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Abstract 
 

The Inflation Premium implicit in the US Real and Nominal 
Term Structures of Interest Rates. 

 
J. Huston McCulloch 

Levis A. Kochin 
 

 Monthly term structures are fit to US Treasury inflation-indexed securities using a QN 

(Quadratic-Natural) spline, developed in this paper, and also to conventional nominal securities of 

comparable maturities.  The ratio of the real to nominal discount functions is an implicit forward 

CPI function.  The difference between the nominal and real forward interest rate curves is an 

implicit marginal inflation premium.  It is demonstrated that under consumption risk-neutrality per 

Stanley Fischer (1975), this inflation premium does not equal expected future inflation per Irving 

Fisher (1896,1930), but rather incorporates a weighted average of expectations about the future 

course of inflation, that tends to give greater weight to low inflation scenarios than to high. 

 The method is applied to 29 dates since the introduction of the 30-year indexed bond in 

April 1998.  Nominal interest rate volatility is 2-2.5 times greater (in terms of standard deviation) 

than real interest rate volatility, nominal rate shocks are highly correlated with shocks to the 

inflation premium, and real interest rate shocks are nearly orthogonal to inflation premium shocks.  

To date, there is no evidence against the log expectations hypothesis for real interest rates, nor 

against the Fisher hypothesis for the inflation premium.  There is only weak evidence against the 

Fischer hypothesis. 

 No evidence is found that the estimated forward rate beyond 30 years is nondecreasing 

over time, or even has lessened variance, despite the argument of Dybvig, Ingersoll and Ross 

(1996) that the asymptotic long-term forward rate and zero-coupon rate cannot fall without 

generating arbitrage opportunities.   



Introduction. 

 The introduction of 30-year price-level indexed US Treasury bonds in April of 1998, in 

conjunction with 10- and 5- year indexed notes released in January and July of 1997, provides an 

unprecedented opportunity to measure the US real term structure of interest rates over a broad 

spectrum of maturities, and to investigate the behavior of both real interest rates and the implicit 

inflation premium relative to a comparable nominal term structure.1  These securities are known 

as Treasury Inflation-Protection Securities or TIPS.   

 The present paper uses the inflation-indexed issues to obtain a real term structure by 

means of a Quadratic-Natural (QN) cubic spline functional form, developed here.  This functional 

form is also fit, for comparison, to selected conventional nominal issues.  The ratio of the real to 

nominal discount functions is an implicit forward CPI curve.  Under risk-neutrality with respect to 

consumption uncertainty, as proposed by Stanley Fischer (1975), the reciprocal forward CPI 

should equal the market's expectation of the future purchasing power of money. 

 The difference between the nominal and real forward rate curves is an implicit marginal 

inflation premium.  It is demonstrated that under the (Stanley) Fischer hypothesis, the marginal 

inflation premium reflects not expected future inflation itself per the traditional (Irving) “Fisher 

Equation,” but rather a certain weighted average of conditionally expected future inflation rates, 

conditioning on the future purchasing power of money.   

 The method is applied to data on the full term structure for April 1998 through August 

2000.  This data is used to investigate the real term premium, the Fischer and Fisher hypotheses, 

                                                        
1  By mid-2000, there were 7 indexed US Treasury issues outstanding, with a total inflation-adjusted face value of 
$114.1 billion:  an originally 5-year note maturing 7/2002, four originally 10-year notes maturing 1/2007, 1/2008, 
1/2009 and 1/2010, and two originally 30-year bonds maturing 4/2028 and 4/2029. 
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and the behavior of the volatility and correlations of real and nominal forwards and the inflation 

premium across horizon. 

   According to Dybvig, Ingersoll and Ross (1996), the asymptotic long-term real or nominal 

forward rate, if it exists, cannot fall without generating arbitrage opportunities.  It is investigated 

whether the estimated long-term forward rates extracted from this data are consistent with this 

DIR theorem.    

 The estimated term structures, forward CPI curves, and inflation premia are archived on 

the World Wide Web, and will be updated monthly. 

 

Term Structure Notation and Identities: 

 Let δ ( )m  represent the value at a given point in time of a promise to pay $1 (or $1 

indexed for inflation) m years in the future.  The continuously compounded zero-coupon nominal 

(or real) yield to maturity is then defined as 

 r m m m( ) log ( ) /= − δ .        (1) 

The instantaneous nominal (or real) forward rate for maturity m is defined as 

 f m m m( ) ( ) / ( )= − ′δ δ .        (2) 

The above implies 

 r m
m

f d
m

( ) ( )= ∫
1

0
µ µ ,         (3) 

so that the zero-coupon yield is an equally-weighted average of forward rates out to the maturity 

in question.  Multiplying (3) through by m and differentiating implies 

 f m r m mr m( ) ( ) ( )= + ′ ,        (4) 
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so that the forward curve is continuous if and only if the zero coupon yield curve is continuously 

differentiable. 

 The (continuously compounded) par bond yield for maturity m is defined to be that 

continuous coupon rate that would just make a bond of maturity m sell at par.2  This may be 

computed as: 

 y m
m

d
m

( )
( )

( )
=

−

∫
1

0

δ

δ µ µ
.         (5) 

Using (2), the above is equivalent to 

 y m
f d

d

m

m
( )

( ) ( )

( )
=

∫
∫

µ δ µ µ

δ µ µ

0

0

,        (6) 

so that the par bond yield is also a weighted average of forward rates over the relevant maturity 

interval, but with weights that decline in proportion to the discount function (cp (3), where the 

weights are equal instead).  This is an exact relationship that does not depend on any 

approximation.3 

 Multiplying (6) through by the denominator of the right hand side, differentiating and 

rearranging yields 

 f m y m
d

m
y m

m

( ) ( )
( )

( )
( )= + ′

∫δ µ µ

δ
0 ,       (7) 

                                                        
2   See McCulloch (1971, 1975) for development of these concepts.  The symbols used here differ somewhat from 
those used in the earlier papers, and instead conform more with current usage.  A semiannually compounded 
interest rate Rs may be computed from a continuously compounded rate Rc by the formula Rs = 2 (exp(Rc/2)-1), 
where both are expressed as a fraction of unity rather than as a percentage. 
3  Equation (6) was first developed in McCulloch (1977), but has not been previously published.  Shiller (1979) 
develops a similar, but only approximate, formula that substitutes a constant geometric decay function for the 
actual discount function.  Equation (6) is based on continuous coupons and continuously compounded 
instantaneous forward rates, but an analogous exact formula obtains with discrete coupons in terms of discretely 
compounded forward rates. 
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so that the forward curve is likewise continuous if and only if the par bond yield curve is 

continuously differentiable.   

 Joan Robinson once objected to the version of the Expectations Hypothesis that relates 

forward interest rates to expectations of future short term interest rates, on the grounds that if it 

were true, anyone who bought an infinite-maturity consol would have "to think he knows exactly 

what the rates of interest will be every day from now to Kingdom Come" (1951, 102n).  

However, equation (6) demonstrates that one would not have to have precise expectations about 

these future rates in order to price consols to any desired precision.  In fact, for any given pricing 

precision, one's ignorance regarding these rates can increase without bound as maturity increases 

toward Kingdom Come.  The obverse of this proposition is that when the forward curve is 

inferred from actual bond prices by means of (7), it has an intrinsic tendency to become 

increasingly poorly defined as m becomes very large, unless some a priori structure is imposed 

upon it, as is done below. 

 

The QN Spline 

 McCulloch (1975) fits a cubic spline to the discount function itself.  A cubic spline is a 

piecewise cubic function that is twice continuously differentiable.  The third derivative may be 

discontinuous at selected points called knotpoints.  A cubic spline discount function has the 

advantage of making the pricing equation for coupon bonds linear in unknown parameters that 

can then be found by least squares.  This method is used in McCulloch and Kwon (1993), using 

data on most of the outstanding Treasury bills, bonds and notes, and estimating far fewer 

parameters than observations by means of a weighted least squares regression.   
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 However, a spline discount function has the great disadvantage that a cubic often fits the 

long end of the discount function, where observations are relatively sparse, very poorly (see 

Vasicek and Fong 1977, Deacon and Derry 1994a, Bliss 1997).  Furthermore, there is no sensible 

way to extrapolate a cubic spline discount function beyond the longest maturity observed, since 

any cubic must either be constant or diverge to plus or minus infinity.  In mid-1986, there were 

some months when forward rates estimated by this method actually go negative even before the 

longest maturity observed (see McCulloch and Kwon 1993). 

 The present paper instead fits a cubic spline to the (negated) log discount function  

 ϕ δ( ) log ( )m m= − .         (8) 

In terms of this function,  

 
r m m m

f m m

( ) ( ) /

( ) ( ).

=
= ′
ϕ
ϕ

         (9) 

This method has the advantage that it can be extrapolated sensibly by a straight line to infinity, 

simply by imposing the "natural" restriction  

 ′′ =ϕ ( )m 0           (10) 

at the longest observed maturity.4  This in turn implies the discount function is a pure exponential 

decay beyond this maturity.  The forward rate in these maturities is constant, and the zero-coupon 

yield curve asymptotes to this constant hyperbolically by (3).  The par bond yield curve also 

asymptotes, to a consol interest rate that is in general a different numerical value because of the 

weighting in (6). 

 A spline log discount function has the disadvantage that the pricing equation for coupon-

bearing bonds, given by (A-3) in the Appendix, becomes a nonlinear function of the unknown 
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parameters, that must be fit by iterative numerical methods.  However, with modern computers 

this is no longer a significant constraint.5   

 There are over 200 primary nominal US Treasury bonds, notes, and bills outstanding, so 

that an over-identified cubic spline log-discount function with a natural restriction at the long end 

could easily be fit by least squares or other curve-fitting criterion to this data.6  However, real 

term structure data at present has the special limitation that there are only a handful of distinct 

maturities outstanding.  The present paper therefore addresses the special problem of fitting a 

just-identified term structure to a small number of well-spaced maturities.   

 Suppose we have n securities with well-spaced maturities mi, arranged in order by 

increasing maturity.  These maturities, together with m0 ≡ 0, define n+1 knots, and therefore n 

inter-knot intervals.  A completely unconstrained cubic spline with n ntervals will have n+3 

parameters – 4 for the cubic in the first interval, and a new third derivative in each of the n-1 

subsequent intervals.  The condition  

 δ ( )0 1≡ ,          (11) 

together with the n bond prices and a natural restriction (10) at m = mn, still leave one parameter 

undetermined.  We therefore need one more restriction in order for the n prices to completely 

determine the curve.  A second natural restriction at the short end (i.e. 0)0( =′′ϕ ) is undesirable, 

because, as can easily be shown from (9), this would imply ′ =r ( )0 0  and ′ =f ( )0 0 , while in fact 

                                                                                                                                                                                   
4  A “natural” spline is a cubic spline whose second derivative is zero at both the first and last data points.  A 
spline with a natural restriction at the long end only could perhaps be referred to as a “seminatural” spline. 
5  Numerous authors (eg Adams and Van Deventer 1994, Fisher, Nychka and Zervos 1995, Waggoner 1997, Evans 
1998) have effectively fit the log discount function with various types of spline or exponential decay functions, not 
always imposing the linear long-maturity behavior mentioned above.  Others (Nelson and Siegel 1987, Deacon and 
Derry 1994a) fit the bond yield curve directly.  See Bliss (1997) for a survey of this literature.  The present paper is 
the first to fit a QN spline.   
6  See Appendix 2 below for details.   
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the term structure ordinarily exhibits pronounced upward slope at maturity 0.  We therefore 

instead impose the quadratic restriction 

 ′′′ = ∈ =ϕ ( ) , [ , ]m m m0 0 1         (12) 

throughout the first interval.  This restriction allows the yield and forward curves to have any 

slope at m = 0, and instead merely constrains them to be linear out to the first knot point.  We 

refer to the resulting curve as a Quadratic-Natural cubic spline, or QN spline for short. 

 We then use an iterative procedure to find the unique QN spline log discount function that 

explains the observed bid-asked mean prices of the securities used, in terms of the present 

discounted value of their coupon and principal payments.  Appendix 2 gives details of the 

computation. 

 The Wall Street Journal, the Bloomberg Screen and Website7 and, most recently, the 

Federal Reserve Bank of St. Louis Monetary Trends depict yield curves that exactly fit the yields 

to maturity of selected benchmark issues.  As long as the selected issues are selling at or very near 

par, these represent valid points on the par bond yield curve.  However, these sources all depict 

the yield curve elsewhere as piecewise linear.  Equation (7) above demonstrates that a piecewise 

linear par bond yield curve, with a discontinuous derivative, implies a discontinuous forward 

curve, even if the par bond yield curve itself is continuous.  A discontinuous forward curve in turn 

implies either implausible expectations about future short-term interest rates or implausible 

expectations about holding period returns.  The present approach instead fits, in effect, a smooth 

par-bond yield curve to the observed yields, consistent with a forward curve that is not just 

                                                        
7  At screen C13 on the screen service and at http://www.bloomberg.com/markets/C13.html on the web. 
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continuous, but continuously differentiable.  It therefore renders piecewise linear yield curves 

obsolete.8 

 

The Real Term Structure 

 Figure 1 shows the Real US Treasury Term Structure for August 31, 2000, using Wall St. 

Journal quotes on the indexed notes maturing in 7/2002, 1/2007,1/2010, and the indexed bond 

maturing in 4/2029.  The securities maturing in 1/2008, 1/2009 and 4/2028, being proportionally 

quite close to these, could easily cause wild gyrations in the forward curve if included with an 

exact fit method within the limits defined by transactions costs, and so were excluded. 

 

                                                        
8  The Bloomberg screen service does have a continuous quadratic forward curve option available for its swaps 
term structure (screen FWCV US, with fitting option 2 selected on screen SWYC).  However, this is apparently not 
yet available for the C13 on-the-run Treasury term structure. 



 9

 

Figure 1 

US Real Term Structure for 8/31/2000. 

 

 The dots in Figure 1 indicate the continuously compounded9 asked yields to maturity of 

the securities used, plotted relative to their actual remaining maturities.  The estimation is based 

on the quoted bid/asked mean prices rather than these yields, but the dots should lie on or nearly 

on the estimated par bond yield curve if the issues in question indeed sell near par and the 

bid/asked spread is sufficiently small.   

                                                        
9  The bond equivalent, or semiannually compounded. yields conventionally reported on securities will lie slightly 
above these continuously compounded par bond yields.  (See footnote 2 above.)  However, semiannual 
compounding unnecessarily complicates the computation and interpretation of an implicit inflation premium. 
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 The QN spline allows all three curves in Figure 1 to be extrapolated sensibly as far as 

desired (to 40 years in these figures).  The real forward curve is, by assumption, flat beyond the 

longest observed maturity of 28.38 years, at an estimated level of 3.59%.  The zero coupon curve 

eventually asymptotes to this value by equation (3).  The par bond yield curve is a dampened 

version of the zero-coupon curve.  It asymptotes much more quickly than does the zero coupon 

curve, to a hypothetical real consol interest rate that may be numerically different from the 

limiting forward and zero coupon rate, in this case 3.73%. 

 Other, slightly differently shaped term structures will also fit these data points exactly.  

However, these will have to have approximately the same average forward rates between 

observations, and so cannot differ by much if they are equally smooth.  If a new 20- or 40-year 

indexed Treasury bond were issued at par, its yield would of course not lie exactly on the 

respectively interpolated or extrapolated portions of the par bond yield curve in Figure 1.  

Nevertheless, this curve gives an educated estimate of where the yields on such new bonds would 

lie.10  Corporate indexed bonds would be expected to lie above this US Treasury curve according 

to their tax status and respective ratings. 

 Beginning in April 2000, four TIPS were used to fit the real term structure, as in Figure 1.  

Between April 1998 and March 2000, only three TIPS were used, specifically the most recently 

issued (and therefore longest maturity) security in each of the three available maturity sectors.  

Between July 1997 and March 1997, there were only 5- and 10-year indexed notes.  For the 

purpose of the illustrations below, a term structure was fit with only these two maturities.  

However, since the data contained no real information on the term structure beyond 10 years, 

                                                        
10  McCulloch (1993) argues that it is realistic to view the state of expectations about future output, therefore about 
the term structure, as infinite dimensional.  This is nevertheless consistent with the explanatory power of 
additional parameters declining rapidly as the number used increases.   
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these months were not included in the drift, variance and covariance calculations below.  Between 

January 1997 and June 1997, only one indexed note, maturing 1/2007, was outstanding.  With 

only one observation, a QN spline log discount function reduces to a straight line through the 

origin, implying a flat forward and yield curve.  This rate was included in the plots below to give a 

feel for the early history of US real rates, but not in the aforementioned calculations. 

 

The Nominal Term Structure 

 There are over 200 outstanding primary nominal US Treasury securities whose prices are 

quoted daily in the financial press.  These define a nominal term structure with far more shape 

than is possible with the indexed issues, even when callable and inactive issues are excluded.  

Comparing the real term structure of Figure 1 to such a nominal term structure would result in an 

implicit inflation premium with considerable spurious shape, particularly in the first two years, that 

was coming entirely from the nominal side.  In order to obtain a nominal term structure that has 

no more and no less shape than the real term structure, it is therefore expedient to compute a 

nominal term structure, for purposes of comparison to the real term structure only, that is based 

on nominal securities of exactly the same number and as nearly as possible the same maturities, as 

the real term structure.   

 One’s first choice would be to use the most recently issued, and therefore most liquid, 

“on-the-run” securities for this nominal comparison term structure.  However, these often sell at a 

substantially lower yields than off-the-run securities of comparable maturities, apparently due to 

their desirability as collateral for repurchase agreements (see Duffie, 1996).  These low yields 

make them relatively unattractive as pure investments on the basis of their observable, promised 

payments alone, so that using them would make the inferred inflation premium unrealistically 
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small.11  Accordingly, our comparison nominal term structures are based on the highest yield 

reasonably liquid (in terms of small bid/asked spread) non-callable securities that can be found 

with approximately the same maturities as the indexed bonds employed.  Ordinarily these will be 

off-the-run issues.  Figure 2 below, for example, is based on the 6s of 7/2002, the 6.25s of 

2/2007, the 6s of 8/2009, and the 6.125s of 11/2027.     

 

Figure 2 

Comparison nominal high-yield Term Structure for 8/31/2000. 

 

                                                        
11  On 2/17/00, for example, investors who bought the new bond maturing in 5/2030 in preference to the “pre-
owned” 2/2029 were actually paying the Treasury 3% per annum to keep their principal for an extra 1.25 years.  
Similarly, those who bought the 2/2029 in preference to the musty 11/2027 received essentially nothing for letting 
the Treasury keep their principal for that 1.25 year interval.  See McCulloch (2000).   
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 The forward curve is again flat, by assumption, beyond approximately 27 years, at an 

estimated level of 5.89%.  The nominal zero coupon yield curve eventually asymptotes to the 

same value by (3).  The par bond yield curve asymptotes to a hypothetical nominal consol interest 

rate estimated to be 5.80%.  The data for Figure 2 and prior months, is likewise archived at 

http://www.econ.ohio-state.edu/jhm/ts/nom.html . 

 

 

The Forward CPI and Inflation Premium 

 Let Pt be the reference CPI for time t, ),( TtRδ  be the real discount function at time t for 

repayment at future date T = t+m, and ),( TtNδ  be the nominal discount function at time t for 

repayment at future date T.  Then ),(/),(),( TtTtPTtP NR
t

F δδ= is an implicit forward reference 

CPI at time t for future date T.  This is plotted for the data of Figures 1 and 2 in Figure 3, shifted 

left by 2.5 months to allow for the lag in indexation.12   

                                                        
12  The indexation lag is discussed at greater length in Appendix 1 below.  
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Figure 3 

The forward CPI for 8/31/00. 

 

 Let ),( Ttf R  )),(( Ttf N  represent the real (nominal) forward rate in the market at time t 

for future date T = t+m.  Then the instantaneous rate of growth of the forward CPI, or 

equivalently the nominal forward curve minus the real forward curve, 

 
),,(),(

/),(ln),(

TtfTtf

TTtPTt
RN

FF

−≡

= ∂∂π
       (13) 
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is the implicit marginal inflation premium for future date T.  This is shown as the heavy line in 

Figure 4 for the data of Figures 1 and 2, again shifted 2.5 months to allow for the indexation lag.13  

The marginal inflation premium is, by construction, a constant, here estimated to be 2.30%, 

beyond the longest observed real or nominal bond maturity.   

 

Figure 4 

The marginal and average inflation premium for 8/31/00. 

 

 The thin line in Figure 4 gives the average inflation premium,  

                                                        
13  The difference between the two zero-coupon yield curves gives an implicit average inflation premium, bearing 
the same relation to the marginal inflation premium that an average cost or revenue schedule bears to a marginal 
cost or revenue schedule.  This is not depicted here, but may be computed from the web-archived data as desired. 
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),,(),(

/),(ln),(

TtrTtr

mTtPTt
RN

FA

−≡

=π
      (14) 

where ),( Ttr R  etc. is the real zero-coupon yield at time t for repayment at future date T = t+m.  

As with forward and zero-coupon yields in equation (4), 

 )/),()((),(),( TTttTTtTt AAF ∂∂−+= πππ ,  

so that )0,()0,( tt AF ππ =  (so long as mmtA ∂∂ /),(π  is finite), ),(),(),( mtmt AF ππ <=>  as 

0),(/),( <=>∂∂ mmtAπ , and whenever the marginal inflation premium has an asymptotic value, 

the average premium has the same asymptotic value.   

 

The Inflation Premium and Uncertainty about the Future Price Level: Fisher vs. Fischer14 

 In a world of complete markets, zero transactions costs, and perfect foresight the forward 

CPI must equal the actual future CPI for the date in question, after adjustment for the indexation 

lag.  However, with uncertainty and risk neutrality with respect to consumption risk, we would 

not expect the forward CPI to equal the expected future CPI, nor even would we expect its 

logarithm to equal the expected future log CPI.  Rather, as noted by Stanley Fischer (1975, 518n), 

risk neutrality should equate the contractual real return to maturity on indexed bonds to the 

expected real return to maturity on nominal bonds.  Ignoring, for the moment, the lag in 

indexation, this may be written: 

 
),(),(

1

TtP

P
E

Tt N
T

t
tR δδ

=         (15) 

This “[Stanley] Fischer equation” implies the reciprocal forward CPI should equal the expected 

future reciprocal CPI: 
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 Tt
F QETtQ =),( ,         (16) 

where Qt = 1/Pt is the purchasing power of money at time t and ),(/1),( TtPTtQ FF =  is the 

forward purchasing power of money at time t for future date T = t+m.  By Jensen's Inequality, the 

three values are not equal: 

 ),()/1(/1lnexp TtPPEPEPE F
TtTtTt =>>      (17) 

The differences can be quite large at long horizons where the uncertainty is greatest:15 

 It may be shown that when consumption risk-neutrality prevails as in (16) and (17), the 

marginal inflation premium implicit in the forward CPI curve will not equal expected future 

inflation per the famous (Irving) Fisher equation (1896, 1930), nor even the negative of the 

expected future appreciation rate of money, but rather the negative of a weighted average of 

conditionally expected future appreciation rates, each conditional on the future purchasing power 

of money, and weighted both by the probability of the future purchasing power and by the 

purchasing power itself. 

 To see this, let p(QT) be the probability density (based on time t information) of QT etc.  

Then under purchasing power risk-neutrality, the (Stanley) Fischer equation (16) implies  

 
∫

∞
=

=

0
)(

),(

TTT

Tt
F

dQQpQ

QETtQ
        (18) 

and 

                                                                                                                                                                                   
14  The present section draws heavily on Kochin (1980).  The remainder of the paper is primarily due to 
McCulloch. 
15  As noted by McCulloch (1996, 410-11), if the log CPI is stable with characteristic exponent α < 2, it is natural 
to assume that its distribution is maximally positively skewed, ie skewness parameter β = 1, simply because rapid 
inflation is fiscally much more attractive than comparably rapid deflation.  In this case the reciprocal CPI will have 
finite expectation, while the CPI itself will actually have infinite mathematical expectation.  Bidarkota and 
McCulloch (1998) demonstrate that CPI inflation exhibits significant leptokurtosis, and assuming stability find an 
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It follows that 
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so that  
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as claimed. 

 In particular since, under modern fiat money conditions, future inflation is undoubtedly 

positively correlated with the future level of the CPI, and hence the future appreciation rate 

QT+dt/QT is positively correlated with the future purchasing power of money, the forward inflation 

rate at distant horizons must give more weight to low inflation scenarios than to high inflation 

scenarios:  If 30 years from now the price level is very high relative to today's expectations, 

inflation is also likely to be very high, but by then the value of money will have been virtually 

extinguished, so that these high inflation rates will make little difference for the present value of 

                                                                                                                                                                                   
estimated α value of 1.83, although for reasons of computational expediency they restrict themselves to the 
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nominal bonds.  Those scenarios in which future prices turn out to be relatively low, and in which 

inflation is therefore likely to continue to be relatively low, have a disproportionately large impact 

on the pricing of nominal bonds today, relative to their probabilities. 

 Klein noted already in 1975 that since World War II, the U.S. inflation rate had been 

behaving very nearly like a random walk, or an I(1) process in today’s parlance, rather than 

having clear mean-reverting tendencies as previously (Klein 1975, Stec 2000).  If the inflation rate 

were truly a pure random walk, the positive correlation between future inflation and the future 

price level would be particularly strong.  The variance of the inflation rate would increase in 

proportion to maturity, while the variance of the log price level itself would increase with the cube 

of maturity.  The marginal inflation premium would then actually be a concave quadratic in 

maturity, despite the fact that expected future inflation would be constant at its most recent 

level.16  In practice, the inflation process is likely to be asymmetrical with respect to inflation and 

deflation, so that a pure random model should not be taken literally, but it does demonstrate that 

the conditional inflation effect can be quite powerful. 

 Since 1984, some evidence for mean reversion in postwar US inflation has been 

accumulating.17  Nevertheless, even if high inflation invariably eventually comes back down, the 

evidence remains that any future upturn in inflation may linger for decades, still creating a strong 

and positive correlation between the future price level and future inflation.18   

 In addition to the strong Jensen's Inequality effect noted above, there may or may not also 

be a weaker Jensen's Inequality effect separating conditionally expected future inflation from the 

                                                                                                                                                                                   
symmetric (β = 0) stable case.  
16  See Kochin (1980) for details. 
17  See Stec (2000), Figure 3.2. 
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negative of the conditionally expected future appreciation rate.  To see this, assume that future 

inflation Tπ  equals the sum of a stochastic inflation trend Tπ , plus white noise: 
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where dz has variance (dt)1/2.19  Assume (again somewhat unrealistically, but for the sake of 

illustration) that, relative to time t information, and conditional on PT (and therefore QT), Tπ  has 

a Gaussian distribution with mean 
TPT |µ  and variance σ2.  Then  

 dtdtPdt TTt
222)|(var τσπ += ,       (23) 

whence 

 

( )

).(
2

1
1

)(
2

1
exp

|)exp(|

22
|

222
|

dtOdtdt

dtdtdt

PdtEQ
Q

Q
E

T

T

PT

PT

TTtT
T

dtT
t

++−=







 ++−=

−=






 +

τµ

τσµ

π

    (24) 

It follows from (19) that  
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18  During the 19th century, the US price level itself behaved much like a stationary or I(0) series.  In such a 
situation, the correlation between the price level and inflation may be negative.  But this has little relevance to 20th 
century experience, and presumably equally little to the 21st century. 
19  Bidarkota and McCulloch (1998) find that, to at least a first approximation, US CPI inflation has behaved like a 
random walk plus such noise, but with infinite-variance stable errors. 
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Hence, if future inflation is not noisy about its stochastic trend, ie if τ2 = 0, then the forward 

inflation premium just equals the purchasing-power-weighted average of future conditionally 

expected inflation rates 
TPT |µ .  But if future inflation is noisy about its stochastic trend, ie if τ2 > 0, 

the forward inflation premium is even less than this weighted average.  Interestingly, the 

uncertainty of the future conditional trend inflation itself, σ2, drops out and contributes nothing to 

this second Jensen's Inequality effect.   

 In the real world of risk aversion and imperfect markets, the marginal inflation premium 

may further contain  

• a (positive) risk premium compensating lenders for the risk of high inflation, 

• a (negative) risk premium compensating borrowers for the risk of low inflation,  

• a (negative) liquidity premium forgone by holders of the more liquid nominal securities, and 

• differential tax effects. 

Quantification of these factors goes beyond the scope of the present paper.20 

 

Empirical Behavior of Real Rates and the Inflation Premium 

 Figure 5 below shows the real instantaneous forward rate ),( Ttf R for three illustrative 

future dates T, versus market time t, monthly for the full term structure from 4/98 to 8/00.  In 

order to carry the plot back to the first issue of TIPS in 1/97, the real term structure was fit 

between 7/97 and 3/98 using only the 5- and 10-year notes.  During this period, the rates for 2010 

and 2030 coincide as a consequence of the “natural” restriction at the long end of the QN spline.  

Between 1/97 and 6/97 the real term structure was taken as flat at the yield on the sole 10-year 
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note outstanding, and all three curves coincide.  The data prior to 4/98 is not included in the 

computations reported in this section. 

Figure 5 

Real instantaneous forward rates for three illustrative future dates. 

 

 The real term premium for maturity m may be defined as the excess of the time t real 

forward rate for future date T = t+m over the time t expectation of the date T 0-maturity real 

interest rate:   

 ),(),()( TTfETtfmTP R
t

RR −=        (26) 

                                                                                                                                                                                   
20  Breedon and Chadha (1997) find that the inflation premium in U.K. indexed bonds has generally 
underpredicted inflation.  This is consistent with a positive risk premium compensating lenders for potentially high 
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Invoking the Law of Iterated Expectations, the time t shift in the real forward rate at horizon m 

over the observation interval ∆t (here 1/12 year) may be written 
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where ),( mtRε  is a forecasting error whose variance may depend on m.  It will be highly 

correlated across m, but serially uncorrelated across observations.  In the absence of a real term 

premium, i.e. when the benchmark “Log Expectations Hypothesis” holds for the real term 

structure, ),( Ttf R  will therefore be a separate martingale for each T across market time t.  If, 

instead, there is a positive term premium or “liquidity premium,” so that )(mTPR  is a 

monotonically increasing function, ),( Ttf R  will shift downward in expectation as t approaches 

T.  Alternatively, if there is a negative real term premium or “solidity premium,” ),( Ttf R  will 

shift upward in expectation instead.  The sign of the term premium may be shown to depend on 

whether the volatility of the innovations to future output is an increasing or decreasing function of 

the horizon m.  A zero term premium is a theoretical possibility and a valid benchmark, though 

not a theoretical necessity.21   

 Using the 29 monthly observations on the full real term structure from 4/98 to 8/00, no 

statistically significant departure from martingale behavior was found at any maturity from 0 to 

480 months.  While this is consistent with a 0 term premium at all maturities, it is not conclusive 

                                                                                                                                                                                   
inflation, although their time series is too short to demonstrate that this underprediction is significant. 
21  See McCulloch (1993), who demonstrates that the Expectations Hypothesis may hold in a continuous time 
rational expectations equilibrium in terms of continuously compounded interest rates, contrary to the claim to the 
contrary by Cox, Ingersoll and Ross (1981).  For simplicity, we assume here, as a first approximation, that the term 
premium is time-invariant. 
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in view of the small sample size.  Perhaps as the sample size enlarges, a real term premium will 

emerge in the US data. 

 Figure 6 below shows the behavior of the corresponding comparison nominal 

instantaneous forward rates ),( Ttf N  across market time t for the same three illustrative future 

dates T.  A nominal term premium may be defined as in (26), and estimated via the shifts in the 

nominal forward curve as with (27).  Although there is well known to be a positive term premium 

in the first 6 months or so of the US Treasury nominal term structure (McCulloch 1975, 1987), 

no significant departure from martingale behavior was found using this data.  However, this is not 

entirely unexpected given the absence of any securities under 2 years to maturity in this data set, 

and the small sample size.   
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Figure 6. 

Comparison nominal instantaneous forward rates for three illustrative future dates. 

 

 Figure 7 below shows the marginal inflation premium ),( Ttfπ  for the same three 

illustrative future dates, computed simply as Figure 6 minus Figure 5.  Under the (Irving) Fisher 

hypothesis that the inflation premium is an unbiased forecast of future inflation, ),( Ttfπ  should 

be a martingale for each T, with perhaps a maturity-specific volatility.  Under the (Stanley) 

Fischer hypothesis that the reciprocal forward CPI is an unbiased forecast of the future reciprocal 

CPI, on the other hand, the marginal inflation premium should be a downward biased forecast of 

future inflation if future inflation is positively correlated with the future price level.  That is to say, 
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each curve should tend to drift upwards on average over time.  Again, no significant drift at any 

maturity was detected to date, either up or down, using this data set. 

 

Figure 7. 

Marginal inflation premium for three illustrative future dates. 

 

 Figure 8 below shows the forward CPI ),( TtPF  for the same three illustrative future 

dates.  The volatility of the forward CPI naturally increases with horizon.  Between 4/98 and 8/00, 

the forward CPI for 1/1/2030 has fluctuated between 300 and 360, the latter being in excess of 

twice the current level of the CPI.   
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Figure 8. 

Forward CPI for three illustrative future dates. 

 

 Figure 9 below shows the reciprocal forward CPI ),( TtQ F  for the same three illustrative 

dates, based to 1982-4 = 100.  Under the (S.) Fischer hypothesis, each such curve should trace a 

martingale over time, regardless of the correlation of the future price level and inflation.  

Although there was a small downdrift that was just barely significantly negative at the 95% 

confidence level between maturities 5-10 months, inclusive, this drift was restricted to a maturity 

range that was entirely dependent on extrapolation of the real and nominal yield curves.  While 
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technically this is a departure from the Fischer hypothesis, it remains to be seen if it will hold up 

with a longer time series of observations.  

 

Figure 9. 

Reciprocal forward CPI for three illustrative future dates. 

 

 Figure 10 below shows the estimated maturity-dependent standard deviations of the shifts 

in the real forward curve, nominal forward curve, and marginal inflation premium about their 

estimated means, for 1 through 480 months to maturity.  Figure 11 shows the ratio of the nominal 

to real standard deviation from Figure 10.  It may be seen that at most horizons, nominal forward 

rates are about 2 to 2.5 times more volatile, in terms of standard deviation, than are real forward 
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rates, i.e. about 4 to 6 times more volatile in terms of variance.  The volatility of the inflation 

premium alone is almost as large as that of the nominal rates.  (By construction the standard 

deviations are constant beyond 30 years, since the estimated real and nominal forward rate curves 

are both flat at these maturities.) 

 

Figure 10. 

Standard errors of shifts in real and nominal forward rates, and in the inflation premium, about 

their estimated means. 
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Figure 11. 

Ratio of standard deviation of nominal forward rate shifts to that of real forward rate shifts. 

 

 Finally, Figure 12 below shows maturity-specific estimated correlations among the real 

and nominal forward rate and marginal inflation premium shifts.  It may be seen that at most 

horizons, the correlation between nominal rates and the inflation premium is between .8 and .9, 

which corresponds to an R2 between .64 and .81.  The correlation between real rates and the 

inflation premium fluctuates about 0, and is insignificant at the 95% level at all maturities.  Real 

and nominal rates are positively correlated, with a correlation coefficient between .3 and .5 at 

most horizons.  
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Figure 12. 

Maturity-specific correlation coefficients between real forward rate shifts, nominal forward rate 

shifts, and inflation premium shifts. 

 

Does the Long Forward Rate Ever Fall?   

 Dybvig, Ingersol and Ross (DIR, 1996) point out that if the (real or nominal) forward rate 

(and therefore the zero-coupon rate) has a limiting value as maturity approaches infinity, that 

limiting rate may never fall without generating arbitrage opportunities, in the absence of 

transactions costs.  It must therefore either be nonstochastic or else nondecreasing over time.  

Intuitively, their argument is similar to the point made by Ingersol, Skelton and Weil (1978), that 
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the yield curve cannot undergo shifts that are exclusively parallel without generating arbitrage 

opportunities.  The same theorem is valid for exclusively parallel shifts of any portion of the 

forward curve, and, as DIR point out, even for the limiting value (if one exists) of the forward 

curve.22  It follows that if the long-term rate has attained an ergodic distribution, that distribution 

can only be a degenerate, nonstochastic one.   

 The “natural” restriction at the long end of the QN spline requires that an asymptotic 

forward rate set in at the longest observed maturity.  As already pointed out, it is not claimed here 

that longer-term bonds than those observed would in fact lie precisely on the thus extrapolated 

term structure, so that our estimated long-term rate may not be the true asymptotic rate.  

Nevertheless, if the forward curve is indeed heading for an asymptote, we would expect that the 

estimated long-term rate would give at least an “early warning” indication of its whereabouts.   

 It may be seen from Figure 10 above that the long-term real forward rate (beyond 30 

years) is only slightly less volatile than rates under 13 years, and is in fact slightly more volatile 

than real forward rates 13-25 years out.  The long-term nominal rate is in fact more volatile than 

any shorter maturity.  Furthermore, Figures 5 and 6 demonstrate that the estimated long-term real 

and nominal forward rates (which have already set in by 1/1/2030 with this data) have no 

difficulty either falling or rising.  It would therefore appear that if there is an asymptotic real or 

nominal forward rate obeying the DIR theorem, it has not yet even begun to set in at a horizon of 

30 years.23 

 The real and nominal term structures shown here are based on bid-asked mean price 

quotations that do not take transactions costs into account.  Separate bid and asked term structure 

                                                        
22  McCulloch (2000b) points out that there is a crucial error in the basic theorem of DIR (1996), but that a simple 
modification of their proof restores their conclusion.   



 33

could easily be estimated, and would not differ by much at the maturities observed in the present 

paper.  However, McCulloch (2000b) shows that in the presence of even very small fixed 

transactions costs, the bid and asked term structures eventually diverge without limit, making 

long-term forward rates indeterminate, so that perhaps the DIR proposition is not one of great 

practical significance.   

 

Conclusions 

 Real term structures are fit to data from April 1998 to August 2000 by means of a 

Quadratic-Natural (QN) cubic spline functional form, developed here.  This functional form is also 

fit, for comparison, to selected conventional nominal issues.  Under risk-neutrality with respect to 

consumption uncertainty, as proposed by Stanley Fischer (1975), the reciprocal forward CPI 

implied by the real and nominal term structures should equal the market's expectation of the future 

purchasing power of money. 

 It is demonstrated that under the (Stanley) Fischer hypothesis of consumption-risk 

neutrality, the marginal inflation premium does not, in general, equal expected future inflation 

itself per the traditional (Irving) Fisher Equation, (1896, 1930), but rather is a weighted average 

of expected conditional future inflation rates, giving greatest weight to those cases in which future 

purchasing power is highest, and therefore in which future inflation is relatively low, in a modern 

fiat money economy.   

 It is found that nominal interest rate volatility is 2-2.5 times greater (in terms of standard 

deviation) than real interest rate volatility.  The correlation between nominal interest rate shocks 

and inflation premium shocks lies in the range .8 to .9, so that about 60-80% of the variance in 

                                                                                                                                                                                   
23  McCulloch (2000b) also points out that in the presence of even small transactions costs, a true asymptotic 



 34

nominal interest rates is accounted for by the variance in the inflation premium.  Real interest rate 

shocks have been essentially orthogonal to inflation premium shocks, but have a correlation of .3 

to .5 with nominal interest rate shocks.  

 To date, there is no evidence for deviations from the log expectations hypothesis for real 

interest rates, or from either the Fisher hypothesis for the inflation premium  The Fischer 

hypothesis is just barely rejected at the 95% level at a few short maturities that depend on an 

extrapolated yield curve.  It remains to be seen if this rejection holds up with a longer time series.   

 The estimated long-term forward rate for 30 years and beyond is found to fall or rise with 

equal ease, and to have a volatility that is as large or even greater than shorter term forward rates.  

If there is an asymptotic interest rate obeying the Dybvig, Ingersoll and Ross (1996) theorem that 

the long-term rate cannot fall, it therefore does not yet appear to be showing signs of setting in at 

even a 30-year horizon.   

 The estimated term structures, forward CPI curves, and inflation premia are archived on 

the World Wide Web, and will be updated monthly. 

 

                                                                                                                                                                                   
forward rate would in fact be indeterminate.   
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Appendix 1 — The Indexation Lag 

 US Treasury inflation-indexed securities are in fact indexed to the CPI-U with a short lag:  

The effective CPI for the first day of a given month is the actual CPI-U for the third month prior.  

Effective CPI values for other days of the month are obtained by linear interpolation.  For 

example, the effective CPI for June 30, 1998, 162.49 (1982-4 = 100), is a linear interpolation of 

the actual CPI-U values for March (162.2) and April (162.5) of 1998.  Payments of principal and 

interest are indexed by the ratio of the effective CPI for the due date to that for the date of issue.  

If a bond is purchased after issue, the quoted purchase price is by convention indexed by the ratio 

of the effective CPI for the purchase date to that for the date of issue.  The U.S. Treasury's Office 

of the Public Debt maintains a website with these factors24  Since the CPI-U reflects price 

information collected near the middle of the month in question, the effective indexation lag is 

approximately 2.5 months.  

 This lag effectively means that the last 2.5 months an indexed security is held is indexed by 

inflation during the 2.5 months prior to purchase.  If inflation turns out to be constant, the quoted 

real yield will be the true yield regardless of the level of inflation.  However, since inflation is 

uncertain, a small part of the return is in fact subject to inflation risk.  Nevertheless, so long as the 

lag is much shorter than the life of the bond, the risk is very small compared to that on 

conventional nominal bonds. 

 The real term structures estimated here could, if desired, be fine-tuned by subtracting the 

shifted inflation premium back off the estimated nominal comparison term structure to obtain a 

lag-adjusted real forward curve, from which a lag-adjusted real zero coupon yield curve could be 

reconstructed using (3).  This would in effect make the adjustment for changing inflationary 

                                                        
24  At http://www.publicdebt.treas.gov/of/ofinflin.htm . 
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expectations called for by von Furstenberg and Gapen (1998), but using the forward inflation 

premium implicit in the two term structures in place of expected future inflation, in line with the 

recommendations of Deacon and Derry (1994b).  Nevertheless, at current U.S. inflation rates and 

given the short indexing lag, the effects of such an adjustment would be quite small, and is not 

made in the present paper.25 

 The effects of lagged indexation are more important in the U.K., where an 8-month lag is 

used.  Furthermore, the prices there are quoted in such a way that the last 8 months of each 

payment are not indexed at all, rather than by the inflation for the 8 months preceding the 

quotation, as would be the case under the American system with an 8-month lag.  As a 

consequence, the real yield to maturity depends on the inflation that is assumed for this period, 

and yields are customarily quoted relative to more than one inflation assumption, eg 3% and 5%.  

U.S. real yield quotes require no such inflation assumption, since the preceding 2.5 months' 

inflation is automatically incorporated, for better or worse.  A series of forward inflation rates can 

be inferred from the real and nominal U.K. term structures, and then used as the assumed inflation 

for the last 8 months of each payment in an iterative procedure, as in Deacon and Derry (1994b), 

but this is somewhat cumbersome. 

                                                        
25  Evans (1998) points out that even such a lag adjustment would not precisely give the real returns on 
hypothetical synchronously indexed bonds, and attempts to explicitly model of the premium for the residual 
inflation risk.  
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Appendix 2 — Details of Estimation 

 A bond with maturity mi years and coupon rate ci makes  

  hi = trunc(2 mi)         (A-1) 

payments of ci/2 before maturity, plus a payment of 1+ci/2 at maturity.26  If its quoted "and-

interest" price is pi, it will actually trade at a "flat" price of  

  pi
f = pi + (.5 - (mi - 2 hi)) ci        (A-2) 

that includes a pro-rated share of the next coupon payment.  The pricing equation is then 
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The "and-interest" prices used here are the means of the bid and asked prices quoted in the Wall 

Street Journal.   

 Prior to 1969, there were strong tax effects in the U.S. bond market, as modeled by 

McCulloch (1975), but changes then in the tax treatment of capital gains on bonds purchased 

below par greatly reduced these effects, and the recent proliferation of tax-sheltered savings plans 

have further weakened the effect of taxation.  Taxes are therefore not incorporated into the 

present model. 

 Linear combinations of the n+1 functions  
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26  If 2mi  is an integer, this formula assumes there is a coupon at maturity 0, but this nets out of the flat price and 
has no effect on the pricing relationship. 
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generate the set of all cubic splines with knotpoints mi that pass through the origin and are 

quadratic on their first interval.  It follows that linear combinations of the n functions  
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are splines that pass through the origin, are quadratic on the first interval, and obey the "natural" 

restriction (10) at mn.  A QN Spline log discount function may therefore be constructed as  
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 Any of a number of algorithms may be used to solve the n non-linear equations (A-3) for 

the n unknowns a1, ... an.  The method employed here begins by solving the n linear equations  
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where yi is the continuously compounded yield to maturity of the i-th security.  Given a j
q , the 

corresponding discount function  
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is used to evaluate the coupons to arrive at a net (of coupons) price  
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may be solved linearly for a j
q+1 , etc.  This was repeated until the zero-coupon yield curve 

converged to within 0.001 percentage point at each of 481 maturities from 0 out to 40 years.  
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This method required 16-27 iterations for the present examples and takes only a second or two 

per data set on a Pentium-100 in GAUSS.27 

 The exact QN spline lends itself to observations whose terminal maturities are widely 

spaced, proportionately speaking.  Observations whose terminal maturities are close to one 

another may easily generate wild swings in the forward curve arising from transactions costs 

alone.  However, closely spaced data may be accommodated by fitting a spline log discount 

function with far fewer parameters than observations, by nonlinear least squares.  In such a case, 

the knots may be placed with equal numbers of terminal maturities between knots, as in 

McCulloch (1971, 1975).  The number of parameters may either be set to the nearest integer to 

the square root of the number of observations, as in McCulloch (1971, 1975), or, better, may be 

determined by a criterion of no significant serial correlation in the residuals.28  The natural 

restriction at the long end of the log discount function should be retained.  The quadratic 

restriction at the short end is no longer necessary with a regression spline, and may either be 

dropped by adding a cubic term to (A-4) (to obtain what might be called a "semi-natural spline"), 

or retained. 

                                                        
27  With very long maturities and/or very high interest rates, there is an off chance that the estimated net price will 
be negative and the algorithm described will fail.  It performs well for the data employed here, however. 
28  A third alternative would be to add knots by iteratively bisecting (in terms of data points) that interval in which 
serial correlation in the pricing errors is most evident, until there is no statistically significant overall serial 
correlation. 
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