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Abstract

This note describes estimation algorithms for generalized hyperbolic� hyperbolic and nor�

mal inverse Gaussian distributions� These distributions provide a better t to empirically

observed log�return distributions of nancial assets than the classical normal distributions�

Based on the better t to the semi�heavy tails of nancial assets we can compute more

realistic Value�at�Risk estimates�

The modelling of �nancial assets as stochastic processes is determined by distributional assump�
tions on the increments and the dependence structure
 It is well known that the returns of most
�nancial assets have semi�heavy tails i
e
 the actual kurtosis is higher than the zero kurtosis of
the normal distribution �see Pagan �������
 On the other hand the use of stable distributions
leads to models with nonexisting moments


The class of generalized hyperbolic distributions and its sub�classes � the hyperbolic and the
normal inverse Gaussian distributions � possess these semi�heavy tails
 Generalized hyperbolic
distributions were introduced by Barndor��Nielsen ������ and applied e
g
 to model grain size
distributions of wind blown sands
 The mathematical properties of these distributions are well�
known �see Barndor��Nielsen�Bl�sild �������
 Recently generalized hyperbolic distributions
resp
 their sub�classes were proposed as a model for the distribution of increments of �nancial
price processes �see Eberlein�Keller ������ Rydberg ������ Barndor��Nielsen ������ Eber�
lein�Keller�Prause ������� and as limit distributions of di�usions �see Bibby�S�rensen �������

Nevertheless studies were only published concerning the estimation and application to �nancial
data in the special case of hyperbolic distributions
 In this study we present parameter estima�
tions for German stock and US stock index data and evaluate the goodness of �t
 In particular
we look at the tails of the distributions
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� Generalized Hyperbolic Distributions

Generalized hyperbolic �GH� distributions are given by the Lebesgue density
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where K� is a modi�ed Bessel function
 The parameters � and � describe the location and the
scale of the distribution
 Note that this distribution may be represented as a normal variance�
mean mixture with the generalized inverse Gaussian as mixing distribution �see Barndor��
Nielsen�Bl�sild �������
 The normal distribution is obtained as a limiting case for � � �
and �
� � �� �see Barndor��Nielsen �������
 Generalized hyperbolic distributions are in�
�nitely divisible hence they generate a L�evy processes �see Barndor��Nielsen�Halgreen ������
Eberlein�Keller �������


Using the properties of Bessel functions K� it is possible to simplify the function gh whenever
� � ���� � �
� or �
 For � � ���� we get the normal inverse Gaussian �NIG� distribution
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and for � � � the hyperbolic distribution �HYP�
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One drawback of using hyperbolic distributions instead of the normal distribution is that the
meaning of the parameters seems to be obscure
 Di�erent parametrizations of the generalized
hyperbolic distribution have been proposed to circumvent this problem
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In the case of hyperbolic distributions the parameters ��� � may be plotted in a shape trian�
gle which re�ects asymptotically the shape i
e
 skewness and kurtosis of the distribution �see
Barndor��Nielsen et al
 �������


We restrict this study to the sub�classes given above because the hyperbolic law is the fastest
to estimate �see Section �� and the NIG law is closed under convolution
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� Estimation Algorithm

In order to estimate GH distributions we assume independent observations and maximize the
log�likelihood function
 We choose a numerical estimation procedure mainly based on an op�
timization for each coordinate
 For the optimization step in one direction we implemented a
re�ned bracketing method �see Thisted ������ Jarrat ������� which makes no use of derivatives

This gives us the possibility to replace the likelihood function easily by di�erent metrics �see
Section �� but the resulting algorithm is not as fast as a method based on derivatives could be

It was necessary to adapt the algorithm to the parameter restrictions given above
 In contrast
to the hyperbolic case the estimation of GH parameters for �nancial return data converges quite
often to limit distributions at the boundary of the parameter space
 Moreover we modi�ed the
algorithm to estimate parameters for a given constant sub�class characterized by �


Although the computational power increases it is necessary to �nd a reasonable tradeo�
between the introduction of additional parameters and the possible improvement of the �t

Barndor��Nielsen�Bl�sild ������ mentioned the �atness of the likelihood function yet for the
hyperbolic distribution
 The change in the likelihood function of the GH distribution is even
smaller for a wide range of parameters �see Section � below�
 Consequently the generalized
hyperbolic distribution as a model for �nancial data leads to over�tting
 This will become
clearer in the following sections
 The �rst four moments of return distributions yield simple and
useful econometric interpretations� trend riskiness asymmetry and the probability of extreme
events
 Therefore it seems to be appropriate to model return data with one of the sub�classes
which has four parameters


Because of the restrictions on the parameter values and the �atness of the likelihood function
it is not possible to use standard minimization algorithms
 These ready implemented routines
�see Press et al
 ������� often assume that the parameters and the value of the function have the
same order and that the gradient is not too small
 Although we have no theoretically guaranteed
convergence of our algorithm the tests with di�erent start values reveal that for �nancial data
the use of reasonable start values results in convergence to a global extremum
 In the case
of hyperbolic distributions we estimate the same parameters with our algorithm and the hyp

program implemented by Bl�sild�S�rensen ������

The Bessel functions are calculated by a numerical approximation �see Press et al
 �������


Note that for � � � this function appears only in the norming constant
 For a data set with n
independent observations we need to evaluate n�� Bessel functions for NIG and GH distributions
and only one for � � �
 This leads to a striking reduction in the time necessary to calculate the
likelihood function in the hyperbolic case


� Results of the Estimation

We applied the estimator to log�return data from the German stock market and to New York
Stock Exchange �NYSE� indices
 The stock data set consists of daily closing prices from January
���� to May ����
 We had to correct these quoted prices due to dividend payments
 The NYSE
indices are reported from January � ���� to November �� ����
 In the Tables � and � we present
the estimated GH NIG and hyperbolic distributions
 The tables contain also the log�likelihood
function and the second and third parametrizations ��� � and ��� ��


The estimation for � ranges from ���� to ��� but for �� of �� stocks in the DAX we get
�� � � � ����
 In these cases the following sub�class of the generalized hyperbolic distribution
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with � � ��
� could be justi�ed empirically
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The disadvantage of this sub�class is that it is not closed under convolution and that the estima�
tion is time consuming because of the Bessel function outside the norming constant
 Therefore
we have not applied this distribution in this study


The variation in the likelihood function for the GH distribution and the sub�classes is very
small
 However the comparison of the sub�classes yields a clear result� for all data sets the
normal inverse Gaussian density has a higher likelihood than the hyperbolic distribution


For seven German stocks �Allianz�Holding Bayerische Vereinsbank Commerzbank
Karstadt MAN Mannesmann Siemens� and the NYSE Composite Index the GH distribu�
tion converges to the boundary of the parameter space as � � � � � � � � �
 In terms of
the other parametrizations this means �� � � � � and � � �
 The limit distribution has the
following form
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This limit distribution is calculated using the well�known properties of the modi�ed Bessel
function K��x� � K���x� and K��x� �  �������x�� for x � �� � 	 � �see Abramowitz�Stegun
�������
 The parametrization in this limit case is ��dimensional but a substantial change appears
only in the norming constant


� Comparison of the Fits

The aim of this study is to evaluate the �t of the generalized hyperbolic distributions and their
sub�classes
 For a �rst graphical comparison we show plots of the densities and qq�plots for the
NYSE Industrial Index and Bayer in Figure �
 Clearly generalized hyperbolic distributions are
leptokurtic i
e
 the peak in the centre is higher and there is more mass in the tails than for the
normal distribution


We also compare the estimates with �tted normal distributions
 As a measure for the
goodness of the �t we used various distances between the �tted and the empirical cumulative
density function �cdf�
 The Kolmogorov distance is de�ned as the supremum over the absolute
di�erences between two cumulative density functions
 We also compute L� and L� distances of
the cumulative density functions
 The Anderson ! Darling statistic is given by

AD � max
x�R

jFemp�x�� Fest�x�jp
Fest�x���� Fest�x��

���

where Femp and Fest are the empirical and the estimated cdf
 We use this statistic because it pays
more attention to the tails of the distribution �see Hurst Platen Rachev ������� and therefore
hints at the possibility to model the probability of extreme events with a given distribution
 In
Table � we give the results for the some share values of the German DAX
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Figure �� Density and qq�plots of the returns of NYSE Industrial Index and Bayer�

For all the analyzed metrics we get better results for the GH distributions and their sub�
classes than for the normal distribution
 The poor �t of the normal distribution to the semi�heavy
tails is obvious from the values of the Anderson ! Darling statistic
 Looking at the statistics
for the GH NIG and HYP distributions we �nd no striking di�erences
 Because of the �atness
of the likelihood function and the proximity of the log�likelihood values in Tables � and � this
result is no surprise and underlines the over�tting of the generalized hyperbolic distribution

The values of the Kolmogorov and L� distances of the GH NIG and HYP are very close and
the distribution with the highest value changes
 The Anderson ! Darling statistic and the L�

distances reveal the following ranks in the goodness of �t� GH NIG hyperbolic and normal
distribution
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Kolmogorov Distance L��Distance
GH NIG HYP Normal GH NIG HYP Normal

Allianz�Holding ������ ������ ������ ������ ������ ������ ������ ������
BASF ������ ������ ������ ������ ������ ������ ������ ������
Bayer ������ ������ ������ ������ ������ ������ ������ ������
BHW ������ ������ ������ ������ ������ ������ ������ ������
BMW ������ ������ ������ ������ ������ ������ ������ ������
Commerzbank ������ ������ ������ ������ ������ ������ ������ ������
Continental ������ ������ ������ ������ ������ ������ ������ ������
Daimler Benz ������ ������ ������ ������ ������ ������ ������ ������

Anderson ! Darling Statistic L��Distance
GH NIG HYP Normal GH NIG HYP Normal

Allianz�Holding ������ ������ ������ ����e�� ������ ������ ������ ������
BASF ������ ������ ������ ����e�� ������ ������ ������ ������
Bayer ������ ������ ������ ������� ������ ������ ������ ������
BHW ������ ������ ������� ����e�� ������ ������ ������ ������
BMW ������ ������ ������ ����e�� ������ ������ ������ ������
Commerzbank ������ ������ ������ ����e�� ������ ������ ������ ������
Continental ������ ������ ������ ������� ������ ������ ������ ������
Daimler Benz ������ ������ ������ ����e�� ������ ������ ������ ������

Table �� Comparison of the �ts of the GH� NIG� hyperbolic and normal distributions� Di�erent
metrics are applied to measure the di�erence between the estimated and the empirical cumulative
density functions�

� Simulation

In this section we are going to analyze the stability of the estimation by a simulation study
 We
generate random numbers from the GH distribution by the use of the quantile function and a
uniform random number generator on "�� �#
 We produce data sets with di�erent sample sizes
n from the distributions estimated above
 Note that the choice of the sampling distributions
restricts the validity of the following results to �nancial return data sets
 In Table � we provide
the results of the simulation for Bayer
 Similar results were also obtained for other sampling
distributions


In Table � we see that for large n the parameter � is close to the sampling distribution
 This
reveals that the estimation of sub�classes characterized by � is quite good although the di�erence
between the sub�classes in terms of the likelihood is small
 On the other hand it becomes clear
that the parameters ��� �� �� �� are converging very slowly to the sampling distribution
 Note
that it is not possible to �nd �nancial time series at any given length without getting trouble
with changes of regime
 Due to the over�tting it is not useful to compare the parameters of the
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Sample Size Kolmogorov Distance Anderson ! Darling Statistic
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���� �������� ��������
���� �������� ��������
���� �������� ��������
����� �������� ��������

Table �� Kolmogorov distance and Anderson � Darling statistic for the estimates given in
Table � �sampling distribution	 maximum likelihood estimate for Bayer
�

sampling and the estimated distribution
 For a better comparison we provide the Kolmogorov
distance and the Anderson ! Darling statistic in Table �


The �t of the tails becomes bad for sample sizes smaller than ���
 From these results we
obtain the rule of thumb that more than ��� observations are necessary for an acceptable �t to
the tails


� Estimation with Di�erent Metrics

In this section we apply di�erent estimation methods by replacing the log�likelihood function
by other metrics
 The aim of these di�erent approaches to the estimation is to investigate the
possible improvement of the �t to the tails of the distribution
 This may help for the modelling
of the probability of extreme events
 We estimate parameters for the GH NIG and hyperbolic
distributions using the metrics given in Section �


Is it useful to use di�erent metrics for the estimation of return distributions$ To answer
this question we compare the empirical skewness and kurtosis with those values of the estimated
distributions
 The exact values of the skewness and kurtosis for a speci�ed generalized hyperbolic
distribution can be computed by the formulas given in Barndor��Nielsen�Bl�sild ������
 Both
values are complicated expressions of Bessel functions
 The results are given in Table �


Clearly generalized hyperbolic distributions provide a better �t to the empirical observed
skewness and kurtosis than the normal distribution
 But this depends on the method used to
estimate the parameters


The results given in Table � show that the Anderson ! Darling statistic and the Kolmogorov
distance are less useful for the estimation than the Lp�norms or the maximum likelihood ap�
proach
 On the one hand the kurtosis of the estimated generalized hyperbolic distributions is
always closer to the empirical kurtosis
 On the other hand the estimated generalized hyperbolic
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���
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���
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� �
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Minimal Kolmogorov Distance
��
���� ��
� �
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���� ��
������ �
������ �
��� �
��� �
��� �
���
NIG ��
� �
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��� �
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���
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Table �� Estimation of the GH� NIG and hyperbolic distributions for the Deutsche Bank returns
with di�erent metrics�

distributions are sometimes skewed in the other direction than the empirical distribution
 Sim�
ilar results are obtained for other stock data sets
 In general the Anderson ! Darling statistic
and the Kolmogorov distance yield estimates for which skewness and kurtosis deviates in an
irregular pattern from the empirical values
 The estimates with Lp�norms are closer to the em�
pirical kurtosis but the estimation of the skewness is rather poor
 Regarding also the other data
sets we obtain the best �ts to the empirial skewness and kurtosis with the maximum likelihood
approach
 Therefore it is not favourable to replace the ML approach


� Value	at	Risk

A good �t of the heavy tails is also important for the estimation of the Value�at�Risk �VaR�
 The
motivation for invention of the concept of Value�at�Risk was the necessity to quantify the risk
for complex portfolios in a simple way
 The VaR to a given level of probability � is de�ned as the
maximal loss inherent to a portfolio position over a future holding period which is exceeded only
with a probability of �
 The level of probability is typically chosen as �% or �% and should not
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Metric Distribution Skewness Kurtosis Skewness Kurtosis
Deutsche Bank Bay
Hyp
u
Wechselbank

Empirical ������ ������ ������ ������
Normal ��� ��� ��� ���

Maximum Likelihood GH ����� ����� ����� ������
Maximum Likelihood NIG ����� ����� ����� �����
Maximum Likelihood HYP ����� ����� ����� �����

Kolmogorov Distance GH ����� ����� ������ �����
Kolmogorov Distance NIG ����� ����� ������ �����
Kolmogorov Distance HYP ����� ����� ������ �����

Anderson ! Darling GH ����� ����� ����� �����
Anderson ! Darling NIG ����� ����� ������ �����
Anderson ! Darling HYP ����� ����� ����� �����

L��Distance GH ����� ����� ����� �����
L��Distance NIG ����� ����� ����� �����
L��Distance HYP ����� ����� ����� �����

L��Distance GH ����� ����� ����� �����
L��Distance NIG ����� ����� ����� �����
L��Distance HYP ����� ����� ����� �����

Table �� Comparison of the directly estimated skewness and kurtosis with the skewness and
kurtosis calculated from the estimations for GH� NIG and hyperbolic distributions with di�erent
metrics �Deutsche Bank and Bay�Hyp�u�Wechselbank returns
�

be confused with a con�dence level
 We are looking at the whole interval of levels of probability

This approach corresponds to the multivariate approach in Dav�e�Stahl ������
 We analyze the
VaR for portfolios with linear risk i
e
 portfolios consisting of only one stock or index
 The
results of the VaR�estimation for the GH NIG and hyperbolic distribution are given in Figure
�


Obviously the class of generalized hyperbolic distributions and its sub�classes provide better
�ts to the empirical VaR especially for small levels of probability than the normal distribution


The analysis of VaR for linear positions is also useful as a visualisation of the �tting behaviour
in the tails of a distribution
 From a mathematical point of view VaR is in this case similar to
the well�known qq�plots



 Conclusion

In this study we developed an algorithm to estimate parameters for the class of generalized
hyperbolic distributions which includes the hyperbolic and the normal inverse Gaussian distri�
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Figure �� VaR of a portfolio with linear risk and the value of one currency unit �US�� or
Deutsche Mark
� The exposure period is one trading day� We compare the empirical VaR
at di�erent levels of probability to the estimated VaR using GH� NIG� hyperbolic and normal
distributions�

bution as special cases
 We compared the results of the estimations for �nancial return data
sets
 In general generalized hyperbolic distributions and their sub�classes provide better �ts to
the data than the normal distribution
 As expected the best �ts are obtained for the generalized
hyperbolic distributions followed by the NIG and the hyperbolic distributions
 It is worth to
mention that GH distributions lead to over�tting and that the estimation is computationally
demanding
 The hyperbolic distribution provides an acceptable tradeo� between the accuracy
of the �t and and the necessary numerical e�ort
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Table �� Maximum likelihood estimation of the parameters for generalized hyperbolic� NIG
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Table �� Maximum likelihood estimation of the parameters for generalized hyperbolic� NIG
and hyperbolic distributions for German stocks from January ��� to May ����
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Table �� Estimations for data sets with sample size n �sampling distribution	 maximum
likelihood estimate of the generalized hyperbolic distribution for Bayer returns
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