ratio of about 2.9, while the explicit method has a somewhat lower
convergence rate.
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Fig. 7.1. European put, σ = .8, T = .25, r = .10, K = 100. Crank-Nicolson timestepping, grid
with 135 nodes. Left: no smoothing, right: Rannacher smoothing. Top: option value (V ), middle:
delta (VS), bottom: gamma (VSS).

9. Analysis of Constant Timestep Examples. In terms of approximately
solving the discrete LCP (4.11), the penalty method performs as the analysis predicts.
The number of iterations per timestep is typically of the order 2.2− 2.4, independent
of the volatility, for reasonable timesteps. Note that the algorithm (5.2) requires at
least two iterations per timestep. The a posteriori check (8.1) (a maximum relative
error of 10−9, with tol = 10−6 in terms of satisfaction of the discrete LCP constraint)
indicates that the error introduced by the penalty method is quite small. This error
is a function of tol (pseudo-code (5.2)), and hence can be adjusted to the desired
level (which would of course affect the number of nonlinear iterations). Note that in
these examples we have violated condition (A.10), which indicates that this condition
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Nodes Timesteps Iters Value Change Ratio Work (flops)
explicit constraint, σ = .2

55 25 25 3.04600 8.3× 103

109 50 50 3.06049 .01449 3.3× 104

217 100 100 3.06598 .00549 2.6 1.3× 105

433 200 200 3.06822 .00224 2.5 5.2× 105

865 400 400 3.06922 .00100 2.2 2.1× 106

implicit constraint, σ = .2
55 25 58 3.05607 3.2× 104

109 50 117 3.06555 .00948 1.3× 105

217 100 234 3.06854 .00299 3.2 5.1× 105

433 200 471 3.06953 .00099 3.0 2.0× 106

865 400 937 3.06988 .00035 2.8 8.1× 106

explicit constraint, σ = .8
68 25 25 14.61682 1.0× 104

135 50 50 14.65685 .40020 4.1× 104

269 100 100 14.67045 .01360 2.9 1.6× 105

539 200 200 14.67542 .00497 2.7 6.5× 105

1073 400 400 14.67738 .00196 2.5 2.6× 106

implicit constraint, σ = .8
68 25 56 14.62708 3.8× 104

135 50 112 14.66219 .03511 1.5× 105

269 100 226 14.67324 .01105 3.2 6.1× 105

537 200 461 14.67686 .00362 3.1 2.5× 106

1073 400 940 14.67813 .00127 2.9 1.0× 107

Table 8.1

Value of an American put option, T = .25, r = .10, K = 100, S = 100. Iters is the number
of nonlinear iterations. Change is the difference in the solution from the coarser grid. Ratio is the
ratio of the changes on successive grids. Constant timesteps. Rannacher smoothing used. Work is
measured in terms of number of multiply/divides.

is sufficient but not necessary for convergence of the penalty iteration. However, the
results are disappointing in terms of the convergence of the discretization of the LCP.
We do not observe quadratic convergence for the implicit handling of the American
constraint.

An error ratio of about 2.8 would be consistent with global timestepping con-
vergence at a rate of O[(∆τ)3/2]. Now, from [17, 19], we know that the value of
an American call option (where the underlying asset pays a proportional dividend)
behaves like V = const . + O

(
τ3/2

)
near the exercise boundary and close to the ex-

piration of the contract (τ → 0). This would give a value for Vτττ in this region
of

Vτττ = O[τ−3/2]. (9.1)

It appears that the behavior of the American put near the exercise boundary and
close to expiry is [14]

V = const .+O[(τ log τ)3/2]

' const .+O[(τ1−ε)3/2)] ; ε > 0, ε� 1, τ → 0. (9.2)

In the following we will ignore the ε in equation (9.2) and assume that the behavior
of Vτττ is given by equation (9.1).

From equation (9.1), the local time truncation error for Crank-Nicolson timestep-
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ping is (near the exercise boundary)

local error = O

[
(∆τ)3

τ3/2

]
. (9.3)

Note that in this case there is no parabolic smoothing effect. This is due to the
smooth-pasting condition [20] (i.e. VS is continuous across the exercise boundary).
This is because the diffusion term in the Black-Scholes equation approaches a finite
limit at the exercise boundary. Assuming that the global error is of the order of the
sum of the local errors, from equation (9.3) we obtain

global error = O

i=1/∆τ∑
i=1

(∆τ)3

(i∆τ)3/2

 ' O[(∆τ)3/2], (9.4)

which is consistent with the observed rate of convergence. Now, instead of taking
constant timesteps, suppose we take timesteps which satisfy

max
i

(|V n+1
i − V ni |) ' d, (9.5)

where d is a specified constant. In order to take the limit to convergence, at each grid
refinement we will halve both the grid spacing and d. It is reasonable to assume that
the maximum change over a timestep (at least near τ = 0) will occur near K. So,
from equation (7.1),

∆V n+1 = max
i

(|V n+1
i − V ni |) ' O

[
∆τn+1

√
τn

]
. (9.6)

Therefore, from equations (9.5) and (9.6), we have

∆τn+1 = O[d
√
τn]. (9.7)

Assuming a local error of the form (9.3), and using equations (9.3) and (9.7), this
gives a local error with the variable timesteps satisfying equation (9.5) as

local error = O

[(
(∆τ)n+1

)3
(τn)3/2

]
= O

[
d3(τn)3/2

(τn)3/2

]
= O(d3). (9.8)

This implies a global error (with O(1/d) timesteps) of

global error = O(d2). (9.9)

Therefore, suppose that we take variable timesteps consistent with (9.5). Then
at each refinement stage, where we double the number of grid nodes, and double the
number of timesteps (by halving d), we should see quadratic convergence. Note that
we should reduce the initial timestep ∆τ0 by four at each refinement. We make no
claim that the above analysis of the time truncation error is in any way precise, but
only suggestive of an appropriate timestepping strategy.
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10. A Timestep Selector. The timestep selector used is based on a modified
form of that suggested in [13]. Given an initial timestep ∆τn+1, then a new timestep
is selected so that

∆τn+2 =

min
i

 dnorm
|V (Si,τn+∆τn+1)−V (Si,τn)|

max(D,|V (Si,τn+∆τn+1)|,|V (Si,τn)|)

∆τn+1, (10.1)

where dnorm is a target relative change (during the timestep) specified by the user.
The scale D is selected so that the timestep selector does not take an excessive number
of timesteps in regions where the value is small (for options valued in dollars, D = 1
is typically appropriate). In equation (10.1), we have normalized the factor used to
estimate the new timestep. This is simply to avoid slow timestep growth for large
values of the contract. This could be a problem with call options, for example, where
the computational domain is truncated at a large value of S. If we did not examine
the relative changes over a timestep, then it is possible that the timestep would be
limited by large absolute changes in the solution (which would occur as S →∞), even
though the relative changes were small.

Since V (Si = K, τ ' 0) ' 0, we expect that the denominator of equation (10.1)
will take its largest value near S = K, since V increases rapidly there. Consequently,
the timestep selector (10.1) will approximately enforce the condition that

∆V n+1 ' D × dnorm. (10.2)

Hence we will have

∆τn+1 = O(dnorm
√
τn), (10.3)

so that we should see a global error of O[(dnorm)2], which follows from equation (9.9).
Note that timestep selector (10.1) estimates the change in the solution at the new

timestep based on changes observed over the old timestep. Some adjustments can be
made to this simple model if a more precise form for the time evolution of the solution
is assumed, but we prefer (10.1) since it is simple and conservative.

In practice, we select a (∆τ)0 for the coarsest grid, and then (∆τ)0 is cut by four
at each grid refinement. There is not much of a penalty for underestimating a suitable
(∆τ)0 since the timestep will increase rapidly if the estimate is too conservative. In
the following runs, we used values of (∆τ)0 = 10−3 and dnorm = .2 on the coarsest
grid. The value of dnorm was reduced by two at each grid refinement.

11. Variable Timestep Examples. Table 11.1 presents results for the cases
considered in Table 8.1, but this time using the timestep selector (10.1). The timestep
selector requires one divide per node, so we assume that the work required for each
iteration of the implicit method is 13 multiply/divides per node, while the explicit
method requires 11 multiply/divides per node per timestep. In this case, the implicit
method appears to be a clear winner in terms of flops per unit accuracy. Use of
variable timesteps actually seems to degrade the convergence of the explicit method.
This can be explained by looking at the timestep history. The timestep selector
uses small timesteps at the start, and then takes large steps at the end. Note that
the average timestep size (total time divided by number of timesteps) is larger for
the variable timestep run compared to the constant timestep run (Table 8.1). This
clearly negatively impacts the explicit method, which seems to show a first order rate
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Nodes Timesteps Iters Value Change Ratio Work (flops)
explicit constraint, σ = .2

55 18 18 3.04499 1.1× 104

109 33 33 3.05825 .01326 4.0× 104

217 63 63 3.06425 .00600 2.2 1.5× 105

433 122 122 3.06717 .00292 2.1 5.8× 105

865 239 239 3.06863 .00146 2.0 2.3× 106

implicit constraint, σ = .2
55 18 45 3.06403 3.2× 104

109 33 85 3.06867 .00464 1.2× 105

217 63 164 3.06975 .00108 4.3 4.6× 105

433 122 322 3.07002 .00027 4.0 1.8× 106

865 239 636 3.07008 .00006 4.5 7.2× 106

explicit constraint, σ = .8
68 31 31 14.64828 2.3× 104

135 66 66 14.66856 .02022 9.8× 104

269 136 136 14.67472 .00616 3.3 4.0× 105

537 276 276 14.67703 .00231 2.7 1.6× 106

1073 554 554 14.67800 .00097 2.4 6.5× 106

implicit constraint, σ = .8
68 31 76 14.65863 6.7× 104

135 66 161 14.67417 .01554 2.8× 105

269 136 325 14.67778 .00361 4.3 1.1× 106

537 276 655 14.67862 .00084 4.3 4.6× 106

1073 554 1290 14.67882 .00020 4.2 1.8× 107

Table 11.1

Value of an American put option, T = .25, r = .10, K = 100, S = 100. Iters is the number
of nonlinear iterations. Change is the difference in the solution from the coarser grid. Ratio is the
ratio of the changes on successive grids. Variable timesteps. Rannacher smoothing used. Work is
measured in terms of number of multiply/divides.

of convergence. On the other hand, the implicit method appears to exhibit close to
quadratic convergence.

Figure 11.1 shows value, delta, and gamma for the σ = .2 case, using both explicit
and implicit treatments of the American constraint. Although the value and delta
appear similar for both cases, there are clearly large oscillations in the gamma near
the early exercise boundary for the explicit method. The implicit method does show
some small oscillations near the exercise boundary. However, this is due to the use
of Crank-Nicolson timestepping, as noted in [5]. These oscillations disappear if fully
implicit timestepping is used, as shown in Figure 11.2.

12. Comparison With Binomial Lattice Methods. It is interesting to com-
pare the results here with those obtained using the binomial lattice method, which
is commonly used in finance [20]. In Appendix C, we show that this technique is
simply an explicit finite difference method on a log-transformed grid. Consequently,
the truncation error is O(∆τ), where the total number of steps is N = O[1/(∆τ)].

The binomial lattice method requires about 3/2N2 flops (counting only multiplies,
and assuming all necessary factors are precomputed). Note that we obtain the value
of the option at t = 0 only at the single point S0

0 , in contrast to the PDE methods
which obtain values for all S ∈ [0, Smax]. As a result, the methods are not directly
comparable. Nevertheless, assuming that we are only interested in obtaining the
solution at a single point, it is interesting and useful to compare these two techniques.

Given N = O[1/(∆τ)], the complexity of the binomial method is O(N2). Since
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Fig. 11.1. American put, σ = .2, T = .25, r = .10, K = 100. Crank-Nicolson timestepping,
Rannacher smoothing, variable timesteps, grid with 433 nodes. Left: explicit constraint, right:
implicit constraint. Top: option value (V ), middle: delta (VS), bottom: gamma (VSS).

the error in the lattice method is O(∆τ) = O(1/N), we have

error binomial lattice = O
[
(complexity)−1/2

]
. (12.1)

Suppose instead that we use an implicit finite volume method with Crank-Nicolson
timestepping, and that the penalty method is employed for handling the American
constraint. The complexity of this approach is O(N2), where we have assumed that
N = O[1/(∆S)] (note that this is the case if we use the timestep selector (10.1) and
dnorm = O(∆S)). It is also assumed that the the number of nonlinear iterations per
timestep is constant as ∆S → 0, which is observed as long as dnorm = O(∆S). When
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Fig. 11.2. Gamma (VSS) of an American put, σ = .2, T = .25, r = .10, K = 100. Fully implicit
timestepping, Rannacher smoothing, variable timesteps. Grid with 433 nodes used. Constraint
imposed implicitly.

Timesteps Value Change Ratio Work (flops)
σ = .2

50 3.06186 3.8× 103

100 3.06611 0.00425 1.5× 104

200 3.06810 0.00199 2.1 6.0× 104

400 3.06913 0.00103 1.9 2.4× 105

800 3.06962 0.00049 2.1 9.6× 105

1600 3.06987 0.00025 2.0 3.8× 106

3200 3.06999 0.00012 2.1 1.5× 107

σ = .8
50 14.62649 3.8× 103

100 14.65269 0.02620 1.5× 104

200 14.66582 0.01313 2.0 6.0× 104

400 14.67238 0.00656 2.0 2.4× 105

800 14.67563 0.00325 2.0 9.6× 105

1600 14.67726 0.00163 2.0 3.8× 106

3200 14.67807 0.00081 2.0 1.5× 107

Table 12.1

Binomial lattice method. Value of an American put, T = .25, r = .10, K = 100, S = 100.
Change is the difference in the solution from the coarser grid. Ratio is the ratio of the changes on
successive grids. Work is measured as the number of multiplies.

timesteps are selected using (10.1), we have observed quadratic convergence. This
implies

error implicit finite volume = O
(
N−2

)
= O

[
(complexity)−1

]
. (12.2)

Therefore the implicit finite volume method is asymptotically superior to the binomial
lattice method, even if the solution is desired at only one point.

It is interesting to determine at what levels of accuracy we can expect the implicit
PDE method to become more efficient than the binomial method. Table 12.1 gives
the results for a binomial lattice solution (algorithm (C.2)) for the problems solved
earlier using an implicit PDE approach. This table should be compared to Table 11.1.

For further points of comparison, we also computed solutions to the problem
used in [10]. We used two versions of the problem in [10], one with an expiry time
of T = 1 and the other with T = 5. Figure 12.1 summarizes the convergence of
both the binomial lattice and PDE methods for all four problems. The absolute
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Fig. 12.1. American Put, K = 100. Absolute error as a function of number of floating point
operations (flops), measured as the number of multiplies/divides for all the test problems, at S = 100,
t = 0.

error is computed by taking the exact solution as obtained by extrapolating the PDE
solution down to zero grid and timestep size, assuming quadratic behavior. The PDE
method becomes more efficient than the binomial lattice method at tolerances between
.01 − .001 depending on the problem parameters. It appears that for short term or
low volatility options, the crossover point is closer to .001, while for long term or
high volatility options, the crossover is closer to .01. These crossover points occur at
tolerances which would be used in practice. Note that in these comparisons, we are
putting the best possible light on the binomial lattice method, since we ignore the
fact that we obtain much more information with the implicit PDE technique.

13. Application of Penalty Methods to More General Problems. As de-
rived in the Appendices, sufficient conditions for monotone convergence of the penalty
iteration are that (i) the discretized differential operator is an M-matrix; and (ii) con-
dition (A.10) on the timestep is satisfied. In practice, we have found that these
conditions are not necessary for rapid convergence of the penalty iteration. For exam-
ple in [22], we have applied the penalty method to American options with stochastic
volatility, with good results. In this case, the discretized differential operator was not
an M-matrix, and if a flux limiter was used, the discretized differential operator was
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nonlinear. We also routinely violated the timestep condition (A.10). As long as the
Rannacher smoothing technique was used, the solution was sufficiently smooth that
no ill effects were observed with the penalty iteration.

Note that the discrete M-matrix condition was not required in the proof of con-
vergence of the penalty method for an elliptic obstacle problem with the Laplacian
as the differential operator [15]. However, timestep restrictions were required in the
proofs of convergence of the penalty method for parabolic problems in [18]. In view
of our computational experience, it appears to us that these conditions are artificial.
We conjecture that the penalty iteration converges monotonically under much weaker
conditions than those outlined in the Appendices.

14. Conclusion. We have derived sufficient conditions so that the solution of
the discrete penalized equations solves an approximate version of the discrete LCP
formulation of the American option pricing problem. The error in the approxima-
tion can be made arbitrarily small by increasing the penalty factor. We have also
given sufficient conditions so that a Newton iteration method for solving the discrete
nonlinear penalized equations converges monotonically to the unique solution of the
nonlinear algebraic equations. This explains the observed rapid convergence of this
technique.

If constant timesteps are used, the computed solution appears to converge at less
than a second order rate in the limit as the grid spacing and timestep are reduced to
zero. An heuristic analysis of the behavior of the solution near the exercise boundary
indicates that convergence (with constant timesteps) occurs only at the rate (∆t)3/2.
However, a timestep selection method was suggested which, based on our analysis,
should be expected to restore quadratic convergence. Numerical experiments con-
firmed that this convergence rate was indeed obtained using this timestep selector.

In general, the use of an implicit penalty method combined with the timestep
selector can be recommended. As well as being more efficient in terms of the number
of flops per unit accuracy, the solution obtained using an implicit method is quali-
tatively superior to the solution obtained using an explicit method for handling the
American constraint. The explicit solution exhibited large oscillations in gamma near
the exercise boundary.

The implicit PDE method is asymptotically superior to the standard (in finance)
binomial lattice method, which has only linear convergence. However, if low accuracy
solutions are required at only a single point, then a binomial method can be more
efficient than the PDE approach. For typical parameters, the crossover point where
the PDE method is to be preferred occurs at an absolute error tolerance of between
.01−.001. However, if information at more than a single point is desired, then the PDE
method is always preferable. As well, the binomial lattice method is highly optimized
for simple cases. For example, the addition of discretely observed barriers [3, 25]
causes difficulties for binomial methods. However, this case presents no particular
difficulty for a PDE finite volume method.

The penalty method described here has been applied to multi-dimensional prob-
lems as shown in [22]. This method has the advantage that standard sparse matrix
software can be used to solve the Jacobian matrix. This is especially important for
multi-factor problems. In fact, the penalty method in [22] was applied to problems
which did not satisfy the sufficient conditions derived in this work, with no apparent
ill-effects. It is a topic of further research to extend the convergence results in this
paper to the more general problems described in [22].

Appendix A. Error in the Penalty Formulation. In this Appendix, we
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determine sufficient conditions which allow us to bound (4.14). Suppose that node k
is the node where the penalty term Pn+1

k (V ∗k −V
n+1
k ) attains its maximum. Consider

the term

[M̂(V ∗ − V n+1)]k = ∆τ
∑
j∈ηk

(
γ̄kj + β̄kj

)
[(V ∗k − V n+1

k )− (V ∗j − V n+1
j )]

+ r∆τ [V ∗k − V n+1
k ]. (A.1)

Since the penalty term attains its maximum value at node k, we have

[(V ∗k − V n+1
k )− (V ∗j − V n+1

j )] ≥ 0

V ∗k − V n+1
k ≥ 0. (A.2)

Since γ̄kj + β̄kj ≥ 0, it follows from equations (A.1-A.2) that [M̂(V ∗ − V n+1)]k ≥ 0
at node k. Alternatively,

[M̂(V n+1)]k ≤ [M̂(V ∗)]k, (A.3)

implying

[I + (1− θ)M̂(V n+1)]k ≤ [I + (1− θ)M̂(V ∗)]k. (A.4)

Writing equation (4.10) at node k, we have([
I + (1− θ)M̂

]
V n+1

)
k

=
([
I − θM̂

]
V n
)
k

+
([
P̄ (V n+1)

]
(V ∗ − V n+1)

)
k
. (A.5)

Noting that Pn+1
k (V ∗k − V

n+1
k ) ≥ 0, it follows from equations (A.5) and (A.3) that∣∣[Pn+1

k (V ∗k − V n+1
k )]

∣∣ =
∥∥Pn+1(V ∗ − V n+1)

∥∥
∞

≤
∣∣∣([I + (1− θ)M̂

]
V n+1

)
k

∣∣∣+
∣∣∣([I − θM̂]V n)

k

∣∣∣
≤
∣∣∣([I + (1− θ)M̂

]
V ∗
)
k

∣∣∣+
∣∣∣([I − θM̂]V n)

k

∣∣∣
≤
∥∥∥[I + (1− θ)M̂

]
V ∗
∥∥∥
∞

+
∥∥∥[I − θM̂]V n∥∥∥

∞

≤ ‖V ∗‖∞ + (1− θ)
∥∥∥M̂V ∗

∥∥∥
∞

+
∥∥∥[I − θM̂]V n∥∥∥

∞
. (A.6)

We now proceed to bound each of the terms on the right hand side of equation
(A.6). Given a typical payoff of the form

V ∗ = V 0 = max(K − S, 0) (A.7)

where K is the strike, we have ‖V ∗‖∞ = K. In bounding ||M̂V ∗‖∞, we note that the
worst case occurs at Si = K, so that

‖M̂V ∗‖∞ ≤ const . |M̂V ∗|i ; Si = K

= O

(
∆τ
∆S

)
, (A.8)

where ∆S = mini(Si−Si−1). We assume that the timestep and mesh size are reduced
to zero in such a way that

∆τ
∆S

= const ., (A.9)
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where this constant is independent of ∆τ,∆S. (It does not make any sense to drive
the S discretization to zero if the timestep truncation error is also not reduced as
well.) Consequently, we can assume that ‖M̂V ∗‖∞ is bounded independent of Large
and ∆τ,∆S.

If we also assume that the timestep is selected so that

1− θ

∆τ
∑
j∈ηi

(
γ̄ij + β̄ij

)
+ r∆τ

 ≥ 0, (A.10)

then we have (recalling that M̂ is an M-matrix with row sum r∆τ)∥∥∥[I − θM̂]V n∥∥∥
∞
≤ (1− r∆τ) ‖V n‖∞ ≤ ‖V

n‖∞ . (A.11)

Assuming condition (A.10) is satisfied, it follows from equations (4.10) and (A.7) that

‖V n‖∞ ≤ max(
∥∥V n−1

∥∥
∞ , ‖V ∗‖∞) = ‖V ∗‖∞ = K. (A.12)

Note that if a fully implicit discretization is used (θ = 0), then condition (A.10)
is trivially satisfied. For Crank-Nicolson timestepping, condition (A.10) implies that
∆τ/(∆S)2 ≤ const . as ∆S,∆τ → 0.

Consequently, we have shown that∥∥Pn+1(V ∗ − V n+1)
∥∥
∞ ≤ 2K +O

(
∆τ
∆S

)
. (A.13)

In other words, at any node where V n+1
i < V ∗i , we have |Large(V ∗i − V

n+1
i )| ≤ C,

where C is independent of Large. Therefore, by choosing Large sufficiently large, the
error in the solution of the LCP can be made arbitrarily small, and Theorem 4.1
follows.

Appendix B. Monotone Convergence. We will first prove that iteration (6.1)
has a monotone property. Writing (6.1) for iteration k gives[

I + M̂ + P̄ k−1
]
V̄ k =

[
I − M̂

]
V n + P̄ k−1V ∗. (B.1)

This can be written as[
I + M̂ + P̄ k

]
V̄ k +

[
P̄ k−1 − P̄ k

]
V̄ k =

[
I − M̂

]
V n + P̄ k−1V ∗. (B.2)

Subtracting equation (B.2) from equation (6.1) gives[
I + M̂ + P̄ k

]
(V̄ k+1 − V̄ k) =

[
P̄ k − P̄ k−1

]
(V ∗ − V̄ k) ; k ≥ 1. (B.3)

Now examine each of the components of the right hand side of equation (B.3). There
are two possible cases:

Case 1: V̄ ki < V ∗i ⇒ P̄ kii = Large

⇒ (Large − P̄ k−1
ii )(V ∗ − V̄ k)i ≥ 0

⇒
[
P̄ k − P̄ k−1

]
i
(V ∗ − V̄ k)i ≥ 0,

Case 2: V̄ ki ≥ V ∗i ⇒ P̄ kii = 0

⇒ (−P̄ k−1
ii )(V ∗ − V̄ k)i ≥ 0

⇒
[
P̄ k − P̄ k−1

]
i
(V ∗ − V̄ k)i ≥ 0.
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Thus we always have [
P̄ k − P̄ k−1

]
(V ∗ − V̄ k) ≥ 0 ; k ≥ 1. (B.4)

Since
[
I + M̂ + P̄ k

]
is an M-matrix, it follows from equations (B.3-B.4) that (V̄ k+1−

V̄ k) ≥ 0 for k ≥ 1, or, in component form, (V̄ k+1 − V̄ k)i ≥ 0 ∀i for k ≥ 1.
If V̄ ki ≥ V ∗i , then V̄ k+1

i is bounded by the strike K provided condition (A.10) is
satisfied. This follows from the payoff condition (2.4) and equation (4.10) since M̂ is
an M-matrix with row sum r∆τ , and (I − θM̂) is a matrix with non-negative entries
and row sum 1− θr∆τ . Since the iterates form a non-decreasing bounded sequence,
it follows that the penalty iteration (6.1) converges.

We now demonstrate that the solution obtained by the penalty iteration is unique.
Suppose there are two solutions V̄1 and V̄2 to the penalized problem. Let P̄ 1 ≡ P (V̄1)
and P̄ 2 ≡ P (V̄2). Then[

I + M̂ + P̄ 1
]
V̄1 =

[
I − M̂

]
V n + P̄ 1V ∗ (B.5)[

I + M̂ + P̄ 2
]
V̄2 =

[
I − M̂

]
V n + P̄ 2V ∗. (B.6)

We can write equation (B.5) as[
I + M̂ + P̄ 2

]
V̄1 +

[
P̄ 1 − P̄ 2

]
V̄1 =

[
I − M̂

]
V n + P̄ 1V ∗. (B.7)

Subtracting equation (B.6) from equation (B.7) gives[
I + M̂ + P̄ 2

]
(V̄1 − V̄2) =

[
P̄ 1 − P̄ 2

]
(V ∗ − V̄1). (B.8)

Using a similar argument as we used in proving monotone iteration, we have that[
P̄ 1 − P̄ 2

]
(V ∗ − V̄1) ≥ 0. (B.9)

Since
[
I + M̂ + P̄ 2

]
is an M-matrix, it follows from equations (B.8-B.9) that (V̄1 −

V̄2) ≥ 0. Interchanging subscripts, we have (V̄2 − V̄1) ≥ 0, and hence V̄2 = V̄1.
Consequently, Theorem 6.1 follows.

Appendix C. The Binomial Lattice Method. Let Snm = u2m−nS0
0 for m =

0, . . . , n denote the value of the asset price at time tn = n∆t and lattice point m,
where u = eσ

√
∆t and ∆t = T/N . Note that T is the expiry time of the option and N

is the number of timesteps. Also note that we are considering time t going forward in
this case, in contrast to τ = T − t (time going backwards) as in the previous sections.
This results in a solution algorithm which proceeds backwards from t = T to t = 0
(i.e. from t = tN to t = 0).

Let V nm be the value of the option associated with asset price Snm, at time t = n∆t.
Of course, we have V Nm = max(K − SNm , 0) for m = 0, . . . , N . Define

p =
er∆t − e−σ

√
∆t

eσ
√

∆t − e−σ
√

∆t
. (C.1)

Then the value of the American put option V 0
0 (at the single point S = S0

0) is obtained
from the following algorithm:
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Binomial Lattice Algorithm
For n = N − 1, . . . , 0

For m = 0, . . . , n

V̄ = e−r∆t
(
pV n+1

m+1 + (1− p)V n+1
m

)
(C.2)

V nm = max(K − Snm, V̄ )

EndFor
EndFor.

The above method is usually derived in the financial literature based on proba-
bilistic arguments. In fact, we can see that this is equivalent to an explicit finite dif-
ference method with a particular choice for the timestep. Consider the Black-Scholes
equation for a European option:

Vt +
σ2

2
S2VSS + rSVS − rV = 0. (C.3)

Define a new variable X = logS, so that equation (C.3) becomes

Vt +
σ2

2
VXX + (r − σ2

2
)VX − rV = 0. (C.4)

Letting V = ertW , equation (C.4) becomes

Wt +
σ2

2
WXX + (r − σ2

2
)WX = 0. (C.5)

Now let Wn
m = W (logS0

0 +(2m−n)σ
√

∆τ , n∆τ) for m = 0, . . . , n. Discretizing equa-
tion (C.5) using central differencing in the X direction and an explicit timestepping
method, we obtain

Wn
m =

[
p∗
(
Wn+1
m+1

)
+ (1− p∗)

(
Wn+1
m

)]
+O[(∆t)2] (C.6)

where p∗ = 1/2
[
1 +
√

∆t (r/σ − σ/2)
]
. Writing (C.6) in terms of V nm gives

V nm = e−r∆t
[
p∗
(
V n+1
m+1

)
+ (1− p∗)

(
V n+1
m

)]
+O[(∆t)2]. (C.7)

Expanding p in equation (C.1) in a Taylor series, noting the definition of p∗, and
assuming that V n+1

m+1 − V n+1
m = O(

√
∆τ), we obtain

V nm = e−r∆t
[
p
(
V n+1
m+1

)
+ (1− p)

(
V n+1
m

)]
+O[(∆t)2]. (C.8)

Comparing equation (C.8) with algorithm (C.2), we can see that the binomial lattice
method is simply an explicit finite difference discretization of the discrete LCP (2.2),
with the American constraint applied explicitly.
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