
The Second Fundamental Theorem of
Asset Pricing: A New Approach
Robert J. Battig
Robert A. Jarrow
Cornell University

This article presents a new definition of market completeness that is independent
of the notions of no arbitrage and equivalent martingale measures. Our definition
has many advantages, all shown herein. First, it preserves the Second Fundamen-
tal Theorem of Asset Pricing, even in complex economies. Second, under our
definition, the market can be complete yet arbitrage opportunities exist. This is
important in practice, and stands in contrast to the traditional definitions. Third,
under the assumption of no arbitrage and when used in the standard models, our
definition is equivalent to the traditional one.

Most of modern finance theory is based on the first and second fundamental
theorems of asset pricing. The first fundamental theorem relates the notion
of no arbitrage to the existence of an equivalent martingale measure, while
the second fundamental theorem relates the notion of market completeness
to uniqueness of the equivalent martingale measure [see Harrison and Kreps
(1979) and Harrison and Pliska (1981)].

For economies that involve only a finite number of assets, these eco-
nomic notions of no arbitrage and market completeness are equivalent to
their probabilistic counterparts [see Dalang, Morton, and Willinger (1990),
Delbaen (1992), Lakner (1993), Delbaen and Schachermayer (1994), and
Schachermayer (1994) on the first fundamental theorem and Harrison and
Pliska (1981) and Battig (1997) on the second]. For economies involving
an infinite number of assets with discontinuous sample paths, the first fun-
damental theorem has not yet been extended, and the second fundamental
theorem fails. Indeed, Artzner and Heath (1995) provide an example of a
complete economy where there are an infinite number of assets and an in-
finite number of equivalent martingale measures (market completeness but
nonuniqueness of an equivalent martingale measure). Although the math-
ematics generating their counterexample is well understood, the economic
reasoning underlying its failure is not.

The purpose of this article is to propose a new approach to market com-
pleteness that maintains the second fundamental theorem, even in complex
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economies. This equivalence is maintained by redefining the meaning of a
complete market to one that is more basic, and to one that is independent
of either the notions of no arbitrage or equivalent martingale measures.1

As shown below, this new definition is important for understanding the
economic reasoning behind the Artzner and Heath (1995) counterexample.
However, this new definition is also important for practice, as arbitrage
opportunities are often sought in complete markets. This consideration is
impossible under the existing definitions.2

Indeed, under the existing definitions, the notion of a complete market has
been studied by first fixing an equivalent martingale measure [see, Harrison
and Pliska (1981), Ansel and Stricker (1994), Artzner and Heath (1995)].
By the first fundamental theorem, the existence of an equivalent martingale
measure implies no arbitrage opportunities. Thus, in the existing literature,
a complete market must necessarily be arbitrage free.

In contrast, our definition of market completeness is independent of any
particular probability measure. This is an important property.3 Under our
definition, a market can be complete and yet arbitrage opportunities exist.
In fact, this measure independence is the key insight of our article, and the
essence of our article’s contribution to the literature.

The formulation of our definition starts with a specification of a collection
of events that all traders agree cannot occur, the set of traded assets, and a
set of trading strategies. The trading strategies are kept simple. They consist
of holding only a finite number of assets at any point in time and only a
finite number of trades are allowed over the trading horizon. The trading
dates can be stopping times. The space of potentially attainable contingent
claims is the space of bounded random variables. There can be an arbitrary
number of traded assets, one of which is a money market account. Traded
assets have prices, and trading strategies have known costs of construction.

The economy consists of a collection of traders. Each trader assesses
their own personal value to the set of attainable contingent claims.4 These
personal values satisfy a minimal consistency condition — any claim that
makes zero payments except on null events has a zero price. We allow both
risk-averse and risk-neutral traders.

1 For articles on related topics see Jarrow and Madan (1997b) and Jarrow, Jin, and Madan (1997). Jarrow,
Jin, and Madan (1997) employ a similar definition, but only in a static economy. This article can be viewed
as the continuous trading extension of Jarrow, Jin, and Madan (1997).

2 Except, of course, for the trivial finite state, finite time economies (e.g., binomial model) where much of
the profession’s intuition for the separation of no arbitrage and market completeness originates. One way
to think about this article is that it provides the appropriate generalization of the finite state, finite time
economy to more complex economies, while still maintaining the original intuition.

3 In fact, Battig (1997) has an example of an economy where the existence of an equivalent martingale
measure precludes the possibility of market completeness.

4 The introduction of traders and their personal valuations is purely for pedagogical purposes. The entire
setup can be done abstractly without the introduction of these concepts. This comment will become
self-evident in the subsequent sections.
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In our setup, a trader views two random variables (contingent claims) as
approximately equal if the value he assigns to the differences in their payoffs
across states is close to zero. In the market at large, two random variables are
deemed approximately equal if all traders view them as such. This definition
for two random variables being approximately equal, therefore, is seen to
depend only on the collection of null events. This is a key insight.

A market is said to be complete if all the potentially attainable contingent
claims can be approximated (in the above sense of closeness) via a trading
strategy. Due to the meaning of approximately equal, this definition of
market completeness is independent of the notion of no arbitrage and is
independent of any particular probability measure.

Using this new definition of market completeness, two topological dual
pairs exist: (random variables− personal values) and (trading strategies
− personal values of trading strategies). There is a linear mapping linking
these two dual pairs, that mapping taking trading strategies to random vari-
ables. This mapping has an adjoint. The linear mapping and its adjoint are
the infinite dimensional analogue of a matrix and its transpose. A straight-
forward application of mathematics to this mapping and its adjoint yields
the second fundamental theorem. That is, the equivalence between market
completeness and uniqueness of a valuation operator that prices attainable
claims by their cost of construction.

Under appropriate additional hypotheses, this is equivalent to the unique-
ness of the equivalent (local) martingale measure, thus yielding an elegant
proof of the standard form of the second fundamental theorem. In this con-
text, an equivalent (local) martingale measure is a measure that transforms
the traded assets into (local) martingales and whose null sets are precisely
those events considered impossible by all traders. Under this definition of
market completeness, the economy considered by Artzner and Heath (1995)
is incomplete, so it is no longer a counterexample to the second fundamental
theorem. It is seen that Artzner and Heath use the wrong definition for the
closeness of two random variables.

In addition, this article studies the relation between our definition of mar-
ket completeness and that used in the existing literature. It is shown that
the two definitions give equivalent characterizations of market complete-
ness when there is only a finite set of assets trading or asset prices have
continuous sample paths. These are the standard structures used in the fi-
nancial economics literature [see Black and Scholes (1973), Heath, Jarrow,
and Morton (1992), and Jarrow and Madan (1995)].

Hence, the standard technique for proving market completeness — show-
ing the non-singularity of the appropriately defined volatility matrix5 —

5 See, for example, Jarrow and Madan (1995) and Battig (1997). In Battig (1997), the volatility matrix
characterization of completeness is obtained under the new definition of completeness, without reference
to the standard definition.
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works for our definition as well. The two definitions differ, however, in
more complex economies. For more complex economies, our definition is
shown to be stronger (i.e., our definition of completeness implies the ex-
isting literature’s definition, but the converse is not true).6 This distinction
will prove useful as more complex economies involving an infinite number
of assets are explored in the finance literature.7

An outline for this article is as follows. Section 1 presents the model.
Section 2 presents our new definition of market completeness. Section 3
presents the revised second fundamental theorem of asset pricing. Sec-
tion 4 reviews the old definition of market completeness. Section 5 relates
it to the new definition. Section 6 clarifies the Artzner and Heath (1995)
counterexample. Section 7 concludes. Proofs are contained in the appendix.

1. The Model

This section presents the details of the model. We start with a filtration
F = (Ft )t∈[0,1] on a measurable space(Ä,F) and a collectionN of events
in F . The filtration F = (Ft )t∈[0,1] models the evolution of information
over time and the elements ofN are events that all traders agree cannot
occur. The events inN are referred to as the null sets.8 N could be the
null sets of a statistical measureP, but it is not necessary to refer to any
measure in the subsequent theory. The trading horizon is continuous, finite,
and represented by the time interval [0,1].

Let A ∪ {1} be an index set representing the traded primary assets.
These assets trade in frictionless and competitive markets. We separate out
one asset, the money market account{1}, for easy reference. OtherwiseA
represents an arbitrary (possibly infinite) set of risky traded securities.

The family of price processes forA ∪ {1} is denoted byV =
{(Zαt )t∈[0,1]}α∈A∪{1}. (Zαt )t∈[0,1] are adapted cadlag processes withZ1t ≡ 1.
Without loss of generality, we set the money market account’s value con-
stant and equal to one for all timet . This is equivalent to the price processes
(Zαt )t∈[0,1] already being normalized by the (random) value of the money
market account. The analysis proceeds for these normalized price processes.

Traders are allowed to invest in the money market account plus a finite
number of the risky assets inA using self-financing, (stopping time) simple
trading strategies. More precisely, the set of allowable trading strategies is

6 An example is given in Battig (1997).
7 This is not a vacuous or unimportant set of topics. The APT model of Ross (1976), which contains an

infinite number of assets, is one such economy. Markets with price processes having discontinuous sample
paths and continuous densities for jump amplitudes are also an important class of examples [see Merton
(1976)].

8 If B ∈ N and A⊆ B, then A∈ N andN is closed under the taking of countable unions. We also assume
that the filtration is right-continuous and thatF0 containsN .
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denoted by

Ỹ =
{
(x, (Hα)α∈A) | x ∈ <, Hα

t =
nα∑

i=1

hαi−11(τ αi−1,τ
α
i ](t)

}
, (1)

where 0≤ τα0 ≤ · · · ≤ ταnα ≤ 1 are stopping times, 1(τ αi−1,τ
α
i ](t) = 1 if

t ∈ (ταi−1, τ
α
i ] and 0 otherwise,hαi ∈ L∞(Fταi ,N ) andHα ≡ 0 except for

finitely manyα ∈ A.
L∞(Fταi ,N ) denotes the boundedFταi -measurable random variables. In

L∞(Fταi ,N ), random variables differing only on null sets are considered
equal.

In the definition of̃Y, x represents the time 0 value of the entire portfolio.
Hα

t represents the units of assetα held at timet for t ∈ (0,1] During the
time interval(0, τ α1 ], hα0 units are held. At timeτα1 a rebalancing occurs
and the holdings change tohα1. The next rebalancing occurs at timeτα2
when the holdings are changed tohα2, and so forth until final liquidation at
time 1. Requiring thathαi ∈ L∞(Fταi ,N ) means that the holdings over the
time interval(ταi , τ

α
i+1] are bounded and can only be based on information

available at the beginningταi of the interval.
Note that a self-financing condition is implicit in our trading strategies

because after time 0 we do not get to choose the holdings in the money mar-
ket account. Once we decide on the trading strategy(x, (Hα)α∈A), the self-
financing condition requires us to holdx+∑α∈A

∫ t
0 Hα

u d Zαu−
∑

α∈A Hα
t Zαt

dollars in the money market account at timet ∈ (0,1].9

The payoff to a trading strategy(x, (Hα)α∈A) at time 1 is denoted by

T̃(x, (Hα)α∈A) = x +
∑
α∈A

∫ 1

0
Hα

u d Zαu . (2)

This represents the initial cost of constructing the portfolio,x, plus the
gains/losses on the risky assets over [0,1]. The sum on the right side of
Equation (2) is finite, as only a finite number of the assets can be held by
the trader at any time. The integral is well-defined since the holdings are
constant for almost all times.10

We are interested in studying market completeness. Consequently we
need to define the space of potentially attainable contingent claims. We

9 The value of the portfolio at timet is Vt = H1
t +

∑
α∈A

Hα
t Zα

t . The self-financing condition isdVt =∑
α∈A

Hα
t d Zαt . This implies thatVt = x +

∑
α∈A

∫ t

0
Hα

u d Zαu . Combined, these yield the expression in

the text.
10 This integral is well defined as

∫ 1

0
Hα

u d Zαu =
∑nα

i=1
hαi−1(z

α
τi
− zατi−1

), even if (zα)α∈A are not

semimartingales.
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restrict ourselves to the set of bounded random variables,11 denoted by
L∞(F1,N ), where, as before, two random variables are considered equal
if they only differ on a null set; that is, on a set inN . The setC = L∞(F1,N )
represents the space of potentially attainable contingent claims.

It is possible that the trading strategy operatorT̃ defined in Equation (2)
generates random variables which are not bounded and therefore are not in
C.12 For this reason we restrict the domain ofT̃ to be

Y = Ỹ ∩ T̃−1(C), (3)

and we denote the restriction of̃T to Y by T .

2. The New Definition of Market Completeness

Given the above structure, this section introduces our new definition of
market completeness. The notion we would like to achieve (based on an
analogy to the finite state, finite time model) is that the trading strategies
generate all the contingent claims, that is, the image ofT equals all ofC.
Note that this definition is independent of the notion of no arbitrage or the
concept of an equivalent martingale measure. It only depends on the null
setsN that determine when two claims are considered identical.

However, we cannot reasonably expect that all contingent claims can
be obtained as outcomes of the classY of (stopping time) simple trad-
ing strategies.13 But it is possible that sequences (nets) of simple trading
strategies could approximate arbitrary elements inC. This generalization
to market completeness is the one we pursue.

To maintain the independence of the definition of market completeness
from the notion of no arbitrage and the concept of an equivalent martingale
measure, the meaning of “approximate” needs to be formulated carefully.

In this regard, denote byM the space of signed measures on(Ä,F1)

which assign zero mass to events inN . The setM represents the possible
contingent claims valuation measures held by traders, called “valuation
measures” for short. A trader using the valuation measureµ ∈ M assigns

11 This assumption is less restrictive than it first appears. Unbounded random variables could be considered
in this context by first normalizing prices by the aggregate value of all traded assets in the economy. Then
the normalized pricesZα

t are bounded by construction. This “trick” has been previously used by Jarrow
and Madan (1997a) and Sin (1996).

12 For instance, supposezα
∗

1 is unbounded and takex = 0, Hα ≡ 1 if α = α∗ and identically zero otherwise.
13 For instance, in the traditional Black–Scholes model, any bounded claimX can be represented asx +∫ 1

0
H X

u d Zu, whereZu denotes the deflated stock price (following geometric Brownian motion),x ∈ <,

and H X
u is an appropriate predictable process making

∫ 1

0
H X

u d Zu into a martingale (under the unique

equivalent martingale measure forZu). Furthermore,x andH X
u are unique and thus choosingH X

u , which
is not stopping time simple, gives a claimX which cannot be attained with strategies fromY.
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to a contingent claimX ∈ C the value

〈X, µ〉 =
∫

Xdµ. (4)

This valuation measureµ ∈ M is identified as belonging to a particular
trader. Under this interpretation, the valuation measure implicitly incorpo-
rates the traders’ beliefs and preferences (risk aversion).

The set of valuations determined byM has two implicit assumptions.
First, the fact that anyµ ∈ M assign zero mass to events inN means that
all traders agree on the null events. Second, since the measures are signed,
this means that there can be strictly positive random variables with negative
personal value. For example, the contingent claim 1E with E /∈ N could
have a negative personal valuation, that is,µ(E) ≤ 0. The set of nonnegative
measures inM whose null set are preciselyN is denoted byM++.

For a given trader, represented by aµ ∈ M , two contingent claimsX
andY can be viewed as approximately equal if∣∣∣∣∫ (X − Y)dµ

∣∣∣∣ < ε for smallε > 0.

This criteria states that two random variablesX andY are approximately
equal to traderµ ∈ M if he values a claim paying the differences in their
payoffs across states as approximately zero.

This measure of closeness can be used to define a topology onC, denoted
by τµ.14 This topology is trader (measure) dependent. To eliminate the
dependence on a single trader, we endowC with the coarsest topology that
is finer thanτµ for all µ ∈ M . We denote this new topology byτ .15 By
finer, we mean thatτ has all the open sets that are contained inτµ for all
µ ∈ M . So if X is approximately close toY in the new topologyτ , thenX
is approximately close toY for every traderµ ∈ M . The converse of this
statement for an individual trader is not true. That is, if traderµ ∈ M views
X as close toY, other traders may not view it as such and, therefore,X may
not be close to Y in theτ topology.

In this topology, two contingent claims are approximately equal if all
traders believe the values of these two claims are close. Hence, this measure
of closeness depends on the entire set of traders (measures) inM and is
therefore independent of any particular trader (measure).

14 The topology is defined by basic open sets of the formB(X; ε) = {Y ∈ C | |
∫
(X − Y)dµ| < ε} for

X ∈ C andε > 0.
15 This new topology has another interpretation.τ is the weakest topology onC, making all the linear

functionals〈·, µ〉, µ ∈ M , continuous. SinceC is the topological dual ofM (endowed with the total
variation norm), this is the weak∗ topology onC.
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Finally, prior to our definition, let

A1 =
{

x +
∑
α∈A

∫ 1

0
Hα

u d Zαu | (x, (Hα)α∈A) ∈ Y

}
= Im T

A0
1 =

{∑
α∈A

∫ 1

0
Hα

u d Zαu | (0, (Hα)α∈A) ∈ Y

}
,

whereA1 is the space of claims attainable by trading in the fundamental
assets via stopping time simple strategies, whileA0

1 denotes the contingent
claims attainable at zero initial cost.

Definition 1. The market is complete ifA1 = Im T is dense in C with
respect to the topologyτ .

This definition is independent of the notions of no arbitrage and an equiv-
alent martingale measure. Roughly, it says that the market is complete if,
given anX ∈ C, there is a trading strategy whose time 1 value all traders
(i.e., allµ ∈ M) consider close toX.

3. The Second Fundamental Theorem of Asset Pricing

This section presents the generalization of the second fundamental theorem
of asset pricing. Prior to this, however, we need to introduce some additional
notation for the valuation of a trading strategy(x, (Hα)α∈A) ∈ Y. For a
traderµ ∈ M , this value is given by

(T∗µ)(x, (Hα)α∈A) =
∫

T(x, (Hα)α∈A)dµ. (5)

Equation (5) simply says that a traderµ ∈ M values a trading strategy
(x, (Hα)α∈A) by valuing the time 1 payoffT(x, (Hα)α∈A) generated by this
strategy.

On the other hand, it costsx dollars to form the trading strategy(x,
(Hα)α∈A). These two values could be different, representing a situation
where the trader’s personal value for a strategy differs from its cost. This is
a type of arbitrage opportunity for the trader. We want to exclude this type
of arbitrage opportunity by considering only those tradersµ ∈ M whose
values in Equation (5) equalx.

More abstractly,T∗ can be viewed as an operator mapping an element
µ ∈ M into the spaceχ of potential valuations of trading strategies inY.
Let π0(x, (Hα)α∈A) = x represent the linear functional mapping trading
strategies into their cost of construction and denote byP+/− the set of
signed measuresµ ∈ M such thatT∗µ = π0. The signed measures in the
setP+/− preclude these simple arbitrage opportunities.
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Figure 1
Duality mappings between the various sets of values, valuations, and trading strategies
In this figure,X ∈ C is the set of contingent claim time 1 values,µ ∈ M is the set of possible time 0
valuations (signed measures),M++ is the set of nonnegative measures,(x, (Hα)α∈A) ∈ Y is the set of
trading strategies,P+/− is the set of signed measures such thatT∗µ = π0 whereπ0(x, (Hα)α∈A) = x,
Zα

t is the price process for assetα, andX is the set of possible time 0 valuations of trading strategies.

The key theorem in our article uses the special topological duality that ex-
ists between the various constructs formulated. The linear mappingT : Y→
C takes a trading strategy(x, (Hα)α∈A) and maps it into a random variable.
The space of random variables (contingent claims)C is in duality with the
space of possible valuesM via Equation (4). Equation (4) gives the price
of a random variable. Continuing, the linear mappingT∗: M → χ takes
a particular valuation measure on the random variables and maps it into a
valuation operator on trading strategies. The space of valuation operators
on trading strategiesχ is in duality with the space of trading strategies
Y via Equation (5).16 Equation (5) gives the cost of a trading strategy. In
fact, it can be shown thatT∗ is the adjoint ofT . This duality pairing, with
the associated topologies, is a well-studied construct in mathematics. This
duality mapping is illustrated in Figure 1.

From the construct, one can easily obtain the following theorem.

Theorem 1 (generalized second fundamental theorem of asset pricing).
Let there exist Q∈ P+/−. The market is complete if and only if Q is unique
in P+/−.

16 Formally,X is the vector space of (linear) functions mappingY→ Rgenerated by
∫

T dµ for allµ ∈ M

andπ0.
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Proof. See the appendix.

This generalization of the second fundamental theorem states that if there
exists a measure in the setP+/−, then the market is complete if and only if
this signed measure is unique.

It generalizes the earlier theorems in two ways. First, the condition that
Q ∈ P+/− is a very weak no arbitrage condition, much weaker than that
which appears in the literature [see Dalang, Morton, and Willinger (1990),
Delbaen (1992), Lakner (1993), Delbaen and Schachermayer (1994), and
Schachermayer (1994)]. Second, since the measureQ need not be positive,
other types of arbitrage opportunities can exist under the hypothesis of this
theorem and yet the market may be complete.

4. The Definition of Market Completeness with Respect to an Equivalent
(Local) Martingale Measure

This section presents the definition of market completeness with respect to
an equivalent (local) martingale measure. Prior to this definition, we need
some additional structure.

We let V denote the set of price processes and assume that they are
locally bounded. Also, letM++/Mloc

++ denote the probability measures
in M turning all the price processes into martingales/local martingales and
whose null sets are preciselyN . The elements ofM++/Mloc

++ are referred
to as equivalent martingale measures/equivalent local martingale measures.

Definition 2. For Q ∈Mloc
++, the market is Q-complete ifA1 = Im T is

dense in C with respect to the L1(F1, Q) topology.

The market is said to beQ-complete with respect to an equivalent local
martingale measureQ if for any contingent claimX ∈ C, there exists a
sequence of trading strategies such that their values converge toX in the
L1(F1, Q) sense.

This notion of closeness is distinct from theτ topology used in our
definition of market completeness. These different notions of closeness are
equivalent if and only ifM is finite dimensional.17 This simple observation
shows why in the case whereM is finite dimensional — the finite state,
finite time economy — choosing a definition of closeness is unnecessary.
More importantly, it also shows why, in the infinite dimensional case (e.g.,
the Black–Scholes economy), the specification of a definition for closeness
is essential.

17 The backward implication is obvious. On the other hand, if the two topologies coincide one easily
concludes thatC = L1(F1, Q). This is only possible if dim(C)<∞ which is equivalent to dim(M) <∞.
Indeed, if dim(C)<∞ one can inductively construct a sequence of disjoint setsAi i ≥ 1, whoseQ mass is
positive but decreases to zero fast enough so that

∑
i
i 1Ai ∈ {L1(F1, Q)− C}.
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Finally, we need to make precise the meaning of no arbitrage for our
setup:

Definition 3. The market has no arbitrage (NA) ifA0
1∩C+ = {0}, where C+

denotes the random variables in C which are nonnegative except possibly
on a set inN .

The market is said to satisfyNA if it is not possible to find a trading
strategy with zero initial cost that generates a time 1 value, which is always
nonnegative and strictly positive on a set which is not null.

This definition is weaker than that needed to obtain versions of the
first fundamental theorem of asset pricing when the time set is infinite
[see Dalang, Morton, and Willinger (1990), Lakner (1993), Delbaen and
Schachermayer (1994), and Schachermayer (1994)]. It is weaker because
it does not involve the approximation of arbitrage opportunities of this sort
via (nets) sequences.

For our purposes,NA is a sufficient restriction. It guarantees that ifX ∈
A1, then any two trading strategies attainingX must have the same cost of
construction, that is,X = T(x, (Hα)α∈A) = T (̃x(H̃α)α∈A) impliesx = x̃.
Contingent claims are then unambiguously priced by their initial cost of
construction.

5. The Relationship Between Market Completeness andQ-Completeness

This section clarifies the relation between the two definitions of market
completeness. This is done through a sequence of theorems and lemmas.
The first theorem gives a sufficient condition forQ-completeness.

Theorem 2.Let NA hold and let there exist a Q∈Mloc
++. If Q is unique in

Mloc
++ then the market is Q-complete. When Q∈M++ then NA automat-

ically holds. Also, it then suffices only that Q be unique inM++.

Proof. See the appendix.

Theorem 2 shows that under the no arbitrage hypothesis, existence and
uniqueness of a local martingale measure implies that the market isQ-
complete.

However, the Artzner and Heath (1995) counterexample shows that, in
general, the converse of Theorem 2 does not hold. They give an example
where the market isQ-complete, yet there exists an infinite set of martingale
measures.

To understand the relation between market completeness andQ-com-
pleteness the following lemma is useful.

Lemma 3. If NA holds thenMloc
++ = P+/− ∩ M++.

Proof. See the appendix.

1229



The Review of Financial Studies / v 12 n 51999

This lemma shows the relation between local martingale measures, pos-
itive measures, and measures in the setP+/−.

Using this lemma, we see that givenN A, if a local martingale measure
Q exists (the hypothesis of Theorem 1) andQ is unique inP+/− (market
completeness by Theorem 1), thenQ is unique in the class of local martin-
gale measures as well. Using Theorem 2, this insight proves the following
theorem.

Theorem 4.Let NA hold and let there exist a Q∈Mloc
++. If the market is

complete, then the market is Q-complete.

As the Artzner and Heath example shows, the converse of Theorem 4 does
not hold in general. In fact, even uniqueness ofQ inMloc

++ (stronger than
Q-completeness) is not generally sufficient for completeness. The reason is
that although uniqueness ofQ inMloc

++ implies uniqueness in the subset of
measures inP+/− which are positive, there could exist another measure in
P+/− which is not positive. If so, the market is not complete by Theorem 1.
Hence, we see that the new definition of market completeness is stronger
thanQ-completeness. See Battig (1997) for technical examples illustrating
these points.

Under additional hypotheses, uniqueness ofQ in Mloc
++ does imply

uniqueness ofQ in P+/−. These additional hypotheses are given in our
last theorem, which is a result of Battig (1997):

Theorem 5.Let NA hold. Let V be finite or let all the elements of V be
processes with continuous sample paths. The market is complete if and only
if the market is Q-complete.

Theorem 5 states that if there are a finite number of price processes [e.g.,
Jarrow and Madan (1995)] or if the price processes have continuous sample
paths [e.g., Black and Scholes (1973), Heath, Jarrow, and Morton (1992)],
then the two notions of market completeness are equivalent, given that the
N A hypothesis holds.

Since, in practice, we always work under theN Ahypothesis, the two no-
tions of completeness coincide for the typical models seen in the literature.
This is an important observation. It implies that the standard procedures
for testing forQ-completeness involving the volatility matrix of the price
processes also gives market completeness under our new definition. The
standard procedures guaranteeingQ-completeness involve proving invert-
ibility of the price processes volatility matrix [see Jarrow and Madan (1995)
or Battig (1997)].

6. The Artzner and Heath Counterexample Revisited

This section revisits the Artzner and Heath counterexample of the second
fundamental theorem underQ-completeness, and shows that it is not a
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counterexample to our new definition of market completeness. This section
is slightly more abstract than the preceding sections, due to the specification
of the details in the Artzner and Heath example.

Recall that Artzner and Heath’s example (reproduced below) gives an
economy that isQ-complete, but the martingale measure is not unique.
We show below that the example provided is not complete according to our
definition, hence by Theorem 1, we know that there should be more than one
martingale measure. The resolution is in recognizing that Artzner and Heath
use a different notion of closeness of random variables than our topologyτ .

Prior to studying their example, it is instructive to first provide an equiv-
alent characterization of our new definition of market completeness. This
characterization uses the fact thatT∗ is the adjoint ofT .

Theorem 6.The market is complete if and only if T∗ mapping M intoχ is
injective.

Proof. See the appendix.

This theorem gives us a procedure for checking to see if the Artzner and
Heath counterexample is complete with respect to our new definition. We
need only investigate the operatorT∗ and show that it is not injective, that
is, its kernel is nontrivial. This verification is done below.

Let Z be the set of nonnegative integers andN the set of all integers.
There is discrete trading with only two trading dates times 0 and 1.

We work with the filtered probability space(Ä,F, {F0,F1}, P), where
the state spaceÄ = Z − {0} is the set of positive integers. The information
sets areF0 = {0, Z − {0}}, F1 = F = all subsets of(Z − {0}). The
probability measure satisfiesP(i ) > 0 for all i ∈ Z − {0}. Otherwise the
probability measure is left unspecified.

We consider a countably infinite number of traded assets indexed by
i ∈ N. Their bounded price processes (henceMloc

++ =M++) are given by
the following expression. The notation(Zi

t ( j ) indicates the price of asset
i ∈ N at timet (for t = 0,1) given statej ∈ Z.

Zi
0 = i for i ∈ N

Z0
1( j ) = c

(p+ q)
(1−1( j )+ 11( j ))

Zi
1( j ) = c(qi+1− pi+1)

(pq)i (q − p)
1i ( j )

+ c(pi − qi )

(pq)i (q − p)
1i+1( j ) for i ∈ N, j ∈ Z − {0}

Zi
1( j ) = Z−i

1 (− j ) for − i ∈ N, j ∈ Z − {0},
wherec = p/(1− p)+ q/(1− q) for p ∈ (0,1) andq ∈ (p,1).
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In words, this expression states the following. At time 0, all traded assets
are worth a dollar. The zeroth asset pays(c/[ p+ q]) if either state 1 or−1
occurs. Thei th asset’s payoff at time 1 under statej for i > 0 is given by
c(qi+1−pi+1)/(pq)i (q−p) if statei occurs and byc(qi−pi )/(pq)i (q−p)
if statei + 1 occurs. Thei th asset’s payoffs are moving to the right along
the positive integer indexed assets and to the left along the negative integer
indexed assets.

The vector spacesχ , Y, C, andM are infinite dimensional here:

Y = {
(x, (Hα)α∈A) ∈ < × <A | (Hα)α∈A has finite support

}
C = `∞(Ä) = { f : Ä→ < | f is bounded}

M = `1(Ä) =
{

f : Ä→ < |
∑
ω∈Ä
| f (ω)| <∞

}

andχ is the topological dual ofY whenY is endowed with the coarsest
topology making{T∗µ}µ∈M ∪ {π0} continuous linear functionals onY.

The spaces for the random variablesC and the potential valuation mea-
suresM are well understood.M is the topological dual ofC.

Also, for (x, (Hα)α∈A) ∈ Y andµ ∈ M we have

T(x, (Hα)α∈A) = x +
∑
α∈A

Hα(Zα1 − Zα0 )

(T∗(µ))(x, (Hα)α∈A) = µ(Ä)+
∑
α∈A

Hα

∫
(Zα1 − Zα0 )dµ.

The linear functionalT maps trading strategies into time 1 payoffs, and
the linear functionalT∗ gives the time 0 value of the trading strategy with
initial costx.

For this example we can explicitly find kerT∗. Indeed, a signed measure
µ on Z − {0} is in kerT∗ if and only if µ(Ä) = 0 and

∫
Zi

1 − Zi
0dµ = 0

for i ∈ Z.
First, this implies that

∫
Zi

1dµ = 0 for i ∈ Z. Second, using the fact that
Zi

1( j ) = Z−i
1 (− j ) we see thatµ must solve the following equations:

Z0
1(−1)µ(−1)+ Z0

1(1)µ(1) = 0

Zi
1(i )µ(i )+ Zi

1(i + 1)µ(i + 1) = 0 for i ≥ 1

Zi
1(i )µ(−i )+ Zi

1(i + 1)µ(−i − 1) = 0 for i ≥ 1.

On the other hand, anyµ satisfying these equations automatically has
total mass zero and soµ ∈ kerT∗.

Note thatµ∗(i ) = −µ∗(−i ) = qi − pi for i ≥ 1 defines a signed
measure solving the above equations and that any other such measure is a
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scalar multiple ofµ∗. Hence

kerT∗ = {γµ∗ | γ ∈ <}.

The kernel forT∗ is nontrivial, henceT∗ is not injective and by Theorem 6
we do not have completeness.

7. Conclusion

This article presents a new definition of market completeness. This new
definition is independent of the notions of no arbitrage and equivalent mar-
tingale measures. Even in complex economies, like that contained in the
Artzner and Heath (1995) counterexample, this definition preserves the
second fundamental theorem of asset pricing — the market is complete if
and only if a (suitably defined) valuation operator is unique.

Our new definition of market completeness is consistent with practice
(and the finite state, finite time economy) since it allows the existence of
arbitrage opportunities in complete markets. For the standard models used
in the literature [e.g., Black and Scholes (1973), Heath, Jarrow, and Mor-
ton (1992), Jarrow and Madan (1995)] the new definition of market com-
pleteness is shown to be equivalent to the traditional definition. This is an
important observation as it leaves intact all of the existing theorems and
techniques for proving market completeness in the standard models.

Appendix

Rather than presenting proofs in their full technicality, we sketch the important ideas
and provide the interested reader with detailed references.

Theorems 1 and 6
Recall from linear algebra that a linear operator (matrix) between finite-dimensional
vector spaces is onto if and only if the adjoint operator (transpose matrix) is one to one.

This result can be generalized in the following way. SupposeY, C, M , andX are
arbitrary vector spaces andT : Y → C is a linear operator. IfY andX , as well as
C and M , can be placed in duality and ifT : Y → C is continuous whenY andC
are endowed with the topologies arising from their respective dualities, then there is a
well-defined adjoint operatorT∗: M → X andIm T is dense (w.r.t. the topology arising
from the duality) if and only ifT∗ is injective. See Grothendieck (1973: 82), particularly
Proposition 26.

One easily sees that these hypotheses are met in our case by the vector spacesY, C,
M , andX and our linear operatorT : Y → C defined in Section 1. In fact, the duality
for C and M is given by Equation (4). Furthermore, the topology onC arising from
the duality is the topologyτ that was used in the definition of market completeness and
hence Theorem 6 follows.

The definition ofP+/− implies that if Q ∈ P+/−, thenP+/− = {Q + µ | µ ∈
kerT∗}. Theorem 1 now follows from Theorem 6.
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Theorem 2
The proof is by contrapositive. By arguments similar to the ones we used above for
Theorem 6, one can show thatQ-completeness is equivalent to one-to-oneness of
T∗: M (Q,∞) → X, whereM (Q,∞) is the subspace ofM consisting of the signed measures
whose Radon-Nikodym derivative with respect toQ is bounded.

If the market is notQ-complete one can find a nonzero measureµ ∈ M (Q,∞)∩kerT∗

such thatQ + µ is a positive measure, that is,Q + µ ∈ M++, which differs fromQ.

Furthermore,Q + µ ∈Mloc
++ and if Q ∈M++, thenQ + µ ∈M++. Finally, the

assertion thatN A holds automatically ifQ ∈M++ is well known; if X ∈ A0
1 ∩ C+

thenX ≥ 0 andEQ X = 0, henceX = 0.

Lemma 3
LetA denote the collection of value processes associated with the attainable claims as
defined in the text. IfNA holds, one can show that these processes are bounded and

hence are (bounded) martingales under anyQ+ µ ∈Mloc
++. But then

(T∗Q)(x, (Hα)α∈A) = EQT(x, (Hα)α∈A) = EQ

(
x +

∑
α∈A

∫ 1

0

Hα
u d Zαu

)
= x = π0(x, (H

α)α∈A)

for (x, (Hα)α∈A) ∈ Y, which shows thatMloc
++ ⊆ P+/− ∩ M++.

For the reverse containment, one notes thatQ ∈ P+/− ∩ M++ is a probability
measure, and since the elements ofV are locally bounded, the argument is completed
by showing that for fixedα∗ ∈ A and stopping timeτ such thatZα

τ∧t is bounded,Zα
τ∧t

is a Q-martingale.
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