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Abstract

Risk management is currently a crucial topic in the world of �nance� We argue

that an important analytic tool in risk management should be extreme value theory

and brie�y review what this subject has to o�er and illustrate the potential uses through

an example�

� Introduction�

Mainly due to the increase in volume and complexity of �nancial instruments traded� Risk
Management �RM� has become a �if not the� key issue in any �nancial institution or corpora�
tion of some importance� Having grown from a relatively small set of technical standards set
by banks internally or enforced upon banks by regulatory bodies� RM is now becoming an
organizational force within the company touching each hierarchical level� Globally accepted
rules are put into place �see for instance GARP ����	�� aimed at monitoring and manag�
ing the full diversity of risk �credit� market� liquidity� operational� � � � �� The �nal outcome
is a better understanding and grasp of the way �nancial institutions not only assess their
internal handling of risk but more importantly how their clients can bene�t from a fully
transparent risk pro�le of products and services� It is clear that RM is increasingly being
used as a marketing tool� Within the institution� at the more technical level� a properly
functioning RM system allows for a risk adjusted assessment of return on capital�

Glancing through past issues of RISK� one is struck by the rather sharp increase some
three years ago in papers discussing the wider issues of risk� Examples include case studies
like Barings� Orange County or Metallgesellschaft� and the publication and ongoing discus�
sion of J�P� Morgan
s RiskMetrics� RiskMetrics has been �and still is� important in so far
that its publication has focused discussions on some of the underlying technical issues� No
discussion has perhaps been more heated than the one on Value�at�Risk �VaR�� or as some
want to call it Capital�at�Risk� In McNew ����	�� the author states that VaR has proved
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to be a mixed blessing� and continues by saying that perhaps the biggest problem with VaR
is the main assumption in the conventional models� i�e�� that portfolio returns are normally
distributed� Taking up the �nice case of foreign exchange data� McNew states that it is
unfortunate for VaR theorists that evidence on the distribution function of exchange rates
indicates that there are too many extreme observations relative to what one would �nd if
exchange rates were normally distributed� Brady ����	� stresses a similar point as he re�
marks that the past is not the future� all attention is on the edges� where we know that the
models break down�

For the purpose of our paper� some of the problems related to VaR are best captured
in Boudoukh et al� ������� These authors stress that� from a RM perspective� managers
care more about the size of the losses than the number of times they will face a loss� They
continue by o�ering a worst case scenario �WCS� approach which they claim �is a concept
most often associated with the analysis of RARE OR EXTREME events� WCS is concerned
with the nature of an event which by de�nition is bound to happen� They continue by
stressing that� since VaR incorporates a signi�cant �ruin probability� be it �� or ��� there
is a need for an additional layer of prudence via a larger capital requirement� The approach
commonly used in the context of the VaR measure is to use the VaR number as an indication
and then simply to multiply this measure by some �hysteria factor� Often a factor of � is
used� On the more fundamental issue on how to de�ne coherent risk measures in �nance and
showing that VaR is not such a measure� see Artzner et al� ������� Finally� a comprehensive
review on VaR is Jorion ������� See the latter text on p� �	 for a reasoning behind the use
of the above factor ��

The above discussion sets the scene for our contribution� Recall the main points�

� RM is interested in estimating tail probabilities and quantiles of pro�t�loss distribu�
tions� and indeed of general �nancial data�

� extremes matter�

� we want to have methods for estimating conditional probabilities concerning tail�
events� given that we incur a loss beyond VaR� how far do we expect the excess
to go�

� �nancial data show fat tails�

Extreme Value Theory �EVT� is a subject whose motivations match the four points high�
lighted above� It is our conviction that EVT has a very important role to play in some of
the more technical discussions related to RM issues� At this point in time� nobody will be
able to come up with the only true answer concerning VaR and related risk measures� What
one can say however is that EVT will play an important part of the working methodology�

In the next section we summarize some of the main results of EVT and indicate where
they can be used in the overall RM context� Clearly� we are not able to give all details
here and the interested reader is referred to Resnick ������� Leadbetter et al� ������ and
Embrechts et al� ������ for comprehensive overviews� the latter in particular giving emphasis
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to applications to �nance and insurance� See also Zangari ������ and Longin ������� Finally�
the present paper can also be seen as a reaction to the following remark made by Alan
Greenspan� Chairman of the Board of Governors of the FED at a Research Conference on
Risk Management and Systemic Risk� Washington� D�C�� �	 November ���	� �Work that
characterizes the statistical distribution of extreme events would be useful� as well� EVT is
o�ering precisely the methodology underlying such a characterization�

� EVT� Basic Results�

In order to state the main results from EVT in their easiest form� we concentrate on a sample
X�X�� X�� � � �Xn of independent� identically distributed �iid� random variables �rvs� with
common distribution function �df� F � The iid assumption can be relaxed� this is indeed
very important to realize� EVT has been worked out for processes both in discrete as well as
continuous time� with or without independence and�or stationarity assumptions� It is fair
to say that for most models encountered in �nance� relevant EVT tools are available� See
Embrechts et al� ������ and the references therein for more details� For the purpose of this
paper� one may think of Xi as the loss �or gain� of transaction �portfolio� i� the i�th absolute
log�return of an underlying �nancial instrument or the i�th claim relating to an insurance
loss� The latter example is specially important as such events can be contingent for so�called
Act�of�God or catastrophe�linked bonds� Indeed� EVT has proved to be particularly useful
in modeling catastrophic claims in reinsurance� see McNeil ������ and Resnick ������� A �nal
example concerns the Xi
s as credit losses� Here EVT will undoubtedly become useful in
order to estimate the so�called unexpected loss and the stress loss� The latter nomenclature
is taken from SBC
s ACRA �Actuarial Credit Risk Accounting� and is indeed also to be
found in JP Morgan
s Credit Metrics� For instance� within ACRA� the stress loss is de�ned
as the possible � although improbable � extreme scenario which the Bank must be able to
survive�

Classical probability theory underlying most of the stochastic methods used in �nance
concerns sums of the individual Xi
s� Sn � X� � � � ��Xn� The relevant theorems relating
to fSng are the Laws of Large Numbers �LLN� describing that sample averages Sn�n ap�
proximate the mathematical expectation � � E�X� and the Central Limit Theorem �CLT�
which says that fSng centered and scaled to have mean � and variance � has approximately
a normal distribution� Indeed� it is the CLT which underlies the log�normality assumption
in the Black�Scholes model� yields Brownian motion as the corner stone of most analytic
models and leads to analytic VaR estimates based on normal quantiles�

Depending on the case at hand� a typical VaR or risk based capital estimate is calculated
as�

Current Sensitivity of Potential change
value of � portfolio to � in underlying
portfolio underlying factors factors

�����
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where the last factor usually is of the form k� where k � f�� �� �g and � stands for the
standard deviation of the underlying P�L� The factor k� should give the risk manager the
necessary statistical con�dence with respect to the adequacy of the estimate produced� The
outcome of ����� is then often further multiplied by some hysteria factor� see Jorion �������
This all hints at the fact that standard methods are not catering enough for the fat tails in
the loss data�

To show how EVT o�ers tools and techniques with potential use in �nance� we summarize
below some its main ideas in the case where iid loss data X�� � � � � Xn with common� but
unknown� df F are available� Of course� in practice VaR is calculated directly from a data
driven model �the Black�Scholes log�normal model say� and not from a speci�c sample of
losses� At the backtesting and calibration level however� the above set�up may be more
relevant� Also� for the ease of exposition and indeed in order to highlight the main EVT
procedures� we will stick to a somewhat idealized� sample�based VaR calculation� The reader
should have no problem in translating our �ndings to other areas of insurance and �nance�
For the moment� it is the key ideas that matter� Re�nements can be built in later�

Whereas Sn�n would correspond to an �average loss� the most extreme case within the
range of the data concerns the largest loss Mn � maxfX�� � � � � Xng� More generally� order
the data

min fX�� � � � � Xng � Xn�n � Xn���n � � � � � X��n � X��n � Mn �

and we might be interested in the behavior of the k largest losses X��n� X��n� � � � � Xk�n� Based
on the P�L dataX�� � � � � Xn and given a con�dence level �� an empirical VaR estimate would
produce the k�th largest observation Xk�n where k is approximately �n� By producing that
estimate �or indeed any more sophisticated VaR measure�� we would give management dollar
value which� based on our data� will typically only be surpassed in ����� of cases� Now
often� we would have insu�cient data �especially when � is small� � � ����� and n � ���
say� so that we have to extrapolate beyond the range of the data� So here is our �rst
fundamental problem concerning tail estimation for P�L distributions� For given �small� ��
calculate the level ���quantile� u� so that

P �X � u�� � �� F �u�� � � � �����

Remember that F is not known� If X stands for monthly �log��returns for a particular
portfolio� u� would correspond to a so�called ����month return period in the language of
insurance� If for instance � � ����� then u� is the ���month return period� i�e� that value
which on average is only surpassed once in �� months�

Secondly� once the above level u� is �xed� one would be interested in estimating the
potential losses above u�� �If we are hit �beyond VaR�� by how much� Therefore we need
to be able to estimate the conditional probability df

P �X � u� � x j X � u�� � �����

i�e� the conditional probability that� given a loss beyond u�� the excess loss X � u� is no
bigger than some level x� An estimate of this conditional probability will �in the case of
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su�cient data� involve the losses X��n� X����n� � � � � X��n above some �large� loss X����n� If
insu�cient data are available� we have to �nd a suitable model or approximation for ������
Though the conditional df in ����� has long been used as a standard measure in �elds like
insurance �excess�loss� and reliability�medical statistics �residual�life�� its importance in
�nance is only now becoming clear� Names like �shortfall� �beyond VaR� etc��� are being
used for the quantity

e �u�� � E �X � u� j X � u�� � �����

the �conditional� mean excess loss� given that a loss above u� �VaR say� has occurred�
Within the actuarial literature� much is known about e �u��� see Embrechts et al� �������
The function e �u�� is very useful in distinguishing between short�tailed and fat�tailed dfs�
In the former case� e �u�� typically decreases �in the normal case even to ��� whereas for
fat�tailed dfs e �u�� increases for � tending to �� i�e� for u� tending to in�nity� One easily
shows �Embrechts et al� ������� p� �	��� that for normally distributed data e �u�� � u���
and E �X j X � u�� � e �u�� � u� � u�� Hence� if u� � VaR� then E�X j X � VaR� �
VaR� However� in the fat�tailed Pareto case with tail�parameter � � �� i�e� � � F �x� �
�� � x���� x � �� say� one easily shows that e �u�� � �� � u�� ��� � �� and consequently
E �X j X � u�� � �

���
u�� Once more� if u� � VaR� then in the fat�tailed Pareto case

E�X j X � VaR� � �
���

VaR� From empirical studies� it follows that within insurance often
� 	 � 	 �� whereas in �nance a range ��� 	 � 	 � is standard� The consequence of this for
applications of the VaR methodology are obvious� For further discussions and examples� see
Artzner et al� ������ and Longin �������

EVT o�ers empirical �nance in general and Risk Management in particular methods for
estimating quantities like ����������� and indeed many related quantities under �exible model
assumptions� Such models include time dependent�parameter models �non�stationarity�
and models involving exogenous variables� Note also that EVT�based solutions of ������
����� allow for a wide variety of shapes of the underlying dfs �P�L distribution� return df�
credit�loss df� insurance claims df� �����

Without going into excessive detail on how EVT works� we mention the main ingredients
in the solution of the above problems�

Fact �� Under widely applicable conditions� the df of the largest observation Mn of an
iid sample X�� � � � � Xn can be approximated by a member of the following class of extreme
value distributions�

H������x� � exp
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�
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x� �

�

�
����

�
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�

Here y� � max�y� ��� This three�parameter family of distributions has a location parameter
� � R � a scale parameter � � � and �most importantly� a shape parameter 
 � R � The case

 � � is to be interpreted as

H������x� � exp

�
� exp

�
�
x� �

�

��
� x � R �
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and is referred to as the double exponential or Gumbel distribution� For 
 � �� H����� is
called the Fr�echet distribution� for 
 	 � the Weibull� An important distinction is that the
Fr echet has unbounded support to the right and the Weibull has unbounded support to the
left� Figure � contains the density functions for the standard cases H����� for 
 � �� 
 � ����

 � �����

Figure �� Densities of the extreme value distributions�

From Figure �� we see the typical skew behaviour of extreme value distributions� Moreover� in
the case 
 � � which is most important for �nance� the tail ��H������x� behaves like x

����� i�e�
is fat�tailed� In order to be clear about the signi�cance of the extreme value dfs and their link
to the normal df� observe that for X�� � � � � Xn iid� N ��� ���� and Mn � max �X�� � � � � Xn��

P �Mn � x� � !

�
x� bn
an

�
� H�����

�
x� bn
an

�
�����

for suitable sequences �an� and �bn� which can be calculated explicitly as functions of n�
� and �� Hence the two�sided� skew Gumbel df ! approximates the law governing the
largest observation in a normal sample� A similar result� with di�erent �an� and �bn�
s
holds for instance for exponential and lognormal data� In the case of fat�tailed data with
��F �x� � x�� say� the rhs in ����� has to be replaced by the Fr echet df H�������� For details
on these approximations� see Embrechts et al� �������

Returning to the crucial question of estimating beyond VaR �or shortfall�� under reason�
able conditions on F � there exists a canonical class of dfs approximating the conditional df
in ����� for u� large� i�e� � small� For �nance and insurance applications� this is a crucial
point� These generalized Pareto distributions �GPD� are de�ned as

G��	���x� � ��

�
� � 


x� �

�

�
����

�

���	�

where 
 is the shape parameter corresponding to the extreme value distribution� � and � are
again location and scale parameters� In the case 
 � � �the most important case for �nance��
the GPD has a heavy�tailed Pareto distribution� We have therefore reached

	



Fact �� The GPD dfs ���	� are natural approximations to the excess df �conditional VaR
df� in ������
Remark� Facts � and � are linked because the conditions needed in order to decide on the
GPD �t depend on the approximation coming out of Fact ��

We have sketched some of the main problems EVT can solve� A key task is now to
work out the theory in such a way than an end�user can safely apply the methodology� The
following is therefore of crucial importance for this end�user �risk manager� quant� actuary�
�����
Fact �� The main tools and techniques from EVT have been worked out to be used on
a large variety of data and models� Standard software is made available� A sample of S�plus
routines can be downloaded from http���www�math�ethz�ch� "mcneil�software�html�

The next section contains an example from �nance�

� An example

In order to illustrate some of the above techniques� we brie�y discuss an example based on
daily equity �BMW� return data over the period �January �� ���� till July ��� ���	�� We
concentrate on the left tail �i�e� negative daily return values�� In order to keep in line with
the positive sign for losses as used in the previous section� we take absolute values and denote
the df of these values by F � The resulting series has n � ���� observations� In Figure �� we
have plotted the empirical estimate en�u�� u � � of the mean excess function e�u� in ������
This means that

en�u� �
�

Nu

nX
i��

�Xi � u�
�

where Nu � # fi � �� � � � � n j Xi � ug� i�e� Nu is the number of exceedances of u� Note the
increasing behaviour from u � ���� onwards clearly indicating fat �even Pareto type� tails�
In Figure �� we have �tted the generalised Pareto distribution to the excess df in ������ All
the data above the threshold u � ���� were used for this plot� The crucial shape parameter 

has the value ����� which corresponds to a Pareto tail with value ��
 � ������ From this
plot� one can read o� the conditional probability of high excesses� given that indeed we
have an exceedance of u � ����� Of course� we can change the latter value as desired� for
each u� a new model has to be �tted� On the other hand� one might be interested in the
tail probabilities �� F �x� or high quantiles like in ������ A plot of this is given in Figure ��
Note that we use for both axes a log scale� The reason for this is that it magni�es the tail
of F � An exact Pareto tail would be linear on this scale� On Figure �� we have also plotted
some quantiles u� �see ������ together with ��� con�dence intervals� These intervals are the
sections cut o� by the two parabolas of the horizontal line through ��� The resulting values
are�

������ � u� ������ � CI������������� ������ �
������� � u������� � CI������������� ������ �
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Hence a ��� con�dence interval for a ���� event in these daily return data is �������������
There is a lot more we could examine at this point� dependency in the data� sensitivity of
estimates to the threshold u � ����� more details on the statistical tools used� � � � � All these�
and indeed many more points can be addressed through careful use of EVT� We refer the
interested reader to the references for more information and recommend experimenting with
the software posted on the web�
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Figure �� Sample mean excess function en�u� for the BMW return data�
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Figure �� Fit of the excess df Fu for the BMW return data�

� Final comments

The above discussion scratched the surface of what EVT o�ers� Its applicability to �nance
will be examined in much greater detail� The fact that the method already has proven
important in �elds like reliability� reinsurance� hydrology and environmental science enhances
our belief that relevant applications in the realm of �nance in general and RM in particular
will be found� There is no alternative� if risk managers want to look at the edge� the proper
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Figure �� Quantile estimates ���� and ������ for the BMW return data together with �	�
con�dence intervals� Doubly logarithmic scale�

tools must be used which implies reliance on classical EVT and its numerous extensions to
dependent and multivariate data� as well as to stochastic processes �including some of the
standard stochastic volatility models��
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