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Abstract. In the last years we have witnessed growing interest in a discipline called
Dynamic Financial Analysis (DFA). This phrase seems to be much more in use in the
US and Canada than in Continental Europe. Moreover it is applied almost exclusively
to nonlife insurance whereas a quite similar concept in life insurance is still called Asset
Liability Management. We neither want to explain the difference between these two
concepts nor do we want to introduce highly sophisticated modules of a DFA. There are
some DFA models in place, mostly in the US. Our goal is to present an introduction into
this field by giving an outline of common characteristics of different DFA models and
by setting up a model framework for different modules of a DFA. We show how these
modules can be constructed and related into an efficient risk management platform. An
explicit DFA example is presented.

1. What is DFA

1.1. Idea. Nonlife insurance companies in the US, Canada and also in Europe have
experienced certain developments during the past years. The most important ones have
been: pricing cycles accompanied by volatile insurance profits, increasing catastrophe
losses, and well performing capital markets giving rise to higher realized capital gains.
These developments bore chances and risks for the two main objectives of an insurance
company: solvency and profitability. The key management challenge will be the creation
of shareholder value. Related to this objective is the decision on the amount of capital
the company needs to run its business, and on the cost of this capital. In order to cope
with these items one should be able to identify the sources of variability and quantify
their levels and interrelations.

In order to analyze the financial effects of different entrepreneurial strategies for nonlife
insurance companies over a given time horizon, one finds two primary techniques in
use today. The first one, the so-called scenario testing, projects results under specific
deterministic scenarios in the future. The disadvantage of this approach is the fact that
only a few arbitrary scenarios are tested in order to decide how good a strategy is. The
other technique is stochastic simulation, better known as Dynamic Financial Analysis
(DFA). Here many different scenarios are generated stochastically with the aim of giving
information about the distribution of some important variables, like surplus, written
premiums or loss ratio.

1.2. Fixing the Time Period. On the one hand we would like to model over as long
a time period as possible in order to see the long-term effects of a chosen strategy. In
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particular, effects of decisions concerning long-tail business only appear after some years
and can hardly be recognized in the first few years. Therefore to judge how good a
strategy is we should take into consideration these long-term effects. On the other hand
simulated values get more and more unreliable the longer this time period is. When we
simulate, we start with given numbers and will most likely experience deviations from
reality, which add up over time. For these reasons a compromise must be made in order
to fix the length of the simulated time period.

1.3. Which Risks Should be Modelled? A DFA model is based on a stochastic
model for the main factors of the whole complex. Hence we first have to identify the
variables that determine the stochasticity on both the asset side and the liability side
of the balance sheet. A good model should simulate stochastically the asset elements as
well as the liability elements and interrelate both sides to reconcile with the intuition
of an experienced actuary. This differs from traditional ALM-approaches (ALM=Asset-
Liability Management) in life insurance. There for a long time liabilities have been
assumed to be fixed, because they do not vary much from one year to another by reason
of the long term structure of life insurance contracts. In nonlife insurance we cannot say
in advance how liabilities will develop. We do neither know the time of a claim occurrence
nor do we know its final size. The latter is different from life insurance where the claim size
is for most traditional products known at the outset of a contract. In nonlife insurance
the nature of liabilities appears to be more stochastic than in life assurance. In order to
cope with this behaviour, we have to emphasize the stochastic simulation of liabilities.

It is important to note that it is neither possible nor appropriate to model all sources
of risk and try to represent reality in detail. It can be dangerous to place confidence in a
detailed, but perhaps inappropriate model. It is often better to use a simple model that
captures only the key features. Smaller models tend to be more in line with intuition,
and they make it easier to assess the influence of individual variables.

1.4. Aim of DFA, Applications of DFA Models. DFA gives the opportunity to
compare the effects of different entrepreneurial strategies before applying them to reality.
It does not necessarily give an optimal solution but instead leaves the decision of selecting
a strategy to management. In other words DFA serves as a decision tool that requires a
good understanding of the nonlife insurance business and some analytical/actuarial skills
to be successfully implemented.

Before using a DFA model, management has to choose a financial or economic mea-
sure in order to assess a particular strategy which will be analyzed. The most common
concept is the efficient frontier concept which is used in modern portfolio theory going
back to Markowitz; see Markowitz [19]. When a company has chosen a measure for
performance (e.g. expected surplus) and a measure for risk (e.g. expected policyholder
deficit EPD(X) = −EP[X|X < 0], see Lowe and Stanard [17], or worst conditional mean
WCM α(X) = − inf{EP[Xr |A] |P[A] > α} as a coherent risk measure, see Artzner, Del-
baen, Eber and Heath [2] and [3]; r stands for the return on a reference instrument), it can
compare different strategies by plotting the measured risk and the measured performance,
as shown in Figure 1.1.

1.5. Link Between DFA and Solvency Testing. A better known concept than DFA
is solvency testing, which deals with one central question: Does the company have enough
capital compared to the level of risk it is exposed to, i.e. does the company have enough
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Figure 1.1. Efficient frontier.

capital to keep the probability of loosing α · 100% of its capital below a given level for
the risks taken?

DFA gives us an estimate for the distribution of surplus, and therefore the probability
of loosing α · 100% can be estimated. This means that DFA can serve as a solvency
testing tool as well.

More information about solvency testing can be found in Schnieper [22] and [23].

1.6. Main Structure of a DFA Model. Most DFA models consist of three major
parts. The stochastic scenario generator is the producer of stochasticity. Here random
variables are generated. One scenario consists of a simulation of all implemented random
variables. The second source of data is the company specific input, that includes historical
data (e.g. mean severity of losses for every line of business, for every accident year),
assumptions for model parameters (e.g. long term mean rate in a Cox, Ingersoll, Ross -
interest rate model), and strategic assumptions (e.g. investment strategy). The last part,
the output provided by the DFA model, can then be analyzed by management in order
to improve the strategy. This is shown graphically in Figure 1.2.

2. Stochastically Modelled Variables

A very important step in the process of building an appropriate model is to find out
which variables are the most important ones, and what are the sources of stochastic
behaviour. After having identified such a variable, there still remains the problem of
modelling or quantifying this factor. Moreover one has to trade-off improvement of ac-
curacy versus increase in complexity, i.e. decrease in transparency.

There are different risk categories, and each of them we model with the help of a
so-called generator. A possible and reasonable choice for the variables that a nonlife
insurance company should model stochastically could be the following: On the asset side
we need an interest rate generator in order to estimate interest rate risk. This is proba-
bly the most important asset risk since nonlife insurance companies are strongly exposed
to it due to generally large investments in fixed income asset classes. Interest rates are
strongly correlated with inflation, which itself influences the changes in claim size and
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Figure 1.2. Main structure of a DFA model.

claim frequency. A second necessary generator on the asset side simulates stock returns,
depending on interest rates. On the liability side we have several risk categories. In this
paper we consider four different ones: non-catastrophe losses, catastrophe losses, under-
writing cycles, and payment patterns. Catastrophes are separated from non-catastrophe
losses, and for each of these two groups the number and the severity of claims are mod-
elled separately. Another approach would be to integrate the two by using a heavy-tailed
distribution; see for instance Embrechts, Klüppelberg and Mikosch [10]. Underwriting
cycles model the current market situation, like the competition among insurance compa-
nies, or a general recession. With payment patterns we model when and how losses are
paid. We need these patterns to estimate loss reserves.

To model these risk categories there are many different possibilities. Here we present
one possibility in order to give an idea how components can be modelled stochastically.

2.1. Interest Rates. We assume, as for example Daykin, Pentikäinen and Pesonen [9,
p. 231], that inflation is correlated with interest rates. So we construct one single gener-
ator that simulates all the following: short term interest rate, long term interest rates,
general inflation, and inflation by line of business.

The probably best known model for simulating investment return and inflation in the
insurance world is the Wilkie model, see for example Wilkie [25], or Daykin, Pentikäinen
and Pesonen [9, pp. 242-250].

2.1.1. Short Term Interest Rate. There are many different interest rate models used by
financial economists. An overview of some common ones is given by Ahlgrim, D’Arcy
and Gorvett [1], see also Musiela and Rutkowski [21, pp. 281-302].

To simulate the annualized short term interest rate for every year t we can use for
example a discretization of the mean reversion model proposed by Cox, Ingersoll and
Ross (CIR model).

The CIR model in continuous time is characterized by the equation

drt = a (b− rt) dt+ s
√
rt dZt .(2.1.1)
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where

rt = the instantaneous short term interest rate,
b = the long term mean of the interest rate,
a = a constant, that determines the speed of reversion

of the interest rate towards its long-run mean b,
s = the volatility of the interest rate process,
Zt = a standard Brownian motion.

By discretizing this mean reversion model we get

rt = rt−1 + a (b− rt−1) + s
√
rt−1 Zt ,(2.1.2)

where

rt = the instantaneous short term interest rate
at the beginning of year t,

Zt ∼ N (0, 1), Z1, Z2, . . . i.i.d.,
a, b, s as in (2.1.1).

Whereas the realizations of the CIR model in continuous time are almost surely positive,
when discretizing one may lose this property. If rt becomes negative we cannot calculate
the right side of equation (2.1.2). So we change it to

rt = rt−1 + a (b− rt−1) + s
√
rt−1

+ Zt ,(2.1.3)

or

rt = rt−1 + a (b− rt−1) + s
√
|rt−1|Zt .(2.1.4)

In order to model how volatility depends on the current short term interest rate rt we
introduce a new variable g:

rt = rt−1 + a (b− rt−1) + s |rt−1|g Zt .(2.1.5)

Chan, Karolyi, Longstaff and Sanders [4] describe how suitable values for a, b, s, and g
can be found based on historical data.

A disadvantage of (2.1.3), (2.1.4) and (2.1.5) is the fact that some of the simulated
values for rt may become negative. When we try to cope with this, an obvious possibility
is to take the positive value of formula (2.1.5):

rt =
(
rt−1 + a (b− rt−1) + s rgt−1 Zt

)+
.(2.1.6)

There is also a disadvantage when we use this formula: b can no longer be interpreted as
the long term mean of the interest rate, indeed b < limt→∞ E [rt].

If we observe that the short term interest rates simulated by a yearly discretization
are not good enough, we can change to smaller time intervals, and simulate for example
monthly, weekly, or even daily values of rt.

2.1.2. Long Term Interest Rates. We can also use the CIR model (2.1.1) to calculate
the long term interest rates Rt,T with time to maturity T (in years), starting at time t.
Lamberton and Lapeyre [16, pp. 129-133] prove the following result:

E [e−
∫ T
0 rt+s ds] = eln AT−rtBT ,(2.1.7)
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where

AT =
( 2Ge(a+G) T/2

(a+G) (eGT − 1) + 2G

)2ab/s2

,

BT =
2(eGT − 1)

(a+G) (eGT − 1) + 2G
,

G =
√
a2 + 2s2 .

Because Rt,T is the yield of a zero coupon with term to maturity T we can write the

discounting factor E [e−
∫ T
0 rt+s ds] as e−T Rt,T . With (2.1.7) we get

Rt,T =
rtBT − ln AT

T
.(2.1.8)

2.1.3. General Inflation. Following our introductory remark to Section 2.1 we simulate
the general inflation it – that we need for modelling loss payments – by using the short
term interest rate rt. We can do this by using a linear regression model:

it = aI + bI rt + σI εIt ,(2.1.9)

where

εIt ∼ N (0, 1), εI1, ε
I
2, . . . i.i.d.,

aI, bI, σI: parameters that can be estimated by
regression, based on historical data.

2.1.4. Change by Line of Business. The impact of inflation is not the same for different
lines of business. Daykin, Pentikäinen and Pesonen [9, p. 215], and Walling, Hettinger,
Emma and Ackerman [24] explain more in detail why it makes sense to model the changes
caused by inflation for each line of business separately.

To model the change in loss frequency δFt (i.e. # losses/# written exposure units), the
change in loss severity δXt , and the resulting change in prices δPt , we can use the following
formulas:

δFt = max (aF + bF it + σF εFt ,−1),(2.1.10)

δXt = max (aX + bX it + σX εXt ,−1),(2.1.11)

δPt = (1 + δFt ) (1 + δXt )− 1,(2.1.12)

where

εFt ∼ N (0, 1), εF1 , ε
F
2 , . . . i.i.d.,

εXt ∼ N (0, 1), εX1 , ε
X
2 , . . . i.i.d., εFt1 , ε

X
t2

independent ∀ t1, t2 ,
aF , bF , σF , aX , bX , σX: parameters that can be estimated by

regression, based on historical data.

The technical restriction of setting δFt and δXt to at least −1 is necessary in order to assure
that we do not get any negative simulated values for loss numbers and loss severities.

The reason why we model also the changes in loss frequency dependent on general
inflation is the empirical observation that in certain situations (e.g. when the inflation is
high) insurants report more losses in certain lines of business.
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The corresponding cumulative changes δF,ct and δX,ct can be calculated by

δF,ct =

t∏
s=t0+1

(1 + δFs ),(2.1.13)

δX,ct =

t∏
s=t0+1

(1 + δXs ),(2.1.14)

where

t0 + 1 = first year we model.

2.2. Stock Returns. In order to model assets suitably, it is necessary to simulate stock
returns.

To simulate the stock return rSt we make use of the Sharpe-Lintner CAPM pricing
equation – for details on the Capital Asset Pricing Model (CAPM) see for example
Ingersoll [14]. We need a model for the expected return E [rMt ] on the market portfolio.
For simplicity reasons we use a linear model:

E [rMt |Rt,1] = aM + bM (eRt,1 − 1) ,(2.2.1)

where

eRt,1−1 = risk-free return, see (2.1.8),

aM , bM = parameters that can be estimated by
regression, based on historical data.

Now we can use the CAPM formula to get the expected return on a stock:

E [rSt |Rt,1] = (eRt,1 − 1) + βt
(
E [rMt |Rt,1]− (eRt,1 − 1)

)
,(2.2.2)

where

eRt,1−1 = risk-free return,

rMt = return on the market portfolio,

βt = β-coefficient of this asset

=
Cov (r S

t , r
M
t )

Var (r M
t )

.

Usually the price of a stock is modelled with a geometric Brownian Motion. Therefore
we can assume a lognormal distribution for 1 + rSt :

1 + rSt ∼ lognormal (µ, σ2), rS1 , r
S
2 , . . . independent,(2.2.3)

with µ chosen to yield

mt = eµ+σ2

2 ,

where

mt = 1 + E [rSt |Rt,1], see (2.2.2),

σ2 = estimated variance of logarithmic historical values.

Of course, in the above, more refined econometric models can be used as there are
APT, stochastic volatility, GARCH models.
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2.3. Non-Catastrophe Losses. Non-catastrophe losses of various lines of business de-
velop quite differently. Therefore we simulate loss numbers and loss severities for every
line of business separately. For the sake of better legibility, in this section we drop the
index that represents the line of business.

Statistical considerations also show that losses depend on the age of insurance contracts.
The aging phenomenon describes the fact that the loss ratio – i.e. the ratio of losses
divided by earned premiums – decreases when the age of policy increases. For this reason
it might prove useful to divide insurance business into three classes, as proposed by
D’Arcy, Gorvett, Herbers, Hettinger, Lehmann and Miller [7]:

• new business (superscript 0),
• renewal business – first annual (superscript 1), and
• renewal business – second annual and subsequent (superscript 2).

More information about the aging phenomenon can be found in D’Arcy and Doherty [5]
and [6], Feldblum [13], and in Woll [26].

To simulate loss numbers N j
t and loss severities Xj

t for period t and renewal category j
we can utilize the mean values µF,j, µX,j and the standard deviations σF,j, σX,j of (dis-
counted) historical data for loss frequencies and loss severities, and some other factors
that affect losses. Because loss frequencies are more stable than loss numbers, we propose
to use estimations for loss frequencies instead of estimating loss numbers directly.

For numbers of losses we can use for example the negative binomial, Poisson, or bino-
mial distribution function with mean mN,j

t and variance vN,jt . When we decide for the
negative binomial distribution function, we can simulate as follows:

N j
t ∼ NB (a, p), j = 0, 1, 2 ,

N j
1 , N

j
2 , . . . independent,

(2.3.1)

with a and p chosen to yield

mN,j
t =

a (1− p)
p

,

vN,jt =
a (1− p)

p2
,

(2.3.2)

where

mN,j
t = wjt µ

F,j δF,ct ,

vN,jt = (wjt σ
F,j δF,ct )2,

wjt = written exposure units, modelled in (3.0.3),

µF,j = estimated frequency, based on historical data,

σF,j = estimated standard deviation in frequency,
based on historical data,

δF,ct = cumulative change in loss number, see (2.1.13).

For negative binomial distributed variables N we have over-dispersion: Var(N ) ≥ E[N ].

Therefore this distribution yields a reasonable model only if vN,jt ≥ mN,j
t .
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When we try to solve (2.3.2), we have the problem that the variable a must be an
integer. So we cannot just use

a =
(mN,j

t )2

vN,jt −mN,j
t

,

p =
mN,j
t

vN,jt

.

(2.3.3)

One possibility is to round a mathematically, and then use the first equation of (2.3.2)
to get a value for p:

a = max(b (mN,j
t )2

vN,jt −mN,j
t

+ 1/2c, 1),

p =
a

mN,j
t + a

.

(2.3.4)

The notation b. . .c means that the integer part of this expression is taken.
For mean loss severities one possibility is to use a GPD (generalized Pareto distribution)

Gξ,β. GPD’s play an important role in the Extreme Value Theory, where Gξ,β appears as
the limit distribution of scaled excesses over high thresholds, see for instance Embrechts,
Klüppelberg and Mikosch [10, p. 165]. But also a Gamma distribution with mean mX,j

t

and variance vX,jt may be convenient. Because the density function of a Gamma distri-
bution decreases exponentially, and since we model only non-catastrophe losses here, we
can simulate mean loss severities by

Xj
t ∼ Gamma(α, θ), j = 0, 1, 2 ,

Xj
1 , X

j
2 , . . . independent,

(2.3.5)

with α and θ chosen to yield

mX,j
t = α θ ,

vX,jt = α θ2,

where

mX,j
t = µX,j δX,ct ,

vX,jt = (σX,j δX,ct )2/δN,ct ,

µX,j = estimated mean severity, based on historical data,

σX,j = estimated standard deviation, based on historical data,

δX,ct = cumulative change in loss severity, see (2.1.14),

δN,ct = cumulative change in loss number, see (2.1.13).

2.4. Catastrophes. In the simulation of loss numbers and loss severities we modelled
only non-catastrophe losses. We simulate catastrophes separately, due to the quite dif-
ferent statistical behaviour of catastrophe and non-catastrophe losses. In general the
volume of empirical data for non-catastrophe losses is much bigger than for catastrophe
losses. By separating the two, we have more homogeneous data for non-catastrophe losses,
which makes fitting the data by well known (right skew) distributions easier. In addition
we experience a rapid development of a theory of distributions for extremal events, see
Embrechts, Klüppelberg and Mikosch [10], and McNeil [20]. Therefore we consider the
separate modelling for catastrophe and non-catastrophe losses as most appropriate.
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For the number of catastrophes we can use for example the negative binomial, Poisson,
or binomial distribution function with mean mM and variance vM . We assume that there
is no trend in the number of catastrophes:

Mt ∼ NB, Pois, Bin, . . . (mean mM , variance vM),

M1,M2, . . . i.i.d.,
(2.4.1)

where

mM = estimated number of catastrophes, based on historical data,

vM = estimated standard deviation, based on historical data.

Contrary to the modelling of the non-catastrophe losses, we simulate the total loss severity
(i.e. not only the part the insurance company in consideration has to pay) for every
catastrophe i ∈ {1, . . . , Mt} separately. Again, there are different distribution functions
that proved to be adequate in the past:

Yt,i ∼ lognormal, Pareto, GPD, . . . (mean mY
t , variance vYt ),

Yt,1, Yt,2, . . . i.i.d.,

Yt1,i1 , Yt2,i2 independent ∀ (t1, i1) 6= (t2, i2),

(2.4.2)

where

mY
t = µY δX,ct ,

vYt = (σY δX,ct )2,

µY = estimated loss severity, based on historical data,

σY = estimated standard deviation, based on historical data,

δX,ct = cumulative change in loss severity, see (2.1.14).

Now we can divide up the total severity Yt,i among the various lines of business which
are affected by the catastrophic event:

Y k
t,i = akt,i Yt,i , k = 1, . . . , l ,(2.4.3)

where

l = # lines of business,

∀ i ∈ {1, . . . , Mt}: (a1
t,i, . . . , a

l
t,i) ∈ {x ∈ [0, 1]l, ‖x‖ = 1} ⊂ Rl is

a random convex combination, whose distribution within the
(l-1) dimensional tetraeder can be arbitrarily specified.

By simulating the percentages akt,i stochastically, we model the diversification benefit that
occurs when the company writes different lines of business.

Now, if we know the market shares of the insurance company in consideration by line
of business, and if we know its reinsurance structure, we can calculate how catastrophes
affect the liabilities.

The construction in this section creates dependence between total catastrophe losses
in different lines of business, although all generated variables are independent.

2.5. Underwriting Cycles. After deregulation, even in Europe, for an insurance com-
pany the general market conditions are too important to be ignored. So we try to model
the underwriting cycles, although they are quite complex. With these cycles we try to
capture states like competition among insurance companies for certain lines of business,
or general recession.
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We can use a homogeneous Markov chain model (in discrete time), that resembles the
one proposed by D’Arcy, Gorvett, Hettinger and Walling [8]: We classify each line of
business for every year into one of the following states:

1 Weak competition,

2 Average competition,

3 Strong competition.

In state 1 (weak competition) the insurance company demands high premiums because
it can increase its market share anyway. In state 3 (strong competition) the insurance
company must demand low premiums in order to at least keep its current market share.
High premiums are equivalent to high profit margin over pure premium, and low premiums
equal low profit margin. Changing from one state to another causes significant changes
in premiums.

The transition probabilities pij , i, j ∈ {1, 2, 3} which denote the probability of changing
from state i to state j from one year to the next are assumed to be equal for every year.
This means that the Markov chain is homogeneous. The pij ’s can be written in a matrix T :

T =

 p11 p12 p13

p21 p22 p23

p31 p32 p33

 .

There are many different possibilities to set these transition probabilities pij, i, j ∈
{1, 2, 3}. It could be useful to model the pij’s depending on the current market con-
ditions of all lines of business. One possibility is the following one. When the company
writes l lines of business, there are 3l states of the world. Because business cycles of dif-
ferent lines of business are strongly correlated, only few of the 3l states are attainable. So
we have to model L � 3l states, where the transition probabilities pij, i, j ∈ {1, . . . , L}
are still equal for every year. It is possible that some of them are zero, because there
may exist some states that cannot be attained directly from certain other states. When
L states are attainable, the matrix T has dimension L× L:

T =


p11 p12 . . . p1L

p21 p22 . . . p2L
...

...
. . .

...
pL1 pL2 . . . pLL

 .

In any of the above mentioned cases, in order to fix the transition probabilities pij we
should first consider every state i separately, and assign estimated percentages to the
variables pi1, . . . , piL (such that

∑L
j=1 pij = 1 ∀i). Then, as a control, we should consider

the stationary probability distribution π, which in general – i.e. if the Markov chain is
irreducible and positive recurrent – our probability distribution converges to, no matter
which starting state we choose. Because it is easier to estimate the stationary probability
distribution π than to find suitable values for the pij ’s we should use the fact that π = π T ,
to check whether the estimated values for the transition probabilities are realistic.

A central point in this consideration is to set the initial market conditions correctly in
order to get a realistic simulation.

2.6. Payment Patterns. Until now we have modelled claim number and claim size, but
we did not yet model when losses are paid. For that purpose we need payment patterns.
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Figure 2.1. Paid losses in the triangle on the left side of the thick line
are known, while the ones in the other part we have to estimate.

For every accident year t1 these patterns give us the information which part of the total
loss is paid in which development year t2. We model payment patterns separately for
every line of business, because they develop quite differently. For the sake of better
legibility, for the most part of this section we drop the index that represents the line of
business.

We make the assumption that for every line of business there is an ultimate development
year τ until when all claims will be paid. We know the claim payments Zt1,t2 for previous
years t1 + t2 ≤ t0, as shown in Figure 2.1. The ultimate losses Zult

t1
:=
∑τ

t=0 Zt1,t vary by
accident year t1. We need to estimate these variables Zult

t1
in order to determine adequate

loss reserves. We will do this by applying a chain-ladder type procedure (for the chain-
ladder method, see Mack [18]), i.e. we apply ratios to cumulative payments per accident
year. Therefore we need to define the following type of loss development factor

dt1,t2 :=
Zt1,t2∑t2−1
t=0 Zt1,t

, t2 ≥ 1,(2.6.1)

which describes how losses change from one development year to the next.
We distinguish two cases. For previous accident years (t1 ≤ t0) we can simulate for each

calendar year t1 + t2 ≥ t0 +1 losses paid in this year. Since a lognormal distribution gives
a good fit for historical incremental loss development factors, we can use the following
model:

Zt1,t2 = dt1,t2 ·
t2−1∑
t=0

Zt1,t ,(2.6.2)



INTRODUCTION TO DYNAMIC FINANCIAL ANALYSIS 13

where

dt1,t2 ∼ lognormal(µt2, σ
2
t2),

µt2 = estimated logarithmic loss development factor for
development year t2, based on historical data,

σt2 = estimated logarithmic standard deviation, based
on historical data.

As already mentioned before, τ stands for the ultimate development year. So we have a
simulation for the ultimate loss for accident year t1 ≤ t0:

Zult
t1

=
τ∑
t=0

Zt1,t.(2.6.3)

For future accident years (t1 ≥ t0 + 1) we simulated the ultimate losses already in
Sections 2.3 and 2.4:

Zult
t1

(k) =

2∑
j=0

N j
t1(k) Xj

t1(k) + bt1(k)

Mt1∑
i=1

Y k
t1,i
− Rt1(k) ,(2.6.4)

where

N j
t1(k) = number of non-catastrophe losses in accident year t1

for line of business k and renewal class j, see (2.3.1),

Xj
t1(k) = severity of non-catastrophe losses in accident year t1

for line of business k and renewal class j, see (2.3.5),
bt1(k) = market share of the company in year t1 for line of business k,
Mt1 = number of catastrophes in accident year t1, see (2.4.1),

Y k
t1,i

= severity of catastrophe i in line of business k in
accident year t1, see (2.4.3),

Rt1(k) = reinsurance recoverables; a function of the Y k
t1,i

’s.

Now we have to split these ultimate losses between development years. We can simulate
the incremental percentages At1,t2 for example by using beta distribution functions with
parameters based on payment patterns of previous calendar years:

At1,t2 = Bt1,t2

(
1−

t2−1∑
t=0

At1,t

)
,(2.6.5)

where

Bt1,t2 = percentage of remaining payments for
accident year t1 in development year t2

∼ beta(α, β).

Here α and β are chosen to yield

mt1,t2 =
α+ 1

α + β + 2
,

vt1,t2 =
(α+ 1) (β + 1)

(α + β + 2)2 (α + β + 3)
,
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where
mt1,t2 = estimated percentage of remaining payments

for accident year t1 in development year t2,

based on
At1−1,t2∑τ
t=t2

At1−1,t

,
At1−2,t2∑τ
t=t2

At1−2,t

, . . . ,

vt1,t2 = estimated variance, based on the same historical data.

For each future accident year (t1 ≥ t0) we can now calculate losses paid in development
year t2:

Zt1,t2 = At1,t2 Z
ult
t1
.(2.6.6)

For both previous and future accident years, at the end of calendar year t1 + t2 we do
not know the ultimate losses Zult

t1 yet. For each accident year t1 we have to estimate them
in each development year t2:

Ẑult
t1,t2 =

(
τ∏

t=t2+1

1 + eµt

)(
t2∑
t=0

Zt1,t

)
,(2.6.7)

where
µt = estimated logarithmic loss development factor for

development year t, based on historical data,

Zt1,t = simulated losses for accident year t1, paid in
development year t, see (2.6.2) and (2.6.6).

Note that (2.6.7) is an estimate at the end of calendar year t1 + t2, whereas (2.6.4)
simulates the real future value.

3. How Generators Influence Cash Flows

In this section we focus on the interrelation of stochastically simulated variables and
core economic variables. We are not aiming at interconnecting each variable to display a
complete model of the company. A more comprehensive description of a model for cash
flows is given in Kaufmann [15].

The most important variable is surplus Ut. This variable gives us information about
the financial strength of an insurance company and can serve as a measure for assessing
the (shareholder) value of the company. A negative surplus is equivalent to the company
becoming insolvent.

The change in surplus is influenced by the following cash flows:

∆Ut = Pt + It + Ct − Zt − Et − Rt − Tt.(3.0.1)

where
Pt = earned premiums,
It = change in value of previous investments,
Ct = additions to capital and surplus,
Zt = losses paid in calendar year t,
Et = expenses,
Rt = loss reserves,
Tt = taxes.

To calculate earned premiums, we first need written premiums. For each line of busi-
ness, written premiums P j

t for renewal class j should be modelled depending on change
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in prices, on underwriting cycles, and on the number of written exposures. We could use
a model like

P j
t = (1 + δPt ) (1 + cmt−1,mt)

wjt

wjt−1

P j
t−1 , j = 0, 1, 2 ,(3.0.2)

where

δPt = change in prices, see (2.1.12),
cmt−1,mt = a constant that describes how premiums develop when we

change from market condition mt−1 to mt; cmt−1,mt can be
estimated based on historical data,

w0
t = written exposure units for new business,

w1
t = written exposure units for renewal business, first annual,

w2
t = written exposure units for renewal business, second annual

and subsequent.

The variables w0
t , w

1
t , w

2
t can be modelled depending on the numbers wjt−1 of previous

years and depending on the market conditions mt−1 and mt. If we assume that in each
market condition premiums are set in such a way that written exposure units do not vary
much when we change from mt−1 to mt, we can use for example a deterministic linear
model:

wjt = aj + bj wjt−1 , j = 0, 1, 2 ,(3.0.3)

where

aj , bj = parameters that can be estimated by
regression, based on historical data.

With the model (3.0.2) for written premiums P j
t (k), total earned premiums of all lines of

business k and all renewal classes j can be calculated by

Pt =
l∑

k=1

2∑
j=0

ajt (k)P j
t (k) +

(
1− ajt−1(k)

)
P j
t−1(k)(3.0.4)

where

ajt (k) = percentage of premiums earned in year written.

When modelling investments we restrict to the most important investment classes, that
is fixed income type investments (e.g. bonds, policy loans, cash), stocks, and real estate.
Individual prices of fixed income type investments can be derived from a return that
is required by the market (market return Rt,T ). We need these rates Rt,T to calculate
the discounted values of bonds with term to maturity T . We have already described in
Section 2.2 how stock prices are affected by the short term interest rate. For the sake
of simplicity, real estate can be modelled quite similarly to stocks. Future investment
profit depends not only on the development of market values of assets that an insurance
company currently owns, but also on the decision how new funds are allocated. There-
fore asset allocation is an important tool for management to optimize future investment
profit. In order to build a DFA model in the strict sense of the word, we should account
for changes in asset allocation in future years as compared to a pure static approach
that keeps the allocation unchanged. This requires defining investment rules for specific
economic conditions.
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Additions to capital and surplus Ct: The specific items of additions to capital and
surplus depend on the national accounting rules. The variable Ct can be estimated based
on historical data.

Losses paid in year t can be calculated by

Zt =

l∑
k=1

τ(k)∑
t2=0

Zt−t2,t2(k),(3.0.5)

where

Zt−t2,t2(k) = losses for accident year t− t2, paid in development
year t2; see (2.6.2) and (2.6.6),

τ(k) = ultimate development year for this line of business,
k = line of business.

Expenses Et can be estimated by a constant plus a term that is a multiple of written
exposure units wjt (k). The appropriate intercept aE(k) and slope bE(k) can be determined
by linear regression:

Et =

l∑
k=1

(
aE(k) + bE(k)

2∑
j=0

wjt (k)

)
.(3.0.6)

For loss reserves Rt we have the equation

Rt =
l∑

k=1

τ(k)∑
t2=0

(
Ẑult
t−t2,t2(k)−

t2∑
s=0

Zt−t2,s(k)

)
,(3.0.7)

where

Ẑult
t−t2,t2(k) = estimation in calendar year t for ultimate losses in

accident year t− t2; see (2.6.7),
Zt−t2,s(k) = losses for accident year t− t2, paid in development

year s; see (2.6.2) and (2.6.6),
τ(k) = ultimate development year,

k = line of business.

Another very important thing needs to be considered: taxes Tt. In particular they
are important if one uses a DFA model for estimating future performance of the com-
pany. Because taxes can be calculated exactly when we know all cash flows, we do not
need another generator for them. Taxes can be calculated based on the other modelled
variables.

4. DFA in Action

In order to show how a DFA model works in general, we wrote a short program in S-
PLUS. It was not intended to describe a specific effect when using the parameters given
below. The parameters were not selected as to give a most realistic picture. Rather we
wanted to give an example what a DFA model can be used for. But in effect, calibrating
the model as to yield reasonable results is one of the most important and time-consuming
tasks when applying a DFA model in practice.

• Time horizon: 10 years.
• Performance measure: expected surplus.
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• Risk measure: ruin probability.
• Only one line of business.
• For interest rates we use the discretization (2.1.4):

rt = rt−1 + a (b− rt−1) + s
√
|rt−1|Zt.

• Parameters for interest rate generator: a = 0.25, b = 5%, s = 0.1, r1 = 2%.
• Parameters for modelling inflation: aI = 0%, bI = 0.75, σI = 0.025.
• No impact of inflation on the number of claims for the modelled line of business.
• Parameters for modelling the impact of inflation on the severity of claims for the

modelled line of business: aX = 3.5%, bX = 0.5, σX = 0.02.
• Parameters for generating return on stock portfolio:
aM = 4%, bM = 0.5, βt ≡ 0.5, σ = 0.15.
• New business and renewal business are not modelled separately.
• Number of non-catastrophe losses ∼ NB (154, 0.025).
• Mean severity of non-catastrophe losses ∼ Gamma (9.091, 242), inflation-adjusted.
• Number of catastrophes ∼ Pois (18).
• Severity of individual catastrophes ∼ lognormal (13, 1.52), inflation-adjusted.
• Market share: 5%.
• Written premiums in the last year: 20 million.
• Expenses: 30% of written premiums.
• Optional excess of loss reinsurance with deductible 500 000 (inflation-adjusted), and

cover ∞.
• Premiums for reinsurance: 200 000 p.a. (inflation-adjusted).
• Underwriting cycles: 1 = weak, 2 = average, 3 = strong. State in year 0: 1 (weak).

Transition probabilities: p11 = 60%, p12 = 25%, p13 = 15%,
p21 = 25%, p22 = 55%, p23 = 20%, p31 = 10%, p32 = 25%, p33 = 65%.
• Payment patterns are deterministic.
• All liquidity is reinvested. There are only two investment possibilities:

1) buy a risk-free bond with maturity one year,
2) buy an equity portfolio with a fixed beta.

• Market valuation: assets and liabilities are stated at market value, i.e. assets are
stated at their current market values, liabilities are discounted at the appropriate
term spot rate determined by the model.
• No transaction costs.
• No taxes.
• No dividends paid.
• Initial surplus: 12 million.

In this model one can choose:

• How many simulations should be run.
• Whether the company is to be reinsured or not.
• How the liquidity is divided between bond and portfolio.

We ran this model 10 000 times for twelve different strategies, see Figure 4.1. In the
first six strategies the investment percentages are fixed. In the other ones we set a limit
how much money should at most be invested in bonds. The amount exceeding this
limit is invested in stocks. For each strategy we evaluated the expected surplus and the
probability of ruin. In Figure 4.2 we see that – for our chosen measures – some strategies
are certainly better than other ones.
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with without
reinsurance reinsurance

100 % bonds 18.64 mio. 19.23 mio.
0 % stocks 1.13 % 1.90 %

50 % bonds 20.08 mio. 20.65 mio.
50 % stocks 2.45 % 3.05 %
0 % bonds 21.51 mio. 22.26 mio.

100 % stocks 7.71 % 7.97 %
≤ 2 mio. bonds 21.33 mio. 21.87 mio.

rest stocks 6.36 % 6.44 %
≤ 5 mio. bonds 20.85 mio. 21.49 mio.

rest stocks 4.47 % 5.03 %
≤10 mio. bonds 20.21 mio. 20.85 mio.

rest stocks 2.29 % 3.00 %

Figure 4.1. Expected surplus and ruin probability for the evaluated strategies.
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Figure 4.2. Graphical comparison of strategies.

5. Some Remarks on DFA

5.1. Strengths of DFA. Compared to scenario testing where only a few arbitrary and
possibly unrepresentative scenarios are considered, DFA is able to yield much more and
better information of the implications of chosen strategies. Because of the large number
of simulations a DFA model can run, it gives us information not only on behaviour under
ordinary circumstances, but also when extremal events occur. Of course the stochastic
generators must be sufficiently flexible to generate occasional rare events.
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Whereas traditional management plans in many cases allowed only roughly for corre-
lations and diversification, a DFA model can pick this up and model correlations where
appropriate. By modelling each line of business separately, diversification benefits are
included automatically. In a DFA model we can utilize all the knowledge we have on
the dependence of different variables. Therefore we do not have to model all influences
separately and assume independence.

5.2. Weaknesses of DFA. Because reality is complex, it is not possible to model all
sources of risk. We have to restrict attention to some key risk factors. Consequently in
a DFA model there is not only the randomness by reason of the inherent variability, but
also the uncertainty caused by incomplete knowledge.

Before running a DFA model we have to estimate a lot of parameters. In these esti-
mations there is always some uncertainty that makes the model less reliable.

Generally DFA overestimates probability of ruin since it does not take into considera-
tion that an insurance company has the opportunity to raise additional capital – e.g. by
issuing stocks – when it runs the risk of ruin.

It is easy to increase complexity of a DFA model without gaining added value. One
of the main problems with DFA tools is their assessment. What is a good model and
what is a bad one? It is possible that a very simple model yields results for future years
which are much closer to reality than highly sophisticated models. In order to benefit
fully from all the information one gets after having run a DFA one should have a solid
understanding of the various statistical assumptions made.

Often it is not sufficient to model dependencies by using linear correlation. Indeed it
is very difficult to construct a DFA model that considers all dependencies appropriately.
For more information on dependence in risk management see Embrechts, McNeil and
Straumann [11] and [12].

5.3. Limitations of DFA. DFA does not provide an optimal strategy. It serves as a
decision tool that helps management compare different strategies. When a DFA model
is used without enough actuarial knowledge, it is only a black box of limited value.

Because reality can never be represented perfectly, we should of course always be
cautious, and never rely completely upon the output produced by a DFA model.

For very complex models there is still the problem that computers are not fast enough
yet. Therefore it takes quite a long time until we can compare different strategies. But as
computers become faster and faster, this problem will probably disappear in the future.
In the mean time we have to trade-off added value and computational costs.
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