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1 Introduction

In this guide, the reader will find a summary of basic option pricing theory1

along with examples of option pricing functions2 implemented in S+FinMetrics.
A derivative security is a financial instrument whose value is derived from

the values of other underlying variables, such as the prices of traded assets.
Option contracts are derivative securities that give the holder the right, but
not the obligation, to engage in a future transaction on some underlying asset.
Once the holder of the option decides to exercise the option, the party that sold
(wrote) the option must fulfill the terms specified in the contract.

1.1 Terminology

Amount and Class of underlying asset: e.g. 100 shares of XYZ Corp.
Strike Price / Exercise Price: the price at which the underlying transaction

will occur once the holder exercises the option.
Expiration / Maturity Date: the last date when the option can be exer-

cised.
Option Price / Premium: the price the holder of the option paid for the

option, that is, for the right to buy or sell a security at the strike price in
the future.

Settlement Terms: for example, whether the writer must deliver the under-
lying asset or may transfer the equivalent cash amount.

Call Option: gives the holder the right to buy the underlying asset by the
expiration date for the strike price.

Put Option: gives the holder then right to sell the underlying asset by the
expiration date for the strike price.

Option Style

Vanilla Options
American Option: might be exercised any day on or prior to ex-

piration date.
European Option: might be exercised only on the expiration date.

Exotic Options: more unusual styles in which the pay-off structure and
exercise timing are different from those of the vanilla options.

1.2 Option Positions

The holder of an option is said to be in a long position, and the writer of an
option contract is said to be in a short position. On the maturity date, the
payoff to a holder of a call option is max(ST −K, 0), and the payoff to a holder
of a put is max(K−ST , 0), where ST is the market price of the underlying asset
on the maturity date, and K is the strike price (for details see section 2).

1For a detailed exposition of option pricing theory the reader is referred to Hull (2005)
2For a collection of option pricing formulas the reader is referred to Haug (2006)
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The diagrams in Figure 1 are displaying various payoffs for European call
and put options with strike price K = 100. The S+FinMetrics code generating
the diagrams uses the bsmEU function to be introduced in Example 1. (The
Appendix gives the code for generating the plot.)
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Figure 1: Payoffs as functions of underlying asset price for different option
positions with strike price K = 100. The Appendix gives the code for generating
the plot.
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2 Valuation of Vanilla Options

In general, the price of vanilla options depends on the following factors:

• The current market price of the underlying asset, S0.
• The strike price of the option, K.
• The time to expiration, T , together with any restrictions on when exercise

may occur.
• An estimate of the future volatility of the underlying asset’s price, σ.
• The cost of carry, b, where b = r − q (interest rate minus the dividend

yield or other positive cash flows). The cost of carry is the cumulative
cost required to hold a position in the underlying security.

Figure 2 shows the influence of these factors on the price of vanilla call options.
The diagrams are drawn for default values of S0 = 100, K = 100, T = 0.5, r =
0.05, b = 0.05, σ = 0.2. If an option were exercised immediately, its value would
be determined by the strike price and the price of the underlying asset. This is
the intrinsic value of an option. For a call, it is defined as max(S0 −K, 0), and
for a put as max(K − S0, 0).

As long as the intrinsic value is positive, the option is said to be in-the-
money. In the absence of transaction costs, all in-the-money options will be
exercised by the expiration date. If S0 = K, the option is said to be at-the-
money. Options that do not fall into either one of the previous two categories
are out-of-the-money.

If the option price exceeds its intrinsic value, it is said to have time value:
Time V alue = Option Price− Intrinsic V alue. More specifically, an option’s
time value captures the possibility that the option might increase in value due
to volatility in the underlying asset. The option’s time value depends on the
time until the expiration date and the volatility of the underlying instrument’s
price. The panels in the top row of Figure 2 illustrate the price of a call option
with six months to expiration. The option price increases with the spot price
of the underlying asset, and decreases with the strike price. Because there are
six months to expiration, the option has time value: as apparent from both top
panels, an at-the-money option with S0 = 100, K = 100 has positive price.

In the absence of discrete cash flows from the underlying security, options
become more valuable as the time to maturity increases. The longer the time to
expiration, the greater the probability that an out-of-money European option
will end up in-the-money. If there is more time left until the expiration date,
the holder of an American option has more exercise opportunities, which in turn
implies higher option value. This positive relationship between time to maturity
and option price is illustrated in the third panel of Figure 2.

Higher volatility of the underlying asset price results in a higher option price.
The larger volatility implies that an out-of-money option may end up deep in-
the-money. However, the downside risk is limited for the option holder, because
the option does not have to be exercised, that is, it does not matter how “deep”
out-of-the-money the option is. This positive relationship between the volatility
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Figure 2: Call option sensitivity to various parameters. The Appendix gives the
code for generating the plot.
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of the underlying asset price and option price is illustrated in the fourth panel
of Figure 2.

The higher is the cumulative cost required to hold a position in the under-
lying security, the larger is the possible saving by buying a call option instead.
Also, high interest rates reduce the present value of the strike price. Therefore,
high interest rates and low dividends result in high call option value. This pos-
itive relationship between the cost of carry (b = r − q) and the price of a call
option is illustrated in the bottom left panel of Figure 2.

In the bottom right panel of Figure 2, dividends are held constant, and the
interest rate is rising, which also implies an increasing call option value. Notice
that if the positive cash flows to the holder of the underlying security exceed
the interest rate, the cost of carry becomes negative.

2.1 Put Call Parity

Put-call parity defines a relationship between the price of a European call option
and a European put option with identical strike price and expiration date on
the same underlying asset. In the absence of arbitrage opportunities, put-call
parity implies a unique price for the put option if the price of the call option is
known, or vice versa.

First, consider a portfolio that consists of one call option and an amount of
cash equal to Ke−rT invested at the risk free interest rate r. On the expiration
date, this portfolio has value:

• K if ST ≤ K (the call has value 0 and the invested cash has value K).
• ST if ST ≥ K (the call has value (ST − K) and the invested cash has

value K).

Second, consider a portfolio that consists of one put option and one unit of the
underlying asset. On the expiration date, this portfolio has value:

• K if ST ≤ K (the put has value (K − ST ) and the asset has value ST ).
• ST if ST ≥ K (the put has value 0 and the asset has value ST ).

Notice that both portfolios have the same value at maturity:

max(ST ,K)

Because the options cannot be exercised before the expiration date, no arbitrage
implies that these two portfolios must have the same value today.

c + Ke−rT = p + S0

where c and p are the values of the call and put options today, respectively.
Using the above relationship, for a given price of the call option, the underlying
asset price, and the risk free interest rate, one can compute the implied price of
the put option.

7



Example 1 Put-Call Parity

Consider two European call option with six months to expiry. The underlying
stock price is $100, the strike price on the first one is $100, and on the second
one is $110. The risk free interest rate is 5% per year, and volatility is 20%. The
following S-PLUS code generates the price of the corresponding put option. The
first input argument of the bsmEUParity function is a European option object
of class opEuOption. This can be created by another European option pricing
function, such as bsmEU.

The bsmEU function computes the price of European call and put options
using the Black Scholes formula to be described in section 2.3. It takes the
following arguments:

spot: A numeric vector representing the current price of the underlying asset.
strike: A numeric vector representing the exercise price of the option.
time: A numeric vector representing the time to expiration of the option, ex-

pressed in years.
intRate: A numeric vector representing the annualized risk-free interest rate.
sigma: A numeric vector representing the annualized asset price standard de-

viation.
costCarry: A numeric vector representing the cost-of-carry rate, defined as

b = r − q. Notice that, if the positive cash flows to the holder of the
underlying security exceed the interest rate, the cost of carry becomes
negative. If missing, the interest rate will be assigned as the cost-of-carry
rate.

type: (optional) The type of the option as call (default) or put.

The length of the numeric vectors above must be of equal length to the number
of options to be priced unless one value is to be used for all options. The bsmEU
function returns an object of class opEuOption, which is a list specifying the
spot price, strike price, time to maturity, interest rate, volatility, cost of carry,
option type and price.

> call.opt.obj <- bsmEU(spot = 100, strike = c(100, 110),
+ time = 0.5, intRate = 0.05, costCarry = 0.05, sigma = 0.2,
+ type = "call")

> call.opt.obj

2 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 0.05 6.889
[2,] 100 110 0.5 0.05 0.2 0.05 2.906

Valuation method -- black-scholes
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Once the European option object of class opEuOption has been created, it can
be passed to bsmEUParity. The second input argument is the type of the option
whose price is to be determined by the put-call parity.

> bsmEUParity(call.opt.obj, type = "put")

2 European put(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 0.05 4.42
[2,] 100 110 0.5 0.05 0.2 0.05 10.19

Valuation method -- black-scholes

Similarly to bsmEU, the bsmEUParity function also returns a European option
object of class opEuOption.
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2.2 Valuation of Options in Discrete Time:
The Binomial Option Pricing Model

The option pricing model developed by Cox, Ross, and Rubinstein (CRR) mod-
els the dynamics of the option’s theoretical value f in discrete time. The model
consists of a binomial tree of possible future underlying asset prices S over the
life of the option.

2.2.1 Risk Neutral Valuation

The simplest binomial tree is the one-step tree with two states of nature at the
end of the period. Assume that the length of period is δt, and that the asset
price can either move up to S0u, where u > 1, or down to S0d, where d < 1.
If the asset price moves up, the payoff from the option is fu; if the asset price
moves down, the payoff from the option is fd.

Next, imagine a portfolio consisting of a long position in ∆ units of the
underlying asset, and a short position in one option. If the asset price moves
up, the value of the portfolio at the end of the period is S0u∆ − fu; if the
asset price moves down, the value of the portfolio at the end of the period is
S0d∆− fd.

The portolio is riskless if the payoffs in the two possible states of nature are
equal:

S0u∆− fu = S0d∆− fd

which implies

∆ =
fu − fd

S0u− S0d

That is, the number of units of the underlying asset that makes the portfolio
risk-neutral is ∆. Correspondingly, this risk-neutral portfolio is discounted at
the risk-free interest rate. Its present value is

(S0u∆− fu)e−rδt

which must equal the cost of setting up the portfolio

(S0u∆− fu)e−rδt = S0∆− f

This implies
f = e−rδt(pfu + (1− p)fd)

where

p =
erδt − d

u− d

is the risk-neutral probability of an upward movement of the underlying asset
price.

In general, the risk-neutral probability of an upward movement is different
from the real world (actual) probability of an upward movement. The real
world probability of future movements in the price of the underlying asset is

10



already incorporated into the asset price. Therefore, it does not have to be
taken into account again when valuing the option in terms of the asset price as
above. Thus, the value of an option is its expected payoff in a risk neutral world
discounted at the risk-free rate.

2.2.2 Matching the Asset and the Tree

To calculate the parameters p, u and d, one needs three conditions. In the risk-
neutral world, the expected return on the asset is the risk free interest rate r.
One can match the expected price of the asset with the expected price on the
binomial tree at the end of a very short time period δt:

S0e
rδt = pS0u + (1− p)S0d (1)

or
erδt = pu + (1− p)d

which gives

p =
erδt − d

u− d
(2)

Next, we match the variance of the return on the asset with the variance on the
binomial tree:

σ2δt = pu2 + (1− p)d2 − [pu + (1− p)d]2

By substituting for p, and ignoring the quadratic and higher order terms of δt
in the power series approximation of eµδt, and imposing the third condition

u =
1
d

we get the values of u and d proposed by Cox, Ross, and Rubinstein (1979)

u = eσ
√

δt

d = e−σ
√

δt

If there are any positive cash flows, q, to the owner of the underlying asset, the
asset must on average — in a risk neutral world — provide a return b = r − q.
Therefore, equation (1) becomes:

S0e
bδt = pS0u + (1− p)S0d

so that
ebδt = pu + (1− p)d

which gives

p =
ebδt − d

u− d
(3)
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2.2.3 Binomial Lattice

The third condition u = 1/d enables us to create a binomial tree centered at
the initial asset price whose nodes recombine. That is, we get to the same price
S0 after an up-down move S0ud and a down-up move S0du. Therefore, at time
δt, there are 2 possible asset prices S0u, S0d; at time 2δt, there are 3 possible
asset prices S0u

2, S0, S0d
2; and so on. At time iδt, we have to consider i + 1

asset prices
S0u

jdi−j , j = 0, 1, . . . , i

On the expiration date, the value of the option is equal to its intrinsic value.
The value of the option on each node at time T − δt can be calculated as the
expected value at expiration in a risk neutral world discounted at the risk-free
rate for a time period δt. Similarly, the value of the option on each node at time
T − 2δt can be calculated as the expected value at time T − δt in a risk neutral
world discounted at the risk-free rate for a time period δt.

Working backward through the whole tree, we get the value of the option at
time zero. Note that the value of an American option at any given node also
depends on its early exercise (intrinsic) value. If early exercise is preferred on
the given node, the option’s intrinsic value is considered instead of its discounted
expected value.

2.2.4 Algorithm for Binomial Option Pricing

Define fi,j as the the value of the option at the (i, j) node, where 0 ≤ i ≤ N is
the index in the time dimension, and 0 ≤ j ≤ i is the index in the asset price
dimension. The price of the asset at the (i, j) node is S0u

jdi−j . The value of
an American call option on the expiration date is max(K − ST , 0), therefore

fN,j = max(S0u
jdN−j −K, 0), j = 0, 1, . . . , N

Assuming no early exercise at (N − 1)δt, risk neutral valuation gives

fN−1,j = e−rδt[pfN,j+1 + (1− p)fN,j ], j = 0, 1, . . . , N − 1

for time period (N − 1)δt, or

fi,j = e−rδt[pfi+1,j+1 + (1− p)fi+1,j ]

for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ i. When early exercise is taken into account,
the discounted expected value of the option above has to be compared to its
intrinsic value, and the value of the option is

fi,j = max{S0u
jdN−j −K, e−rδt[pfi+1,j+1 + (1− p)fi+1,j ]}

Working backward this way, the value of the option at time i · δt captures the
effect of early exercise possibilities at all subsequent times. In the limit, as the
length of time subintervals δt tends to zero and the number of subintervals N
tends to infinity, an exact value for an American call is obtained.
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Again, if there are any positive cash flows, q, to the owner of the underlying
asset, the asset must on average — in a risk neutral world — provide a return
b = r−q. Therefore, the risk-neutral probability of an upward movement of the
underlying asset price is given by equation (3) instead of equation (2).

Example 2 Binomial Tree

Consider an American call option with six months to expiry. The underlying
stock price is $100, the strike price is $100, the risk free interest rate is 5%
per year, the dividend yield is 8% per year, and the volatility is 20%. First,
calculate a 5 step tree of asset prices, displayed in figure 3.

The opBinomTree function computes the asset prices in the binomial tree
using risk-neutral valuation. The opBinomTree function requires the following
input arguments in addition to the parameters of the bsmEU function described
in Example 1 (except type):

steps: A numeric value representing the number of steps to be used in the
construction of the binomial tree. Defaults to 1000 steps. Note that the
step size is determined by time/steps.

method: (optional) A character string that indicates whether the binomial tree
to be built is an additive (addi) or multiplicative (multi) recombining
tree. The tree constructed using the additive method reflects that the
underlying asset follows an arithmetic Brownian motion, while a tree con-
structed using the multiplicative method assumes that the underlying as-
set follows a geometric Brownian motion. Defaults to addi. All options
to be priced must use the same method.

nSteps: (optional) A sequence of numbers of equal length to the number of
time steps. It is used to label the columns of the binomial tree. If mising,
the column labels will start from step 0 up to the total number of steps.

The function opBinomTree returns a list of asset prices at each step in the bino-
mial tree along with the time, probability of upward move, time to expiration,
time steps, step size, and method used to compute the prices.

> n.steps <- 5
> asset.tree <- opBinomTree(spot = 100, time = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.08, method = "multi",
+ sigma = 0.2, steps = n.steps)
> values <- asset.tree$prices != 0
> plot(rep(1:(n.steps + 1), 1:(n.steps + 1)),
+ asset.tree$prices[values], xlab = "Step",
+ ylab = "Asset Price", labex = 2)
> text(rep(1:(n.steps + 1), 1:(n.steps + 1)),
+ asset.tree$prices[values] + 2,
+ round(asset.tree$prices[values], dig = 2))
> title(main = "Binomial Tree")

13
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Figure 3: Binomial tree of asset prices.

Second, calculate the option price as the present value of the expected cash flow.
The opBinomCashFlow function computes the price of European and American
call and put options based on the binomial tree built for the underlying asset.
It requires the following input arguments:

binomTree: A list object representing a binomial tree built by another function
such as opBinomTree.

strike: A numeric value representing the exercise price of the option.
intRate: A numeric value representing the annualized risk-free interest rate.
type: (optional) A character string representing the type of the option as either

call (default) or put.
euroAmFlag: (optional) A character string representing the type of the option

as either the default type as a European option (euro) or an American
option (am).

method: (optional) A character string representing the method used to price the
option. The default method induction uses iterative backward induction
while AD uses the Arrow Debreu method. The binomial tree constructed
by opBinomTree does not have Arrow Debreu information in the tree and
therefore this method cannot be implemented.

> opBinomCashFlow(asset.tree, intRate = 0.05,
+ strike = 100, type = "call", euroAmFlag = "am")
[1] 5.204593
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The opBinomCashFlow function returns the price of the option computed by the
binomial cashflow tree. It can only price one option at a time. For a consistency
check, one can compare this result with the one using the bsmAMBAW or bsmAMBS
function in section 2.5. Increasing the number of steps in the tree increases the
precision of the results. For example, steps = 50 in the opBinomTree function
brings the option price down to 4.915162.
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2.3 Valuation of European Options in Continuous Time:
The Black-Scholes-Merton Model

Over a very short period of time, the price of an option is perfectly correlated
with the price of the underlying asset; therefore, a risk neutral portfolio, con-
sisting of the option and the underlying asset, can be set up. By employing
the technique of constructing such a risk neutral portfolio that replicates the
returns of holding an option, Fisher Black, Myron Scholes, and Robert Merton
produced a closed-form solution for a European option’s theoretical price in
continuous time.

2.3.1 Brownian Motion

In a Markov process, the state of the process in the future is conditionally
independent of the history of the process in the past. That is, the conditional
probability distribution of the process in the future depends only on the current
state. Let Xn be a random variable representing the state at time n. {Xn} is a
Markov process if

E(Xn+1|Xn, . . . , X1) = E(Xn+1|Xn)

A Markov process with mean change zero is a martingale, that is, a stochastic
process such that the conditional expected value of an observation at some
future time, given all the observations up to present, is equal to the observation
at present:

E(Xn+1|Xn, . . . , X1) = Xn

A Markov process with mean change zero and a variance rate of 1.0 per time
period is called a Wiener process. Formally, a variable W follows a Wiener
process if its increments δW are independent, and

δW = ε
√

δt, where ε ∼ N(0, 1)

In general, asset price changes have nonzero means and nonunity variances. To
account for these specifics, the Wiener process can be replaced by a general-
ized Brownian motion consisting of a deterministic drift term and a stochastic
diffusion term:

dX = a dt + b dW (4)

where a and b > 0 are constants.
Even more flexibility can be achieved by considering an Itô process. The

underlying asset’s price, S, is said to follow an Itô process if the expected drift
rate, a(S, t), and variance rate, b(S, t)2, depend on S itself and time:

dS = a(S, t) dt + b(S, t) dW (5)

The generalized Brownian motion with constant coefficients a and b in (4) is
normally distributed, which means that there is some probability of observing
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negative asset prices. In addition, the increments of (4) have constant expec-
tation, which implies that the incremental percentage change of asset prices, or
the percentage rate of return on the asset, would be declining as the asset price
rises. To avoid such problems, asset prices S are modeled as variables following
a geometric Brownian motion, eX , with X following a generalized Brownian
motion with constant coefficients defined in equation (4).

Asset prices, S, are said to follow a geometric Brownian motion if they satisfy
the following stochastic differential equation:

dS = µS dt + σS dW (6)

Equation (6) is a specific form of (5) describing an Itô process. The returns on
the asset can be written as

dS

S
= µ dt + σ dW

that is, for short time increments δt

δS

S
∼ N(µ δt, σ δW ) = N(µ δt, σ

√
δt)

where, in line with the assumptions of the Black-Scholes-Merton model, µ is the
constant expected rate of return on the asset, and σ is the constant volatility of
the asset price.

2.3.2 Itô’s Lemma

The price of an option f(S, t) depends on the underlying asset’s price (a stochas-
tic variable) and time. According to Itô’s lemma, a function G of an Itô process
S and time t follows the process

dG(S, t) =
(

∂f

∂S
a +

∂f

∂t
+

1
2

∂2f

∂S2
b2

)
dt +

∂f

∂S
b dW (7)

In other words, the process for the option price can be written as

df =
(

∂f

∂S
µS +

∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

)
dt +

∂f

∂S
σS dW (8)

Thus, f also follows an Itô process, with drift rate

∂f

∂S
µS +

∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

and variance rate (
∂f

∂S

)2

σ2S2

Note, both S and f are affected by the same source of uncertainty, dW .
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2.3.3 The Lognormal Property of Asset Prices

In the Black-Scholes-Merton model, the asset price S is assumed to follow a
geometric Browninan motion described by equation (6) and to have a lognormal
distribution. The stochastic process followed by lnS can be derived by using
Itô’s lemma. Define

G = ln S

It follows that
∂G

∂S
=

1
S

,
∂2G

∂S2
= − 1

S2
,

∂G

∂t
= 0

Substituting these values into Itô’s lemma in equation (7) gives the process
followed by lnS:

d lnS =
(

µ− σ2

2

)
dt + σ dW

Thus, lnS follows a generalized Brownian motion with constant drift rate µ− σ2/2
and constant variance rate σ2. The change in lnS is normally distributed:

lnST − lnS0 ∼ N

[(
µ− σ2

2

)
T, σ

√
T

]
where ST is the stock price at a future time T , and S0 is the stock price at
time 0. The drift rate µ − σ2/2 equals the expected value of the continuously
compounded rate of return.

2.3.4 The Black-Scholes-Merton Differential Equation

By choosing a risk-neutral portfolio of the option and the underlying asset, the
Wiener process can be eliminated from equation (6) and (8). The portfolio will
consist of

• short 1 option.
• long ∂f/∂S units of the underlying asset.

The value of the portfolio is

Π = −f +
∂f

∂S
S

The change in the value of the portfolio, dΠ, in an small time interval, dt, is

dΠ = −df +
∂f

∂S
dS

After substituting equation (6) and (8), for dS and df respectively, we get

dΠ =
(
−∂f

∂t
− 1

2
∂2f

∂S2
σ2S2

)
dt
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Because this equation does not involve dW , the portfolio must be riskless during
the time interval dt. The no-arbitrage argument implies that the portfolio must
earn the risk free interest rate. Therefore

dΠ = rΠdt

where r is the risk free interest rate. Substituting for Π and dΠ, we get(
∂f

∂t
+

1
2

∂2f

∂S2
σ2S2

)
dt = r

(
f − ∂f

∂S
S

)
dt

so that
∂f

∂t
+ rS

∂f

∂S
+

1
2

∂2f

∂S2
σ2S2 = rf

This is the Black-Scholes-Merton partial differential equation. Its solution de-
pends on the boundary conditions. At the expiration date, the boundary con-
dition of a European call option is

f = max(ST −K, 0)

and for a European put option is

f = max(K − ST , 0)

The Black-Scholes formulas for the time zero prices of European call and put
options on a non-dividend-paying asset are

c = S0Φ(d1)−Ke−rT Φ(d2)

p = Ke−rT Φ(−d2)− S0Φ(−d1)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√

T

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√

T
= d1 − σ

√
T

and the function Φ(·) is the cumulative distribution function for a standard
normal random variable.

2.3.5 The Generalized Black-Scholes-Merton Formula

When options on dividend paying stock, futures, or currency options are being
analyzed, the cost of holding the underlying asset, the cost of carry b, has to be
taken into account . The generalized Black-Scholes-Merton formula incorporates
these cases. The formulas for the prices of European call and put options are

c = S0e
(b−r)T Φ(d1)−Ke−rT Φ(d2)

p = Ke−rT Φ(−d2)− S0e
(b−r)T Φ(−d1)
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where

d1 =
ln(S0/K) + (b + σ2/2)T

σ
√

T

d2 =
ln(S0/K) + (b− σ2/2)T

σ
√

T
= d1 − σ

√
T

Depending on the underlying asset, the cost of carry, b, will take on the following
values:

• b = r gives the Black Scholes (1972) pricing formula for an option on a
non-dividend paying stock.

• b = r − q gives the Merton (1973) pricing formula for an option paying
dividend yield q.

• b = r gives the Black (1976) pricing formula for futures options.
• b = r − rf gives the Garman and Kohlhagen (1983) pricing formula for

currency options with foreign risk-free interest rate rf .

Besides the pricing function bsmEU, based on the generalized Black-Scholes-
Merton formula involving the of carry, S+FinMetrics offers further functions
that are tailored to deal with the various cases mentioned above. They are listed
in Table 1.

Name Description
bsmEU European Option Pricing with the Generalized BSM

Formula
bsmStockEU Pricing function tailored for European Stock Options
bsmFuturesEU Pricing function tailored for European Futures Op-

tions
bsmFXEU Pricing function tailored for European Foreign Ex-

change Options

Table 1: List of S+FinMetrics functions for pricing vanilla European put and
call options.

In the following example, the currency options are first priced with the
bsmFXEU function and then with the bsmEU function.

Example 3 Currency Options

Consider two European call options on the British Pound with six and twelve
months to expiry respectively. The exchange rate is 1.5$/£. The strike price
on the first option is 1.5$/£, and on the second 1.6$/£. The US risk free
interest rate is 5% per year, the UK risk free interest rate is 8% per year,
and the volatility of the exchange rate is 20%. First apply the specialized BSM
function for foreign currency options, bsmFXEU, that requires the following input
arguments:
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fxrate: A numeric vector representing the current foreign exchange rate.
strike: A numeric vector representing the exercise price of the option.
time: A numeric vector representing the time to expiration of the option, ex-

pressed in years.
intRate: A numeric vector representing the annualized domestic risk-free in-

terest rate.
intRate.foreign: A numeric vector representing the annualized risk-free for-

eign interest rate.
sigma: A numeric vector representing the annualized foreign exchange rate

volatility.
type: (optional) The type of the option as call (default) or put.

The length of the numeric vectors above must be of equal length to the number
of options to be priced unless one value is to be used for all options. The bsmFXEU
function returns an object of class opEuOption, which is a list specifying the
spot price, strike price, time to maturity, interest rate, volatility, cost of carry,
option type and price.

> bsmFXEU(fxrate = 1.5, strike = c(1.5, 1.6), time = c(0.5, 1),
+ intRate = 0.05,intRate.foreign = 0.08, sigma = 0.2,
+ type = "call")

2 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 1.5 1.5 0.5 0.05 0.2 -0.03 0.07143
[2,] 1.5 1.6 1.0 0.05 0.2 -0.03 0.05976

Valuation method -- black-scholes

The same result obtains using the general BSM function bsmEU, already encoun-
tered in Example 1. Instead of the domestic and foreign interest rates, the bsmEU
function requires the cost of carry to be specified (b = r − rf = 0.05 − 0.08 =
−0.03).

> bsmEU(spot = 1.5, strike = c(1.5, 1.6), time = c(0.5, 1),
+ intRate = 0.05, costCarry = -0.03, sigma = 0.2,
+ type = "call")

2 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 1.5 1.5 0.5 0.05 0.2 -0.03 0.07143
[2,] 1.5 1.6 1.0 0.05 0.2 -0.03 0.05976

Valuation method -- black-scholes
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2.3.6 Implied Volatility

One parameter of the Black-Scholes-Merton (BSM) formula that cannot be di-
rectly observed is the volatility of the underlying asset’s price, σ. However,
its value can be approximated by the volatility implied by the option prices
observed in the market.

The S+FinMetrics function opImpVol computes the implied volatility of an
option. It takes as input an option object, which can contain several individual
options, for which the option prices have been defined. It then estimates the
volatility (or volatilities) of the underlying asset(s) that would give these prices,
assuming that all other parameters remain fixed. In order to do this, opImpVol
uses the formula or algorithm that was used to calculate the option prices, which
is identified by the class of the option object. For example, an object with class
opEuOption will be priced using the Black-Scholes-Merton formula for European
options.

Example 4 Implied Volatility

Consider a European call option with six months to expiry. The underlying
stock price is $100, the strike price is $100, the risk free interest rate is 5% per
year. The price of the option observed in the market is $10. First create an
object with class opEuOption with an initial estimate of the volatility of the
underlying asset, σ.

> opt.obj <- bsmEU(spot = 100, strike = 100, time = 0.5,
+ intRate = 0.05, costCarry = 0.05, sigma = 0.2,
+ type = "call")
> opt.obj

1 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 0.05 6.889

Valuation method -- black-scholes

The following input arguments can be specified for the opImpVol function:

object: (required) an option object created by an option pricing function.
method: a character string representing the method used to compute the im-

plied volatility. The allowable methods are bisection, secant, nr for the
Newton-Rahpson method, and appcm for the Corrado and Miller approx-
imation method for calculating the implied volatility of options of class
opEuOption. The default is the bisection method.

sigma.low: a numeric object representing the initial lower bound on implied
volatility, which is used by the bisection and secant methods. The default
value of sigma.low is 0.01.
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sigma.high: a numeric object representing the initial upper bound on implied
volatility, which is used by the bisection and secant methods. The default
value of sigma.high is 1.0.

sigma0: a numeric object that gives the initial estimate for implied volatility
used in the Newton-Raphson method. If no initial estimate is supplied
then a value of 0.40 is used, unless the option is of class opEuOption, in
which case the Manaster and Koehler formula is used to derive a more
accurate starting value.

n.iter: a numeric object representing the maximum number of iterations al-
lowed to find the implied volatility, which is used by the bisection, secant
and Newton-Raphson methods. The default number of iterations is 30.

eps: a numeric object representing epsilon, which is the tolerance used for the
bisection, secant and Newton-Rahpson methods. That is, these methods
will stop when they find volatilities that give prices within epsilon of the
original prices, provided that the limit on the number of iterations has not
been exceeded. The default value for eps is 1e-06.

eps.vega: a numeric object representing epsilon which is used in numerical
differentiation when computing Vega, which is the derivative of the option
price relative to changes in volatility. This is used in the Newton-Raphson
method. The default value for eps.vega is 1e-04.

The opImpVol function returns a list of the implied volatility values:

> opImpVol(opt.obj, method = "nr", sigma0 = 0.2)
$sigma:
[1] 0.2

$iter:
[1] 1

$eps:
[1] 1e-006

The above result is just a consistency check for the bsmEU and opImpVol func-
tions. The option price was calculated based on the estimated volatility. There-
fore, the implied volatility based on the BSM price has to equal the volatility
supplied to the bsmEU function. To get the implied volatility based on the market
price, the price stored in the option object has to be changed:

> opt.obj$price <- 10
> opImpVol(opt.obj, method = "nr", sigma0 = 0.2)
$sigma:
[1] 0.3132713

$iter:
[1] 3
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$eps:
[1] 1e-006

Note that, the prices of deep-in-the-money and deep-out-of-money options are
relatively insensitive to volatility. Therefore, implied volatilities calculated from
these options tend to be unreliable.

The implied volatility of a European put is the same as the implied volatility
of a European call when the two options have the same strike price and maturity
date. To see this, compare the put call parity for the BSM model and for the
actual market prices of options in the absence of arbitrage opportunities:

pBSM + S0e
(b−r)t = cBSM + Ke−rt

pmkt + S0e
(b−r)t = cmkt + Ke−rt

subtracting the two equations, we get

pBSM − pmkt = cBSM − cmkt (9)

That is, the pricing errors for the put and call options are the same. Now,
suppose that the implied volatility of the put option is 20%. This means that
pBSM = pmkt when 20% volatility is used in the BSM model. Then, from
equation (9), it follows that cBSM = cmkt, and the implied volatility of the call
is also 20%.
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2.4 Measuring Option Risk

The sensitivity of options to changes in market conditions can be measured by
the “Greeks” — that is, sensitivity measures denoted by Greek letters. Each
Greek letter measures a different dimension to the risk in an option position.
In the case of a vanilla option, the strike price is fixed in advance and does
not change. However, there is a nonlinear relationship between the value of an
option and the change in any one of the remaining variables underlying the price
of the option.

Besides the analytical risk measures based on the Black-Scholes-Merton for-
mulas, S+FinMetrics has built in functions with numerical approximation of
option sensitivities for American and Exotic options. Table 2 lists the two types
side by side.

BSM based functions Numerical approximation
opDeltaBSM opDelta
opLambdaBSM opLambda
opGammaBSM opGamma
opThetaBSM opTheta
opVegaBSM opVega
opRhoBSM opRho

opSenCostCarryBSM opSenCostCarry

Table 2: List of S+FinMetrics functions computing sensitivity measures.

Figure 5 shows the sensitivity measures of a vanilla European call option
with respect to the price of the underlying asset. The diagrams are drawn for
default values of K = 100, r = 0.05, b = 0.05, σ = 0.2. The different line types
represent different times to maturity, ranging from 1 day (full line) to 6 months
(short-dashed line). A detailed description of each risk measure follows below.

2.4.1 Delta (∆)

Delta measures the sensitivity of the option price to a change in the price of the
underlying asset. For European options it is defined as

∆call =
∂c

∂S
= e(b−r)T Φ(d1)

∆put =
∂p

∂S
= e(b−r)T (Φ(d1)− 1)

The fact that ∆ measures the rate of change in the option price relative to
the change in the price of the underlying asset can be applied in delta-hedging.
As shown in the sections on risk-neutral valuation and the BSM differential
equation, a portfolio of short 1 option and long ∆ units of the underlying asset
is delta neutral for a short period of time. That is, it should earn the risk-free
interest rate.
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Example 5 Delta based on the BSM model

The opDeltaBSM function requires an object of class opEuOption, and returns
a numeric object representing the Delta of the option. Consider two European
call options with six months to expiry. The underlying stock price is $100, and
the strike price is $100 and $110, respectively. The risk free interest rate is 5%
per year and the volatility of the underlying asset price is 20% per year. The
object of class opEuOption can be created by:

> opt.obj.BSM <- bsmEU(spot = 100, strike = c(100, 110),
+ time = 0.5, intRate = 0.05, costCarry = 0.05,
+ sigma = 0.2, type = "call")
> opt.obj.BSM

2 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 0.05 6.889
[2,] 100 110 0.5 0.05 0.2 0.05 2.906

Valuation method -- black-scholes

Then, the object of class opEuOption can be supplied to the opDeltaBSM func-
tion, which computes the Delta of the option:

> opDeltaBSM(opt.obj.BSM)
[1] 0.5977345 0.3348873

Alternatively, the parameters of the BSM model can directly be specified in the
opDeltaBSM function:

> opDeltaBSM(spot = 100, strike = c(100, 110),
+ time = 0.5, intRate = 0.05, costCarry = 0.05,
+ sigma = 0.2, type = "call")
[1] 0.5977345 0.3348873

The analytical formulas for option sensitivities described above are based on
the Black-Scholes-Merton formulas and are valid for European options. In the
general case, for any option type, finite difference approximations can be used
to calculate the sensitivities. This method requires that the value of the option
be calculated accurately.

For example, first order partial derivatives such as ∆ can be approximated
by the two sided finite difference method

∆call =
∂c

∂S
≈ c(S + δS,K, T, r, b, σ1)− c(S − δS,K, T, r, b, σ2)

2δS

Notice that in the above approximation, the volatility does not have to be fixed.
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Example 6 Delta based on numerical approximation

The opDelta function numerically approximates the Delta of any option. It re-
quires an option object that is identified by its class, and returns a numeric ob-
ject representing the Delta of the option. For example the bsmSimpleChooserEU
function (specified in Example 20) returns an object of class opChooserOption,
which is a list specifying the spot, strike, time to maturity, time to choose,
interest rate, sigma, cost carry and computed option price.

> opt.obj.NUM <- bsmSimpleChooserEU(spot = 100,
+ strike = c(100, 110), time = 1, intRate = 0.05,
+ costCarry = 0.05, sigma = 0.2, t1 = c(0.25, 0.5))
> opt.obj.NUM

2 Chooser option

[,1] [,2]
spot 100.00 100.00

strike 100.00 110.00
maturity 1.00 1.00

time.to.choose 0.25 0.50
interest.rate 0.05 0.05

sigma 0.20 0.20
cost.carry 0.05 0.05

price 12.38 14.42

Upon passing this object to the opDelta function, opDelta returns a numeric
object representing the Delta of the option.

> opDelta(opt.obj.NUM)
$spot:
[1] 0.3456710 -0.1489349

For the European option object cretated above, opDelta gives the same result
as opDeltaBSM.

> opDelta(opt.obj.BSM)
$spot:
[1] 0.5977345 0.3348873

The following code produces a 3D diagram of numerical deltas as functions
of S and T displayed in Figure 4.

> nr.nodes <- 26
> S.margin <- seq(from = 75, to = 125, length = nr.nodes)
> t.margin <- seq(from = 2/52, to = 1, length = nr.nodes)
> St.grid <- expand.grid(list(S = S.margin, t = t.margin))
> opt.obj <- bsmEU(spot = St.grid[1], strike = 100,
+ time = St.grid[2], intRate = 0.05, costCarry = 0.05,
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+ sigma = 0.2, type = "call")

> Delta <- matrix(opDelta(opt.obj, eps = 0.0001)[[1]],
+ ncol = nr.nodes)

> persp.data <- list(x = S.margin, y = t.margin, z = Delta)
> persp.data.range <- c(diff(range(S.margin, na.rm = T)),
+ diff(range(t.margin, na.rm = T)),
+ diff(range(Delta, na.rm = T)))
> eye.level <- c(-6, -8, 5)*persp.data.range
> persp(persp.data, xlab = "S", ylab = "T", zlab = "Delta",
+ axes = T, box = T, eye = eye.level)
> title(main = "Delta")
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Figure 4: Numerical Delta in 3D as function of time to maturity and spot price
of underlying asset.

2.4.2 Lambda (Λ)

Lambda measures the pecentage change of the option price to a one percent
change in the price of the underlying asset. For European options, it is defined
as

Λcall =
∂c

∂S

S

c
= ∆call

S

c
= e(b−r)T Φ(d1)

S

c

Λput =
∂p

∂S

S

p
= ∆put

S

p
= e(b−r)T (Φ(d1)− 1)

S

p
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Figure 5: Greeks of a European call option in 2D. Dashed lines represent in-
creasing time to maturity: T = {1 day (full line), 1 week, 1 month, 3 months,
6 months}. The Appendix gives the code for generating the plot.
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In other words, Λ measures the elasticity of the option price with respect to
the price of the underlying asset; therefore, indicates the leverage built in the
option.

Example 7 Lambda

The opLambdaBSM function requires an object of class opEuOption, and returns a
numeric object representing the Lambda of the option. The opLambda requires
an option object that is identified by its class, and returns a numeric object
representing the Delta of the option. The option objects opt.obj.BSM and
opt.obj.NUM were defined in Example 5 and 6, respectively.

> opLambdaBSM(opt.obj.BSM)
[1] 8.676993 11.522126
> opLambda(opt.obj.BSM)
$spot:
[1] 8.676993 11.522126

> opLambda(opt.obj.NUM)
$spot:
[1] 2.792515 -1.032941

2.4.3 Gamma (Γ)

Gamma measures the sensitivity of the option’s delta to a change in the price
of the underlying asset. For European options, it is defined as

Γcall =
∂2c

∂S2
=

Φ′(d1)e(b−r)T

S0σ
√

T

Γput =
∂2p

∂S2
=

Φ′(d1)e−(b−r)T

S0σ
√

T

where Φ′(d1) is the probability density function for a standard normal random
variable evaluated at d1. If Γ is large, ∆ is highly sensitive to the price of the
underlying asset. Γ also measures the curvature of the relationship between the
option price and the underlying asset price. When there is a movement in the
underlying price, large Γ implies a large amount of rebalancing to maintain a
delta-neutral portfolio.

Example 8 Gamma

The opGammaBSM function requires an object of class opEuOption, and returns
a numeric object representing the Gamma of the option. The opGamma requires
an option object that is identified by its class, and returns a numeric object
representing the Delta of the option. The option objects opt.obj.BSM and
opt.obj.NUM were defined in Example 5 and 6, respectively.
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> opGammaBSM(opt.obj.BSM)
[1] 0.02735866 0.02575748
> opGamma(opt.obj.BSM)
$spot:
[1] 0.02735874 0.02575611

> opGamma(opt.obj.NUM)
$spot:
[1] 0.05305800 0.04713172

2.4.4 Theta (Θ)

Theta measures the sensitivity of the option price to a change in time to matu-
rity. For European options, it is defined as

Θcall =
∂c

∂T
= −S0Φ′(d1)σe(b−r)T

2
√

T
+ qS0Φ(d1)e(b−r)T − rKe−rT Φ(d2)

Θput =
∂p

∂T
= −S0Φ′(d1)σe(b−r)T

2
√

T
− qS0Φ(−d1)e(b−r)T + rKe−rT Φ(−d2)

As an option approaches its expiration date, its time value decays, and Θ mea-
sures how much time value is lost as a given period elapses.

Example 9 Theta

The opThetaBSM function requires an object of class opEuOption, and returns
a numeric object representing the Theta of the option. The opTheta requires
an option object that is identified by its class, and returns a numeric object
representing the Theta of the option. The option objects opt.obj.BSM and
opt.obj.NUM were defined in Example 5 and 6, respectively.

> opThetaBSM(opt.obj.BSM)
[1] -8.115968 -6.680609
> opTheta(opt.obj.BSM)
$time:
[1] -8.115968 -6.680609

> opTheta(opt.obj.NUM)
$time:
[1] -4.861834 -2.492004

$t1:
[1] -6.858877 -5.468749

The last line in the results is specific to an object of class opChooserOption. It
represents the sensitivity of the price of a chooser option to the time until the
choice between a put and a call has to be made.
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Figure 6: Greeks of a European call option in 3D as functions of time to maturity
and spot price of underlying asset. The Appendix gives the code for generating
the plot.
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2.4.5 Vega (ν)

Vega is not a Greek letter, but ν is used to represent it sometimes. Vega
measures the sensitivity of the option price to a change in the volatility of the
underlying asset. For European options it is defined as

νcall = νput =
∂c

∂σ
=

∂p

∂σ
= S0

√
Te(b−r)T Φ′(d1)

Although the Black-Scholes-Merton model assumes constant volatility of the
price of the underlying asset, in practice volatility changes over time. Higher
volatility means higher uncertainty; therefore, it results in higher option value.

Example 10 Vega

The opVegaBSM function requires an object of class opEuOption, and returns a
numeric object representing the Vega of the option. The opVega requires an op-
tion object that is identified by its class, and returns a numeric object represent-
ing the Vega of the option. The option objects opt.obj.BSM and opt.obj.NUM
were defined in Example 5 and 6, respectively.

> opVegaBSM(opt.obj.BSM)
[1] 27.35866 25.75748
> opVega(opt.obj.BSM)
$sigma:
[1] 27.35866 25.75748

> opVega(opt.obj.NUM)
$sigma:
[1] 54.67123 66.91979

2.4.6 Rho (ρ)

Rho measures the sensitivity of the option price to a change in the risk free
interest rate. For European options, it is defined as

ρcall =
∂c

∂r
= KTe−rT Φ(d2)

ρput =
∂p

∂r
= −KTe−rT Φ(−d2)

when b 6= 0, and

ρcall =
∂c

∂r
= −cT

ρput =
∂p

∂r
= −pT

when b = 0, e.g. when the underlying asset is a futures contract.
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Example 11 Rho

The opRhoBSM function requires an object of class opEuOption, and returns a nu-
meric object representing the Rho of the option. The opRho3 requires an option
object that is identified by its class, and returns a numeric object representing
the Rho of the option. The option objects opt.obj.BSM and opt.obj.NUM were
defined in Example 5 and 6, respectively.

> opRhoBSM(opt.obj.BSM)
[1] 26.44236 15.29113
> opRho(opt.obj.BSM)
$intRate:
[1] -3.444364 -1.453236

> opRho(opt.obj.NUM)
$intRate:
[1] -12.37848 -14.41853

2.4.7 Sensitivity to the Cost of Carry

The sensitivity of a European option to a marginal change in the cost of carry
rate is defined as

CCcall =
∂c

∂b
= S0Te(b−r)T Φ(d1)

CCput =
∂p

∂b
= −S0Te(b−r)T Φ(−d1)

Example 12 Sensitivity to Cost of Carry

The opSenCostCarryBSM function requires an object of class opEuOption, and
returns a numeric object representing the sensitivity to the cost of carry of the
option. The opSenCostCarry requires an option object that is identified by its
class, and returns a numeric object representing the sensitivity to the cost of
carry of the option. The option objects opt.obj.BSM and opt.obj.NUM were
defined in Example 5 and 6, respectively.

> opSenCostCarryBSM(opt.obj.BSM)
[1] 29.88672 16.74437
> opSenCostCarry(opt.obj.BSM)
$costCarry:
[1] 29.88672 16.74437

> opSenCostCarry(opt.obj.NUM)
$costCarry:
[1] 34.56709 -14.89349

3As of this writing opRho has a bug: it gives a result that is different from opRhoBSM
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2.5 Valuation of American Options in Continuous Time:
Analytical Pricing Formulas

The key issues to consider when pricing American options are

• The posibility of early exercise.
• The payment of dividends by the underlying asset during the options life.

If there is no dividend paid during the life of the option, there is no incentive
to exercise the option early, and the option might be priced as a European one.
The functions based on closed form approximations for the pricing of American
options in S+FinMetrics are bsmCallOneDivAM, bsmAMBAW, bsmAMBS. Their use
is illustrated in the examples below.

2.5.1 American Calls on Stocks with Known Dividend

American options are exercised just before the ex-dividend date if the benefit
from the dividend to be paid is greater than that from waiting until expiry and
losing the dividend. Roll (1977), Geske (1979) and Whaley (1982) developed an
adapted version of the Black Scholes model for the valuation of an American call
option on a stock paying a single dividend of D, with time to dividend payout t.

C = S0[Φ(b1) + Φ(a1,−b1,−
√

t

T
)] + De−rT Φ(b2)

−Ke−rT [er(T−t)Φ(b2) + Φ(a2,−b2,−
√

t

T
)− (K −D)e−rt]

where

a1 =
ln[(S0)/K] + (r + σ2/2)T

σ
√

T
, a2 = a1 − σ

√
T

b1 =
ln[(S0)/Sxd] + (r + σ2/2)t

σ
√

t
, b2 = b1 − σ

√
t

and Φ(a, b, ρ) is the cumulative bivariate normal distribution function with up-
per integral limits a and b and correlation coefficient ρ. Sxd is the critical
ex-dividend stock price that satisfies

c(Sxd,K, T − t) = Sxd + D −K

where c(Sxd,K, T ) is the value of the European call with stock price Sxd and
time to maturity T .

Example 13 Known Cash Dividend Payment

Consider an American call option with six months to expiry. The underlying
stock price is $100, the strike price is $100, the risk free interest rate is 5% per
year, a dividend of $4 will be paid in three months, and the volatility is 20%
per year.
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The bsmCallOneDivAM function computes the value of an option with a single
cash dividend payment. In addition to the parameters of the bsmEU function
described in Example 1, the bsmCallOneDivAM function requires the following
input argument:

divCash: A series object representing one cash dividend per American option
to be priced. In this example, the signalSeries function constructs a
signalSeries object from positions and data. This object contains the
information that a dividend amount of $4 will be paid in three months.

The bsmCallOneDivAM function returns an object of class opAmOption which
is a list specifying the spot, strike, time to maturity, interest rate, sigma, cost
carry, type, price and discrete cash dividends of options to be priced.

> bsmCallOneDivAM(spot = 100, strike = 100, time = 0.5,
+ intRate = 0.05, sigma = 0.2,
+ divCash = signalSeries(4, pos = 0.25))

1 American call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 0.05 5.208

Discrete Cash Dividend series --
t=0.25

[1,] 4

2.5.2 Barone-Adesi and Whaley Approximation

The quadratic approximation method by Barone-Adesi and Whaley (1987) can
be used to price American call and put options on an underlying asset with cost-
of-carry rate b. When b ≥ r, the American call value is equal to the European
call value, and can be found by using the generalized Black-Scholes-Merton
formula. The Barone-Adesi and Whaley formulas are

C(S, K, T ) =
{

cBSM (S, K, T ) + A1(S/S∗)q1 when S < S∗

S −K when S ≥ S∗

P (S, K, T ) =
{

pBSM (S, K, T ) + A2(S/S∗∗)q2 when S > S∗∗

K − S when S ≤ S∗∗

where cBSM (S, K, T ) and pBSM (S, K, T ) are the general Black-Scholes-Merton
call and put formula, respectively, and

A1 =
S∗

q1
[1− e(b−r)T Φ(d1(S∗))]

A2 = −S∗∗

q2
[1− e(b−r)T Φ(−d1(S∗∗))]
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d1(S) =
ln(S/K) + (b + σ2/2)T

σ
√

T

q1,2(S) =
−(N − 1)±

√
(N − 1)2 + 4M/Q

2

M = 2r/σ2 , N = 2b/σ2 , Q = 1− e−rT

where S∗ and S∗∗ are the critical asset prices for the call and put options,
respectively, that satisfy

S∗ −K = c(S∗,K, T ) + [1− e(b−r)T Φ(d1(S∗))]S∗
1
q1

K − S∗∗ = p(S∗∗,K, T )− [1− e(b−r)T Φ(−d1(S∗∗))]S∗∗
1
q2

These equations can be solved by using the Newton-Raphson algorithm.

Example 14 Barone-Adesi and Whaley Approximation

Consider an American call option with six months to expiry. The underlying
stock price is $100, the strike price is $100, the risk-free interest rate is 5% per
year, the dividend yield is 8% per year, and the volatility is 20% per year.

The bsmAMBAW function computes the price of Amercian options on an un-
derlying asset with continuous dividend payout using the Barone-Adesi and
Whaley (BAW) approximation technique. The bsmAMBAW function requires the
same parameters as the bsmEU function described in Example 1.

> bsmAMBAW(spot = 100, strike = 100, time = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.08, sigma = 0.2,
+ type = "call")

1 American call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 4.933

Valuation method -- Barone-Adesi&Whaley87

The bsmAMBAW function returns an object of class opAmOption described in Ex-
ample 13.

2.5.3 Bjerksund and Stensland Approximation

The Bjerksund and Stensland (1993) approximation can be used to price Ameri-
can options on stocks, futures and currencies. It is based on an exercise strategy
corresponding on a flat boundary I (trigger price). Numerical investigation in-
dicates that this model is somewhat more accurate for long-term options than
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the Barone-Adesi and Whaley model presented above.

C = αSβ − αφ(S, T, β, I, I) + φ(S, T, 1, I, I)
− φ(S, T, 1, X, I)−Xφ(S, T, 0, I, I) + Xφ(S, T, 0, X, I)

where
α = (I −X)I−β

β =
(

1
2
− b

σ2

)
+

√(
b

σ2
− 1

2

)2

+ 2
r

σ2

The function φ(S, T, γ,H, I) is given by

φ(S, T, γ, H, I) = eλSγ

[
Φ(d)−

(
I

S

)κ

Φ
(

d− 2 ln(I/S)
σ
√

T

)]

λ =
[
−r + γb +

1
2
γ(γ − 1)σ2

]
T

d = − ln(S/H) + [b + (γ − 1/2)σ2]T
σ
√

T

κ =
2b

σ2
+ (2γ − 1)

and the trigger price is defined as

I = B0 + (B∞ −B0)(1− eh(T ))

h(T ) = −(bT + 2σ
√

T )
(

B0

B∞ −B0

)
B∞ =

β

β − 1
X

B0 = max
[
X,

(
r

r − b

)
X

]
If S ≥ I, it is optimal to exercise the option immediately, and the value must
be equal to the intrinsic value S −X. On the other hand, if b ≥ r, it will never
be optimal to exercise the American call option before expiration, and the value
can be found using the generalized Black-Scholes formula. The value of the
American put is given by the Bjerksund and Stensland put-call transformation

P (S, X, T, r, b, σ) = C(X, S, T, r − b,−b, σ)

where C(·) is the value of the American call with risk free rate r−b and drift −b.
With the use of this transformation, it is not necessary to develop a separate
formula for an American put option.
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Example 15 Bjerksund and Stensland Approximation

Consider the same American call option as above with six months to expiry.
The underlying stock price is $100, the strike price is $100, the risk-free interest
rate is 5% per year, the dividend yield is 8% per year, and the volatility is 20%
per year.

The bsmAMBS function computes the price of Amercian options on an under-
lying asset with continuous dividend payout using the Bjerksund and Stensland
(BS) approximation technique. The bsmAMBS function requires the same param-
eters as the bsmEU function described in Example 1.

> bsmAMBS(spot = 100, strike = 100, time = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.08, sigma = 0.2,
+ type = "call")

1 American call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 4.875

Valuation method -- Bjerksund&Stensland93

The bsmAMBS function returns an object of class opAmOption described in Ex-
ample 13.
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2.6 Monte Carlo Simulation

Monte Carlo simulation4 is a numerical method that is useful in many situations
when no closed form solution is available. It is based on random sampling of the
underlying asset price paths. The value of an option is derived using the risk
neutral valuation result. That is, the expected payoff in a risk neutral world is
discounted at the risk free interest rate. The steps of the algorithm are:

1. Sample a random path for S in a risk neutral world. For example, for
lognormally distributed asset prices construct a path for S (see section
2.3.3)

St+δt = St exp
[(

µ− σ2

2

)
δt + σε

√
δt

]
, where ε ∼ N(0, 1) (10)

One simulation trial involves constructing a complete path for S using N
random samples from the standard normal distribution, where N is the
number of intervals of length δt during the life of the option. In the case
of lognormally distributed asset prices, equation (10) is true for all δt, and
so it follows that

ST = S0 exp
[(

µ− σ2

2

)
T + σε

√
T

]
, where ε ∼ N(0, 1)

2. Calculate the payoff from the derivative.

3. Repeat steps 1 and 2 to get many sample values of the payoff from the
derivative in a risk neutral world. A minimum of 10,000 simulations are
typically necessary to price an option with satisfactory accuracy.

4. Calculate the mean of the sample payoffs to get an estimate of the expected
payoff in a risk neutral world.

5. Discount the expected payoff at the risk free rate to get an estimate of
the value of the derivative. For example, in the case of vanilla European
options, the payoff depends on the final value of the asset. The value of a
European call and put option is given by:

c =
e−rT

n

n∑
i=1

max[Se(b−σ2/2)T+σεi

√
T −K, 0]

p =
e−rT

n

n∑
i=1

max[K − Se(b−σ2/2)T+σεi

√
T , 0] , where εi ∼ N(0, 1)

The key advantage of Monte Carlo simulation is that it can be used when the
payoff depends on the path followed by the underlying variable S as well as

4For a detailed exposition of Monte Carlo methods in finance, the reader is referred to
Jaeckel (2002) and Glasserman (2003)
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when it depends only on the final value ofS. As apparent in step 3 above, the
main drawback of Monte Carlo simulation is that it is computer intensive.

S+FinMetrics offers two Monte Carlo simulation based option pricing func-
tions: the cevEUMC function based on the Generalized Constant Elasticity of
Variance (CEV) Model and the svolEUMC function based on the Continuous
Stochastic Volatility Model.

2.6.1 Variance Reduction Procedures

As described above, a very large number of trials is usually necessary to get
reasonably accurate estimates of the option prices. S+FinMetrics implements
two variance reduction techniques that speed up the estimation process and
make the results more accurate:

Anthetic Variable Technique: involves calculating two values of the deriva-
tive. First, the path is simulated as described in step 1 above, and then
a mirror path is generated by switching the sign of the random variables
on the original path. (If ε is the value of the random variable used to
calculate the first payoff, then −ε is the corresponding random variable
used to calculate the second one. This technique reduces the number of
simulated random paths and the variance of the estimated option price by
half.

Control Variate Technique: 5

2.6.2 The Constant Elasticity of Variance Model

The Black-Scholes-Merton formula assumes that volatility is constant for the
duration of the option contract. I also assumer that the asset price follows
a Geometric Brownian Motion which implies that asset returns are normally
distributed. However, empirical evidence from stock markets shows that the
volatility is often negatively correlated with the stock price level. That is,
volatility tends to increase as the stock price decreases.

The Constant Elasticity of Variance model, developed by Cox (1975) and
Cox and Ross (1976), is an adjustment that enables modeling the possibility
that the volatility of the underlying asset could be dependent upon the price of
the underlying asset:

dS = µS dt + σSβ dW

where µ is the expected rate of return on the asset, σ is the instantaneous
volatility of the asset price, β is the elasticity parameter, and W follows a
Wiener process. β = 1 yields the BSM stock price model.

Example 16 European Option pricing with Monte Carlo Simulation under the
Generalized Constant Elasticity of Variance Model

5to be completed

41



Consider a European call option with six months to expiry. The underlying
stock price is $100, and the strike price is $100 and $110, respectively. The
risk-free interest rate is 5% per year, the dividend yield is 8% per year, and the
volatility is 20% per year.

The cevEUMC function computes the European option price with Monte Carlo
Simulation under the Constant Elasticity of Variance model. In addition to the
parameters of the bsmEU function described in Example 1, the cevEUMC function
requires the following input arguments:

beta: A numeric object representing the coefficient of elasticity. If beta = 0,
the CEV model becomes the standard geometric Brownian motion model.
When beta < 0, the model creates a probability distribution with a heavy
left tail and a less heavy right tail. When beta > 0, the model produces a
probability distribution with a heavy right tail and a less heavy left tail.
Defaults to -0.5 which denotes the standard square root CIR process.

method: A character string representing the method to be used in generating
sample paths for the Monte Carlo simulation. The only method supported
is the psuedo method, in which the sample path generated will be from a
standard normal distribution.

seed: A numeric value representing the random seed to be used for the Monte
Carlo simulation. The random seed is used to initialize a pseudo-random
number generator.

antithetic: A logical flag either T or F to denote whether an antithetic variate
technique is to be used for variance reduction purposes. As default, the
antithetic variable technique is implemented.

control.variate: A character string representing whether the control variate
technique is to be implemented. If none, the control variate technique is
not used for variance reduction purposes. To implement the control variate
method using the delta or delta-gamma approximation, set to either delta
or delta&gamma (default) respectively.

steps: A numeric value specifying the number of steps to be used in the dis-
cretization of a one year period. Defaults to 250 steps.

nSim: A numeric value representing the number of Monte Carlo simulations.
Defaults to 10000.

The cevEUMC function returns a list specifying the spot, strike, maturity, interest
rate, sigma, cost of carry, and the computed European option price.

> cevEUMC(spot = 100, strike = c(100, 110), time = 0.5,
+ intRate = 0.05, sigma = 0.2, costCarry = 0.05-0.08,
+ beta = -0.5, type = "call", method = "pseudo",
+ seed = NULL, antithetic = T,
+ control.variate = "delta&gamma", steps = 250,
+ nSim = 10000)

2 European call(s)
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spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 4.691
[2,] 100 110 0.5 0.05 0.2 -0.03 1.763

Valuation method -- Monte-Carlo pseudo

2.6.3 The Continuous Stochastic Volatility Model
6

Example 17 European Option pricing with Monte Carlo Simulation under the
Continuous Stochastic Volatility Model

Consider two European call options with six months to expiry. The underlying
stock price is $100, and the strike price is $100 and $110, respectively. The
risk-free interest rate is 5% per year, the dividend yield is 8% per year, and the
volatility is 20% per year.

The svolEUMC function computes the European option price with Monte
Carlo Simulation under the continuous stochastic volatility models of Cox-
Intersoll-Ross or Log-Ornstein-Uhlenbeck. In addition to the parameters of
the bsmEU function described in Example 1, the cevEUMC function requires the
following input arguments:

method: A character string representing the method to be used in generating
sample paths for the Monte Carlo simulation. The only method supported
is the psuedo method, in which the sample path generated will be from a
standard normal distribution.

seed: A numeric value representing the random seed to be used for the Monte
Carlo simulation. The random seed is used to initialize a pseudo-random
number generator.

antithetic: A logical flag either T or F to denote whether an antithetic variate
technique is to be used for variance reduction purposes. As default, the
antithetic variable technique is implemented.

control.variate: A character string representing whether the control variate
technique is to be implemented. If none, the control variate technique
is not used for variance reduction purposes. Else, to implement the con-
trol variate method using the delta or delta-gamma approximation, set to
either delta or delta&gamma (default) respectively.

steps: A numeric value specifying the number of steps to be used in the dis-
cretization of a one year period. Defaults to 250 steps.

nSim: A numeric value representing the number of Monte Carlo simulations.
Defaults to 10000.

svol: A character string representing the stochastic volatility model to be im-
plented in the Monte Carlo simulation. If none (default), the stochastic
volatility model will not be implemented and the risk will be quantified

6to be completed
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by a constant volatility parameter. Otherwise, a continuous stochastic
volatility model will be implemented and it can be either one of the
Cox-Ingersoll-Ross method (cir) or the Log-Ornstein-Uhlenbeck method
(log).

param: A vector of parameters for the implementation of the stochastic volatility
model. If the Cox-Ingersoll-Ross (cir) method is implemented, then a
positive value for kappa, theta, sigma and rho must be specified for a
positive stochastic volatility process. Else if the log method is chosen,
kappa, sigma and theta must be specified, where kappa and sigma are
positive and the exponential value of theta must also be positive for
a positive stochastic volatility process. Defaults to param = c(kappa =
1.0, theta = 0.15, sigma = 0.05, rho = 0.5).

The svolEUMC function returns a list specifying the spot, strike, time to ma-
turity, interest rate, sigma, cost-of-carry, and the computed European option
price.

> svolEUMC(spot = 100, strike = c(100, 110), time = 0.5,
+ intRate = 0.05, sigma = 0.2, costCarry = 0.05-0.08,
+ type = "call", method = "pseudo", seed = NULL,
+ antithetic = T, control.variate = "none", svol = "none",
+ param = c(kappa = 1., theta = 0.15, sigma = 0.05, rho = 0.5),
+ steps = 52, nSim = 10000)

2 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 4.812
[2,] 100 110 0.5 0.05 0.2 -0.03 1.778

Valuation method -- Monte-Carlo pseudo

The Monte Carlo simulation based option prices can be compared to the option
prices based on the analytical Black-Scholes-Merton formulas. The correspond-
ing output of the bsmEU function is displayed below:

> bsmEU(spot = 100, strike = c(100, 110), time = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.08, sigma = 0.2, type = "call")

2 European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 4.762
[2,] 100 110 0.5 0.05 0.2 -0.03 1.785

Valuation method -- black-scholes
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3 Valuation of Exotic Options

Exotic options differ from vanilla options in at least one of the standard contract
terms. Those are either variations on the payoff profiles of the plain vanilla
options, or they have further optionality embedded in them. The value of an
exotic option is a function of “exotic” contract terms. Depending on the type
of deviation form the traditional structure, exotic options can be classified into
the following categories:

• Options with contract variations
• Path-dependent options
• Limit-dependent options
• Multi-factor options

3.1 Options with Contract Variations

3.1.1 Binary Options

The payoff from a binary option is either some fixed amount of some asset if
it is in-the-money, or nothing at all if it is out-of-money. The payoff does not
depend on how far in-the-money the option is. Two types of binary options are

• Cash-or-Nothing, which pays some fixed amount of cash if the option
expires in-the-money. (See Reiner and Rubinstein (1991b)).

• Asset-or-Nothing, which pays the value of the underlying security at the
expiration date. (See Cox and Rubinstein (1985)).

Thus, the options are binary in nature because there are only two possible
outcomes. They are also called all-or-nothing options or digital options.

Example 18 Cash or Nothing

Consider two cash-or-nothing European call options paying $10 and $20, re-
spectively, if they end up in-the-money with six months to expiration. The
underlying asset price is $100, and the strike price is $100 and $110, respec-
tively. The dividend yield is 8% per year, the risk free interest rate is 5% per
year, and the volatility is 20% per year.

The bsmBinaryEU function computes the price of European cash-or-nothing
and asset-or-nothing binary options using Cox and Rubinstein formulas (1985).
In addition to the parameters of the bsmEU function described in Example 1,
the bsmBinaryEU function requires the following input argument:

payoff: A numeric object representing a cash amount paid at expiry if the
cash-or-nothing option ends up in-the-money or a character string ”asset”
if an asset-or-nothing option is being priced. The length of the object
must be equal to the number of options to be priced unless one payoff
value is to be used for all options.
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The bsmBinaryEU function returns an object of class opBinaryOption which is
a list specifying the type, spot, strike, time to maturity, interest rate, sigma,
cost carry, and computed option price.

> bsmBinaryEU(spot = 100, strike = c(100, 110),
+ payoff = c(10, 20), intRate = 0.05, time = 0.5,
+ costCarry = 0.05-0.08, sigma = 0.2, type = "call")

2 Binary European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 4.192
[2,] 100 110 0.5 0.05 0.2 -0.03 3.852

Payoff --
10 20

Example 19 Asset or Nothing

Consider two asset-or-nothing European call options with six months to expi-
ration. The underlying asset price is $100, the strike price is $100 and $110,
respectively. The dividend yield is 8% per year, the risk free interest rate is 5%
per year, and the volatility is 20% per year.

To compute the price of the asset-or-nothing options, the payoff parameter
has to be set to "asset" in the bsmBinaryEU function.

> bsmBinaryEU(spot = 100, strike = c(100, 110),
+ payoff = "asset", intRate = 0.05, time = 0.5,
+ costCarry = 0.05-0.08, sigma = 0.2, type = "call")

2 Binary European call(s)

spot strike maturity interest.rate sigma cost.carry price
[1,] 100 100 0.5 0.05 0.2 -0.03 46.68
[2,] 100 110 0.5 0.05 0.2 -0.03 22.97

Payoff --
asset

The counterpart of the bsmBinaryEU function for pricing American options is
bsmBinaryAM7. It takes the same arguments and also returns an object of class
opBinaryOption.

7As of this writing the bsmBinaryAM function has a bug: the payoff argument requires a
numeric value for asset-or-nothing options.
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3.1.2 Chooser Options

Chooser options allow the holder to choose whether their option is a call or a
put at a particular date. (See Rubinstein (1991c)) Chooser options are usually
more expensive than vanilla options due to the added flexibility. Two types of
chooser options are:

• Simple Chooser, with same time to maturity and strike for the call and
the put.

• Complex Chooser, with different time to maturity and/or strike price for
the call and the put. The holder has the right to choose at time, t, if the
option is to be a call with time to maturity Tc and strike price Kc, or a put
with time to maturity Tp and strike price Kp. (See Rubinstein (1991c))

Chooser options provide the benefit of allowing hedging against both price in-
creases and decreases without purchasing both a call and a put. The value of
the choser option at the time of the choice is max(c, p), where c and p are the
values of the underlying call and put options, respectively.

Example 20 Simple Chooser

Consider two simple chooser options with one year to expiration. The choice
between a put and a call can be made in three and six months respectively. The
underlying stock price is $100, and the strike price is $100 and $110, respectively.
The risk free interest rate is 5% per year, the dividend yield is 8% per year, and
the volatility is 20% per year.

The bsmSimpleChooserEU function computes the price of simple chooser
put and call options using the Rubinstein analytical formula (1991). The
bsmSimpleChooserEU function requires the following input argument in addi-
tion to the parameters of the bsmEU function described in Example 1 (except
type):

t1: The predetermined time after which the holder has the right to choose
whether the option is to be a standard call or put option. The length of
the object must be equal to the number of options to be priced unless one
t1 value is to be used for all options.

The bsmSimpleChooserEU function returns an object of class opChooserOption,
which is a list specifying the spot, strike, time to maturity, time to choose,
interest rate, sigma, cost carry and computed option price.

> bsmSimpleChooserEU(spot = 100, strike = c(100, 110),
+ time = 1, intRate = 0.05, costCarry = 0.05,
+ sigma = 0.2, t1 = c(0.25, 0.5))

2 Chooser option

[,1] [,2]
spot 100.00 100.00
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strike 100.00 110.00
maturity 1.00 1.00

time.to.choose 0.25 0.50
interest.rate 0.05 0.05

sigma 0.20 0.20
cost.carry 0.05 0.05

price 12.38 14.42

Example 21 Complex Chooser

Consider a complex chooser option that gives the right to the holder to choose
between a call with six months to expiration and strike price $110, and a put
with seven months to expiration and strike price $90. The choice between the
call and the put can be made in three months. The underlying stock price is
$100, the risk free interest rate is 5% per year, the dividend yield is 8% per year,
and the volatility is 20% per year.

The bsmComplexChooserEU function computes the price of complex chooser
put and call options using the method proposed by Rubinstein (1991). The
bsmSimpleChooserEU function requires the following input arguments in addi-
tion to the parameters of the bsmEU function described in Example 1 (except
type):

Xc: A numeric object representing the exercise price of the call option.
Xp: A numeric object representing the exercise price of the put option.
Tc: A numeric object representing the time to expiration of the standard call

option expressed in years, if it were chosen.
Tp: A numeric object representing the time to expiration of the standard put

option expressed in years, if it were chosen.
epsilon: (optional) A numeric object representing the Newton-Raphson criti-

cal value. Defaults to 0.001.

Similarly to the bsmSimpleChooserEU function, bsmComplexChooserEU also re-
turns an object of class opChooserOption.

> bsmComplexChooserEU(spot = 100, Xc = 110, Xp = 90,
+ time = 0.25, Tc = 0.5, Tp = 7/12, intRate = 0.05,
+ costCarry = 0.05-0.08, sigma = 0.2, epsilon = 0.001)

1 Chooser option

[,1]
spot 100.0000

call.strike 110.0000
put.strike 90.0000

time.to.choose 0.2500
call.maturity 0.5000
put.maturity 0.5833
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interest.rate 0.0500
sigma 0.2000

cost.carry -0.0300
price 3.8926

3.2 Path-Dependent Options

Asian Options

The payoff from an Asian option depends on the average of the prices of the
underlying asset over a specified period of time, rather than on the price of the
underlying asset on the expiration date. Two types of Asian options are:

• Average Price, where an in-the-money option pays the difference between
the average price of the asset and the predefined strike price.

• Average Strike, where the strike price is set equal to the average price of
the asset, and an in-the-money option pays the difference between this
average asset price and the asset price on the option’s maturity date.

The most common type uses the arithmetic average of prices recorded for the
underlying asset during the life of the option which is then compared against
the strike price when calculating the final payoff. (See Turnbull and Wakeman
(1991), Levy (1992), Haug and Margabe (2003), Curran (1992)). For geometric
average rate option, the valuation is similar to a vanilla option, because the
assumption of lognormal distribution of asset price returns still holds. (See
Kemna and Vorst (1990).)

Example 22 Geometric Average Price Option

Consider two geometric average rate put options with three months to expiration
and strike price $100 and $110, respectively. The underlying asset price is $100,
the risk free interest rate is 5% per year, and the volatility is 20% per year.

The bsmAsianGeomEU function computes the price of asian geometric av-
erage rate options using the method introduced by Kemna and Vorst (1990).
The bsmAsianGeomEU function requires the same input arguments as the bsmEU
function described in Example 1. The bsmAsianGeomEU function returns an ob-
ject of class opAsianOption which is a list specifying the spot, strike, time to
maturity, interest rate, sigma, cost carry, type, and computed price of the Asian
option.

> bsmAsianGeomEU(spot = 100, strike = c(100, 110), time = 0.5,
+ intRate = 0.05, costCarry = 0.05, sigma = 0.2,
+ type = "call")

2 Asian call(s)
spot strike maturity interest.rate sigma cost.carry price

[1,] 100 100 0.5 0.05 0.2 0.05 3.7526
[2,] 100 110 0.5 0.05 0.2 0.05 0.6544
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Example 23 Arithmetic Average Price Option

Consider two arithmetic average currency options with six months to expiration
and strike price $100 and $110, respectively. The spot price is $90, the observed
average spot price is $90, the domestic risk free interest rate is 5% per year, the
foreign interest rate is 10% per year, and the volatility of the spot rate is 20% per
year. S+FinMetrics offers two functions for asian arithmetic average-rate op-
tion pricing: bsmAsianArithFixedEULevy and bsmAsianArithFixedEUTW. This
example is solved using the former one; that is, using Levy’s approximation.

The bsmAsianArithFixedEULevy function requires the following input ar-
gument in addition to the parameters of the bsmEU function described in Exam-
ple 1:

spot.avg: A numeric object representing the arithmetic average of the known
asset price fixings.

t2: A numeric object representing the remaining time to expiration of the op-
tion, expressed in years.

Similarly to the bsmAsianGeomEU function, bsmAsianArithFixedEULevy also
returns an object of class opAsianOption.

> bsmAsianArithFixedEULevy(spot = 90, spot.avg = 90,
+ strike = c(100, 110), time = 0.5, t2 = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.10, sigma = 0.2,
+ type = "call")

2 Asian call(s)
spot strike maturity interest.rate sigma cost.carry price

[1,] 90 100 0.5 0.05 0.2 -0.05 0.2476
[2,] 90 110 0.5 0.05 0.2 -0.05 0.0109

Remaining time to maturity -- 0.5
Observed arithmetic average price so far -- 90

3.2.1 Lookback Options

The payoff from a lookback option depends on the maximum or minimum asset
price over the life of the option. The holder can “look back” and choose the
most advantageous price that was recorded by the asset during the lookback
period. Two types of lookback options are:

• Floating, where the strike price is determined as the minimum value (for
a call) or maximum value (for a put) of the underlying asset observed
over the life of the option. (See Goldman, Sosin, and Gatto (1979), and
Garman (1989).)

• Fixed, where the strike price is predetermined at inception, and the payoff
for an in-the-money call is the difference between the maximum asset price
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over the life of the option, Smax, and the strike price K. For an in-the-
money put it is the difference between the minimum asset price over the life
of the option, Smin, and the strike price K. (See Conze and Viswanathan
(1991).)

The lookback option gives the holder the right to buy an asset at its lowest
price or sell it at its highest price attained over the life of the option. The
holder of a lookback option can never miss the best underlying asset price, and
therefore a lookback option can never be out-of-the money. S+FinMetrics offers
the functions listed in Table 3 for lookback option pricing.

Name Description
bsmLookbackExtremeSpreadEU Extreme Spread Option Pricing
bsmLookbackFixedEU Fixed-Strike Lookback Option Pricing
bsmLookbackFloatEU Floating-Strike Lookback Option Pric-

ing
bsmLookbackPartialFixedEU Partial-Time Fixed-Strike Lookback

Option Pricing
bsmLookbackPartialFloatEU Partial-Time Floating-Strike Lookback

Option Pricing

Table 3: List of S+FinMetrics functions for pricing lookback options.

Example 24 Floating Lookback Option

Consider a floating lookback call option with six months to expiration, which
gives the right to buy the underlying stock index at its lowest price. The un-
derlying stock price is currently $100, the so far observed minimum stock price
is $80, the risk-free interest rate is 5% per year, the dividend yield is 8% per
year, and the volatility is 20% per year.

The bsmLookbackFloatEU function requires the following input argument in
addition to the parameters of the bsmEU function described in Example 1:

sMinOrMax: A numeric object representing the lowest price observed during the
lifetime of the underlying asset in the case of the floating-strike lookback
call or the highest price observed for the floating-strike lookback put op-
tion.

The bsmLookbackFloatEU function returns an object of class opLookbackOption,
which is a list specifying the type, spot, minimum or maximum price of the un-
derlying, time to maturity, interest rate, cost of carry, sigma, and computed
option price.

> bsmLookbackFloatEU(spot = 100, sMinOrMax = 80, time = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.08, sigma = 0.3,
+ type = "call")
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1 Floating Strike Lookback call(s)

spot min/max maturity interest.rate cost.carry sigma price
[1,] 100 80 0.5 0.05 -0.03 0.3 20.98

3.3 Limit-Dependent Options

3.3.1 Barrier Options

Barrier options are extinguished or activated when the underlying asset price
reaches a predetermined barrier. Four types of barrier options are:

• Down and Out, where the option is canceled or knocked-out if the asset
falls to a predetermined boundary price.

• Down and In, where the option is activated or knocked-in if the asset falls
to a predetermined boundary price.

• Up and Out, where the option is canceled or knocked-out if the asset rises
to a predetermined boundary price.

• Up and In, where the option is activated or knocked-in if the asset rises
to a predetermined boundary price.

The premium for barrier options is lower than standard options, because the
barrier option has value within a smaller price range than the standard option.
(See Merton (1973, Reiner and Rubinstein (1991a), and Rich (1994).)

Similar to the put-call parity for vanilla options, there exists an in-out parity
for barrier options. If we combine one Down and In and one Down and Out
call option with the same strike price and expiration date, we get the price of
a vanilla call option: c = cin + cout. Simultaneously holding the “in” and the
“out” option guarantees that one and only one of the two will pay off.

Barrier options are sometimes accompanied by a rebate, which is a payoff to
the option holder in case of a barrier event. Rebates can be paid either at the
time of the event or at expiration. For a discrete barrier option, barrier events
are checked for at discrete times, rather than continuously. S+FinMetrics offers
the functions listed in Table 3 for lookback option pricing.

Example 25 Double Barrier Option

Consider two double knock out call options with six months to expiration, lower
boundary $80 and upper boundary $120. The underlying stock price is $100,
the strike price is $100 and $110, respectively for the two options. The risk free
interest rate is 5% per year, the dividend yield is 8% per year, and the volatility
is 20% per year. The factors determining the curvature of the boundaries are
0; that is, the boundaries are flat.

The bsmBarrierDoubleEU function requires the following input arguments
in addition to the parameters of the bsmEU function described in Example 1
(except type):
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Name Description
bsmBarrier European and American Barrier Option

Pricing
bsmBarrierBinom European and American Barrier Option

Pricing with a Binomial Tree Approxi-
mation

bsmBarrierDoubleEU European Double Barrier Option Pric-
ing

bsmBarrierLookEU Look-Barrier Option Pricing
bsmBarrierPartialEU Partial-Time Barrier Option Pricing
bsmBarrierPartialTwoAssetEU Partial-Time Two-Asset Barrier Option

Pricing
bsmBarrierSoftEU Soft-Barrier Option Pricing
bsmBarrierTwoAssetEU Two-Asset Barrier Option Pricing
opBarrierAdj Adjustment of Barrier Option Prices to

Allow for Discrete Monitoring

Table 4: List of S+FinMetrics functions for pricing barrier options.

typeFlag: A character string representing the type of the Double Barrier Op-
tion. co denotes an up-and-out-down-and-out call, ci denotes an up-and-
in-down-and-in call, po denotes an up-and-out-down-and-out put, and ci
denotes an up-and-in-down-and-in put double barrier option. All options
to be priced must be of the same type.

L: A numeric object representing the lower boundary to be hit by the double
barrier option.

U: A numeric object representing the upper boundary to be hit by the double
barrier option.

delta1, delta2: Numeric objects that determine the curvature of the lower
and upper boundary values of the double barrier option. If delta1 =
delta2 = 0 (default), this corresponds to two flat boundaries.

H.dt: A numeric object representing the time between monitoring instants de-
fined as H.dt = T/m, where T is the time to maturity of the barrier option,
and m is the number of monitored points. Defaults to H.dt = 0, which de-
notes that the barrier is monitored in continuous time. This value is used
for the continuity correction for discrete barrier options pricing formulas.

The bsmBarrierDoubleEU function returns an object of class opBarrierOption,
which is a list of spot, strike, upper and lower barriers, time to maturity, interest
rate, cost of carry, sigma, type and computed option price.

> bsmBarrierDoubleEU(typeFlag = "co", spot = 100,
+ strike = c(100, 110), L = 80, U = 120,
+ time = 0.5, intRate = 0.05, costCarry = 0.05-0.08,
+ sigma = 0.2, delta1 = 0, delta2 = 0, H.dt = 0)
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2 Double Barrier options:
-- up-and-out-down-and-out call

[,1] [,2]
spot 100.0000 100.0000

strike 100.0000 110.0000
upper.barrier 120.0000 120.0000
lower.barrier 80.0000 80.0000

maturity 0.5000 0.5000
interest.rate 0.0500 0.0500

cost.carry -0.0300 -0.0300
sigma 0.2000 0.2000
price 1.8074 0.2175

Lower barrier curvature -- 0
Upper barrier curvature -- 0

Discrete monitoring interval -- 0

Example 26 Soft Barrier Option

Consider a soft down and out call option with six months to expiration, and
with a soft-barrier range $90 to $80. This type of option is knocked out pro-
portionately. For example, if the lowest asset price during the lifetime of the
option is $86, then 40% of the call is knocked out. The underlying stock price
is $100, the strike price is $100, the risk free interest rate is 5% per year, the
dividend yield is 8% per year, and the volatility is 20% per year.

The bsmBarrierSoftEU function requires the same input arguments as the
bsmBarrierDoubleEU function, and also returns an object of class opBarrierOption.

> bsmBarrierSoftEU(typeFlag = "cdo", spot = 100,
+ strike = 100, L = 80, U = 90, time = 0.5,
+ intRate = 0.05, costCarry = 0.05-0.08, sigma = 0.2)

1 Soft Barrier options:
-- Down-and-out call

[,1]
spot 100.0000

strike 100.0000
upper.barrier 90.0000
lower.barrier 80.0000

maturity 0.5000
interest.rate 0.0500

cost.carry -0.0300
sigma 0.2000
price 4.6703
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3.4 Multi-Factor Options

3.4.1 Quanto Options

The payoff of a quanto option is determined in one asset, but its value is deter-
mined with respect to another underlying asset. One of the factors that have to
be taken into account when evaluating quanto options is the correlation between
the price volatility of the two assets.

Example 27 Quanto Option

Consider a fixed exchange rate foreign equity call option with six months to
expiration. The underlying stock price is £100, the strike price is £100, the
predetermined exchange rate is 1.5$/£, the domestic risk free interest rate is
5% per year, the foreign risk free interest rate is 4% per year, the dividend yield
is 8% per year, the volatility of the foreign stock is 20% per year, the volatility
of the foreign currency is 30% per year, and the correlation between the stock
and the foreign currency is 0.3.

The bsmQuantoEU computes the price of currency-translated options. Itre-
quires the following input arguments in addition to the parameters of the bsmEU
function described in Example 1:

E: A numeric object representing the spot exchange rate specified in units of
the domestic currency per unit of the foreign currency.

intRateForeign: A numeric object representing the annualized foreign risk-
free interest rate.

divYield: A numeric object representing the instantaneous proportional divi-
dend payout rate of the underlying asset.

sigmaE: A numeric object representing the annualized asset price volatility of
the domestic exchange rate.

rho: A numeric object representing the correlation of the returns for the two
assets.

The bsmQuantoEU function returns an object of class opFXTranslatedOption,
which is a list specifying the type, spot, exchange rate, strike, time to maturity,
interest rates, dividend yield, sigmas, correlation and computed option price.

> bsmQuantoEU(spot = 100, E = 1.5, strike = 100,
+ time = 0.5, intRate = 0.05, intRateForeign = 0.04,
+ divYield = 0.08, sigma = 0.2, sigmaE = 0.3, rho = 0.3,
+ type = "call")

1 quanto call(s)
fixed exchange-rate foreign equity options

[,1]
spot 100.000

fx.rate 1.500
strike 100.000
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maturity 0.500
interest.rate 0.050

interest.rate.for 0.040
divYield 0.080

sigma.spot 0.200
sigma.fx 0.300

correlation 0.300
price 6.208
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4 Appendix

4.1 List of Option Pricing Functions in S+FinMetrics

Name Description
bsmAMBAW Barone-Adesi and Whaley Approximation of

American Option Prices
bsmAMBS Black-Scholes Approximation of American

Option Prices
bsmAMParity Parity for American options
bsmAsianArithFixedEULevy Asian Arithmetic Average-Rate Option Pric-

ing with Levy’s Approximation
bsmAsianArithFixedEUTW Asian Arithmetic Average-Rate Option Pric-

ing with the Turnbull and Wakeman Approx-
imation

bsmAsianGeomEU Asian Geometric Average-Rate Option Pric-
ing

bsmBarrier European and American Barrier Option Pric-
ing

bsmBarrierBinom European and American Barrier Option Pric-
ing with a Binomial Tree Approximation

bsmBarrierDoubleEU European Double Barrier Option Pricing
bsmBarrierLookEU Look-Barrier Option Pricing
bsmBarrierPartialEU Partial-Time Barrier Option Pricing
bsmBarrierPartialTwoAssetEU Partial-Time Two-Asset Barrier Option Pric-

ing
bsmBarrierSoftEU Soft-Barrier Option Pricing
bsmBarrierTwoAssetEU Two-Asset Barrier Option Pricing
bsmBermudanBinom Bermudan Option Pricing with a Binomial

Tree Approximation
bsmBinaryAM American Cash-or-Nothing and Asset-or-

Nothing Binary Option Pricing
bsmBinaryBarrierEU Binary Cash-Or-Nothing and Asset-Or-

Nothing Barrier European Option Pricing
bsmBinaryEU European Cash-or-Nothing and Asset-or-

Nothing Binary Option Pricing
bsmBinaryTwoAssetEU Two-Asset-Cash-or-Nothing Binary Option

Pricing
bsmCallOneDivAM American Call Option Pricing with One Cash

Dividend
bsmComplexChooserEU Complex Chooser Option Pricing
bsmCompoundOptionEU Compound Option Pricing
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Name Description
bsmCondivBinom European and American Option Pricing with

the Binomial Tree Method
bsmCondivFD European and American Option Pricing with

the Finite Difference Method
bsmCondivTrinom European and American Option Pricing with

the Trinomial Tree Method
bsmDiscDivAMBinom American Call and Put Option Pricing with

Discrete Cash Dividends using a Binomial
Tree Approximation

bsmDualStrikeBinom European and American Dual Strike Option
Pricing with a Binomial Tree Approximation

bsmEqLinkedFXEU Equity Linked Foreign Exchange Option Pric-
ing

bsmEU European Option Pricing
bsmEUParity Put-Call Parity for European Options
bsmExchangeAM American Exchange Option Pricing
bsmExchangeEU European Exchange Option Pricing
bsmExecutiveEU Executive Stock Options Pricing
bsmForEqInDomCurEU Foreign Equity Options Struck in Domestic

Currency Option Pricing
bsmForwardStartEU Forward Start Option Pricing
bsmFuturesAM American Futures Option Pricing
bsmFuturesEU European Futures Option Pricing
bsmFXAM American Foreign Exchange Option Pricing
bsmFXEU European Foreign Exchange Option Pricing
bsmGapEU Gap Option Pricing
bsmLookbackExtremeSpreadEU Extreme Spread Option Pricing
bsmLookbackFixedEU Fixed-Strike Lookback Option Pricing
bsmLookbackFloatEU Floating-Strike Lookback Option Pricing
bsmLookbackPartialFixedEU Partial-Time Fixed-Strike Lookback Option

Pricing
bsmLookbackPartialFloatEU Partial-Time Floating-Strike Lookback Op-

tion Pricing
bsmMaxMinBinom Option Pricing on the Minimum or the Max-

imum of Two Risky Assets with a Binomial
Tree Approximation

bsmMaxMinEU Option Pricing on the Minimum or the Maxi-
mum of Two Risky Assets

bsmPerpetualAM American Perpetual Option Pricing
bsmQuantoEU Quanto Option Pricing
bsmRatchetEU Ratchet Option Pricing
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Name Description
bsmSimpleChooserEU Simple Chooser Option Pricing
bsmSpreadBinom European and American Spread Option Pric-

ing with with a Binomial Tree Approximation
bsmSpreadEU European Spread Option Pricing
bsmStockAM American Stock Option Pricing
bsmStockEU European Stock Option Pricing
bsmSupershareEU Supershare Option Pricing
bsmTimeSwitchEU Time-Switch Option Pricing
bsmTwoAssetCorEU Two-Asset Correlation Option Pricing
bsmWriterExtendEU Writer-Extendible Option Pricing
cevEUMC European Option pricing with Monte Carlo

Simulation under the Generalized Constant
Elasticity of Variance (CEV) Model

impTreeEUTrinom European Option Pricing with an Implied Tri-
nomial Tree

jdEU Jump-Diffusion Model for European Options
opBarrierAdj Adjustment of Barrier Option Prices to Allow

for Discrete Monitoring
opBinomCashFlow European and American Option Pricing using

a Binomial Cashflow Tree
opBinomTree Binomial Tree
opDelta Delta of Any Generic Options
opDeltaBSM Delta of Black Scholes Option Prices
opGamma Gamma of Any Generic Options
opGammaBSM Gamma of Black Scholes Option Prices
opImpVol Implied Volatility
opLambda Lambda of Any Generic Options
opLambdaBSM Lambda of Black Scholes Option Prices
opRho Rho of Any Generic Options
opRhoBSM Rho of Black Scholes Option Prices
opSenCostCarry Cost-of-carry Sensitivity of Any Generic Op-

tions
opSenCostCarryBSM Cost-of-carry Sensitivity of Black Scholes Op-

tion Prices
opTheta Theta of Any Generic Options
opThetaBSM Theta of Black Scholes Option Prices
opVega Vega of Any Generic Options
opVegaBSM Vega of Black Scholes Option Prices
svolEUMC European Option Pricing with Monte Carlo

Simulation
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4.2 S-PLUS Code for Full Page Figures

################################
# Payoff Profiles 2D (Figure 1)
################################
> S.T <- seq(from = 0, to = 200, length = 50)
> call.bs <- bsmEU(spot = S.T, strike = 100, time = 0, intRate = 0.05,
+ costCarry = 0.05, sigma = 0.2, type = "call")$price
> put.bs <- bsmEU(spot = S.T, strike = 100, time = 0, intRate = 0.05,
+ costCarry = 0.05, sigma = 0.2, type = "put")$price
> payoff = list(call.bs, put.bs, -call.bs, -put.bs)
> titles = c("Long Call", "Long Put", "Short Call", "Short Put")
> pdf.graph(file = "payoffs.pdf", horizontal = T)
> par(mfrow=c(2,2))
> for (i in 1:4){
+ plot(S.T, payoff[[i]], xlab="Spot (Strike=100)", ylab="Payoff",
+ type="l")
+ title(main = titles[i])
+ }
> dev.off()

###################################
# Option Sensitivity 2D (Figure 2)
###################################
> nr.nodes <- 26
> spot.margin <- seq(from = 75, to = 125, length = nr.nodes)
> strike.margin <- seq(from = 75, to = 125, length = nr.nodes)
> time.margin <- seq(from = 0, to = 1, length = nr.nodes)
> intRate.margin <- seq(from = 0, to = 0.25, length = nr.nodes)
> costCarry.margin <- seq(from = 0, to = 0.25, length = nr.nodes)
> sigma.margin <- seq(from = 0, to = 0.25, length = nr.nodes)

> margin <- list(spot.margin, strike.margin, time.margin,
+ intRate.margin, costCarry.margin, sigma.margin)
> default.args <- list(spot = 100, strike = 100, time = 0.5,
+ intRate = 0.05, costCarry = 0.05, sigma = 0.2, type = "call")

> par(mfrow=c(3,2))
> for (i in 1:6){
+ sens.args <- default.args
+ sens.args[[i]] <- margin[[i]]
+ plot(margin[[i]], do.call("bsmEU", sens.args)$price,
+ xlab = names(default.args)[i], ylab = "Value of Call",
+ type = "l")
+ title(main = paste("Call Value vs.", names(default.args)[i]))
+ }

60



#######################
# Greeks 2D (Figure 5)
#######################
> greeks <- list(Delta = NULL, Lambda = NULL, Gamma = NULL,
+ Theta = NULL, Vega = NULL, Rho = NULL)
> greeks.names <- names(greeks)
> nr.nodes <- 101
> S.margin <- seq(from = 80, to = 120, length = nr.nodes)
> t.margin <- c(1/365, 1/52, 1/12, 1/4, 1/2)
> t.line.type <- c(1, 6, 5, 4, 3)
> St.grid <- expand.grid(list(S = S.margin, t = t.margin))

> opt.obj <- bsmEU(spot = St.grid[1], strike = 100, time = St.grid[2],
+ intRate = 0.05, costCarry = 0.05, sigma = 0.2, type = "call")
> methods <- expression(opDeltaBSM(opt.obj), opLambdaBSM(opt.obj),
+ opGammaBSM(opt.obj), opThetaBSM(opt.obj), opVegaBSM(opt.obj),
+ opRhoBSM(opt.obj))

> par(mfrow=c(3,2))
> for (g in 1:6){
+ greeks[[g]] <- matrix(eval(methods[[g]]), ncol = 5)
+ y.limits <- range(greeks[[g]], na.rm = T)
+ plot(x = S.margin, y = greeks[[g]][,1], xlab = "S",
+ ylab = greeks.names[g], ylim = y.limits, type = "l",
+ lty = t.line.type[1])
+ title(main = greeks.names[g])
+ for (t in 2:5){
+ lines(x = S.margin, y = greeks[[g]][,t], lty = t.line.type[t])
+ }
+ }

#######################
# Greeks 3D (Figure 6)
#######################
> greeks <- list(Delta = NULL, Lambda = NULL, Gamma = NULL,
+ Theta = NULL, Vega = NULL, Rho = NULL)
> greeks.names <- names(greeks)
> nr.nodes <- 26
> S.margin <- seq(from = 75, to = 125, length = nr.nodes)
> t.margin <- seq(from = 2/52, to = 1, length = nr.nodes)
> St.grid <- expand.grid(list(S = S.margin, t = t.margin))
> persp.data <- list(x = S.margin, y = t.margin, z = NA)
> eye.multip <- list(c(-6, -8, 5), c(-6, -4, 3), c(-6, -10, 3),
+ c(-6, -8, 5), c(-6, -8, 5), c(-6, -12, 5))
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> opt.obj <- bsmEU(spot = St.grid[1], strike = 100, time = St.grid[2],
+ intRate = 0.05, costCarry = 0.05, sigma = 0.2, type = "call")
> methods <- expression(opDeltaBSM(opt.obj), opLambdaBSM(opt.obj),
+ opGammaBSM(opt.obj), opThetaBSM(opt.obj), opVegaBSM(opt.obj),
+ opRhoBSM(opt.obj))

> par(mfrow=c(3,2), lab=c(3,3,7))
> for (g in 1:6){
+ greeks[[g]] <- matrix(eval(methods[[g]]), ncol = nr.nodes)
+ persp.data$z <- greeks[[g]]
+ persp.data.range <- c(diff(range(S.margin, na.rm = T)),
+ diff(range(t.margin, na.rm = T)), diff(range(greeks[[g]],
+ na.rm = T)))
+ eye.value <- eye.multip[[g]]*persp.data.range
+ persp(persp.data, xlab = "S", ylab = "T", zlab = greeks.names[g],
+ axes = T, box = T, eye = eye.value)
+ title(main = greeks.names[g])
+ }
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