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Abstract

Leisen and Reimer (1996) suggested to consider the order of convergence as a measure
of convergence speed for European call options. In this paper we study in a first step the
problem of determining the order of convergence in pricing American put options for
several approaches in the literature. We will then examine in detail extrapolation and the
Control Variate technique for improving convergence and will explain their pitfalls. Since
the investigation reveals the need for smooth converging models in order to get smaller
initial errors, such a model is constructed. The different approaches are then tested:
simulations exhibit up to 100 times smaller initial errors. ( 1998 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

In their celebrated work Black and Scholes (1973) introduced a new frame-
work into the theory of option valuation using the notions of hedging and
arbitrage-free pricing. Later Harrison and Kreps (1979) and Harrison and
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Pliska (1981) developed the concept of the equivalent martingale measure. This
concept gave an elegant technique to express and solve pricing problems.
Bensoussan (1984) and Karatzas (1988) generalized this technique to the case of
the American put option. In this context the price is determined by an optimal
stopping problem; the price-process can be described as the smallest supermar-
tingale majorant to the discounted payoff (‘Snell enveloppe’). This problem was
already studied by McKean (1965) and transformed into a free boundary
problem. Moreover he represented the stopping time in terms of the so called
early-exercise boundary and the option price as a function of this boundary. Van
Moerbeke (1976) derived properties of the boundary. After McKean (1965)
many authors were dealing with representations of the price in terms of the
boundary; a very intuitive one was given recently by Carr et al. (1992). For an
overview of the state-of-the-art in continuous time we refer the reader to Myneni
(1992).

Though the American put option is of great interest in practice, up to now no
closed-form or analytical solution to the price nor to the boundary is known.
Therefore there is an abundance of numerical work on this subject.

A straightforward approach is dealing with analytic approximations. The best
known of these are quadratic approximations which were developed by Mac-
Millan (1986) and extended by Barone—Adesi and Whaley (1987). However such
approximations cannot be made arbitrarily accurate.

Another approach starts from a discretization of the partial differential
equation describing the free boundary problem. This method of finite differences
was originally proposed by Brennan and Schwartz (1977). Using variational
inequalities the algorithm was justified completely only recently by Jaillet et al.
(1990).

This paper sticks to the broad field of binomial models, the first of which was
proposed by Cox et al. (1979) (CRR). They are constructed in such a way that if
the time between two trading dates shrinks to zero, convergence (weakly in
distribution) to their continuous counterpart is achieved. In these models
American put options can be priced very easily by the Bellman principle of
dynamic optimization, which is justified intuitively from arbitrage arguments.

Though in the case of European call and put options, convergence of prices is
ensured very easily from weak convergence of the processes, things are much
more complicated in the case of the American put option, since in general
convergence of maxima over expectations on functionals on the processes
— which are the prices — cannot be derived from weak convergence only (Aldous,
1981). However, a proof can be deducted from Kushner (1977) in a slightly
different context and more recently from Lamberton and Pagès (1990).

There are numerous binomial approaches and extensions. One mainstream is
dealing with ‘better’ price approximations as in CRR. Jarrow and Rudd (1983),
pp. 183—188 (JR) adjusted this model to account for the local drift term. Tian
(1993) argued that matching discrete and continuous local moments
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should yield ‘better’ convergence. Actually, though these works worry about better
convergence, none of them resolved it fully for the lack of a proper definition.

These problems were addressed by Leisen and Reimer (1996). They measured
the speed of convergence by the concept of order of convergence. It was shown
a general theorem for determining it in the case of the European call option.
Using this they concluded that in this sense the presented models of CRR, JR
and Tian are equal; they all converge with order one. In a second step, a model
with the higher order of convergence two was constructed.

In this paper, we first give a short introduction to the (discrete and continu-
ous) models and the basic notation (Section 2). In the next step, we will then
extend the theorem derived by Leisen and Reimer (1996) to the case of the
American put option. This leads to determine order of convergence one for the
models of CRR and one from above resp. 1/2 from below for the models of JR
and Tian (Section 3). The information about the type of convergence is then
used for an error representation. This allows to analyze in detail two ad hoc
improvements common in practice: The Richardson extrapolation and the
Control Variate technique introduced by Hull and White (1988). Since the
analysis reveals the need for smoothing the convergence behavior of price
calculations, we construct a new model for calculating European put option
prices (Section 4). Though this model is very simple, it yields order of conver-
gence two by extrapolation. In Section 5 we present a numerical analysis of
different binomial models for the American put option. It turns out that
extrapolation yields initial errors that are up to 100 times smaller than those
using previous binomial models.

2. The framework

Throughout the following paper we suppose a constant interest rate r50 and
a constant volatility p'0, to be given. Continuous capital markets are modelled
by a stock price process (S

t
)
tz0

following geometric Brownian motion, i.e.:

dS
t
"rS

t
dt#pS

t
d¼

t

where (¼
t
)
tz0

is a standard Wiener process on some probability space (X,F,Q).
Please note that we immediately introduced the risk neutral probability measure
Q according to Harrison and Pliska (1981).

In this model the price P%(t,S) of a European put with strike K when time-to-
maturity equals ¹!t and the stock-value equals S is the well known
Black—Scholes formula:

P%(t,S)"Ke~r(T~t)N(!d
2
)!SN(!d

1
),

d
1, 2

"

ln(S/K)#(r$1
2

p2)(¹!t)

pJ¹!t
,
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where N( ) ) is the cumulative standard normal distribution function. Things get
complicated when dealing with American put options. Suppose we are given
a fixed American put with strike K and maturity date ¹. Denote the price
function by P!(t,S). From Van Moerbeke (1976) it follows that there exists
a critical stock price B

t
, below which the option should always be exercised

(P!(t,S)"(K!S)` for S4B
t
) and above which it should never be exercised

(P!(t,S)'(K!S)` for S'B
t
). The function tÂB

t
is a smooth, nondecreasing

function of time t which terminates in the strike price (B
T
"K). It is called the

(early-exercise) boundary.
The boundary separates the domain D"[0,¹]]R` into the continuation

region C :"M(t,S)3D D S'B
t
N and the stopping region S :"M(t,S)3D D S4B

t
N.

Binomial models are a description of discrete asset price dynamics. They specify
a number n of trading dates. Trading occurs only at the equidistant spots of time
tn
i
3Tn :"M0"tn

0
,2,tn

n
"¹N with tn

i`1
!tn

i
:"Dt

n
:"¹/n (i"0,2, n!1). In

order to achieve a complete market model, the one-period returns R
n,i

(i"1,2, n) are modelled by two point iid binomial random variables

R
n,i
"G

u
n

with probability q
n
,

d
n

with complementary probability 1!q
n

on a suitable probability space (X,F,Q). Therefore the discrete asset price

dynamics is (S
n,k

)
k

where the price S
n,k

at time tn
k

is described by

S
n,k

"S
0

k
<
i/1

R
n,i

.

The specification of the one-period returns is a complete description of the

discrete dynamics. We call a finite sequence R
n
"(R

n,i
)
i/1,2,n

a lattice (tree).
Observing that

P!
n
(t,S)"maxMS, E[P!

n
(t#Dt

n
, R

n,1
S)]N

and P!
n
(¹, ) )"f, the American put option price can easily be calculated back-

ward in time.
In the sequel we will suppose always that a whole sequence of lattices is given.

One should think of it as a triangular array

R
1,1

R
2,1

R
2,2

R
3,1

R
3,2

R
3,3

F F F }

where each row represents a lattice.
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A method which assigns to each refinement n a lattice is called a lattice
approach. In order to compare it with the continuous model, denote for any
n3N for i"1,2, n by R

n,i
the continuous return between times tn

i
and tn

i`1
. For

n fixed they are iid random variables on (X,F,Q) such that S
tnk
"S

0
<k

i/1
R

n,i
,

∀k"0,2, n. Several different lattice-approaches have been proposed. The
model of CRR uses

u
n
"expMpJDt

n
N,

d
n
"expM!pJDt

n
N.

To take into account the risk-neutrality argument of Harrison and Pliska (1981),

the expected one-period return E[R
n,1

] must be equal to the one period return
of the riskless bond r

n
"expMrDt

n
N. This amounts to setting

q
n
"(u

n
!r

n
)/(u

n
!d

n
). The risk-neutrality argument amounts to matching dis-

crete and continuous first moments. Tian’s parameter selection requires the
second and third moments to be equal, too:

u
n
"

r
n
v
n

2
(v

n
#1#Jv2

n
#2v

n
!3),

d
n
"

r
n
v
n

2
(v

n
#1!Jv2

n
#2v

n
!3),

where

v
n
"expMp2Dt

n
N.

JR argue in terms of gross return. Adding the local drift term k@Dt
n
yields

u
n
"expMpJDt

n
#k@Dt

n
N,

d
n
"expM!pJDt

n
#k@Dt

n
N,

where

k@"r!p2/2.

Moreover they have q
n
"1

2
.

3. Characterization of errors

Now suppose we are given some fixed stock S
0

and a contingent claim.
Denote its continuous time price by p

=
. Moreover suppose we study a lattice-

approach yielding a sequence (R
n
)
n

of lattices. From this sequence we can
calculate a sequence (p

n
)
n
of discrete prices. We know from Kushner (1977) and
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Fig. 1. Price, error and bounding error functions depending on refinement.

Lamberton and Pagès (1990) that discrete American put prices converge to the
continuous price p

=
. That means, if we denote by e

n
:"Dp

=
!p

n
D the error each

lattice produces, we have lim
n?=

e
n
"0. (Fig. 1). A straightforward way to

measure convergence speed is to compare it with those of the sequences
(1/n)

n
, (1/n2)

n
,2 . That is, we use the mathematical concept of ‘order of conver-

gence’. Restated in our specific case, we adopt the following:

Definition 3.1. Let (R
n
)
n

be a sequence of lattices. A sequence of prices (p
n
)
n

calculated from the lattices converges with order o'0 if there exists a constant
i'0 such that

∀n3N: e
n
4i/no.

In the sequel we will often write shortly e
n
"O(1/no) for this.

Please note that convergence of prices is implied by any order of convergence
greater than 0. Moreover we remark that higher order means ‘quicker’ conver-
gence. Thus the theoretical concept of order of convergence is not unique:
a lattice approach with order o has also order oJ 4o.

Though the concept of order of convergence may seem very theoretical,
indeed it is easy to observe in actual simulations. Because of
logi/no"logi!o log n the bounding function i/no becomes a straight line
with slope equal to (!o) and shift i on a log—log scale. So when plotting e

n
on

a log—log scale, determining the order of convergence consists in looking for the
slope of a suitable bounding straight line. In Fig. 1 we calculated American put
option prices (and their errors) of the continuous-time solution with the CRR-
model with the following parameters: S"100, K"105, ¹"1, r"0.05,
p"0.2. The refinement is iterated from n"10,2, 200. Moreover, we plotted
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the function 2/x as an upper bounding error line. This suggests that the order of
convergence is equal to one.

Leisen and Reimer (1996) were looking for factors derived from the lattice
approach under consideration that determine the order of convergence
for European call options. The following (pseudo-)moments turned out to
fulfill this.

Definition 3.2. For a sequence of lattices (R
n
)
n|N

we call for all n3N:
Moments:

m1
n
:"E[R

n,1
!1]!E[R

n,1
!1],

m2
n
:"E[(R

n,1
!1)2]!E[(R

n,1
!1)2],

m3
n
:"E[(R

n,1
!1)3]!E[(R

n,1
!1)3],

Pseudo-moment:

p
n
:"E[(ln R

n,1
)(R

n,1
!1)3].

These moments are mainly the differences between the ordinary moments of the
discrete and continuous approaches. Therefore, they represent a generalization
of the ordinary moments. The form of the pseudo-moment is of technical nature
as it resulted from the proof of Theorem 3.1. Please note that m1

n
"0 from the

risk neutrality argument of Harrison and Pliska (1981).
In the case here, where we have a discrete approximation of a continuous

framework, it turns out that the order of convergence is determined by the
difference of the ordinary moments, i.e. by that of our moments. This is exactly
what Theorem 3.1 which was stated and proven in Leisen and Reimer (1996)
says.

¹heorem 3.1. ¸et (R
n
)
n|N

be a sequence of lattices and m2
n
, m3

n
,p

n
its respective

(pseudo-) moments. ¹hen the order of convergence in calculating European call
option prices is the smallest order contained in m2

n
,m3

n
and p

n
, reduced by 1, but

not smaller than 1, i.e.:

&i(S
0
,K, r, p,¹):e

n
4iMn(m2

n
#m3

n
#p

n
)#1/nN.

¹heorem 3.2. ºnder the assumptions of ¹heorem 3.1 the same results hold for
European put options.

Proof. This is an immediate consequence of put-call parity. h

Proposition 3.1. ¹he lattice-approaches of CRR, JR and ¹ian satisfy

m2
n
"O(1/n2), m3

n
"O(1/n2), p

n
"O(1/n2).
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Proof. See the Appendix in Leisen and Reimer (1996). h

Theorem 3.2 and Proposition 3.1 immediately yield

Corollary 3.1. European put option prices calculated using the lattice-approaches
of CRR, JR and ¹ian converge with order one.

The question whether it would be possible to strengthen the result of Theorem
3.2 in order to prove higher order of convergence may now arise. We now state
a Theorem which says that this bound is actually the best achievable. The idea
and the proof are from David Heath.

¹heorem 3.3. Suppose a fixed initial stock-price S, interest rate r and volatility p,

as well as a sequence (R
n
)
n|N

of lattices with u
n
/d

n
"1#O(JDt

n
). ¹hen there

exists a strike price K such that prices calculated for this European put option
have error e

n
5c*/n for a suitable constant c*

3R.

Proof. Holding all other parameters fixed, this proof will study the depend-
ence of the price P%(K) of a European put option on its strike. It is a strictly
convex function. We deduce from this that there are some C'0, K

1
(K

2
such

that

L2P%(K)

LK2
5C for all K3[K

1
, K

2
].

Let K*
"(K

1
#K

2
)/2 and I

n
denote the interval between successive terminal

stock prices which contain K*, where we suppose a sufficiently high refinement
n5n

0
.

Then

DI
n
D5A

u
n

d
n

!1BK*.

P%
n
is a linear function in the strike price K on the interval I

n
. Therefore

L2P%
n

(K)

LK2
"0 on I

n
.

Let e
n
(K) :"P%(K)!P%

n
(K) denote the error depending on the strike price K.

Then

L2e
n

LK2
"

L2P%(K)

LK2
5C on I

n
L[K

1
, K

2
].
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Integrating twice yields

sup
K|In

De
n
D5

DI
n
D2

16
inf
K|In
K
L2e

n
LK2K5

C DI
n
D2

16
5

C DK*D2
16 A

u
n

d
n

!1B
2
5

C*

n

for a suitable constant C*. h

Obviously the lattice approaches of CRR, JR and Tian fulfill the condition

u
n
/d

n
"1#O(JDt

n
) in Theorem 3.3. The following two theorems will state

a result similar to that of Theorem 3.2 for the American put option.

¹heorem 3.4. ¸et (R
n
)
n|N be a sequence of lattices and m2

n
,m3

n
,p

n
its respective

(pseudo-) moments. ¹hen there exists a constant i
u
(S

0
, K, r,p,¹) such that

P!(0,S
0
)!P!

n
(0,S

0
)4i

u
Mn(m2

n
#m3

n
#p

n
)#1/nN.

Proof. Denote by (XK ,FK ,QK ) the product of (X,F,Q) and (X,F,Q). For all n3N

and k"0,2, n let A
n,k

"p(S
n,i

D i4k) denote the information structure. From
Carr et al. (1992) we know that the price of the American put can be decomposed
into the price of a European put and the early-exercise premium n, which takes
the form

n"rKP
T

0

e~rt{N(b
2,0

(S
0
, t@)) dt@

where b
2,0

(x,t@)"[lnBt/x!(r!p2/2)t@]/pJt@. Lemma A.2 in the Appendix

tells us that stopping the discrete process (S
n,k

)
k/0,2,n

according to the rule
(B

tnk
)
k/0,2,n

yields the premium

nB
n
"

n~1
+
k/0

e~rtnkK(1!e~rDt)QK [S
n,k

(B
tnk
]#O(Dt

n
).

The optimal stopping policy, however, yields the higher premium n
n
. Therefore,

we have according to Lemma A.5 in the Appendix:

&i
u
(S

0
, K, r,p,¹): n!n

n
4i

u
Dt

n
.

Since

DP!(0, S
0
)!P!

n
(0, S

0
)D4DP%(0, S

0
)!P%

n
(0,S

0
)D#Dn!n

n
D.

Theorem 3.4 now follows immediately from Theorem 3.1. h
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¹heorem 3.5. ¸et (R
n
)
n|N

be a sequence of lattices and m2
n
,m3

n
,p

n
its respective

(pseudo-)moments. ¹hen there exists a constant i
-
(S

0
,K, r, p,¹) such that

P!(0,S
0
)!P!

n
(0,S

0
)5i

-Gn(m2
n
#m3

n
#p

n
)#

1

JnH.

If (R
n
)
n

is constructed according to the CRR lattice approach, then we have the
stronger result that there exists a constant i

-
(S

0
,K, r,p,¹) such that

P!(0,S
0
)!P!

n
(0,S

0
)5i

-
Mn(m2

n
#m3

n
#p

n
)#1/nN.

Proof. According to Lemma A.6 in the Appendix:

O(Dt
n
)"EK [P!(tn

k
,S

n,k
)!P!

n
(tn
k
, S

n,k
)].

According to Lemma A.1 in the Appendix we see that the right-hand side of this
expression is equal to

EK CP%(tn
k
,S

n,k
)#rKP

T

tnk

e~r(t~tnk )N(b
2,tnk

(S
n,k

, t)) dt!P%
n
(tn
k
, S

n,k
)

!K(1!e!rDt
n)

n
+
i/k

e~r(tni~tnk)QK [S
n,i
4B

n,i
]D#O(Dt

n
)

"EK [P%(tn
k
, S

n,k
)!P%(tn

k
, S

tnk
)]

# !

# rKP
T

tnk

EK [e~r(t~tnk)N(b
2,tnk

(S
n,k

,t))] dt

!K(1!e!rDt
n)

n
+
i/k

e~r(tni~tnk)QK [S
n,i
4B

n,i
]

#O(Dt
n
)

"EK [P%(tn
k
, S

n,k
)!P%(tn

k
, S

tnk
)]

#P!(0,S
0
)!P!

n
(0,S

0
)
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! rKP
tnk

0

e~rtN(b
2,0

(S
0
,t)) dt#K(1!e!rDt

n)
k
+
i/0

e~rtniQK [S
n,i
4B

n,i
]

#O(Dt
n
).

The proof of Theorem 1 in Leisen and Reimer (1996) contains as a special case
the estimation of

EK [P%(tn
k
,S

n,k
)!P%(tn

k
,S

tnk
)]"O(n(m2

n
#m3

n
#p

n
)#1/n).

The assertion now follows immediately from an application of the trapezoidal
formula of numerical integration (as in the proof of Lemma A.5 in the Appendix)
and from Lemmata A.3 and A.7 in the Appendix. h

Theorems 3.4 and 3.5 together with Proposition 3.1 imply immediately the
following two corollaries:

Corollary 3.2. American put option prices calculated using the lattice approach of
CRR converge with order one.

Corollary 3.3. American put option prices calculated using the lattice approaches
of JR and ¹ian converge with order one from above and order 1/2 from below.

These results improve on that of Lamberton (1995), who proved in the case of
the CRR model for the lower bound an order of 2/3 and for the upper bound,
1/2. Moreover our results apply to general lattice approaches.

4. How to decrease errors properly

Actually error pictures like Fig. 1 and simulations performed by Broadie and
Detemple (1996) suggest that the order of convergence is also one for the models
of JR and Tian. We will subsequently assume that this holds. Then the results in
the previous section tell us that for a certain class of models, calculating either
American or European put option prices, the error e

n
has the form

i
1
(n)/n#higher-order terms for a suitable bounded function i

1
.

To take advantage of this information, let us suppose in a first approximation
that p

n
"i

1
/n#p

=
. For any given refinement n this equation contains two

unknowns: the constant i
1

and the correct value p
=
. In order to find a unique

solution, we need a pair of refinements (n
1
,n

2
) with n

2
'n

1
and corresponding

prices (p
n1
,p

n2
). Denoting the approximation for p

=
by p

(n1,n2)
we have the

following system of equations:

i
1
/n

1
#p

(n1,n2)
"p

n1
,

i
1
/n

2
#p

(n1,n2)
"p

n2
.
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Resolving yields

p
(n1,n2)

"p
n2
!

(p
n1
!p

n2
)
n1

n
2
!n

1

"

n
2
p
n2

!n
1

p
n1

n
2
!n

1

.

We will refer to this as the extrapolation rule. Unless otherwise stated, we take
the pair (n, 2n). This is commonly referred to as the Richardson extrapolation
(Kloeden and Platen, 1992).

The above analysis needs to be refined for two reasons. The first stems from
the fact that in general the constant will depend on the refinement, whereas
above, we replaced the function i

1
(n) by a constant i

1
. The second stems from

the higher-order terms. Since these may distort extrapolation, our rule may no
longer be optimal. Therefore, a detailed analysis of the error e(n

1
, n

2
)"

p
(n1, n2)

!p
=

is needed.

Proposition 4.1. Suppose e
n
"i

1
(n)/n#i

2
(n)/n2 where i

1
, i

2
:NPR are suitable

functions. ¹hen

e
(n1,n2)

"

i
1
(n

2
)!i

1
(n

1
)

n
2
!n

1

#

n
1
i
2
(n

2
)!n

2
i
2
(n

1
)

n
1
n
2
(n

2
!n

1
)

.

Proof. It is obvious that extrapolation yields the error:

e
(n1,n2)

"

n
2

e
2

!n
1
e
1

n
2

!n
1

"

n
2A

i
1
(n

2
)

n
2

#

i
2
(n

2
)

n2
2
B ! n

1A
i
1
(n

1
)

n
1

#

i
2
(n

1
)

n2
1
B

n
2

!n
1

.

The statement of the proposition follows immediately from this. h

From Corollary 3.2 in the previous section it is clear that for the lattice
approaches of CRR, b!

-
:"lim inf

n?=
i
1
(n) and b!

6
:"lim sup

n?=
i
1
(n) exist and

are finite. For the approaches of JR and Tian it follows from Corollary 3.3 only
that b!

6
is finite. However, according to the assumption at the beginning of this

section, we have b!
-

finite, too. The proposition tells us that the absolute
first-order error resulting from extrapolation is bounded by
De
(n1,n2)

D4(b!
6
!b!

-
)/(n

2
!n

1
). For the Richardson extrapolation we get the error

estimate De
(n,2n)

D((b!
6
!b!

-
)/n. This means that extrapolation replaces the con-

stant Db!
6
DsDb!

-
D by Db!

6
!b!

-
D. Therefore extrapolating makes sense only if
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Db!
6
!b!

-
D(maxMDb!

6
D, Db!

-
DN and our aim in constructing new models should be to

get models with a very small Db!
6
!b!

-
D.

Please note that this observation explains the (obvious) fact that for the CRR
model extrapolation does not make sense, since there we typically have
b!
-
(0(b!

6
yielding Db!

6
!b!

-
D'b!

6
. The same holds for the JR and Tian models.

Actually there is an optimal case, in which b!
6
"b!

-
. If i

2
is bounded, an

immediate consequence of Proposition 4.1 is that extrapolated prices converge
with order two. Whereas in general we need to select n

2
such that

n
2
!n

1
"O(n

1
) to get a series of extrapolated prices converging to the true price

p
=
, in this special case it is possible to select n

2
such that n

2
!n

1
"const. and

still get convergence of prices. Under the additional assumption that i
2
"const.

we even get the scheme converging with order two. This is very interesting since
the extra amount of computation time needed for extrapolation becomes com-
parable to that needed to calculate the price for n

1
. We should therefore try to

construct new models with b!
6
"b!

-
, for which the error picture looks ‘smooth’.

This is why we loosely speak of smoothing options when constructing better
performing models.

Another major approach for improving results is the Control Variate tech-
nique (CV) proposed by Hull and White (1988). This technique uses the same
lattice with refinement n to calculate the price approximations P!

n
of the Ameri-

can and P%
n
of the European put option. It is inspired by the observation that the

order of convergence is the same for the European and American put. Then it is
assumed that errors to the true prices are approximately equal, i.e.

P!(0,S
0
)!P!

n
(0,S

0
)+P%(0,S

0
)!P%

n
(0, S

0
)

NP!
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(0,S
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)!P%

n
(0,S
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).

However, looking closely at the errors we immediately get the following.

Proposition 4.2. Suppose e!
n
"i!

1
(n)/n, e%

n
"i%

1
(n)/n where i!

1
,i%

1
:NPR are suit-

able functions. ¹hen

eCV
n

"

i!
1
(n) ! i%

1
(n)

n
.

The price calculated using the CV technique will be a fine estimate only if
good and bad price approximations follow at the same rhythm for European
and American puts. However, in general this will not hold. In order to per-
form a similar analysis as previously done for extrapolation we deduce from
Theorem 1 of Leisen and Reimer (1996) (see Theorems 3.1 and 3.2) that
b%
-
:"lim inf

n?=
i
1
(n) and b%

6
:"lim sup

n?=
i
1
(n) exist and are finite. Then

DeCV
n

D4
(Db!

6
DsDb%

6
D)!(Db!

-
D'Db%

-
D)

n
.
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Therefore the CV technique replaces the constant Db!
6
DsDb!

-
D by (Db!

6
DsDb%

6
D)!

(Db!
-
D'Db%

-
D) and all the conclusions drawn from Proposition 4.1 for extrapolation

carry over to the CV technique. Specifically we also have to smooth the option,
i.e. reduce price oscillations as much as possible, in order to get better perform-
ing models. In the sequel we will consider only extrapolation and show a way of
how to smooth the option at least partially.

We have according to Carr et al. (1992) and Lemma 1 in the Appendix:

P!(0,S
0
)"P%(0,S

0
)#rKP

T

0

e~rtQ[S
t
4Bt] dt,

P!
n
(0,S

0
)"P%

n
(0,S

0
)#rK

n
+
j/0

e~rtnkQ[S
n,j
4B

n,j
]#O(Dt

n
).

This means that errors result both from approximating the European put
component as well as from the early exercise premium, whereas the errors in the
early exercise premium component result from approximating the value of the

cash-or-nothing options Q[S
t
4B

tnj
]!Q[S

n,j
4B

n,j
].

With barrier option valuation, Derman et al. (1995) argue that price os-
cillations result from the fact that a specific lattice under consideration
implicitly determines the class of possible option contracts which can be priced,
since exercise is only possible at nodes in the tree grid. They call this the
‘quantization error’. More specifically, in the case of the European call
option, Leisen and Reimer (1996) determined as the origin of these errors the
following: when taking a close look at terminal nodes, especially at the nodes
around the strike price K, we see that with varying n, nodes shift upwards and
downwards. Since they contain the whole probability mass, this causes the
distortions.

Improving results for cash-or-nothing options is difficult, since we do not

know the exercise boundaries B, resp. B. However, we can profit from this
observation in constructing a model which improves at least the European put
component. This can be done by ensuring that the strike always lies fixed at
a specific node, the center of the tree. In order to do this consistently we must
assume that n is even. Therefore, suppose we are given a refinement n with n even

and u
n
, d

n
according to CRR, i.e. u

n
"expMpJDt

n
N, d

n
"1/u

n
. Remember JR who

adjusted the local drift term to match the continuous drift term. We are
interested in fixing the strike at the center of the tree at maturity. Thus the new
parameter selection u@

n
, d@

n
should fulfill

u@
n
"u

n
ecn,

d@
n
"d

n
ecn,

S
0
(u@

n
d@
n
)n@2"K.

1432 D.P.J. Leisen / Journal of Economic Dynamics and Control 22 (1998) 1419–1444



Fig. 2. Error study using CRR, SMO and two extrapolations of SMO.

The third equation tells us c
n
"ln(K/S

0
)/n. The equivalent martingale measure

is obtained by setting q@
n
"(r

n
!d@

n
)/(u@

n
!d@

n
).

In the sequel this model will be referred to as SMO.
In Fig. 2 we plotted the error for the CRR and SMO models in calculating

European put option prices with the following parameters: S"100,
K"105, ¹"1, r"0.05, p"0.2, iterating refinement n"10,2, 1000. Since
SMO is defined only for n even, we restricted ourselves to even refinements.
Moreover both approaches are compared to the following two extrapolations of
SMO: EXTRA1 uses the pair (n, 2n), while EXTRA2 uses the pair (n, n#40).
Actually we see that the SMO model performs badly, i.e. it always yields higher
errors than CRR. This stems from the fact that we did not care for implementing
the local variance properly.

It would be possible to construct smooth models which behave much better.
However we preferred this approach for its very simple and intuitive construc-
tion. Moreover, we are able to see very drastically the effects of extrapolation,
since the ‘slow’ convergence speed of SMO disappears completely. When com-
paring it with the function 1/x2 we see that both extrapolations converge with
order two in the long run. That is, our remarks made after Proposition 4.1,
which told us that it is possible to improve by one the order of convergence, even
with the simple EXTRA2, are completely justified.

For the American put option we may not expect to get smooth results, but at
least ‘smoother ones’, replacing the constant by a much smaller one. This means
that we are starting with a lower initial error, which means in turn, that a lower
refinement already yields the same precision level. A comparison of different
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lattice approaches for the American put will be studied in more detail in the next
section.

5. Numerical evaluation

The simulations in the previous sections all clung to fixed parameter constel-
lations (p,¹,S,K, r). They give us a very good intuition about the convergence
behavior. However it is quite difficult to evaluate suitably the additional time
needed for extrapolation. Moreover financial institutions being faced typically
by a large book of options to price, would like to get an idea of the overall error
of this and the time necessary to price the options. Therefore, we will now
perform a simulation study suggested by Broadie and Detemple (1996).

To start we choose a sample S"Ms
i
D i3IN of parameter constellations

s
i
"(p

i
,¹

i
,S

i
,K

i
"100, r

i
). Each of these samples represents an option contract.

It has price p
i
which we calculate using CRR with a refinement of 15,000 steps.

In order to evaluate the accuracy of a specific lattice approach and a refinement
n we proceed as follows: For each s

i
3S we calculate a price approximation

pL
i
and a relative error e

i
"(pL

i
!p

i
)/p

i
. Relative errors do not change if S and

K are scaled by the same factor, i.e. only the ratio S/K is of interest. Therefore, it
is a suitable restriction to set K"100 in the whole sample. Calculating the
relative root-mean-squared (RMS) error

RMS"SA+
i|I

e2
i BNDI D

over the sampleS gives us for each lattice approach and refinement n a measure
of its accuracy.

Computation speed is expressed by the number of option prices calculated per
second. Since we stick to tree models with identical structure except for the tree
parameters, we need not care for tuning the computer implementation of our
methods.

Then we plot for each lattice approach and refinement accuracy against
computation time. By connecting the points for one lattice approach we get
a line. We choose the following distribution of parameters for the whole sample.
Volatility is distributed uniformly between 0.1 and 0.6. Time-to-maturity is with
probability 0.75 uniform between 0.1 and 1.0 yr and with probability 0.25
uniform between 1.0 and 5.0 yr. We fix the strike price at K"100 and take the
initial asset price S,S

0
to be uniform between 70 and 130. The riskless rate r is

with probability 0.8 uniform between 0.0 and 0.10 and with probability 0.2 equal
to 0.0. Each parameter is selected independently of the others. This selection of
parameters matches the choice of Broadie and Detemple (1996) except for
dividends which we do not consider here. To make relative errors meaningful,
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Fig. 3. Efficiency for out-of-the-money American put option contracts with short time-to-maturity.

that is to avoid senseless distortions because of very small option prices, options
with c

i
40.50 did not enter the sample. In the total we have a sample of 1116

option contracts. We limited our study to refinements n" 24, 50, 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000.

We compared the CRR model with the SMO model and its extrapolation.
Moreover we measured them against the PP model suggested by Leisen and
Reimer (1996) and its extrapolation. The latter model was constructed using the
works of Pratt (1968) and Peizer and Pratt (1968) on inverted normal approxi-
mations, so as to yield order of convergence two for the European put option.

To account for different behavior with long/short maturities respectively
in/out-of-the money options, we split the whole sample S into 4 samples
S

1
,S

2
,S

3
,S

4
. The first two samples S

1
,S

2
contain those parameter constel-

lations with a time-to-maturity of ¹40.2. S
1

contains those constellations
representing out-of-the-money American put options (S5100). This represents
a sample of 89 parameter constellations. Simulation results for the sample
S

1
are presented in Fig. 3. We see that SMO yields results that are 3 times

worse than CRR, whereas PP yields 10 times better results than CRR. Surpris-
ingly however, extrapolating SMO and PP yields results that are again approx-
imately 10 times better than PP, i.e. in total they have an initial error 100 times
lower than CRR. Moreover, we see immediately that extrapolation has a
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Fig. 4. Efficiency for in-the-money American put option contracts with short time-to-maturity.

tremendous effect on the error, since using it in a 200 step (together with a 400
step) tree exceeds already the precision level of a CRR tree with a refinement of
15,000, such that we could have dropped higher extrapolations. The second
sampleS

2
contains in-the-money American put option contracts (S4100) (150

contracts) and is presented in Fig. 4. Here the effects of extrapolation are still
astonishing. Although extrapolating the PP and SMO models yields only
3 times better results than PP, this yields 10 times better results than CRR. Thus
we are winning a factor 30 in comparison to CRR.

The last two samples S
3

and S
4

are similarly organized and plotted in
Figs. 5 and 6. They deal with options with a long time-to-maturity ¹50.2. In
the case of out-of-the-money options (Fig. 5) we see that PP performs 3 times
better than CRR and that extrapolating PP and SMO improves this again by
a factor of 3 in comparison to PP, yet. Therefore, the latter performs approxim-
ately 10 times better than CRR. In the case of in-the-money options (Fig. 6)
extrapolation of PP and SMO improves the results by a factor of 2 in compari-
son to CRR, whereas PP shows only an improvement of 1.5.

Generally spoken, out-of-the-money options converge much smoother and
therefore yield much better convergence results with extrapolation. Moreover,
we want to remark that extrapolation with n"24 actually ensures in all cases
that the error is less than 0.01. This means that we already attain a sufficiently
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Fig. 5. Efficiency for out-of-the-money American put option contracts with long time-to-maturity.

high precision level, since in practice the results from discrete and continuous
models can no longer be distinguished.

6. Conclusion

In this paper we examined the order of convergence for price calculations of
the American put option. The results of Leisen and Reimer (1996) were extended
to the American put option. It was thus shown that the models of CRR, JR and
Tian are similar. In a next step we used this for an extrapolation rule and its
error analysis. Here we saw the astonishing effects that a proper extrapolation
may have. Actually, although the approach we have taken here is rather simple
it already yields up to 100 times better results than the existing approaches.
Better smoothing should improve this further and achieve order of convergence
two as in the case of the European put option.
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Fig. 6. Efficiency for in-the-money American put option contracts with long time-to-maturity.
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Appendix A.
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Proof. Follows exactly as that of Lemma A.1. h
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Since the normal-function is bounded, we have proven the lemma. h
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According to Leisen and Reimer (1996)
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¸emma A.7. For the CRR lattice approach, there exists i3R such that
for (n, k)3C and i3N with I
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] we have
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For any lattice approach the same result holds with i/JDt
n

instead of i.
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0
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.

We will present our argumentation only for the CRR model. The general case
follows similarly.
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Take (n, k)3C and i3N and I
n,i
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]. Let us assume in the sequel that
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where the last inequality and i
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The assertion follows now from the fact that JDt
n
+n

i/0
Jr

n,i
~1 is uniformly

bounded. h
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