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Abstract: We consider an international financial market model that consists of N
currencies. The purpose is to derive a no arbitrage condition which is not affected by
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1 Introduction

After the pioneering work by Harrison–Kreps [12], many researchers have studied the re-
lationship between the existence of an equivalent martingale measure and the no arbitrage
property. In this setting most authors use a fixed asset as numéraire. But in the case of
an international economy model, an a priori choice of numéraire poses some problems to
characterize the no arbitrage property.

Suppose that an international financial market consists of N currencies. Then from the
viewpoint of economic efficiency, we should require that if we take any of the N currencies
as numéraire and express the others in function of this choice, the so obtained price process
should not allow arbitrage profits. This problem is not trivial. Delbaen–Schachermayer
[5] and [7] have given an example of a two currency model with the property that when
the first is chosen as numéraire, there is no arbitrage but on the contrary there is an
arbitrage profit when the second is chosen as numéraire.

The purpose of this note is to derive a compact condition which guarantees the no
arbitrage property, regardless of the currency chosen as numéraire. In particular we show
that if a finiteness condition with respect to an arbitrary chosen currency holds, then
the no arbitrage property with respect to a basket currency is necessary and sufficient
for the no arbitrage property to hold, regardless which of the N currencies is chosen as
numéraire.

The paper is organized as follows. In section 2, we summarize the fundamental results
from Delbaen–Schachermayer [5]–[11] used in this note. In section 3, we explain the multi-
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currency international financial market model. In section 4, we investigate the finiteness
condition, which turns out to be invariant for the choice of numéraire and for the choice of
equivalent probability measure. Finally in section 5, we derive the compact no arbitrage
condition.

Without loss of generality, we use the interval [0, 1] as the time interval for the finite
time horizon model. Let (Ω,F , (Ft)0≤t≤1,P ) be a filtered probability space satisfying the
usual conditions. The bold face characters denote column vectors, and the ′ denotes the
transpose. We introduce the notation H·S for the vector stochastic integral and we refer
to Jacod [15] for details.

2 Summary of Results on Arbitrage Theory

We consider a financial market consisting of N assets numbered from 1 to N . Asset
number 1 is chosen as numéraire. The price of asset k, 2 ≤ k ≤ N , at time t is denoted by
Skt , of course we have S1

t = 1. The process S=(S1, · · · , SN) is supposed to be a continuous,
vector-valued semi-martingale such that each coordinate is strictly positive.

Definition 2.1 Let a be a positive real number. An S-integrable predictable vector-valued
process H=(H1, · · · , HN) is called a-admissible if H0 =  and (H·S)t ≥ −a, P-a.s. for
all 0 ≤ t ≤ 1. The predictable process H is called admissible if it is a-admissible for some
a ∈ R.

Definition 2.2 We say that the vector-valued semi-martingale S satisfies the no arbitrage
condition, (NA), for general admissible integrands, if for all H admissible we have that

(H·S)1 ≥ 0, a.s. implies (H·S)1 = 0, a.s.. (2.1)

For the history and the use of this condition we refer to Delbaen–Schachermayer [6] and
Harrison–Pliska [13].

If M is a continuous d-dimensional vector-valued local martingale, then the bracket
process 〈M,M〉 is defined as a continuous process taking values in the space of d × d
matrices. The elements are described by the usual brackets 〈Mi,Mj〉 where Mi denotes
the i-th coordinate of M . The Kunita–Watanabe inequality states that the process
〈M,M〉 takes values in the cone of positive definite symmetric matrices and the process
is increasing in the sense that 〈M,M〉t − 〈M,M〉s is a positive definite symmetric
matrix for s < t.

Using a control measure λ, we can describe 〈M,M〉 as a process having a Radon–
Nykodim derivative with respect to λ. For λ we can take the predictable increasing
process λt = trace〈M,M〉t =

∑d
i=1〈Mi,Mi〉t. The process 〈M,M〉 can then be written

as 〈M,M〉t =
∫ t

0 Ludλu where L is a predictable process having values in the cone of
positive definite symmetric matrices. There is an easy way to see this, by using the
following construction of the Radon–Nykodim derivative. For each n ≥ 1, we define the
process Ln as follows.

Lnu =
〈M,M〉 k

2n
− 〈M,M〉 k−1

2n

λ k
2n
− λ k−1

2n

,
k

2n
< u ≤ k + 1

2n
, 1 ≤ k ≤ 2n − 1

Lnu = 0, 0 ≤ u ≤ 1

2n
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One shows that dλ a.e., Ln → L on [0, 1]×Ω, and
∫ 1

0 ‖Lnu −Lu‖dλu → 0, in probability,
for any matrix norm. The Kunita–Watanabe inequality shows that each Lnu is a positive
definite symmetric matrix and hence the same remains true for Lu.

Using power series, we define the processes Id − exp (−nL). These processes are still
predictable and when n→∞, the limit of Id − exp (−nL) tends to the projection P on
the range of L, P is therefore predictable, see also lemma 4.2 below. Remark that the
kernel of P is also the kernel of L. For a continuous semi-martingale S, the following was
proved in Delbaen–Schachermayer [10].

Theorem 2.3 If S is a continuous vector-valued semi-martingale decomposed as

dSt = dMt + dAt

where M is a continuous local martingale and A is a continuous process of bounded
variation, (the Doob–Meyer decomposition of S), then

(a) if S satisfies NA for general admissible integrands, there is a predictable vector
process h such that

dAt = d〈M,M〉tht, (2.2)

where d〈M,M〉 is the matrix measure and h is a vector-valued predictable process.

(b) Under the same hypothesis,

τ = inf
{
t
∣∣∣∣∫ t

0
h′ud〈M,M〉uhu =∞

}
> 0, a.s. (2.3)

(c) The continuous semi-martingale S admits an equivalent local martingale measure,
i.e. satisfies EMM , if and only if the following two conditions hold

(i) S has the NA property for general admissible integrands.

(ii) S satisfies the finiteness property∫ 1

0
h′ud〈M,M〉uhu <∞, a.s., (2.4)

where h is defined by (2.2)

Remark 2.4 The local martingale process

Lt = exp
(
−
∫ t

0
h′udMu −

1

2

∫ t

0
h′ud〈M,M〉hu

)
(2.5)

is not necessarily a martingale and hence the obvious Girsanov–Maruyama transformation
does not give an equivalent local martingale measure for S (see Delbaen–Schachermayer
[9] and Schachermayer [16]).

Remark 2.5 Under the hypothesis of the theorem, H is S-integrable if and only if

(1)
∫ 1

0
H
′
ud〈M ,M〉uHu =

∫ 1

0
H
′
uLuHudλu <∞, a.s.

and

(2)
∫ 1

0
|H ′

udAu| =
∫ 1

0
|H ′

uLuhu|dλu <∞, a.s.

It is clear that in such expressions, we may replace h by its projection Ph and we see
that H is S-integrable if and only if PH is S-integrable. This follows easily from the
fact that ker(P) = ker(L) and Range(P) = Range(L).
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If S is a continuous vector-valued semi-martingale, then we denote byMe(P ) the set
of all equivalent probability measuresQ under which S becomes a (vector-valued) Q-local
martingale. We will also make us of the following sets:

K1 = {(H·S)1|H is 1-admissible}, (2.6)

K = {(H·S)1|H is admissible}. (2.7)

We can easily see that K1 ⊂ K and K = ∪a>0Ka = ∪λ>0λK1. The following theorems are
proved in Delbaen–Schachermayer [8] and [11] (see also Jacka [14], Ansel–Stricker [3]). It
makes use of the set of maximal elements defined as follows

Definition 2.6 We say that f ∈ K1 is maximal in K1 if g ∈ K1 and g ≥ f imply g = f .
The element f ∈ K is maximal in K if g ∈ K and g ≥ f imply g = f .

Remark 2.7 The (NA) property is equivalent to the statement that the zero function
is maximal in K (or in K1). If S satisfies the (NA) property with respect to general
admissible integrands, then f ∈ K1 is maximal in K1 if and only if f is maximal in K.

Theorem 2.8 If S satisfies EMM , i.e. admits an equivalent local martingale measure,
then for an element f ∈ K1 the following are equivalent :

(a) f is a maximal element in K1.

(b) f is a maximal element in K.

(c) There is an equivalent local martingale measure Q ∈Me(P ) such that EQ[f ] = 0.

(d) There is a 1-admissible integrand H and there is an equivalent local martingale
measure Q ∈Me(P ) such that f = (H·S)1 and the process H·S is a Q-uniformly
integrable martingale.

Theorem 2.9 If S satisfies EMM , i.e. admits an equivalent local martingale measure,
then for an admissible integrand H such that V = c + H · S satisfies Vt > 0, a.s., for
0 ≤ t ≤ 1, the following are equivalent :

(a’) f = (H·S)1 is a maximal element in K.

(b’) There is an equivalent local martingale measure Q ∈Me(P ) such that
sup{ER[V1]|R ∈Me(P )} = EQ[V1] <∞.

(c’) There is an equivalent local martingale measure Q ∈ Me(P ) such that V is a Q-
uniformly integrable martingale.

(d’) The process S
V

has an equivalent local martingale measure.

Theorem 2.10 Suppose that S satisfies EMM , i.e. admits an equivalent local mar-
tingale measure. If f1, · · · , fn are maximal in K, then f1 + · · · + fn is maximal in K.

Corollary 2.11 Suppose that S satisfies EMM , i.e. admits an equivalent local mar-
tingale measure. If f1, · · · , fn are elements in K such that for each j ≤ n, there is
Qj ∈ Me(P ) with EQj [fj] = 0, then there is Q ∈ Me(P ) such that EQ[fj] = 0 for each
j ≤ n.
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Proof. By the theorem, each fj, j ≤ n is maximal and hence f1 + · · ·+ fn is maximal.
This implies the existence of Q ∈ Me(P ) such that EQ[f1 + · · · + fn] = 0. Since the
elements fj are in K and since Q ∈ Me(P ), we necessarily have EQ[fj] ≤ 0. But this
implies that EQ[fj] = 0 for each j. 2

From Theorem 2.9–2.10 and Corollary 2.12, it follows that

Corollary 2.12 If V j = cj +Hj · S > 0, j = 1, · · · , J <∞ are stochastic integrals such
that for each j, there is an equivalent probability measure Qj ∈ Me(P ) for which V j

is a Qj-uniformly integrable martingale, then there is an equivalent probability measure
Q ∈Me(P ) such that for all j ≤ J , V j is a Q-uniformly integrable martingale.

3 An International Financial Market Model

We consider an international financial market model consisting of N currencies numbered
from 1 to N . For each currency k there is a positive (mostly stochastic) interest rate rk

such that ∫ 1

0
rkudu <∞, a.s., 1 ≤ k ≤ N. (3.1)

Without loss of generality, we assume that the currency 1 is the domestic currency which
is used as numéraire to express the other values. The exchange rate of currency k for the
domestic currency 1 is described by Ek

t . From the definition, we have E1
t = 1. Ek and

rk are supposed to be adapted processes and each Ek is a continuous, strictly positive
semi-martingale. Following e.g. Harrison–Kreps [12] and Artzner–Delbaen [1], we define
the following discounted exchange rates

S1
t = 1, (3.2)

Skt = exp
(
−
∫ t

0
r1
udu

)
exp

(∫ t

0
rkudu

)
Ek
t , 2 ≤ k ≤ N. (3.3)

The process Sk describes, in terms of currency 1, the relative value of one unit of currency
k, deposited at time 0 and continuously compounded at interest rate rk. From the defi-
nition it follows that Sk > 0, a.s., 1 ≤ k ≤ N . If we choose currency k as the numéraire,
the discounted vector-valued process becomes (S

1

Sk
, · · · , SN

Sk
). More generally, for a positive

constant weight vector α=(α1, · · · , αN), αj > 0, we may define the basket currency B by

Bt =
N∑
k=1

αkSkt . (3.4)

When the basket currency is used as numéraire, the discounted vector-valued process is
expressed by the process (S

1

B
, · · · , SN

B
). Notice that an admissible strategy H for S, i.e.

with respect to the domestic currency, is not necessarily admissible when currency k is
used as numéraire. That is, H is not necessarily admissible for the vector-valued process
1
Sk
S. It follows that the NA-property depends on the currency used as numéraire.

4 Finiteness Property

As stated in Section 2 in general the NA property is not sufficient to guarantee the
existence of an equivalent local martingale measure. Stronger conditions are needed. For
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general locally bounded semi-martingales, such a condition is the so-called No Free Lunch
with Vanishing Risk (or NFLV R) property. However in the case of a continuous price
process, we can relax the assumption and split the NFLV R condition in two separate
conditions. The first is the already mentioned (NA) property, the second is the finiteness
condition, which can be seen as the integrability of the risk premium process h.

As will be shown below, the finiteness condition does not depend on the choice of
the probability measure. In other words, if the probability measure P is replaced by an
equivalent probability measure Q, then the Doob–Meyer decomposition under Q again
satisfies the finiteness condition. We start with some obvious results from linear algebra.

Lemma 4.1 If A : Rd → Rd is a symmetric linear operator, then the Moore–Penrose
inverse is given by

A−1 = lim
n→∞

nA
∫ ∞

0
exp

(
−(Id +A2n)x

)
dx (4.1)

Proof. Since A is a symmetric linear operator, there exists an orthogonal basis of Rd

in which A is represented by a diagonal matrix. In this basis, we have

A =



λ1

. . .

λr
0

. . .

0


and A−1 =



λ−1
1

. . .

λ−1
r

0
. . .

0


. (4.2)

Now observe that

nλ
∫ ∞

0
exp

(
−x(1 + nλ2)

)
dx =

nλ

1 + nλ2
→
{

1
λ
, if λ 6= 0,

0, if λ = 0.
(4.3)

2

Lemma 4.2 If φ : (E, E) → S(Rd) is a measurable mapping from a measurable space
(E, E) into the vector space of symmetric operators on Rd. Then

(a) φ−1 : E → S(Rd) is still measurable

(b) P : E → S(Rd), where P is projection on Range(φ), is measurable.

Proof. (a)

φ−1 = lim
n→∞

nφ
∫ ∞

0
exp

(
−x(Id + nφ2)

)
dx (4.4)

expresses φ−1 as a limit of measurable expressions of φ, hence φ−1 is measurable.
(b) P = φ−1φ is the product (matrix product) of two measurable mappings and hence is
measurable. 2

In the same way, we can show the following corollary.

Corollary 4.3 If Ax = b is a linear system then the couple (x, y) such that Ax + y = b
and ‖x‖2 + ‖y‖2 is minimal, depends in a measurable way on ”A” and ”b”.
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Proof. Take normal equations and apply Lemma 4.2. 2

Lemma 4.4 If S is a vector-valued continuous semi-martingale and if S satisfies the
finiteness condition under P , then for each probability measure Q, equivalent to P , the
process S still satisfies the finiteness condition under Q.

Proof. Let Z be the martingale defined by Zt = EP

[
dQ
dP
|Ft

]
. We, of course, can take

a cadlag version for Z (we remark that we did not make a continuity assumption on the
filtration (Ft)0≤t≤1 and we therefore cannot state that Z is continuous). Suppose that
under P , the semi-martingale S is decomposed as dSt = dMt + d〈M,M〉tht. Because
S satisfies the finiteness property under P , we have that∫ 1

0
h′d〈M,M〉h <∞.

The Girsanov–Maruyama formula says that under Q, the martingale part becomes

M t −
∫ t

0

1

Zu−
d〈M , Z〉u

and the predictable part is given by

dAt = d〈M,M〉tht +
1

Zt−
d〈M , Z〉t (4.5)

Because M is continuous, we may decompose the martingale Z as dZ = φ · dM + dN ,
where N is a local martingale, strongly orthogonal to the continuous martingale M and
where φ isM -integrable, i.e.

∫ 1
0 φ

′d〈M,M〉φ <∞. We consequently obtain d〈M , Z〉t =
d〈M,M〉tφt. The process Z is bounded away from zero (see Dellacherie–Meyer [4]) and
therefore the finiteness property under Q follows from the finiteness property under P
and from the M -integrability of φ.

Lemma 4.5 The finiteness condition does not depend on the choice of numéraire, i.e. if
S satisfies the finiteness condition and if ρ = c+H · S > 0 is a stochastic integral, then
S
ρ

also satisfies the finiteness condition.

Proof. By definition we have that dρ = H · dS. Then from the generalized Itô’s
lemma and from dS = dM + dA, we deduce:

d

(
1

ρ

)
= − 1

ρ2
dρ+

1

ρ3
(dρ)2

= − 1

ρ2
H ′dS +

1

ρ3
H ′d〈M,M〉H . (4.6)

Hence

d

(
S

ρ

)
=

1

ρ
dS + Sd

(
1

ρ

)
+ d〈S, 1

ρ
〉

=
1

ρ
dM +

1

ρ
d〈M,M〉h− 1

ρ2
SH ′dS

+
1

ρ3
SH ′d〈M,M〉H − 1

ρ2
d〈M,M〉H

=
1

ρ
dM − 1

ρ2
SH ′dM − 1

ρ2
SH ′d〈M,M〉h+

1

ρ
d〈M,M〉h

+
1

ρ3
SH ′d〈M,M〉H − 1

ρ2
d〈M,M〉H . (4.7)
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The martingale part N t of (4.7) is given by

dN =
1

ρ
dM − 1

ρ2
SH ′dM =

1

ρ
(I − 1

ρ
SH ′)dM . (4.8)

From this we can calculate d〈N,N〉:

d〈N,N〉 =
1

ρ2

(
I − 1

ρ
SH ′

)
d〈M,M〉

(
I − 1

ρ
HS′

)
.

The bounded variation part Bt of (4.7) is given by

dB = − 1

ρ2
SH ′d〈M,M〉h+

1

ρ
d〈M,M〉h

+
1

ρ3
SH ′d〈M,M〉H − 1

ρ2
d〈M,M〉H . (4.9)

Since ρ > 0, U = 1
ρ
H is well defined. By the exponential formula we know that ρt is

given by

ρt = exp
(∫ t

0
U ′dM − 1

2

∫ t

0
U ′d〈M,M〉U

)
. (4.10)

The equation (4.9) can be rewritten as

dB = −1

ρ
SU ′d〈M,M〉h+

1

ρ
d〈M,M〉h

+
1

ρ
SU ′d〈M,M〉U − 1

ρ
d〈M,M〉U

= (I − SU ′)d〈M,M〉h
ρ
− (I − SU ′)d〈M,M〉U

ρ

= (I − SU ′)d〈M,M〉
(
h− U
ρ

)
. (4.11)

Next we shall show that dB can be written as (I − SU ′)d〈M,M〉 (I − SU ′) g, for
some predictable process g. As shown in Section 2, we can write d〈M,M〉 = Ldλ for
some control measure λ. Substitute this for (4.11), we have

dB = (I − SU ′)L
(
h− U
ρ

)
dλ. (4.12)

To simplify notation let C=I−SU ′. We then have the following trivial inclusion on
the ranges of different operators, Range(CLC ′) ⊂ Range(CL). However we also have
Range(CL) ⊂ Range(CLC ′). Indeed if y ⊥ Range(CLC ′), we have y′CLC ′ = ′.
Then y′CLC ′y = 0 and C ′y ∈ ker(L) = Range(L)⊥. This means that y′CL =  and
hence y ⊥ Range(CL). Therefore Range(CL) = Range(CLC ′). Let D=(I−SU ′)L
(I−U ′S). The projection P ′ on Range(D) is predictable and D is bijective on the
Range(D) = Range(P ′).

The Moore–Penrose inverse D−1 is predictable and D−D = DD− = P . By tak-

ing g = D−(I − SU ′)Lh− U
ρ

, we have a predictable process g such that dB =

8



d〈N,N〉g. We should check the finiteness property for g.

g′d〈N,N〉g = g′CLC ′gdλ

= g′CL

(
h− U
ρ

)
dλ

≤ (g′CLC ′g)
1
2

[(
h− U
ρ

)′
L

(
h− U
ρ

)] 1
2

dλ.

The last inequality follows from the Cauchy–Schwarz inequality for positive definite bi-
linear forms. Hence, again by the Cauchy–Schwarz inequality, we have

∫ 1

0
g′sd〈N,N〉sgs ≤

∫ 1

0

(
hs − Us

ρs

)′
Ls

(
hs − Us

ρs

)
dλ

=
∫ 1

0

(
hs − Us

ρs

)′
d〈M,M〉s

(
hs − Us

ρs

)

≤
∫ 1

0

1

ρ2
s

(h′sd〈M,M〉shs +U ′sd〈M,M〉sUs). (4.13)

Since inf0≤t≤1 ρt > 0, we have
∫ 1

0
1
ρ2
s
U ′sd〈M,M〉sUs < ∞ from (4.10) and from ρ1 > 0.

This together with the finiteness property (2.4) yields the desired result. 2

Remark 4.6 From Lemma 4.4 and 4.5, the finiteness condition is invariant for the choice
of numéraire and for the choice of equivalent probability measure. Hence from Theorem
2.3 (c), if the finiteness condition is satisfied under P , the NA property becomes equivalent
to the existence of an equivalent local martingale measure for the process S.

5 The Main Theorem

We show that under the finiteness condition for an arbitrary chosen currency, the no
arbitrage condition for a basket currency is necessary and sufficient for the no arbitrage
property to hold with respect to all the N currencies.

Theorem 5.1 If S is a continuous vector-valued semi-martingale that satisfies the finite-
ness condition, then the following are equivalent:

(a) For all j, 1 ≤ j ≤ N , there is an equivalent probability measure Qj ∈ Me(P ) such
that Sj is a Qj-uniformly integrable martingale.

(b) There is an equivalent probability measure Q ∈Me(P ) such that S is a Q-uniformly
integrable vector martingale.

(c) For all j, 1 ≤ j ≤ N , S
Sj

satisfies the NA property with respect to general admissible
integrands.

(d) If B is a basket currency, B = α1 S1 + · · ·+ αN SN , where the αi are strictly posi-

tive constants, then S
B

satisfies the NA property with respect to general admissible
integrands.
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Proof. (a) ⇒ (b): Follows from Corollary 2.12. (a) ⇔ (c): Follows from (c′) ⇔ (d′)
in Theorem 2.9 and Remark 4.6. (b) ⇒ (d): Suppose now that there is an equivalent
measure Q ∈ Me(P ) such that B is a Q-uniformly integrable martingale. Hence from

Theorem 2.3 (c) and (c′) ⇔ (d′) in Theorem 2.9, S
B

satisfies NA. (d) ⇒ (a): If S
B

satisfies NA, from Theorem 2.3 (c), Remark 4.6 and (c′) ⇔ (d′) in Theorem 2.9, there
exists Q ∈ Me(P ) such that B is a Q-uniformly integrable martingale. Since each Sk is
a Q-local martingale and Sk ≤ B

min1≤j≤N αj
, Sk is a Q-uniformly integrable martingale. 2

Remark 5.2 Theorem 5.1 shows how important the existence of a martingale measure
(instead of a local martingale measure) is when dealing with different currencies and
numéraires. Another application of the theorem is that of different stocks and the use
of an index as numéraire. We also want to point out that the N financial assets were
interpreted as currencies. They can also represent arbitrary financial assets. The model
is therefore much more general than the title indicates.

The NA properties for general admissible integrands follow, in the continuous case,
from the no free lunch with vanishing risk NFLV R property for simple admissible in-
tegrands (see Delbaen–Schachermayer [6]). So the theorem can also be stated using
NFLV R for simple admissible integrands. In this case, the finiteness property follows
from NFLV R.

References

[1] Artzner, P. and Delbaen, F., “Term Structure of Interest Rates : The Martingale
Approach,” Advances in Applied Mathematics, vol. 10, 95–129, 1989.

[2] Ansel, J.-P. and Stricker, C., “Unicité et Existence de la Loi Minimale,” Séminaire
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