
II. Partial Differential Equations and Fourier Methods

Introductory Example: The Heat Equation

The heat equation or diffusion equation in one space dimension is

∂2u

∂x2
=

∂u

∂t
. (∗)

It’s a partial differential equation (PDE) because partial derivatives of the unknown
function with respect to two (or more) variables appear in it.

I refer to our textbooks for more thorough discussions of the following:

1. Physical interpretation and derivation: In the most usual application, t is
time, and x is a spatial variable (say along a thin wire, a homogeneous bar, or an
imaginary one-dimensional world studied in the (justified) hope that the solutions
of the more difficult three-dimensional heat equation

∇2u =
∂u

∂t

will be qualitatively similar). u(t, x) is the temperature in the bar (possibly with
something subtracted off, as we’ll see). The equation follows quickly from algebraic
formulations of the physical principles that

(1) the amount of heat energy in any small region of the bar is proportional to the
temperature there,

(2) the rate of heat flow is proportional to the derivative of the temperature, since
it’s driven by temperature differences between regions.

In fact, the same equation describes many other diffusion processes. It — or
some modification of it — arises whenever one studies the large-scale, averaged
effects of the random motion of many particles. (Think of a cloud of mosquitos
released from a cage in one corner of a large room.)

2. Scaling to remove irrelevant constants: We are free to redefine the units in
which u, t, and x are measured. In general, the equation will first be presented to
us as

K
∂2u

∂x2
=

∂u

∂t
,

where K is a constant depending on the physical properties of the material (specif-
ically, its specific heat and thermal conductivity, which are the coefficients in the

57 c© S.A.F.



two “algebraic formulations” mentioned above). By rescaling x or t (or both), we
can change K to 1. So there is no loss of generality in ignoring K henceforth. This
uses up only one of the three degrees of freedom in the units. The other two can
be used in other ways.

Typically, our bar will have a finite length, say L. We can rescale x to make
L have any convenient value; the most popular choices are 1 (not surprisingly) and
π (for reasons that will become obvious later). After that, we can rescale t so as to
keep K equal to 1. We can also add a constant to x so that the left endpoint of the
bar is at x = 0.

Scaling u will not change the form of the equation, since it is linear (see below).
However, this scaling freedom can be used to simplify a boundary condition or initial
condition.

3. Initial and boundary conditions: To make a PDE into a well-defined prob-
lem, we have to state over what domain of the independent variables we hope to
solve it, and we need to have enough information about the behavior of u on the
boundary of that domain to make the solution of the problem unique. For physical
and mathematical reasons, time and space enter the heat problem in different ways.
One finds:

(1) If we know the temperature distribution at one time (say t = 0), we can hope
to predict the temperature at later times, but not necessarily at earlier times.
(If we observe a room full of mosquitos, it is hard to tell by looking which
corner they flew out of.) Thus we will be solving (∗) in the region

0 < x < L, t > 0

given initial data

u(0, x) = f(x) for 0 < x < L.

(2) We need to know what happens to the heat when it reaches the end of the
bar. Obviously it will make a big difference to the temperature distribution
whether the end is insulated or in contact with some other material which can
conduct heat away. There are four standard types of boundary conditions that
can be considered. Each type is worthy of consideration for its own sake as
a mathematical possibility, but it happens that each one has a real physical
interpretation in the heat problem:

(A) Dirichlet condition: u(t, 0) = α(t) for some given function α. This says
that the temperature at the end of the bar is controlled (say by contact
with a “heat bath”).
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(B) Neumann condition:
∂u

∂x
(t, 0) = α(t). This says that the heat flow through

the end is controlled. This is hard to do in practice, except in the special
case α = 0, which says that the end is insulated.

(C) A generalization of the first two is a Robin condition:

c1u(t, 0) + c2
∂u

∂x
(t, 0) = α(t),

where the c’s are constants characteristic of the situation. Such a condition
arises in convective cooling, when the bar is in contact with a less dense
medium (such as air) which can carry away heat, but not fast enough to
lower the bar temperature immediately to the medium’s temperature.

In all these cases of conditions at x = 0, one would need another condition (not
necessarily the same kind) at x = L to complete the specification of the problem.

(D) Periodic boundary conditions: These deal with both endpoints at once.

u(t, 0) = u(t, L),
∂u

∂x
(t, 0) =

∂u

∂x
(t, L) .

The usual physical interpretation of this is that our “bar” is actually a
ring, and x is an angle. (Thus L = 2π when x is measured in radians.)

One tends to think of the boundary conditions as part of the definition of the
physical system under study, while the initial conditions label the various possible
solutions of the equations of motion of that given system. In other words, in our
discussions the boundary conditions are usually “more constant”, the initial con-
ditions “more variable”. Imposing the initial conditions is usually the last step in
finding a solution, as it is usually is for ODEs, too.
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Fundamental Concepts: Linearity and Homogeneity

This is probably the most abstract lecture of the course, and also the most im-
portant, since the procedures followed in solving PDEs will be simply a bewildering
welter of magic tricks to you unless you learn the general principles behind them.

Linear equations and linear operators

I think that you already know how to recognize linear and nonlinear equations,
so let’s look at some examples before I give the official definition of “linear” and
discuss its usefulness.

Algebraic equations:

Linear

x + 2y = 0,

x − 3y = 1

Nonlinear

tan x = 2x

Ordinary differential equations:

Linear

dy

dt
+ t3 y = cos 3t

Nonlinear

dy

dt
= t2 + ey

Partial differential equations:

Linear

∂u

∂t
=

∂2u

∂x2

Nonlinear

∂u

∂t
=

(
∂u

∂x

)2

What distinguishes the linear equations from the nonlinear ones? The most
visible feature of the linear equations is that they involve the unknown quantity
(the dependent variable, in the differential cases) only to the first power. The
unknown does not appear inside transcendental functions (such as sin and ln), or
in a denominator, or squared, cubed, etc. This is how a linear equation is usually
recognized by eye. Notice that there may be terms (like cos 3t in one example)
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which don’t involve the unknown at all. Also, as the same example term shows,
there’s no rule against nonlinear functions of the independent variable.

The formal definition of “linear” stresses not what a linear equation looks like,
but the properties that make it easy to describe all its solutions. For concreteness
let’s assume that the unknown in our problem is a (real-valued) function of one
or more (real) variables, u(x) or u(x, y). The fundamental concept is not “linear
equation” but “linear operator”:

Definition: An operation, L, on functions is linear if it satisfies

L(u + v) = L(u) + L(v) and L(λu) = λL(u) (∗)

for all functions u and v and all numbers λ.

Examples of linear operations are

differentiation of u: L(u) ≡ du

dx
,

multiplication of u by a given function of x: L(u) ≡ x2u(x),

evaluation of u at a particular value of x: L(u) ≡ u(2),

integration of u L(u) ≡
∫ 1

0
u(x) dx.

In each example it’s easy to check that (∗) is satisfied, and we also see the char-
acteristic first-power structure of the formulas (without u-independent terms this
time). In each case L is a function on functions, a mapping which takes a function
as input and gives as output either another function (as in the first two examples) or
a number (as in the last two). Such a superfunction, considered as a mathematical
object in its own right, is called an operator.

Now we can return to equations:

Definition: A linear equation is an equation of the form

L(u) = g,

where L is a linear operator, g is a “given” or “known” function (or number, as the
case may be), and u is the unknown to be solved for.

So the possible u-independent terms enter the picture in the role of g. This
leads to an absolutely crucial distinction:
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Homogeneous vs. nonhomogeneous equations

Definition: A linear equation, L(u) = g, is homogeneous if g = 0 (i.e., all
terms in the equation are exactly of the first degree in u); it is nonhomogeneous if
g 6= 0 (i.e., “constant” terms also appear).

In the second parenthetical clause, “constant” means independent of u. The
“constant” term g may be a nontrivial function of the independent variable(s) of
the problem.

Among our original examples, the linear ODE example was nonhomogeneous
(because of the cos 3t) and the PDE example was homogeneous. The algebraic
example is nonhomogeneous because of the 1. Here we are thinking of the system
of simultaneous equations as a single linear equation in which the unknown quantity
is a two-component vector,

~u ≡
(

x
y

)
.

The linear operator L maps ~u onto another vector,

~g =

(
0
1

)
.

As many of you know, the system of equations can be rewritten in matrix notation
as (

1 2
1 −3

) (
x
y

)
=

(
0
1

)
.

The linear operator is described by the square matrix:

L =

(
1 2
1 −3

)
.

In solving a differential equation we usually need to deal with initial or bound-
ary conditions in addition to the equation itself. The main reason is that initial or
boundary data need to be specified to give the problem a unique answer. Usually
these conditions are themselves linear equations — for example, a standard initial
condition for the heat equation:

u(0, x) = f(x).

Often the differential equation will be homogeneous but at least one of the boundary
conditions will be nonhomogeneous. (The reverse situation also occurs.) Therefore,
I think it’s helpful to introduce one more bit of jargon:
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Definitions: A linear problem consists of one or more linear conditions (equa-
tions) to be satisfied by the unknown, u. A linear problem is homogeneous if all of
its conditions are homogeneous, nonhomogeneous if one or more of the conditions
are nonhomogeneous.

Example 1: The ODE problem

u′′ + 4u = 0, u(0) = 1, u′(0) = 0

is an nonhomogeneous linear problem.

Example 2: The PDE problem

∂u

∂t
=

∂2u

∂x2
+ j(x), u(0, x) = 0, u(t, 0) = 0, u(t, 1) = 0

is an nonhomogeneous linear problem. The boundary conditions and the initial
condition are homogeneous, but the heat equation itself is nonhomogeneous in this
case; the function j represents generation of heat inside the bar (perhaps by com-
bustion or radioactivity), a possibility not considered in our earlier discussion of the
heat-conduction problem.

Remark: It is easy to see that every homogeneous linear equation has u = 0
as a solution. (One proof: L(0) = L(u − u) (for any u) = L(u) − L(u) = 0,
QED.) Therefore, any homogeneous linear problem has 0 as a solution. Therefore,
if a linear problem has a unique solution and that solution is nontrivial (not just
the 0 function), then that linear problem must be nonhomogeneous. That is, an
interesting, well-posed problem always has at least one nonhomogeneous condition.

Solving linear problems

The importance of linear problems is that solving them is made easy by the
superposition principles (which don’t apply to nonlinear problems):

Principles of Superposition:

1. A linear combination of solutions of a homogeneous problem is a new solution
of that problem. That is, if L(u1) = 0 and L(u2) = 0, then L(c1u1 + c2u2) = 0
for any numbers c1 and c2 (and similarly for more than two solutions, and for
more than one homogeneous linear equation defining the problem).

Example: Let Problem 1 be the homogeneous ODE u′′ + 4u = 0. Two
solutions of this problem are

u1 ≡ cos 2x, u2 ≡ sin 2x.
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Then u = u1 + 3u2, for example, is also a solution. (In fact, we know
that the most general solution is c1u1 + c2u2 where the c’s are arbitrary
constants. But for this we need a deeper existence-and-uniqueness theorem
for second-order ODEs; it doesn’t just follow from linearity.)

2. The sum of a solution of an nonhomogeneous problem and a solution of the
corresponding homogeneous problem is a new solution of the original nonho-
mogeneous problem. (“Corresponding homogeneous problem” means the one
with the same L’s, but with all g’s replaced by 0.)

Example: Let Problem 2 be the nonhomogeneous equation u′′ + 4u =
ex. One solution is up ≡ 1

5
ex. (This has to be found by the method of

undetermined coefficients, or by luck. Again, general principles of linearity
by themselves can’t solve the whole problem.) Now if we add a solution
of Problem 1 we get a new solution of Problem 2: u3 ≡ 1

5ex + cos 2x.

3. The difference of two solutions of an nonhomogeneous problem is a solution
of the corresponding homogeneous problem. Therefore, every solution of an
nonhomogeneous problem can be obtained from one particular solution of that
problem by adding some solution of the homogeneous problem.

Example: The general solution of Problem 2 is

u = 1
5ex + c1 cos 2x + c2 sin 2x.

4. The sum of solutions to two nonhomogeneous problems with the same L’s is a
solution of a new nonhomogeneous problem, for which the g’s are the sums of
the corresponding g’s of the two original problems. (Similarly for more than
two nonhomogeneous problems.)

Example 1: The sum of two solutions of Problem 2, up and u3 , is z ≡
2
5ex + cos 2x, which is a solution of z′′ + 4z = 2ex. The important lesson
to be learned from this example is that the right-hand side of this new
equation is not ex, the nonhomogeneous term of the two old equations.
Do not superpose solutions of an nonhomogeneous problem in the hope
of getting a solution of that same problem.

Example 2: Note that up is the unique solution of Problem 3:

u′′ + 4u = ex, u(0) = 1
5 , u′(0) = 1

5 .

Suppose that we really want to solve Problem 4:

u′′ + 4u = ex, u(0) = 0, u′(0) = 0.
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Recalling Principles 2 and 3 as applied to the differential equation alone
(not the initial conditions), we see that u = up+y, where y is some solution
of y′′ + 4y = 0. A moment’s further thought shows that the correct y is
the solution of Problem 5:

y′′ + 4y = 0, y(0) = −1
5 , y′(0) = −1

5 .

A standard calculation shows that y = −1
5

cos 2x− 1
10

sin 2x, and from this
and up we can get the solution of Problem 4. (Of course, in solving such
problems we usually don’t write out Problem 5 as an intermediate step; the
standard procedure is to impose the initial data of Problem 4 on the general
solution found earlier. That is just a different way of organizing the same
algebra. However, consciously splitting an nonhomogeneous problem into
two nonhomogeneous problems, as I’ve demonstrated here for an ODE, is
a common technique for solving PDEs.)

In summary, these principles provide the basic strategies for solving linear prob-
lems. If the problem is nonhomogeneous and complicated, you split it into simpler
nonhomogeneous problems and add the solutions. If the solution is not unique,
the nonuniqueness resides precisely in the possibility of adding a solution of the
corresponding homogeneous problem. (In particular, if the original problem is ho-
mogeneous, then you seek the general solution as a linear combination of some list
of basic solutions.) If the problem statement contains enough initial and bound-
ary conditions, the solution will be unique; in that case, the only solution of the
homogeneous problem is the zero function.

An important example application of this strategy is the solution of the heat-
conduction problem in a bar with fixed end temperatures.

PDE:
∂u

∂t
=

∂2u

∂x2
,

IC: u(0, x) = f(x),

BC: u(t, 0) = T1 , u(t, 1) = T2 .

(The end temperatures are constants, not functions of t as they could be in princi-
ple.) Here we have a homogeneous PDE, an nonhomogeneous initial condition, and
two nonhomogeneous boundary conditions. The trick is to treat the two types of
nonhomogeneity separately. We write u = v + w, where

(1) v is to be a solution of the problem consisting of the PDE and the nonhomo-
geneous BC, with no particular IC assumed. It is possible to find a solution
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of this problem which is independent of t: v(t, x) = V (x). (Let’s return to the
details later.)

(2) w is to be a solution of the problem consisting of the PDE, the homogeneous

Dirichlet boundary conditions

w(t, 0) = 0, w(t, 1) = 0,

and the initial condition which is needed to make u satisfy the original IC.
Namely,

w(0, x) = f(x) − V (x).

It is very important that the only nonhomogeneity in the problem is the IC.
This makes it possible to solve for w by the method of separation of variables

and then add the solutions without falling into the trap I warned you against
earlier (Example 1). The solution is completed by finding the Fourier series

of the function f − V . The processes of separating variables and calculating
Fourier coefficients will be studied in depth by us in the near future. The
important point for today is that for them to work here, it was absolutely
crucial to make the boundary conditions homogeneous first. In the calculation
of normal modes, no nonhomogeneous conditions at all are imposed. The
appropriate nonhomogeneous IC is imposed on a superposition (w) of normal
modes. Then still another term, v, is added to satisfy the nonhomogeneous
BC.

The sermon, one more time

Our primary moral lessons are these:

• Impose only HOMOGENEOUS conditions on normal modes
(separated solutions).

• Impose nonhomogeneous conditions only on a SUPERPOSI-
TION (sum or integral) of normal modes.

A related principle is

• Handle only one nonhomogeneity at a time!

This principle is handled in practice by different strategies in different problems.
Let’s consider a doubly nonhomogeneous problem with the structure

L1(u) = f1 , L2(u) = f2 .

The two principal strategies are these:
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1. “Zero out” the other condition. Solve

L1(u1) = f1 , L2(u1) = 0,

L1(u2) = 0, L2(u2) = f2 .

Then u = u1 + u2 .

Examples where this strategy will be used (later in this course) include

(a) treatment of the initial data u and ∂u
∂t

in the wave equation;

(b) Laplace’s equation in a rectangle with boundary values given on two per-
pendicular sides.

2. Temporarily ignore the other condition. Solve L1(u1) = f1 and let L2(u1)
be whatever it turns out to be, say L2(u1) ≡ h. Next solve

L1(u2) = 0, L2(u2) = f2 − h.

Then u = u1 + u2 .

Examples where this strategy is used include

(a) the method of undetermined coefficients for an ordinary differential equa-
tion with initial conditions;

(b) finding a steady-state solution for the wave or heat equation with nonzero,
but time-independent, boundary conditions.

Unfinished business: the steady-state solution for our heat problem. Return
to step (1) and assume that v(t, x) = V (x). Then the equation becomes 0 = V ′′, and
the boundary conditions become V (0) = T1 , V (1) = T2 . We see that V = C1x+C2

and thus
T1 = C2 , T2 = C1 + C2 .

Therefore,

V (x) = (T2 − T1)x + T1

= T1(1 − x) + T2x.

Notice that V (x) is a linear superposition of two terms, one of which vanishes when
x = 1 and completely handles the nonhomogeneous data at x = 0, and the other
— vice versa. This reconfirms that every nonhomogeneous term makes a separate
contribution to the solution, even in a case where it was not technically necessary
to make the separation at the beginning of the process of constructing the solution.
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Separation of Variables

Now return to the second half of the problem, the initial-value problem for the
heat equation with homogenized boundary conditions:

PDE:
∂w

∂t
=

∂2w

∂x2
,

BC: w(t, 0) = 0, w(t, 1) = 0,

IC: w(0, x) = g(x) [= f(x) − V (x)].

Our strategy will be to look first for functions of the form

wsep(t, x) = T (t)X(x)

which satisfy all the homogeneous equations of the problem (namely, the PDE and
BC) — but not (usually) the nonhomogeneous equations (the IC, in this case).
Then we will try to satisfy the nonhomogeneous conditions by a “superposition”
(or infinite linear combination) of these separated solutions: It will look something
like

w(t, x) =
∞∑

n=1

cn Tn(t)Xn(x).

At risk of tedium, let me emphasize again that

(1) since the separated (product) solutions satisfy the homogeneous conditions, the
sum will also;

(2) attempting to impose the nonhomogeneous conditions on the individual wsep’s
will lead to catastrophe, since nonhomogeneous conditions are not preserved
under summation. If we found an infinite string of functions that each satisfied
the nonhomogeneous condition u(t, 0) = T1 , then the sum of their boundary
values would be an infinite series of equal constants, which would not converge
— certainly not to T1 .

Substitute w = TX into the PDE:

T ′(t)X(x) = T (t)X ′′(x).

Now we separate the variables: Divide by T (t)X(x), getting

T ′(t)

T (t)
=

X ′′(x)

X(x)
.

68 c© S.A.F.



In this equation the left side depends only on t and the right side depends only on x.
The only way the equation can then hold for all t and all x is that both quantities
are constant :

T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ.

(I have advance information that the most interesting values of this constant will be
negative, so I call it −λ. However, we are not yet ready to make any commitment
as to whether λ is positive, negative, zero, or even complex. All possibilities must
be considered.)

We have split the equation into two equations,

X ′′ + λX = 0, (1)

T ′ + λT = 0. (2)

Now look at the boundary conditions, which are

0 = wsep(t, 0) = T (t)X(0), 0 = wsep(t, 1) = T (t)X(1).

These impose restrictions on X , not T . (If we were to satisfy either of them for all
t by setting T (t) = 0, we would make the entire solution wsep identically equal to 0,
a trivial and uninteresting solution.) Our next task is to find the values of λ that
allow X to vanish at both 0 and 1.

Suppose first that λ is positive, and write λ = ω2 (where ω is positive). Then
(1) with its BC is

X ′′ + ω2X = 0, X(0) = 0, X(1) = 0. (#)

The general solution of the ODE is

X = c1 cos ωx + c2 sin ωx, (†)

and the first boundary condition forces c1 = 0. We can choose c2 = 1 without loss of
generality (since what we are looking for is a linearly independent set of separated
solutions wsep). So X = sin ωx. Then the second boundary condition is

sinω = 0.

The positive solutions of this equation are

ωn ≡ nπ, n = 1, 2, . . . .

[Notice that the root ω = 0 is irrelevant, since solutions of the ODE with λ = 0 do
not have the form (†). Negative ω’s give nothing new, which is why we restricted ω
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to be positive when we introduced it.] Note, incidentally, that if we were working
on the interval 0 < x < π instead of 0 < x < 1, we would get just ωn = n, without
the π.

The numbers ωn that “work” in (#) are called eigenvalues, and the associated
solutions X are called eigenfunctions, or eigenvectors, in analogy with the situation
for matrices in linear algebra.

We can now solve the time equation, (2):

T (t) = e−ωn

2t = e−n2π2t.

The full separated solution for each n is thus

wsep(t, x) = sin (nπx) e−n2π2t.

Now consider the possibility that λ = 0. In place of (†) we have the general
solution

X = c1 + c2x.

Applying the two BC, we swiftly get c1 = 0, c2 = 0. So there is no nontrivial
solution with λ = 0.

Similar arguments show that negative and complex λ’s give only trivial solu-
tions. In the negative case, write λ = −κ2; then

X = c1 cosh κx + c2 sinhκx,

and the result follows (since cosh 0 6= 0 and sinh z 6= 0 unless z = 0). If λ is complex,
it has two complex square roots, which are negatives (not complex conjugates!) of
each other. Thus

X = c1e
(κ+iω)x + c2e

−(κ+iω)x,

where (κ + iω)2 = −λ and κ 6= 0 (else we would be back in the case of positive λ).
X(0) = 0 implies that c2 = −c1 , and then X(1) = 0 implies that

e(κ+iω) = e−(κ+iω).

Since κ 6= 0, these two complex numbers have different moduli (absolute values), so
this conclusion is a contradiction.

There is a more modern, less grubby way to see that λ has to be positive. Using
the ODE (X ′′ = −λX) and the BC (which allow us to discard all endpoint terms
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which arise in integration by parts), we see that

λ

∫ 1

0

|X(x)|2 dx = −
∫ 1

0

X*X ′′ dx

= +

∫ 1

0

|X ′|2 dx

= −
∫ 1

0

(X ′′)*X dx

= +λ*

∫ 1

0

|X |2 dx.

Comparing the first and last members of this chain of equalities, we see that λ = λ*
— that is, λ must be real. Comparing either of the extreme members with the one
in the middle, we see that λ is positive, since two integrals are positive.

This argument suggests a general method for handling such questions when the
second-derivative operator is replaced by a more general linear differential operator
L[X ]. If the L can be moved by integration by parts from one side of the integral
to the other,

−
∫ b

a

X*L[X ] dx = −
∫ b

a

(L[X ])*X dx,

then all the allowed eigenvalues λ must be real. (Here it is understood that X(x)
satisfies the boundary conditions of the problem, though not necessarily the dif-
ferential equation. An operator with this integration-by-parts symmetry is called
self-adjoint.) If, in addition, an intermediate step in the integration by parts is
a manifestly positive (or nonnegative) integral, then the λ’s must be positive (or
nonnegative, respectively).

To summarize, in the one-dimensional heat problem with Dirichlet boundary
conditions we have found the eigenvalues

λn ≡ ωn
2 = (nπ)2

and the corresponding solutions

wsep(t, x) = sin(ωnx) e−ωn

2t.

We still need to investigate how to superpose such solutions to obtain a solution
with the arbitrary initial data w(0, x) = g(x). So, let us assume that such a solution
exists, and see if that assumption leads us either to useful information (good), or
to a contradiction (bad):

w(t, x) =

∞∑

n=1

bn sin(ωnx) e−ωn

2t
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for some (not yet known) coefficients bn . Then

g(x) =
∞∑

n=1

bn sin(ωnx). (∗)

This is supposed to hold on the interval 0 < x < 1.

More generally, if the spatial interval is 0 < x < L, then we would like (∗) to
be true for the appropriate choice of the ωn’s — namely,

ωn =
nπ

L

(the positive solutions of 0 = X(L) = sin(ωL)). In particular, if L = π, then
ωn = n. I shall develop the theory of (∗) for the case L = π, rather than the case
L = 1 that I’ve been discussing heretofore. There are two reasons for this: (1) It
requires less writing. (2) Most of the homework problems for this week have L = π.
Exercises with other choices of L have been postponed to next week.

To find the bn in (∗) we multiply that equation by sinmx and integrate from
0 to π. We assume that the integral of the infinite series exists and is equal to the
sum of the integrals of the individual terms:

∫ π

0

g(x) sinmx dx =

∞∑

n=1

bn

∫ π

0

sin nx sinmx dx.

(In the general case, of course, the integral would be from 0 to L. See the textbooks
for details and a later segment of notes for summary.) Now

sin nx sin mx = 1
2 cos (nx − mx) − 1

2 cos(nx + mx),

so
∫ π

0

sin nx sinmx dx =

[
1

2(n − m)
sin (n − m)x − 1

2(n + m)
sin (n + m)x

]π

0

= 0

— provided that n 6= m. If n = m we have

∫ π

0

sin2 mx dx =

[
1

2
x − 1

4m
sin(2mx)

]π

0

=
π

2
.

Thus only the n = m term in the sum survives, and

∫ π

0

g(x) sinmx dx =
π

2
bm .
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Conclusion: If (∗) is true,

g(x) =
∞∑

n=1

bn sin nx,

then

bn =
2

π

∫ π

0

g(x) sinnx dx.

(∗) is called the Fourier sine series of the function g, and the bn are its Fourier

coefficients.
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Convergence Theorems

So far we’ve seen that we can solve the heat equation with homogenized Dirich-
let boundary conditions and arbitrary initial data (on the interval [0, π]), provided
that we can express an arbitrary function g (on that interval) as an infinite linear
combination of the eigenfunctions sin (nx):

g(x) =
∞∑

n=1

bn sin nx.

Furthermore, we saw that if such a series exists, its coefficients must be given by
the formula

bn =
2

π

∫ π

0

g(x) sin nx dx.

So the burning question of the hour is: Does this Fourier sine series really converge
to g(x)?

No mathematician can answer this question without first asking, “What kind
of convergence are you talking about? And what technical conditions does g sat-
isfy?” There are three standard convergence theorems, each of which states that
certain technical conditions are sufficient to guarantee a certain kind of convergence.
Generally speaking,

more smoothness in g

⇐⇒ more rapid decrease in bn as n → ∞

⇐⇒ better convergence of the series.

Definition: g is piecewise smooth if its derivative is piecewise continuous.
That is, g′(x) is defined and continuous at all but a finite number of points (in the
domain [0, π], or whatever finite interval is relevant to the problem), and at those
bad points g′ has finite one-sided limits. (At such a point g itself is allowed to be
discontinuous, but only the “finite jump” type of discontinuity is allowed.)
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◦
•

This class of functions is singled out, not only because one can rather eas-
ily prove convergence of their Fourier series (see next theorem), but also because
they are a natural type of function to consider in engineering problems. (Think of
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electrical voltages under the control of a switch, or applied forces in a mechanical
problem.)

Pointwise Convergence Theorem: If g is continuous and piecewise smooth,
then its Fourier sine series converges at each x in (0, π) to g(x). If g is piecewise
smooth but not necessarily continuous, then the series converges to

1
2 [g(x−) + g(x+)]

(which is just g(x) if g is continuous at x). [Note that at the endpoints the series
obviously converges to 0, regardless of the values of g(0) and g(π).]

Uniform Convergence Theorem: If g is both continuous and piecewise
smooth, and g(0) = g(π) = 0, then its Fourier sine series converges uniformly to g
throughout the interval [0, π].

Remarks:

1. Recall what uniform convergence means: For every ǫ we can find an N so big
that the partial sum

gN (x) ≡
N∑

n=1

bn sin (nx)

approximates g(x) to within an error ǫ everywhere in [0, π].

2. In contrast, if the convergence is nonuniform (merely pointwise), then for each
x we can take enough terms to get the error |g(x)− gN (x)| smaller than ǫ, but
the N may depend on x as well as ǫ. It is easy to see that if g is discontinuous,
then uniform convergence is impossible, because the approximating functions
gN need a finite “time” to jump across the gap. There will always be points
near the jump point where the approximation is bad.
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◦

•
◦
ւgN

ւg

It turns out that gN develops “ears” or “overshoots” right next to the
jump. This is called the Gibbs phenomenon.

3. For the same reason, the sine series can’t converge uniformly near an endpoint
where g doesn’t vanish. An initial-value function which violated the condition
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g(0) = g(π) = 0 would be rather strange from the point of view of our heat
problem, since we want w(t, 0) = w(t, π) = 0 and also w(0, x) = g(x)! We’ll
soon see another way of understanding the significance of this condition.

4. If g is piecewise continuous, it can be proved that bn → 0 as n → ∞. In other
words, bn = o(n0). (This is one form of the Riemann–Lebesgue theorem.) This
is a key step in proving the pointwise convergence theorem.

If g satisfies the conditions of the uniform convergence theorem, then in-
tegration by parts shows that

bn =
2

nπ

∫ π

0

g′(x) cos (nx) dx,

and by another version of the Riemann–Lebesgue theorem this integral also
approaches 0 when n is large, so that bn = o(n−1). This additional falloff is
“responsible” for the uniform convergence of the series.

(This remark is as close as we’ll come in this course to proofs of the con-
vergence theorems.)

5. There are continuous (but not piecewise smooth) functions whose Fourier series
do not converge, but it is hard to construct an example!

Now, the third kind of convergence.

Parseval’s Equation:

∫ π

0

|g(x)|2 dx =
π

2

∞∑

n=1

|bn|2.

(In particular, the integral converges if and only if the sum does.)

“Proof”: Taking convergence for granted, let’s calculate the integral. (I’ll
assume that g(x) and bn are real, although I’ve written the theorem so that it
applies also when things are complex.)

∫ π

0

|g(x)|2 dx =

∫ π

0

∞∑

n=1

∞∑

m=1

bn sin (nx) bm sin (mx) dx

=

∫ π

0

∞∑

n=1

bn
2 sin2 nx dx

=
π

2

∞∑

n=1

bn
2.

(Only terms with m = n contribute, because when m 6= n
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∫ π

0

sin(mx) sin(nx) dx = 0.

This property is called orthogonality, and we will see later that it always arises
(and plays a very valuable role) in eigenfunction expansions. The integral with
m = n can be evaluated by a well known rule of thumb: The integral of sin2 ωx
over any integral number of quarter-cycles of the trig function is half of the integral
of sin2 ωx + cos2 ωx — namely, the length of the interval, which is π in this case.)

Definition: g is square-integrable on [0, π] if the integral in Parseval’s equation
converges: ∫ π

0

|g(x)|2 dx < ∞.

L2 (or Mean) Convergence Theorem: If g is square-integrable, then the
series converges in the mean:

∫ π

0

|g(x)− gN (x)|2 dx → 0 as N → ∞.

Remarks:

1. Recalling the formulas for the length and distance of vectors in 3-dimensional
space,

|~x|2 ≡
3∑

n=1

xn
2, |~x − ~y|2 ≡

3∑

n=1

(xn − yn)2,

we can think of the Parseval integral as a measure of the “length” of g, and
the integral in the theorem as a measure of the “distance” between g and gN .
(More about this when we cover general orthogonal basis functions, Constanda
Chap. 3.)

2. A function can be square-integrable without being piecewise smooth, or even
bounded. Example:

g(x) ≡
(
x − 1

2

)− 1

3 .

Also, a series can converge in the mean without converging pointwise (not to
mention uniformly). This means that the equation

g(x) =
∞∑

n=1

bn sin nx

must not be taken too literally in such a case — such as by writing a computer
program to add up the terms for a fixed value of x. (The series will converge
(pointwise) for “almost” all x, but there may be special values where it doesn’t.)
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More General Kinds of Fourier Series

(1) We have been discussing the Fourier sine series for functions defined on the
interval (0, 1),

g(x) =
∞∑

n=1

bn sin nπx, bn = 2

∫ 1

0

g(x) sinnπx dx,

or on the interval (0, π),

g(x) =

∞∑

n=1

bn sin nx, bn =
2

π

∫ π

0

g(x) sin nx dx.

By rescaling the independent variable, we can reduce an arbitrary interval (a, b) to
either of these.

Often it is useful in applications to have available the formulas for the Fourier
series on the original interval, so that you don’t have to stop to repeat the scaling
argument every time. If L ≡ b − a, those formulas are

g(x) =

∞∑

n=1

bn sin
nπ(x − a)

L
,

bn =
2

L

∫ b

a

g(x) sin
nπ(x − a)

L
dx.

The important point is that the coefficients are calculated by integrating g over
the interval concerned! The numbers nπ/L are the roots of sin (ωL) = 0, and the
numerical coefficient in the integral depends on L because of the action of the chain
rule on the differential.

In theoretical discussions, on the other hand, it is convenient to assume that
a = 0 and L = π or 1, thereby freeing the formulas of irrelevant clutter.

(2) There is a corresponding series in terms of cosines:

g(x) =
∞∑

n=0

an cos nx

(if the interval is (0, π)). Note that n = 0 corresponds to a nonzero function in this
case (cos(0x) = 1), and it must be included. Unfortunately, the formula for the
coefficient of that term is different from the others by a factor of 2:

an =
2

π

∫ π

0

g(x) cos nx dx for n > 0,
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a0 =
1

π

∫ π

0

g(x) cos 0x dx

=
1

π

∫ π

0

g(x) dx.

It is helpful to remember that a0 is the average value of g on the interval [0, π].
(This is reasonable, since the cosine terms with n 6= 0 all average to 0.)

Unfortunately, the notation for cosine series is not standardized. Many books
define a0 to be twice my a0 so that the an formula is valid for n = 0, but the
formula for the series itself is messed up:

g(x) =
a0

2
+

∞∑

n=1

an cos nx.

The formal derivation of the cosine formulas is just like the derivation of the
sine series, being based on the orthogonality of the functions {cos nx} on an interval
of length π.

(3) What happens to the series when x is not in the interval [0, π]?

Recall that sin nx is an odd function [satisfies f(−x) = −f(x)], but cos nx is
an even function [satisfies f(−x) = f(x)]. Thus the partial sum gN (x) , a linear
combination of sines or cosines, is an odd function in the sine case, an even function
in the cosine case. Therefore, the same is true of the limit; the Fourier sine series
converges to an odd function, the Fourier cosine series to an even one.

Also, each gN is periodic with period 2π (since each term of it is), and so the
sum of the series is such a periodic function.

If the original function g is given by a formula, such as g(x) = x2, the sum of
the series will generally not agree with that formula anywhere except in the interval
[0, π]. (This was a source of great confusion to the mathematicians of 200 years ago,
who didn’t clearly distinguish between a function and an algebraic expression.) The
limit of the sine series is the odd periodic extension of g (solid line), while that of the
cosine series is the even periodic extension (dashed line), which happens to coincide
with x2 on [−π, 0] in our example just because x2 is already an even function. That
the series should disagree with g off the original interval is really no surprise, since
the coefficients in the series are calculated from integrals of g over that interval and
therefore carry absolutely no information about the behavior of g elsewhere.
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(4) Any function can be written as the sum of an even function and an odd
function:

f(x) =
f(x) + f(−x)

2
+

f(x) − f(−x)

2
. (†)

If f is defined on the interval [−π, π] (and is smooth enough to satisfy the hypotheses
of a convergence theorem), then the even term in (†) is correctly represented by a
cosine series everywhere in [−π, π]. Similarly, the odd term is represented by a sine
series. Consequently, an arbitrary function on [−π, π] has a series containing both
sines and cosines:

f(x) =
∞∑

n=0

an cos nx +
∞∑

n=1

bn sin nx.

This is what is known as the Fourier series of f , or the “full” Fourier series (as
distinct from one containing only one type of trig function).

The formulas for the coefficients are

bn =
1

π

∫ π

−π

f(x) sin nx dx,

an =
1

π

∫ π

−π

f(x) cos nx dx (n 6= 0),

a0 =
1

2π

∫ π

−π

f(x) dx.

To check that these are correct, consider the special cases where f is even or odd.
If f is even, the integral for bn equals 0 since its integrand is odd; the integrand of
an is even, so the contribution of the negative half of the integral is equal to the
positive half, and the formula (for n 6= 0) can be rewritten

an =
2

π

∫ π

0

f(x) cos nx dx.

Thus the sine terms of the series are absent, and the cosine terms have the coeffi-
cients that give the correct Fourier cosine series for f on [0, π]; this is exactly as it
should be. Similarly, an odd f has a Fourier series consisting entirely of sines.
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The sum of a full Fourier series is a periodic function without any special sym-
metry (even or odd) or any special boundary behavior. It is appropriate physically
to the problem of heat flow in a ring or cylinder.

Again, many books write the Fourier series as

f(x) =
a0

2
+

∞∑

n=1

(
an cos nx + bn sin nx

)
.

This is a different definition of a0 , which makes the formula

an =
1

π

∫ π

−π

f(x) cos nx dx

correct for n = 0 as well as for the other n’s.

(5) The trigonometric form of the Fourier series is quite cumbersome, because
three separate formulas for the coefficients are needed. It can be greatly simplified
by converting to the complex-exponential function,

einx = cos nx + i sinnx.

Note that
e−inx = cos nx − i sin nx

and hence

cos nx =
einx + e−inx

2
, sin nx =

einx − e−inx

2i
.

Also, cos 0x = 1 = e0x. Therefore, the cosine and sine functions appearing in the
Fourier series can be expressed in terms of the functions eikx, where k ranges over
all integers, positive, negative, and zero.

Let us work out this transformation. Substituting into the Fourier series we
get

f(x) = a0 +
∞∑

n=1

an
einx + e−inx

2
+

∞∑

n=1

bn
einx − e−inx

2i

=

−1∑

k=−∞

(
a−k

2
− b−k

2i

)
eikx + a0e

i0x +

∞∑

k=1

(
ak

2
+

bk

2i

)
eikx.

(The terms with negative k come from setting k ≡ −n in the terms with factors
e−inx; the terms with positive k come from setting k ≡ n in the terms with factors
einx.) Therefore, we will have

f(x) =

∞∑

k=−∞
ckeikx
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if we define

ck =






1
2 (ak − ibk) if k > 0,

a0 if k = 0,
1
2 (a−k + ib−k) if k < 0.

It is easy to see that in all three cases,

ck =
1

2π

∫ π

−π

e−ikxf(x) dx.

For instance, if k > 0,

1

2
(ak − ibk) =

1

2π

∫ π

−π

f(x)[cos kx − i sin kx] dx =
1

2π

∫ π

−π

e−ikxf(x) dx.

In terms of the original, nonnegative index n,

cn = 1
2 (an − ibn), c−n = 1

2 (an + ibn).

The two equations in boxes are clearly a vast improvement over the original
Fourier series from the point of view of simplicity. This is the way the Fourier series
is usually written and used in modern work.

Unfortunately, in order to evaluate the integral ck for a particular function f ,
using the standard integral tables, you will usually need to break the integrand
up into sine and cosine parts, since the tables list only real integrals, not complex
ones. However, sometimes the integral is easy enough to be evaluated by elementary
means. In such a case the usual identities for the exponential function may be used,
even though the argument is an imaginary number. As an example (which will
be used later) I’ll calculate the orthogonality and normalization integrals for the
functions eikx.

Suppose first that k 6= l. Then

∫ π

−π

eikx e−ilx dx =

∫ π

−π

ei(k−l)x dx

=
1

i(k − l)
ei(k−l)x

∣∣∣
π

−π

=
1

i(k − l)

[
ei(k−l)π − e−i(k−l)π

]

=
2

k − l
sin[(k − l)π]

= 0 (since k − l is an integer).
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On the other hand, if k = l we have

∫ π

−π

eikx e−ilx dx =

∫ π

−π

eikx e−ikx dx

=

∫ π

−π

1 dx

= 2π.

(6) Like the sine series, the full Fourier series can be written for functions
defined on intervals of any length, not just 2π. Naturally, it is often convenient to
use the physical length involved in a given problem, even though this clutters the
formulas with extra constants.

For a full Fourier series, it is natural to let L stand for half the length of the
interval, which is chosen to be [−L, L]. By a scaling transformation one can easily
see that the proper formulas are

f(x) =
∞∑

k=−∞
ck eiπkx/L,

ck =
1

2L

∫ L

−L

e−iπkx/L f(x) dx.

Using the periodicity of the trigonometric functions, it is possible to write
Fourier series on an arbitrary interval of length 2L, say [c, c + 2L], and Fourier sine
or cosine series on an arbitrary interval of length L.

(7) For each type of Fourier series there is a corresponding Parseval equation
and three standard convergence theorems (pointwise, uniform, and mean). Obvi-
ously, I can’t write these out for all the possible cases. I’ll discuss one example of
each, in enough detail to make it possible in principle to reconstruct the others.

The Parseval equation for the full Fourier series on the standard interval is

∫ π

−π

|f(x)|2 dx = 2π

∞∑

k=−∞
|ck|2.

It is now necessary to allow the quantities to be complex; |ck|2, for instance, means
the complex modulus squared (ck times its complex conjugate). To derive this
equation, substitute the boxed Fourier series and its complex conjugate

f(x)* =

∞∑

l=−∞
cl* e−ilx
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into the left-hand side, and integrate term-by-term using the orthogonality integrals
worked out in (5).

The Parseval equation for the Fourier cosine series is complicated, because the
a0 term needs to be treated separately. In fact, there are two different versions of the
formula, depending on where you put that annoying factor of 2 in the definition of
the series. Perhaps it is best to work out this Parseval formula from first principles
(the orthogonality integrals) every time you need it.

To guarantee that the full Fourier series converges uniformly, we must have f
continuous and piecewise smooth, and also

f(−L) = f(L).

The reason for the last condition is that the function which really must be continuous
and piecewise smooth is the periodic extension of f to the whole real line. If the
endpoint values of f do not match, the extension will have a discontinuity at the
endpoints. Another way of saying this is that f must be a continuous function when
regarded as a function defined on a circle or ring ; that is, when x is an angle, so
that −L and L label the same physical point.

We can now understand from a more fundamental point of view why the uni-
form convergence theorem for the sine series requires that the function vanish at the
endpoints. In that case, the relevant function is the odd periodic extension, which
will have a discontinuity at 0 if the original function’s graph does not pass through
the origin (and a discontinuity at L if the function doesn’t vanish there). The co-
sine series needs no such supplementary condition, because the even extension of a
function is continuous at the endpoints. (The derivative of the extension is likely
to be discontinuous, but that will not disrupt the uniform convergence.)
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A Big Example

This will break up into many small examples, which will demonstrate many of
the principles we’ve talked about — often in a slightly new context.

Problem statement

We will consider heat conduction in a two-dimensional region, a rectangle. The
ranges of the variables, therefore, will be

0 < x < a, 0 < y < b, t > 0.

Without loss of generality, we can assume that the variables have been scaled so
that a = π.

The heat equation is

PDE:
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
.

Let us assume that the boundary conditions are

BC1:
∂u

∂x
(t, 0, y) = 0 =

∂u

∂x
(t, π, y) ,

BC2: u(t, x, 0) = p(x), u(t, x, b) = q(x).

That is, the plate is insulated on the sides, and the temperature on the top and
bottom edges is known and given by the functions p and q. Finally, there will be
some initial temperature distribution

IC: u(0, x, y) = f(x, y).

Steady-state solution

From our experience with the one-dimensional problem, we know that we must
eliminate the nonhomogeneous boundary condition (BC2) before we can solve the
initial-value problem by separation of variables! Fortunately, p and q are indepen-
dent of t, so we can do this by the same technique we used in one dimension: hunt
for a time-independent solution of (PDE) and (BC), v(t, x, y) = V (x, y), then con-
sider the initial-value problem with homogeneous boundary conditions satisfied by
u − v.
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So, we first want to solve

PDE:
∂2V

∂x2
+

∂2V

∂y2
= 0,

BC1:
∂V

∂x
(0, y) = 0 =

∂V

∂x
(π, y) ,

BC2: V (x, 0) = p(x), V (x, b) = q(x).

This is still a partial differential equation (namely, the two-dimensional Laplace

equation). Furthermore, it still contains two nonhomogeneous conditions. There-
fore, we split the problem again:

V = V1 + V2 ,

V1(x, 0) = p(x),

V1(x, b) = 0,

V2(x, 0) = 0,

V2(x, b) = q(x).

Each Vj is supposed to satisfy Laplace’s equation and (BC1).

Remark: This splitting is slightly different from the one involving the steady-
state solution. In each subproblem here we have replaced every nonhomogeneous
condition except one by its corresponding homogeneous condition. In contrast, for
the steady-state solution we simply discarded the inconvenient nonhomogeneous
condition, and later will modify the corresponding nonhomogeneous condition in
the other subproblem to account for the failure of the steady-state solution to vanish
on that boundary. Which of these techniques is best varies with the problem, but
the basic principle is the same: Work with only one nonhomogeneous condition at
a time, so that you can exploit the superposition principle correctly.

Let us solve for V2 by separation of variables:

V2sep(x, y) = X(x)Y (y).

0 = X ′′Y + XY ′′ ⇒ − X ′′

X
= λ =

Y ′′

Y
.

The boundary condition (BC1) implies that

X ′(0) = 0 = X ′(π).

Therefore, up to a constant,

X(x) = cos nx, λ = n2.
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Now Y must be a solution of Y ′′ = n2Y that vanishes at y = 0; that is, up to a
constant,

Y (y) = sinhny if n 6= 0.

The case 0 must be treated separately: Y (y) = y. We have now taken care of three
of the four boundaries. The remaining boundary condition is nonhomogeneous, and
thus we cannot apply it to the individual separated solutions XY ; first we must
adding up the separated solutions with arbitrary coefficients:

V2(x, y) = a0y +

∞∑

n=1

an cosnx sinhny.

Now we must have

q(x) = a0b +
∞∑

n=0

an cos nx sinhnb.

This is a Fourier cosine series, so we solve for the coefficients by the usual formula:

an sinh nb =
2

π

∫ π

0

cos nx q(x) dx (n > 0).

Divide by sinhnb to get a formula for an . For n = 0 the Fourier formula lacks the
factor 2, and we end up with

a0 =
1

πb

∫ π

0

q(x) dx.

This completes the solution for V2 .

Solving for V1 is exactly the same except that we need Y (b) = 0 instead of
Y (0) = 0. The appropriate solution of Y ′′ = n2Y can be written as a linear
combination of sinhny and cosh ny, or of eny and e−ny, but it is neater to write it
as

Y (y) = sinh
(
n(y − b)

)
,

which manifestly satisfies the initial condition at b as well as the ODE. (Recall that
hyperbolic functions satisfy trig-like identities, in this case

sinh
(
n(y − b)

)
= cosh nb sinhny − sinhnb cosh ny

= 1
2e−nb eny − 1

2enb e−ny ,

so the three forms are consistent.) Again the case n = 0 is special: Y (y) = y − b.
We now have

V1(x, y) = A0(y − b) +

∞∑

n=1

An cos nx sinhn(y − b).
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At y = 0 this becomes

p(x) = −A0b −
∞∑

n=1

An cos nx sinhnb.

Thus

An = − 2

π sinh nb

∫ π

0

cos nx p(x) dx (n > 0),

A0 = − 1

πb

∫ π

0

p(x) dx.

This completes the solution for V1 and hence for v(t, x, y).

Remark: Since the boundary conditions at y = 0 and y = b refer to the
same variable, it was not really necessary to treat them separately. We could
have separated variables in the problem [(Laplace PDE) + (BC1)] satisfied by the
function V , getting

Vτsep(x, y) = cos nx Y (y), Y ′′ = n2Y.

Then we could find the general solution of this last equation,

Y (y) = an sinh ny + bn cosh ny

— or, better,
Y (y) = an sinhny + An sinhn(y − b);

write the general superposition as a sum of these over n; and then use the two
nonhomogeneous boundary conditions (BC2) to determine the constants an and An

in the summation.

This works because the nonhomogeneous conditions refer to parallel parts of
the boundary. It definitely will not work for perpendicular edges! When in doubt,
follow the injunction to deal with just one nonhomogeneity at a time.

Homogeneous problem

Next we’re supposed to solve for w ≡ u − v, which must satisfy

PDE:
∂w

∂t
=

∂2w

∂x2
+

∂2w

∂y2
,

BC1:
∂w

∂x
(t, 0, y) = 0 =

∂w

∂x
(t, π, y) ,
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BC2: w(t, x, 0) = 0, w(t, x, b) = 0,

IC: w(0, x, y) = f(x, y)− V (x, y) ≡ g(x, y).

Since there is only one nonhomogeneous condition, we can separate variables
immediately:

wsep(t, x, y) = T (t)X(x)Y (y).

T ′XY = TX ′′Y + TXY ′′.

T ′

T
=

X ′′

X
+

Y ′′

Y
= −λ.

(We know that λ is a constant, because the left side of the equation depends only
on t and the right side does not depend on t at all. By analogy with the one-
dimensional case we can predict that λ will be positive.) Since X ′′/X depends only
on x and Y ′′/Y depends only on y, we can introduce another separation constant:

X ′′

X
= −µ,

Y ′′

Y
= −λ + µ.

The boundary conditions translate to

X ′(0) = 0 = X ′(π), Y (0) = 0 = Y (b).

Thus for X we have the familiar solution

X(x) = cos mx, µ = m2.

Similarly, we must have

Y (y) = sin
nπy

b
, −λ + µ = − n2π2

b2

⇒ λ = m2 +
n2π2

b2
≡ λmn .

Then
T (t) = e−λt.

(As usual in separation of variables, we have left out all the arbitrary constants
multiplying these solutions. They will all be absorbed into the coefficients in the
final Fourier series.)

We are now ready to superpose solutions and match the initial data. The most
general solution of the homogeneous problem is a double infinite series,

w(t, x, y) =

∞∑

m=0

∞∑

n=1

cmn cos mx sin
nπy

b
e−λmnt.
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The initial condition is

g(x, y) =

∞∑

m=0

∞∑

n=1

cmn cos mx sin
nπy

b
.

To solve for cmn we have to apply Fourier formulas twice:

∞∑

m=0

cmn cos mx =
2

b

∫ b

0

sin
nπy

b
g(x, y) dy;

cmn =
2

π

2

b

∫ π

0

dx

∫ b

0

dy cos mx sin
nπy

b
g(x, y) (m > 0),

c0n =
2

πb

∫ π

0

dx

∫ b

0

dy sin
nπy

b
g(x, y).

This completes the solution for w. Now we have the full solution to the original
problem:

u(t, x, y) = w(t, x, y) + V (x, y).

Furthermore, along the way we have constructed a very interesting family of func-
tions defined on the rectangle:

φmn(x, y) ≡ cos mx sin
nπy

b
.

A few early members of the family look like this:

+ + −
−

+

+

−

sin πy
b

cos x sin πy
b cos x sin 2πy

b

(Recall that cos (0x) = 1.) The function is positive or negative in each region
according to the sign shown. The function is zero on the solid lines and its nor-
mal derivative is zero along the dashed boundaries. The functions have these key
properties for our purpose:

• They are eigenvectors of the Laplacian operator:

(
∂2

∂x2
+

∂2

∂y2

)
φmn = −λmnφmn .

• Completeness: Any function (reasonably well-behaved) can be expanded as an
infinite linear combination of them (the double Fourier series (∗)).
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• Orthogonality: Each expansion coefficient cmn can be calculated by a relatively
simple integral formula, involving the corresponding eigenfunction φmn only.

These functions form an orthogonal basis for the vector space of functions whose
domain is the rectangle (more precisely, for the space L2 of square-integrable func-
tions on the rectangle), precisely analogous to the orthogonal basis of eigenvectors
for a symmetric matrix that students learn to construct in linear-algebra or ODE
courses.

Remark: The double Fourier series raises complicated convergence questions,
which it is not feasible to study here. We can say that if g(x, y) is very smooth, then
the coefficients go to 0 fast as m or n → ∞, and everything is OK. (More precisely,
what needs to be smooth is the extension of g which is even and periodic in x and
odd periodic in y. This places additional conditions on the behavior of g at the
boundaries.) Also, if g is merely square-integrable, then the series converges in the
mean, but not necessarily pointwise. (In that case the series for g can be used for
certain theoretical purposes — e.g., inside the integrand of certain integrals — but
an attempt to add it up on a computer is likely to lead to disaster.) However, when
t > 0 the series for w will converge nicely, even if g is rough, because the exponential
factors make the terms decrease rapidly with m and n. This is a special feature of
the heat equation: Because it describes a diffusive process, it drastically smooths
out whatever initial data is fed into it.
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Fourier Transforms

So far, all our variable-separation problems have involved finite intervals. The
boundary conditions at the two ends of the intervals restricted the eigenvalues to
some discrete set, such as {n2π2/L2}. Fourier series are sums over such index sets.
When the interval is infinitely long, the boundary restriction will disappear, and
the Fourier sum will turn into an integral.

For a function on a finite interval of length 2L, we have

f(x) =

∞∑

n=−∞
cn einπx/L,

cn =
1

2L

∫ L

−L

f(x) e−inπx/L dx.

Let’s write

ωn ≡ nπ

L
.

Then

f(x) =
∑

ωn

cn eiωnx.

The numbers ωn are called “frequencies” or “wave numbers”. As L increases, the
frequencies become more closely spaced:

∆ωn ≡ (n + 1)π

L
− nπ

L
=

π

L
.

This suggests that for f defined on the whole real line, ∞ < x < ∞, all values of ω
should appear.

L = L0

L = 4L0
ω

n :

n :

4 5 8 9 12

1 2 3

To make sense of the limit L → ∞, we have to make a change of variable from
n to ω. Let

f̂(ωn) ≡ L

√
2

π
cn .
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Then

f(x) =

√
π

2

∑

ωn

1

L
f̂(ωn) eiωnx

=
1√
2π

∑

ωn

f̂(ωn) eiωnx ∆ωn ,

f̂(ωn) =
1√
2π

∫ L

−L

f(x) e−iωnx dx.

As L → ∞ the first formula looks like a Riemann sum. In the limit we therefore
expect

f(x) =
1√
2π

∫ ∞

−∞
f̂(ω) eiωx dω,

f̂(ω) =
1√
2π

∫ ∞

−∞
f(x) e−iωx dx.

Note the surprising symmetry between these two formulas! f̂ is called the
Fourier transform of f , and f is the inverse Fourier transform of f̂ . The foregoing
is not a proof that applying the two formulas in succession will take you back to
the function f from which you started; all the convergence theorems for Fourier
series need to be reformulated and reproved for this new situation. In fact, since
the integrals are improper, the function f needs to satisfy some technical conditions
before the integral f̂ will converge at all. I’ll discuss such questions briefly later,
but first let’s look at an example of how Fourier transforms are used in solving
boundary-value problems.

Laplace’s equation in the upper half-plane

Let the ranges of the variables be

−∞ < x < ∞, 0 < y < ∞.

Consider the equation

PDE:
∂2u

∂x2
+

∂2u

∂y2
= 0,

with the boundary data

BC: u(x, 0) = f(x).

This equation might arise as the steady-state problem for heat conduction in a
large plate, where we know the temperature along one edge and want to simplify

93 c© S.A.F.



the problem by ignoring the effects of the other, distant edges. It could also arise
in electrical or fluid-dynamical problems.

It turns out that to get a unique solution we must place one more condition on
u: it must remain bounded as x or y or both go to infinity. (In fact, it will turn out
that usually the solutions go to 0 at ∞.) Excluding solutions that grow at infinity
seems to yield the solutions that are most relevant to real physical situations, where
the region is actually finite. (You may sniff a hint of “boundary-layer theory” here.)
But it is the mathematics of the partial differential equation which tells us that to
make the problem well-posed we do not need to prescribe some arbitrary function
as the limit of u at infinity, as we needed to do in the case of finite boundaries.

Separating variables for this problem at first gives one a feeling of déjà vu:

usep(x, y) = X(x)Y (y) ⇒ 0 = X ′′Y + XY ′′;

− X ′′

X
= λ =

Y ′′

Y
;

write λ as ω2. The remaining steps, however, are significantly different from the
case of the finite rectangle, which we treated earlier.

If λ 6= 0, the solution of the x equation can be

X(x) = eiωx,

where any ω and its negative give the same λ. The condition of boundedness
requires that ω be real but does not further restrict it! Taking ω = 0 yields the only
bounded solution with λ = 0. Therefore, we take the X in each separated solution
to be eiωx for some real ω. The corresponding λ will be positive or zero.

Turning now to the y equation, we see that Y is some linear combination of
eωy and e−ωy. For boundedness we need the exponent to be negative, so we write

Y (y) = e−|ω|y (= e−
√

λ y)

to get an expression that’s valid regardless of whether ω is positive or negative.

We are now finished with the homogeneous conditions, so we’re ready to su-
perpose the separated solutions. Since ω is a continuous variable, “superpose” in
this case means “integrate”, not “sum”:

u(x, y) =

∫ ∞

−∞
dω c(ω) eiωxe−|ω|y.

Here c(ω) is an arbitrary function, which plays the same role as the arbitrary coef-
ficients in previous variable separations. The initial condition is

f(x) =

∫ ∞

−∞
dω c(ω) eiωx.
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Comparing with the formula for the inverse Fourier transform, we see that c(ω) =
1√
2π

f̂(ω). That is,

c(ω) =
1

2π

∫ ∞

−∞
f(x) e−iωx dx.

In other words, the solution can be written

u(x, y) =
1√
2π

∫ ∞

−∞
dω f̂(ω) eiωxe−|ω|y.

A Green function

We can get a simpler expression for u in terms of f by substituting the formula
for f̂ into the one for u. But to avoid using the letter x to stand for two different
things in the same equation, we must first rewrite the definition of the Fourier
transform using a different variable:

f̂(ω) =
1√
2π

∫ ∞

−∞
dz e−iωz f(z) .

Then

u(x, y) =
1

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dz eiω(x−z)e−|ω|y f(z).

We’ll evaluate this multiple integral with the ω integral on the inside. (This step
requires some technical justification, but that is not part of our syllabus.) The inner
integral is

∫ ∞

−∞
dω eiω(x−z)e−|ω|y =

∫ 0

−∞
dω eiω(x−z)eωy +

∫ ∞

0

dω eiω(x−z)e−ωy

=
eiω(x−z−iy)

i(x − z − iy)

∣∣∣∣
0

−∞
+

eiω(x−z+iy)

i(x − z + iy)

∣∣∣∣
∞

0

=
1

i(x − z − iy)
− 1

i(x − z + iy)

=
2y

(x − z)2 + y2
.

Thus

u(x, y) =
1

π

∫ ∞

−∞
dz

y

(x − z)2 + y2
f(z). (∗)

The function

G(x − z, y) ≡ 1

π

y

(x − z)2 + y2
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is called a Green function for the boundary-value problem we started from. It is
also called the kernel of the integral operator

u = G(f)

defined by (∗). The point of (∗) is that it gives the solution, u, as a function of the
boundary data, f . Some properties of the Green function will be pointed out in a
later homework assignment.

In principle, Green functions exist for the boundary-value problems on finite
regions which we have solved earlier. However, in those cases the G is given by an
infinite sum arising from the Fourier series, rather than the integral which expresses
G in a Fourier-transform problem.

Gaussian integrals

The Green function for the heat equation on an infinite interval can be derived
from the Fourier-transform solution. This, and also several of the homework prob-
lems from the Schaum’s Outline book, make use of a basic integral formula, which
I’ll now derive.

The integral in question is

H(x) ≡
∫ ∞

−∞
eiωx e−ω2t dω,

where t is positive.

Note first that
d

dω
e−ω2t = −2ωt e−ω2t.

This will allow us to find a differential equation satisfied by H: From the definition
we calculate

H ′(x) =

∫ ∞

−∞
iω eiωx e−ω2t dω

=
−i

2t

∫ ∞

−∞
eiωx

(
d

dω
e−ω2t

)
dω

=
+i

2t

∫ ∞

−∞

(
d

dω
eiωx

)
e−ω2t dω

=
−x

2t

∫ ∞

−∞
eiωx e−ω2t dω

= − x

2t
H(x).
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Thus
H ′

H
= − x

2t
;

lnH = − x2

4t
+ const.;

H = C e−x2/4t.

To find the constant we evaluate the integral for x = 0:

C = H(0)

=

∫ ∞

−∞
e−ω2t dω

=
1√
t

∫ ∞

−∞
e−q2

dq,

by the substitution q = ω
√

t. But it is well known that
∫ ∞

−∞
e−q2

dq =
√

π,

because its square is
∫∫

R2

e−x2

e−y2

dx dy =

∫ 2π

0

∫ ∞

0

e−r2

r dr dθ

= 2π

∫ ∞

0

e−u 1

2
du

= π.

So

C =

√
π

t
.

Therefore, we have shown that H(x) is

∫ ∞

−∞
eiωx e−ω2t dω =

√
π

t
e−x2/4t.

In particular,

G(t, x − z) ≡ 1

2π
H(x − z) =

1√
4πt

e−(x−z)2/4t

is the Green function for the one-dimensional infinite-space heat equation, which
we have now derived by Fourier-transform methods. Note also that the formula
in the box is also useful for evaluating similar integrals with the roles of x and ω
interchanged. (Taking the complex conjugate of the formula, we note that the sign
of the i in the exponent doesn’t matter at all.)
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More about Fourier Transforms

(1) The Fourier transform can be written in terms of the basic functions sinωx
and cos ωx (0 ≤ ω < ∞) in place of eiωx (−∞ < ω < ∞). In the normalization
convention of the Schaum’s Outline book, the formulas are

f(x) =

∫ ∞

0

[A(ω) cos ωx + B(ω) sin ωx] dω,

A(ω) =
1

π

∫ ∞

−∞
cos ωx f(x) dx,

B(ω) =
1

π

∫ ∞

−∞
sin ωx f(x) dx.

This is seldom done in practical calculations with functions defined on −∞ < x <
∞, except by people with a strong hatred for complex numbers.

However, the trigonometric functions do become very useful in calculations on
a half-line (semi-infinite interval) with a boundary condition at the end. The basic
argument is the same as for Fourier series: An arbitrary function on 0 ≤ x < ∞ can
be identified with its even extension to the whole real line. An even function has a
Fourier transform consisting entirely of cosines (rather than sines), and the formula
for the coefficient function can be written as an integral over just the positive half
of the line:

f(x) =

∫ ∞

0

A(ω) cos ωx dω,

A(ω) =
2

π

∫ ∞

0

cos ωx f(x) dx.

An equally common normalization convention splits the constant factor symmetri-
cally between the two formulas:

f(x) =

√
2

π

∫ ∞

0

A(ω) cos ωx dx,

A(ω) =

√
2

π

∫ ∞

0

f(x) cos ωx dx.

Still other people put the entire factor 2
π into the A 7→ F equation. In any case, A

is called the Fourier cosine transform of f , and it’s often given a notation such as
f̂c(ω) or FC(ω).

Correspondingly, there is a Fourier sine transform related to odd extensions
of functions. The sine transform arises naturally in problems where the functions
vanish at the boundary (x = 0), and the cosine transform is appropriate when the
derivative vanishes there.
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For example, let’s solve the heat equation for a semi-infinite rod with a constant
temperature at the end:

0 < x < ∞, 0 < t < ∞,

PDE:
∂u

∂t
=

∂2u

∂x2
,

BC: u(t, 0) = T,

IC: u(0, x) = f(x).

A steady-state solution in this case is obviously u(t, x) = T , so let’s assume that
that constant has already been subtracted off, and take T = 0. (So f is the true
initial temperature distribution minus T .)

The usual separation of variables obviously would lead to

X ′′ = −λX, T ′ = −λT,

and the BC together with the usual boundedness assumption gives

X(x) = sin ωx, ω > 0, λ = ω2.

(Negative ω’s give the same functions and hence are redundant.) Thus

u(t, x) =

∫ ∞

0

dω B(ω) sinωx e−ω2t.

And so

f(x) =

∫ ∞

0

dω B(ω) sinωx,

or

B(ω) =
2

π

∫ ∞

0

dx f(x) sin ωx,

according to the sine transform formulas.

From these results one can easily calculate a Green function for u in terms of f :

G(t, x, z) =
1√
4πt

e−(x−z)2/4t − 1√
4πt

e−(x+z)2/4t.

It turns out to be a combination of the heat Green function for the whole real line
with the heat Green function for a fictitious “image” source in the unphysical region,
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x < 0. The terms are subtracted so that the total will satisfy the homogeneous
Dirichlet boundary condition at x = 0. This “method of images” is a very efficient
method of solving boundary value problems, when it applies.

(2) The shortest possible summary of the subject so far:

Data on finite intervals ⇒ Fourier series (sums);

Data on infinite intervals ⇒ Fourier transforms (integrals).

To elaborate further,

Dirichlet BC at 0 (the function vanishes) ⇒ sines;

Neumann BC at 0 (the derivative vanishes) ⇒ cosines;

No restriction at 0 (e.g., periodic case) ⇒ both sines and cosines, or
complex exponentials.

All this assumes that the basic ODE which arises from the separation of vari-
ables is X ′′ = −λX . More complicated equations have more complicated eigen-
functions, with related new types of sum or integral expansions. (More about this
later.)

(3) Convergence theorems: First, let’s state the generalization to Fourier
transforms of the pointwise convergence theorem for Fourier series. To get a true
theorem, we have to make a seemingly fussy, but actually quite natural, technical
condition on the function: Let’s define a function with domain (−∞,∞) to be
piecewise smooth if its restriction to every finite interval is piecewise smooth. (Thus
f is allowed to have infinitely many jumps or corners, but they must not pile up in
one region of the line.) The Fourier transform is defined by

f̂(ω) ≡ 1√
2π

∫ ∞

−∞
f(x) e−iωx dx.

Pointwise convergence theorem: If f(x) is piecewise smooth, and

∫ ∞

−∞
|f(x)| dx < ∞

(f is absolutely integrable), then:

a) f̂(ω) is continuous.

b) f̂(ω) → 0 as |ω| → ∞ (but f̂ is not necessarily absolutely integrable itself).
(This is a new version of the Riemann–Lebesgue theorem.)
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c) The inverse Fourier transform

1√
2π

∫ ∞

−∞
f̂(ω) eiωx dω

converges pointwise to 1
2 [f(x+) + f(x−)] (just like Fourier series).

The next theorem treats the variables x and ω on a completely symmetrical
basis.

Mean convergence theorem: If f(x) is sufficiently smooth to be integrated,
and ∫ ∞

−∞
|f(x)|2 dx < ∞

(f is square-integrable), then:

a) f̂(ω) is also square-integrable. (The integral defining f̂(ω) may not converge
at every point ω, but it will converge “in the mean”, just like the inversion
integral discussed below.)

b) A Parseval equation holds:
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̂(ω)|2 dω.

(If you define f̂ so that the 2π is kept all in one place, then this formula will
not be so symmetrical.)

c) The inversion formula converges in the mean:

lim
Λ→∞

∫ ∞

−∞
dx |f(x)− fΛ(x)|2 = 0

where

fΛ(x) ≡ 1√
2π

∫ Λ

−Λ

f̂(ω) eiωx dω.

(4) The Fourier transform of f ′ is iω times that of f (assuming, of course, that
f ′ is “nice” enough for its transform to be defined). This can be seen either by
differentiating

f(x) =
1√
2π

∫ ∞

−∞
f̂(ω) eiωx dω

with respect to x, or by integrating by parts in

f̂ ′ (ω) =
1√
2π

∫ ∞

−∞
f ′(x) e−iωx dx.

Similarly, differentiation with respect to ω corresponds to multiplication by
−ix.
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(5) This differentiation property can be used to streamline the process of solving
a PDE by Fourier transforms. So far I have taught you to find separated solutions
eiωx · · ·, superpose them, and then calculate the coefficient function as the Fourier
transform of the initial or boundary data, f . The method preferred by many people
is to start by taking the Fourier transform of the entire solution, u:

û(t, ω) =
1√
2π

∫ ∞

−∞
dx e−iωx u(t, x).

The result is an ordinary differential equation in t (or whatever the other variable
is), which can be easily solved.

To demonstrate this, let’s return to the example of Laplace’s equation in the
half-plane:

−∞ < x < ∞, 0 < y < ∞,

PDE:
∂2u

∂x2
+

∂2u

∂y2
= 0,

BC: u(x, 0) = f(x),

u(x, y) bounded. Apply the Fourier transform to both equations. By property (4),
(PDE) becomes

−ω2û(ω, y) +
d2

dy2
û(ω, y) = 0.

(BC) transforms to

û(ω, 0) = f̂(ω).

Treating ω as a constant, we find the solution to the DE

û(ω, y) = c1e
ωy + c2e

−ωy,

but the requirement of boundedness forces c1 = 0 if ω > 0 and c2 = 0 if ω < 0.
This can be written in a unified equation as

û(ω, y) = c e−|ω|y.

Now we remember that c may be a function of ω; and in fact the boundary condition
implies that c(ω) = f̂(ω). Thus

û(ω, y) = f̂(ω)e−|ω|y,

and hence

u(x, y) =
1√
2π

∫ ∞

−∞
dω eiωx f̂(ω) e−|ω|y.
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Of course, this is the same answer we found before.

This technique can be applied in this simple way only to problems where the
domain of x is the whole real line. Although we aren’t explicitly writing down a
separation of variables, we are using our prior knowledge that separation of vari-
ables would lead to a full Fourier transform, to which the differentiation property
(4) applies. It is possible to treat problems on finite or semi-infinite domains by
variations of this method. (In this context the list of Fourier coefficients {cn} is
called a “finite Fourier transform”.) But the differentiation property must then be
modified to take account of the boundary data, and also the difference between
sines and cosines. Being careless about these points can easily lead to mistakes —
especially if the appropriate periodic or even/odd extension of the data function
is discontinuous at the endpoint! — and since we do not have time to study the
procedure carefully in this course, it seems safer to avoid it entirely.

(6) Relation to the Laplace transform: Suppose f(x) = 0 for x < 0.
Then

f̂(ω) =
1√
2π

∫ ∞

0

f(x) e−iωx dx.

Recall that the Laplace transform of f is

F (s) =

∫ ∞

0

f(x) e−sx dx.

Allow s to be complex:

s = σ + iω, σ and ω real.

Then

F (s) =

∫ ∞

0

f(x) e−σx e−iωx dx

=
√

2π × Fourier transform of f(x)e−σx (σ fixed).

For “most” f ’s, f(x)e−σx will be square-integrable if σ is sufficiently large,
even if f itself is not square-integrable (e.g., f = polynomial for x > 0). To attain
this result it was crucial that we cut f off below x = 0; when we multiply by e−σx,
σ > 0, what we gain at x = +∞ we lose at −∞. The Laplace transform (with
time in the role of x) is useful for solving initial-value problems, where the data and
solution functions may not fall off to 0 as the time approaches +∞, but negative
values of time are not of interest. (In particular, the Laplace transform with respect
to time can be applied to nonhomogeneous boundary data that depend on time, so
that the steady-state solution technique does not apply.)
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The Fourier inversion formula for fe−σx says

f(x)e−σx =
1

2π

∫ ∞

−∞
F (σ + iω) eiωx dω,

or

f(x) =
1

2π

∫ ∞

−∞
F (σ + iω) e(σ+iω)x dω.

In the exponent we recognize the complex variable s ≡ σ + iω. If we do a formal
integration by substitution, taking ds = i dω, we get

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s) esx ds.

In courses on complex analysis (such as Math. 407 and 601), it is shown that
this integral makes sense as a line integral in the complex plane. It provides an
inversion formula for Laplace transforms. Remember that in Math. 308 no such
formula was available; the only way to invert a Laplace transform was to “find it
in the right-hand column of the table” — that is, to know beforehand that that
function can be obtained as the direct Laplace transform of something else. The
complex analysis courses also provide techniques for evaluating such integrals, so the
number of problems that can be solved exactly by Laplace transforms is significantly
extended.

.....

.....

.....

.....

.....

.....

.....

.....

...............................

...........................

ω = Im s

σ = Re s

σ =
const.

In short, the Laplace transform is really the Fourier transform, extended to
complex values of ω and then rewritten in a notation that avoids complex numbers
— until you want a formula to calculate the inverse transform, whereupon the
complex numbers come back with a vengeance.

(7) Convolutions, autocorrelation function, and power spectrum:

In this course we emphasize the use of the Fourier transform in solving partial
differential equations. The Fourier transform also has important applications in
signal processing and the analysis of data given as a function of a time variable.
The subject is presented with that “EE flavor” in many books, such as the Harcourt
Brace Jovanovich College Outline Series competition to our Schaum’s Outline book:
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Applied Fourier Analysis by H. P. Hsu. Here we take a quick look at some of the
tools of that trade.

The Fourier transform of a product of functions is not the product of their
Fourier transforms! Instead, it is easy to show that that transform is a certain
integral involving the transforms of the two factors. This fact is most often used in
the inverse direction, so that is how I’ll state the formula:

Convolution Theorem: The inverse Fourier transform of f̂1(ω)f̂2(ω) is

1√
2π

∫ ∞

−∞
f1(u)f2(x − u) du.

This integral is called the convolution of f1 and f2 . Note that

f1 ∗ f2 = f2 ∗ f1 ,

although that is not immediately visible from the integral formula.

This theorem is proved on p. 86 of the Schaum book. However, the proof
contains a misprint:

∣∣∣∣
1 0
0 1

∣∣∣∣ should be

∣∣∣∣
1 0
−1 1

∣∣∣∣ .

By manipulating the formulas defining the Fourier transform and its inverse,
it is easy to show the following:

Theorem:

(a) If f(x) is real-valued, then f̂(ω)* = f̂(−ω).

(b) If g(x) ≡ f(−x), then ĝ(ω) = f̂(−ω).

(c) If f(x) is real-valued and g(x) ≡ f(−x), then ĝ(ω) = f̂(ω)*.

Now take f̂1 = f̂ and f̂2 = f̂* in the convolution theorem and apply the
theorem just stated:

Corollary: If f(x) is real-valued, then the Fourier transform of |f̂(ω)|2 is

1√
2π

∫ ∞

−∞
f(u)f(u − x) du.

This integral is called the autocorrelation function of f , because it measures to
what extent values of f at arguments displaced a distance x tend to coincide. The
function |f̂(ω)|2 is called the power spectrum of f ; it measures the extent to which
the signal in f is concentrated at frequency ω.
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