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Valuation by Approximation: A Comparison of
Alternative Option Valuation Techniques

Robert Geske and Kuldeep Shastri*

Abstract

The purpose of this paper is to compare a variety of approximation techniques for valuing
contingent contracts when analytic solutions do not exist. The comparison is made with
respect to the differcnees in both the approximation theory and the efficiency of the com-
putation algorithms. The focus of the computational comparison is upon binomial and
finite difference methods applicd to option valuation models with one stochastic variable.
However, many of the results would generalize to pricing corporate securitics, and also to
certain aspects of problems involving multiple stochastic variables.

[. Introduction

Recent advances in the arca of asset pricing theory have gencrated many
partial equilibrium conditions describing the ‘‘no arbitrage’’ paths for asset
prices. Assumptions about the effects of information on asset price changes lead
to valuation models based on a variety of stochastic processes. Examples are the
constant-variance diffusion mode! of Black and Scholes |3], the pure jump model
of Cox and Ross [10], the combined jump-diffusion model of Merton [28], and
the changing variance diffusion model of Geske [17]. In these papers, analytic
solutions exist.! However, if complex payout or exercise contingencies are pre-
sent, analytic solutions are rarc. One example is valuing an American put on a
dividend-paying stock. The works of Parkinson {28], Brennan and Schwartz [5],
and Cox, Ross, and Rubinstein [11] demonstrate examples of different approxi-
mation approaches to the American put problem.
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The authors thank the CIVITAS Foundation at the University of (alifornia, Los Angeles, and the
Graduate School of Business at the University of Pittsburgh for financial support. They also thank
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121].
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Recently, Geske and Jolinson [22] have presented an analytic solution to the
American put problem, with or without dividends. However, many valuation
problems have no known analytic solutions. Some examples arc callable and
convertible coupon bonds, insurance contracts, and the term structure of interest
rate models for bond valuation. Because no arbitrage partial equilibrium condi-
tions can be derived, many of these problems may be solved by numerical ap-
proximation. The purpose of this paper is to provide a concise comparison of the
approximation techniques that financial cconomists have used for one-dimen-
sional valuation problems when no analytic solutions exist. Although much of
the intwition presented here would carry over for higher-dimensional problems,
the exact analysis and numbers would be ditferent.

In Section II, both valuation and approximation principles are first de-
scribed, Several numerical methods, including the Monte Carlo, binomial, and
finite difference techniques are discussed. The stability, rate of convergence, and
accuracy conditions are described and compared.

Section 111 presents a comparison of the binomial and a variety of finite
difference techniques based on both accuracy and efficiency criteria. ft is impor-
tant for the reader to realize that results different from those presented here may
arise from the use of different computer hardware andfor software. Although
comparisons and discrepancies arc sensitive to the particular implementation
schemes, it will be shown that fundamental differences do stund out. For exam-
plc, the pure binomial approximation appears to dominate all the finite difference
schemes when either there are no payouts or a small number of options are being
valued. However, for fixed-cash payouts or when valuing a large number of op-
tions, the explicit finite difference approach with logarithmic transformation ap-
pears to dominate. Section I'V summarizes the paper and presents conclusions,

Il. Valuation and Approximation Principles

The Black-Scholes partial differential equation is valid for many significant
valuation problems where no analytic solutions have been found. This has led to
considerable research employing numerical methods to approximate solutions.
The next few pages of this paper attempt to explain some important principles
and technigues for vatuation by approximation.

Although the focus of this paper is on diffusion processes, different assump-
tions about the cffects of information arrival on the changes in asset prices imply
different stochastic processes; and, hence, different partial equilibrium condi-
tions. Efficient markets imply the rapid reflection of information in assct prices.
Thus, the arrival of “‘new’ information often will be accompanied hy price
changes. If the underlying asset is assumed to follow a diffusion process, then
price changes are continuous. Alternatively, if the underlying asset is assumed to
follow a jump process, price changes are discontinuous. In the diffusion case,
information is thought to arrive in a smooth, continuous fashion; price changes
can have either a constant or a changing variance. The jump process signifies that
the information arrival is discontinuous. A diffusion process implies that assct
price changes are either Normally or lognormally distributed, while a jump pro-
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cess implies a Poisson distribution. Casual empiricism leads one to suspect that a
combincd diffusion-jump process is generating the data.

Thc no-arbitrage partial equilibrium conditions have been derived for the
pure diffusion, pure jump, and combined processes, and some analytic solutions
have been found for each case. However, in many complex but realistic prob-
lems, numerical methods must be employed to approximate the value of the as-
set. There is a branch of mathematics devoted to this topic and from this work
financial economists have to date employed Monte Carlo simulation [4], finite
differences {3] and [6], numerical integration [28], and binomial processes [11].
This has by no means exhausted the many methods of solution available. Collo-
cation, finjte elements, and integral transform techniques are other approaches.?
In the next subsections, some of the techniques currently in use are described and
compared in terms of truncation error, stability, and convergence. The primary
focus is on the binomial and finite difference approaches applicd to one-dimen-
sional, lognormal-diffusion option valuation problems.

The constant-variance diffusion approach to asset price changes has led to
the now well-known parabolic partial differential equation for option valuation.?
This equation is

2
o

(M 0=D+V,+5

SV + (rS — DYV, - rV

V = Value of the option

S = Value of the state variable (i.e., stock price)
o = Standard deviation of stock returns
r = Continuously compounded risk-free rate of interest

D = Dividend payout (continuous)
t = Time to expiration

and subscripts denote partial derivatives. Equation (1) is subject to a variety of
boundaries regarding expiration, exercise, and payout conditions. Expiration
boundary conditions differentiate put options, which give the right to sell, from
call options, which give the right to buy the underlying stock § for the options’
exercise price X. Holders of put options receive the maximum of the exercise
price minus the stock price or zero at expiration,

(2) £(5,0) = max (X — §,0)

2 See[13).

* Garman [16] has derived the fundamental partial differential equation which all assets, includ-
ing derivative assets such as options, must follow under diffusion state processes. The Black-Scholes
equation for options is a special case of Garman’s equation. Both eiquations are second order becanse
of the continuous time diffusion assumption, and specifically parabolic, rather than hyperbolic or
elliptic, because their discriminant is zero. See Friedman {15] for further discussion of this.
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and holders of call options receive the maximumn of the stock price minus the
exercise price or zero at expiration,

(3) C(S.0y = max (0,5-X).

If the option is American and can be cxcreised at any instant, the boundary
conditions must be checked to see if for every possible stock price at each in-
stant, the option is worth morc held than exercised (i.c., dead or alive). Thus, if
¢ ° s the instant before exercise and ¢ * the instant after, then for put options.

(4} P(S..f_ ) = max (X—S,P(S,r+ ))

and for call options,

(5) C($.07) = max (C(8.07),5-X).

If the finm pays discrete cash dividends to stockholders at quarterly inter-
vals, then at thesc ex-dividend dates occuring during the life of the option. the
stock price must be reduced by the amount of the dividend to eliminate riskless
arbitrage opportunities. If ¢ is the instant before the ex-dividend date and ¢ * is
the instant aftcr, then (in the absence of taxes)

(6) S(r') - S(r*) 0.

Merton {25] bas shown that the exercise boundary condition for put options must
be checked at every instant. but that call options may be exercised only at the ex-
dividend dates. This implies that because more checks of exercise conditions are
nccessary, put options will be more expensive to value numerically than call op-
tions. Section il confirms this implication by showing that all approximation
technigques are more efficient for call options than for put options.

The Black-Scholes partial differential equation has variable coefficients that
make it more difficult to solve numericaltly than one with constant coefficients.
Although an equation with varable coefficients can switch from a parabolic to
either an elliptic or hyperbolic form, the Black-Scholes equation remains para-
bolic.* However, because the coefficients change as the state variables change
with tine, the approximation equations and stability conditions become more
complex. Fortunately, Black and Scholes [3], Merton {25], and others have
shown that by changing variables, equation (1) can be transformed into the fol-
lowing equation that has received considerable analytic and numerical analysis in
the physical sciences
du J k(’)u

N “ 5 dx dx

4 In the general form of a second-order partial differential equation. if coefficients which are
nonzero (or zero) can become zero (or nonzero), the form of the cquation can change. Because of
limited liability, this cannot happen with the Black-Scholes equation.
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where ¢ and &k may be at least twice-differentiable functions of x and 7. This
equation may have variable coefficients and it could be nonlinear if @ and & are
allowed to vary with u as well as with x and ¢. To use established numerical
schemes of high accuracy, equation (7) with variable coefficients can be con-
verted into one with constant coefficients by making the following transforma-
tion

|

whereupon (7) becomes

9 w1
(9} fit_akavz'

In terms of the original variable x, this transform scheme in y will have
unequal spacing of the net points.® Brennan and Schwartz [6] and Mason [24]
used a form of this transformation by substituting y-In(S) into equation (1). Sec-
tion 111 will reveal in dollars per option valued the efficiency gained by this trans-
formation. The next subsections describe several alternative approximation tech-
niques.

A, Approximation Techniques

There are a variety of techniques for approximating either the underlying
stochastic process directly or the resultant partial differential equation. The clas-
sic Mente Carlo simulation or the binomial process are both approaches to ap-
proximating the stochastic process directly. It is known that a binomial distribu-
tion converges to a Normal and a Poisson distribution, depending on how the
limits are taken.® A mixture of the two is also possible (See [12].). For the Monte
Carlo method, a number of simulations can be drawn from a lognormal distribu-
tion, a Poisson distribution, or a combination of the two. Thus, both the Monte
Carlo and the binomial approximations can be directly used for pure diffusion,
pure jump, or jump-diffusion valuation models.

Conversely, once the underlying process is assumed, the partial equilibrium
condition resulting from no-riskless-arbitrage often can be derived. If an analytic
solution to the partial differential equation cannot be obtained, finite difference
methods or numerical integration can be used to approximate the solution. These
techniques also can be used for pure diffusion, pure jump, or combined jump-
diffusion models.

All the approximation techniques are performed in a space-time hyper-

* The exact form of the transformed equation depends on the change of variables. See [3], {25],
[32], or [2] for examples of these tranformations.
& Scc [14] Chapters VI and VII.
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plane.” The stock price-time space is divided inio a set of points in the (S, 1)
plana, given by § = iASand ¢ = jAr, wherei = 0,1,2.. . . mandj = 0.1, 2,

This division results in a net (or grid or ld[tl(,C) whose mesh size (or
ratm) 18 dbt-.,nnlned by AS and Ar. In the transformed space, AS is replaced by
Ax. The app’mimationq to the put and call values given by V in equation (1) (and
rewritten as P and C in equations (4) and (5)) would be PIAS. jAry and CIAS.

jAn. and are denoted by P/ or C/. For the transformed argument in equation (9),

ulx, 0y = n(idx_jAnD is denoted uf‘ Figure 0 depicts this (5, £) grid.

The increments AS(or Ax} and Ar are thought of as small and when consid-
ering limiting processes, they approach zero. In application. the step sizes are not
zero. and they need not be equal. However, the step sizes wust be chosen to
cnsure stable, accurate, and efficient convergence to the solution. The stock price
and time sclution space is bounded in both put and call option valuation prob-
lems. In the time dimension, the expiration date. ¢, determines the maximum
time allowed. In the stock-price space, limited liability determines the lower ab-
solute bound. SMIN = 0. and a derivative condition determines the necessary
upper bound, SMAX. For puts, SMAX is the stock price above which dP/dS ap-
proaches zero, and for calls SMAX is the stock price above which 3C/aS ap-
proaches one.® (See Figure 0).

In the direct approximations of the underlying stochastic process, these up-
per and lower stock-price bounds may or may not be reached. In the Monte Carlo
simulation. achieving the bounds would depend on the number of simulations,
and for the hinomial process this would depend on the sizc of the up and down
jumps and on the number of jumps or trials. The time step-size is defined as & =
At = t/m. The range of stock prices in the binomial process is determined by the
size of the up and down jumps, which depend on the estimate of the variance of
the underlyving stock price changes.? In the binomial process, the net is a cone
and selecting the time step determines the number of stock price steps at any time
step and thus the mesh in the stock price-time net. (See Figure 0.)

For finitc difference approximations, the time step is similarly defined hy
expiration. The stock price step size is defined as i = AS = (SMAX-SMINV/n.
The finite difference net is rectangular (see Figure 0) and selecting the mesh size
is often critical for ensuring stable, accurate convergence to the solution. The
critical mesh ratio is known to be sensitive to the type of differcncing procedure

! The space dimension is determined by the number of stochastic variables in the problen:. In
the simplest valuation probleins the space is one dimensional. For example, in Black-Scholes option
pricing the siock price is the single underlying stochastic variable. In Merton’s [25] generalizatiom to
stochastic interest rates, the state space would be two-dimensional, with both a stochastic stack price
and an interest rate. The focus of this paper is on one-dimensional stochastic problems, but many of
the findings would carry over to raultiple dimensions.

* Derivative boundary conditions are necessary for the finite difference approxumations but not
for the direct approximations io the underlying process, such as the binomial or Monte Carlo tech-
nigues. The hedge ratio derivatives, aV/aS, appear in equation (1). Their convergence to either zere
or onc for puis or calls as S increases can be determined from the Black-Scholes European solution. A
usetul rule of thumb is that the stock price will be about one-and-a-half times the excreise price for
these derivatives to be satisfied. L

% The up jump, defived as the reciprocal of the down juinp, is shown fo be u = exolaV 1),
See [11] for details
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employed. Before discussing this, a brief description is presented of the Monte
Carlo technique.

The Monte Carlo valuation method [4], relies on the observation by Cox
and Ross [10] that when a riskless hedge can be formed, the option can be valued
by discounting the expected value at expiration by the risk-free rate. The accu-
racy of this method depends on the number N of simulation paths used to form
the distribution of stock prices at the expiration date. Generally, the accuracy
increases as 1/V'N, so the coroputation cost approximately doubles as the error
diminishes by about 70 percent. The Monte Carlo method can handle complex
payout and exercise contingencies. However, when valuing American options, m
lognormal distributions, one for each time step, must be approximated rather
than just approximating one terminal distribution. Because a full set of sample
paths is generated, conditioned on the starting point, multiple options for a vari-
ety of exercise prices and expiration dates can be valued. The conditional starting
point makes the Monte Carlo method less efficient for valuing options for multi-
ple stock prices.

The finite difference techniques analyze the partial differential equations (1)
or {9} by using discrete estimates of the changes in the options value for small
changes in time or the underlying stock price to form difference equations as
approximations to the continuous partial derivatives. There are infinitely many
ways to estimate the changes in the option’s value with respect to time and the
stock price. Forward, central, and backward differences, along with complex
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averages of them, can be used. ! Although the varicty of difference choices is
targe, all of them lead to solutions that can be classified as either explicit or
implicit. In the explicit class, cach unknown option price at any node can be
solved expliciily in terms of previous known option price nodes, while in the
implicit class a set of simultaneous equations musl be solved.

An explicit finite difference approximation to equation (9) is

u{,jd‘ g u! u;.jJr - 214;.’. + H;.f__.l )
(10) N T + O(AX) + O(An.
At (.f_\_r)
An implicit approximation to cquation (9) is
w' wl Tl ot ]
I Vi ol L2l L oA 4 0(An
At (AX)A

where 7 and j denote stock price and time differences, respectively. Equations
(10) and (11) use forward and backward time differences, respectively, relative
to the time 7 (cither j or j+ 1) that the stock price differences are expressed. In
this notation. ¢ is a transformation coefficient and € () represents the order of
errors in the stock price and time approximations. Note that in the explicit equa-
tion {10}, the unknown transformed option price at time j+1, w1, can he
solved for directly in terms of known prices at time j. However. in the implicit
equation (11}, the unknown transtormed option price «/ ! depends on other a-
jacent and unknown prices at time § + 1, and thus, a set of simultaneous equations
must be solved. Figure 0 illustrates this distinction between explicit and implicit
mcthods.

Figure 0 also shows that the binomial method is simply a form of the ex-
plicit finite difference scheme where the option price at stock price step i and
time step j+ | is an explicit function of three previous option prices at time step j
and at the stock price steps i —1, i, and i+ 1, respectively. In the coincident
binormial technigue, if a time step is skipped, then the cutrent option price de-
pends on three previous option prices (instead of two), exactly as in the explicit
finite difference technique. Thus, the binomial technique is a special case of the
explicit finite difference scheme with the major remaining distinction being its
conditipnal starting point.

The conditional starting point for the binormial process allows for efficiency
when a single option value is computed because the nodes in 2 cone rather than in
a rectangle need to be evaluated. However, if option values for a variety of initial
stock prices are desired, the binomial technigue must be re-executed and be-
comes expcnsive. As an alternative to re-executing the binomial process for each
initial stock price, two or more binomial processes could evolve simultaneously.
Efficiency could be cnhanced by eliminating near or overlapping stock price
nodes. In the limit, as the number of initial stock prices became large, the bino-

10 Forward differences use a “‘forward™ differencing interval while backward differences use
the opposite. For example, (1;—1,) where 1, is closer to the present than ¢, could be a forward differ-

ence relative to ¢,: then relative to £, (f; - £,) would be a backward differcnce. A central difference
“centers' on 1. Forexample. (f, — 1,2 would centeron 1.
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mial technique would be exactly equivalent to the explicit finite difference
scheme. However, as Section III demonstrates, the pure binomial method with
its conditional starting point will not be as efficient as the explicit finite diffcr-
ence technique when muliiple options are valued for a variety of initial stock
prices,

Stability of the approximation scheme in all nets of mesh (Ar, Ax) aften
requires a specific ratio of time step to the square of stock price step, termed the
mesh ratio R, defined asl!

(12) R = -

The explicit equation( 10) can be written in terms of the mesh ratio as

o . . .
(13) w! ' = qul, + (1 — 2yul + qul_|
where g = c{Ar/(Ax)?) = cR.

Note that if the mesh ratio R is selected to insurc that ¢ = 1/2, equation (13) is
simplified. In matrix notation, for any stock price {, for all j,

(14} Wt = A

where A is a tridiagonal cocfficient matrix and «/ and #/* ! are the successively
calculated values of transformed option prices.
The implicit equation (11) can similarly be written as

. - - .
(15) —qu! [+ (L2’ —qult =l

[n matrix notation, for any stock price , for all j,
(16) B/t~ W

To solve (16) for 4/ !, the matrix B must be inverted to yicld uit! = B —1 /.

A general family of difference systems can be considered by taking a
weighted average of the right-hand sides of the explicit and implicit methods in
equations (10) and (11). If g(x) is any function of x, define the differential opera-
tor & so that (dg), yields the central difference g(i + DAx) — g({i — DAx); then
the second differential, (¢ 2g),, denotes g({i+ 1)Ax) - 2g(iAx) -+ 2({f - DAx).
With this notation, consider the difference system

o 8t (- (o)
A - (Ax)2

' There is a voluminous amount of research on this subject. One excellent reference is [14], p.
388.
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where 8 is a constant in the interval 0=:0=1. When 8 = 0, the system is explicit
in the form of equation (10); and when 0 is not zero, the system is implicit,
equivalent to the pure implicit form of equation (11} when 8 = 1. (The popular
Crank-Nicholoson scheme is 8 = 1/2.)1?

Equation (17) can be written as

- qz;ifrl} +ih+ 2q)uf+ - c;u}.’ij'l]
(18) ‘
= qOhu! |+ (h— 2q0hyu! + gOhu! |

where i = 1/(1 - 8). In matrix notation, for any stock price i, for atl j.
(19) Mu'' = N

where M and N are tridiagonal coefficient matrices of dimension (n X #). Thus,
to solve a general family of finite difference schemes requires the inversion of the
matrix M. If M ' exists, equation (19) can be written as

o)) WY MmN = G

The next few pages demonstrate that the truncation error, stability, and conver-
gence properties of this general family of finite difference schemes depend upon
the cigenvalues of the general (n X n) matrix G often called the amplification
matrix. Note that the coefticients in equation (18) are the clements of the amplifi-
cation matrix G and are dependent on ¢, a function of the mesh ratio. Thus, the
cigenvalues of the amplification matrix will be sensitive to the mesh ratio.

B. Approximation Errors, Stability, and Convergence

If u/ in cquation (9} is an exact solution and a(iAx, jAr) is an approximation,
then the approximation error is termed ¢/ = u/ — 1/, at the point x = idx.t =
JAr i = 1. . nj= 1, ..., m If the errors at cach stage of the approxnnation
grow, then the technique is not stable. Alternatively. if the errors become smaller
at each time step. then the approximation converges. Larger time steps would
imply fewer computations when moving from a future to a current stock price,
but the errors propagated may grow and make the approximation unstable. Fur-
thermore. the approximation may converge with finite error and the solution will
not be exact. One way of evaluating the approximation is to examine the behav-
jor of the error ¢f as j— = for fixed Ax, At A sceond and more interesting way is
to examinc the error ¢{ as the mesh is refined, so that Ax and Ar — 0 for a fixed
value of mAr, nAx. This is more valuable hecause the goal of an approximation is
to foree the ervor to zero in the limit so the solution becomes exact.

The mesh ratio, R = Ar/Ax 2, obviously is instrumeatal to accurate and atti-
cient approximations. Because, in the approximation limit, the number of calcu-
lations becomes infinite and the errors may be amplified without bound. a means
of establishing proper stability and convergence criteria is necessary. There are

12 5ec 2]
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nunmerous methods for approaching these problems. ' Here an examination of the
eigenvalues of the solution matrices in conjunction with the errors propagated
will illustrate the proper restrictions on the mesh ratio.

1. Errors and Convergence

To find the order of the error, assume that the exact solution of equation (9)
has continuous partial derivatives. Then do a Taylor’s series expansions of «f ' !,
wl, . and 1/ |, Because u/ satisfies equation (9), du/d can be replaced by (3 u/
dx?), and solving for (10) in terms of these expansions yiclds

wl ! "(_‘u;’! =2+ ul
N A (A x)?
2o \ed) 12 ax'/,

This result demonstrates that, as stated in (10), the error for the explicit method!4
is of order As and {Ax) 2 as Ar, Ax — 0.

2. Stability
Recall equation (20) demonstrated that a family of explicit or implicit finite
difference schemes could be written as w/*! = G u/, where G represents a gen-

eral coefficient matrix and u/*" and «/ are vectors whose components are succes-
sive values of transformed option prices. Using initial values #© to begin the
solution process, the successive row calculations are ' = Gu® 4?2 = Gu'l =
G2u® ..., sothat ultimatcly

j i1 )
w o= G = Gy

where the superscripts on G are exponents.

To trace the effects of errors through the calculations suppose that the ap-
proximation has an initial error so that ¢9 = «” — 40 Then the successive ap-
proximate calculations are again #/ = Gu/~! = G/ ~" and the errors would be
propagated by the same algorithm us the prices, implying e/ = w/—5/ = Gie0.
Thus, the initial error ¢ is “‘amplified’” by the coefficient matrix G raised to the
power of j,

I* Severul related methuds for analyzing these concepts are fourier series, ENncrgy comservation,
solution boundedness, and eigenvalues. Fourier series is more versatile, and can be used with a wide
degeee of analytic precision: for example, whick harmonics, or wave fength multiples of the mesh
ratio, become amplified. However. such precise information is not currently necessary in financial
ECONOMIcS,

14 This approach also ¢an be used to demonstrate an identical order of error in cquation {11} for
the implicit method. Sometimes the error order can be reduced to O{(An 2] which is the same as
ONAx) 4] if Ar and Ax go 1o zero so that ¢ Ar{Ax)2 = 1/6. See [8] for an example of this type of
AcCuracy improvement.
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Whether this error expands or contracts depends on the eigenvalues of G.
To see this, note that in general the eigenvalues of these tridiagonalized matrices
are distinct so the eigenvectors z,, . . . , z; are independent. Thus. the error
vectors are simply linear combinations of the eigenvectors, and

(} N
€ = 3 ¢z
{70

7
wherc the s are constants. After j steps

=Gl e 2 G = D e = D e,

i

where A, is the i eigenvalue and Gz, = N, z,. Recall that each cigenvalue A, will
be a function of the mesh ratio R. Obviously, if the magnitudes of all G's i
genvalues are less than or equal to 1, the errors will not grow and the approxiiia-
tion will be stable. Imposing this condition after solving for the eigenvalues im-

plics that for stability. when the normalized range on X is 0 < X = [, the mesh
ratio must be!?

Ar 1 ! o OEB<—I—

- K o= =
0 < 3537 20) i 3

(23) (3x)

. | .
No restriction  if iﬁﬂﬁ-l.

The most common choices for @ are 0, 1/2, 1. The implicit schemes for 8 =
1/2 are unconditionally stable. By employing such an implicit scheme. one in-
curs the cost of solving systems of simultaneous equations but avoids all stability
worrics and can choose A by a tradeoft based on accuracy and efficiency. In the
next section, a comparison is made in terms of accuracy and efticiency between
the pure cxplicit scheme (8 = 0}, equation {10), a purec implicit scheme (6 = 1),
equation {11), both with and without logarithmic transformations, and the binoe-
mial technigue.

1. Comparison of Techniques Used For Valuing Options

In this section. two explicit finite difference methods, two implicit finite
difference methods, and the binomial method are cornpared for both their accu-
racy and efficiency in valuing put and call options with and without dividends.
The following notation is used throughout the tables and graphs:

Black-Scholes  Analytic Solution

Binomial Binomial Approximation
BICD Binomial Fixed Cash Dividend
BFDY Binomial Fixed Dividend Yield

15 See [13] or [ 2] for refercnce to this stability condition.
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FDEI1 Finite Difference Explicit #1

FDE2? Finite Difference Explicit #2 (Logarithmic transform of #1)

FDI1 Finite Diffcrence Implicit #1

FDI2 Finite Difference Implicit #2 (Logarithmic transform of #1)
All comparisons are madc with some or all of the following parameters: 6

S Stock Price = $40.00

X Exercise Price = $35.00, $40.00, $45.00

rr Risk: Free Rate = 5.00 percent (annual)

I

0.3 (annual)
1, 4, 7 months

$ .50, $1.00, $2.00, $3.00,
$4.00 (quarterly)

.3, 3.5, 6.5 months

o Standard Deviation of Stock Return

t Time to Option Expiration
D Dividend

tp Ex-Dividend Dates

Sometimes this range of stock prices and exercise prices is expanded to analyze
approximation efficiency of computing multiple option values.

All dividend comparisons are made solely for the quarterly $ .50 dividend
except for the comparisen between the binomial fixed dividend yicld (BFDY) as
an approximation to the binomial fixed cash dividend (RFCD), where a variety of
dividend amounts are compared. The options with expirations in one, four, and
scven months cach have one, two, and three $0.50 quarterly dividends, respee-
tively. In every case, the last quarterly dividend is paid one-half month prior to
expiration. Assume throughout that the fixed cash dividend is not suspended ex-
cept for those stock prices in the approximation grid that are lcss than the divi-
dend. This suspension price could be changed easily to reflect a more realistic
suspension level as was done in [19], but this change would not significantly alter
the conditions.

As previously demonstrated, the stability of the approximation procedure
may depend on the mesh ratio. If the method is stable as the number of steps used
in each numerical method increases, convergence occurs when, to the nearest
cent. the approximation value does not change for two successive increments.
Options arc valued using the binomial approximation by starting with 50 as the
initial value for N time (and thus stock price) steps, and then by incrementing the
number of steps until convergence occurred. Similarly. by using the finite differ-
ence approximations, the options were valued by starting with 50 steps in stock
price (n) and 45 steps/month in time to maturity (m) and then incrementing each
until convergence occurred. This approach to convergence was taken as a means
of standardizing the criteria for efficiency comparisons. Thus, for some parame-

1* These parameters were chosen 1o be consistent with those used in the forthcoming book by
Cox and Rubinstein [12], and the published article by Cox. Ross, and Rubiastein [11]. The binomial
approximation has been discussed and used by Cox and Rubinstein [12] with ad without fixed divi-
dend yields. The finite difference approximations have been discussed by Schwartz [31]; and Bren-
nan and Schwartz discussed and uscd FDEN [7], FDE2 (6], and FDII [5] in those papers, respec-
tively. Recently. Geske and Shastri {19], |20 used FDE2 and FI2.
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ters. a small truncation error was tolerated but might have been eliminated by
departure from the standardized mesh ratio adjustment. Finally, recall that. while
all efficiency comparisons herein arc naturally implementation-sensitive, such
comparisons readily expose inherent fundamental advantages and disadvantages
of cach technigue.

A. Call Options

Here the accuracy and efficiency of solution techniques for valuing Ameri-
can call options are compared. first without dividends and then with dividends.
The no-dividend case for calls is presented as an initial calibration for comparing
these numerical methods 7 Merton [25] demonstrated the equivalence between
American and European call values for stocks that do not pay dividends. Thus,
all call-option values for stocks that do not pay dividends would vsually be coiri-
puted with the analytic Black-Scholes formula by using a polynomial approxima-
tion for the univariate normal distribution function. '

Approximating call values on stocks that pay fixed cash dividends is more
complicated because of the positive probability of prematurely exescising just
before cach ex-dividend date. As will be shown, this reduces the binomial’s
time-skipping efficiency. In addition, because the binomial method is a path-
dependent approximation to the possible stock price paths. its efficiency is di-
minished zs the number of cash dividend payments, and thus paths. increases.

1. Calls without Dividends

Table | compares the convergence and accuracy of six solution techniques
for nine call-option valucs when the parameters are as previously given and the
underlying stock does not pay dividends. Note that all six methods frst con-
verged for the stock price and time step sizes reported. The binomial technigue
has no truncation error when its solution is compared to the apalytic Black-
Schales solution. while all finite-differcnce techniques had a small truncation er-
ror of one or two cents for some parameters.

The first explicit finite difference method, FDEL, requires about seven times
as many time steps per month (315 vs. 45) as the other finite difference ap-
proaches require for convergence. This disparity results because the explicit
methods require a finer mesh ratio than do the implicit methods for stabitity.
However, the log-transformed explicit method, FDE2, converges tor the same
mesh ratic as do these implicit methods because the transformed sguation has
constant coefficients.

For the no-dividend case. this binomial approximation used a large number
of time steps (= 300} that produced an cxtra fine partition of stock prices for
the final stock price vector. Then, computational cfficiency was enhanced by
jumping backwards over time from the final vector of stock (and thus option
prices) to the initial option value. This time jumping can be done because of the
binomia) formula, and because with po probability of premature exercise, it is

1 All computations were done on an ITBM 3033 computer at the University of Califomia. Los
Angceles. The programming language was Fortran.
15 See [1], page 932, for examples of these polynomial approximations.
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TABLE 1
Call Option Values for S = $40.00, 0 == 0.3, and r, = 5%

Exercise Solution Time to Maturity
Price () Technique {months})
1.0 4.0 7.0

Black-Schotes 5.22 625 717
Bingmial 522 6.25 77

35.00 FOE1 B 5.22 6.26 719
FDE2¢c 522 6.26 719
FDi1e 522 6.26 719
Fl2e 523 6.26 719
Black-Scheles 1.46 3.07 419
Binomial 1.46 3.07 419

40.00 FDE1 1.46 3.08 4.20
FDEZ 1.47 3.08 4.20
FI1 1.48 3.08 420
FDI2 1.46 3.08 4.20
Black-Scholes 016 1.25 224
Binomial 016 125 224

45.00 FOEA Q16 1.26 224
FDE2 017 126 2.25
FDI1 016 1.26 2.24

FDi2 017 1.26 2.25

a. The values for the binomial approximation are calculated for 300 steps.

b. The values for FDET are for 200 steps in stock-price and 315 steps/manth in time.

. The values for FDE2, FDI1, and FDIZ are for 200 steps in stock-price and 45 steps/manth
intime (for FDE2 and FDI2, N, =3).

not necessary to calculate the intermediate option values. However, this is pot
true for the finite difference methods even with no probability of carly exercise.

For the logarithmically transformed, finite difference methods (v = InS in
FDE2 and FDI2), a different stock price step size was used in the two stock price
ranges from zero to one dollar, [0,1], and from one dollar to infinity, [1, =],
approximated by [SMIN, 1] and [1, SMAX|. For computational accuracy and
efficiency, it is not necessary to partition the stock price region of zero to one
dollar as finely in the logarithmically transformed space of [ -, 0] as in the
symmetric region [0, «], Thus N 1» the number of stock price steps in the zero-to-
one-dollar range, was set equal to three (N, = 3) for both the explicit and im-
plicit methods, FDE2 and FDI2.

Table 2 presents the computing costs for the results in Table 1. Here the
efficiency is compared for computing all nine option values for the approxima-
tion techniques.!? The cost for nine options is primarily a function of the central
processing unit (CPU) time. 20

™ Although it is very inexpensive, the analytic Black-Scholes solution is not included in this
comparison because it cannot be used later for the more complex opticn problems.
¥ The formula for computing costs on this IBM 3033 is; Cost = (CPU TIME + 0:007)1/O
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TABLE 2
Computing Costs for Results in Table 1

Solution CPU Time 10 Cost for

Technigue (secs) Requests Core 9 Optionsz @
Binomial 1.26 67 145K $ 021
N = 300 i

FDE1 3975 104 150K £11.90

n= 200 m = 2205

FOE2 394 108 150K $ 138
n= 200, m = 315

Fon 7.35 123 170K § 247
n =200 m= 315

FDI2 6.60 118 160K $ 221
= 200, rm == 315

a. Costs for computer use at the UCLA Computing f—acnit_;/ are calculated as:
(CPUTime + (0:007) /O Requests}(1 + ¢:00135 Min (Core, 500) + 0:00015 Core)(0.24)

The least expensive solution technique is the binomial and it alse uses the
least CPU time (and 1O requests and core size). In fact, the ranking by least to
most expensive, which is identical to the ranking by least to most CPU time, 1s
Binemial, EDE2, FDI2, FDI11, and FDEI, respectively. Of the four finite differ-
ence technigues compared. the logarithmically transformed methods ate most ef-
ficient, and the logarithmically transformed explicit (FDE2) is more efficient
than the implicit (FD12) one. becausc it docs not require the solution of simul-
taneous equations.

The CPU time comprises compilation and execution times. Once cithet the
hinomial or the finite difference programs are compiled they can be executed,
repetitively if necessary to compute multiple option values for a variety of time to
expiration, stock, and exercise prices without being recompiled. In general, for
computing multiple option values, the binomial technique with time skipping
must be executed once for cach option value while the finite difference methods
nced be exccuted only once for all option values.2!

Figure | graphicatly compares four of the solution techniques in Table 2.
omitting the most costly untransformed explicit method, FDEL, ‘The graph dem-

REQUESTS) (1 4 :00135 MIN(CORE, 500) -+ 0:00015 CORE) (0:24). The critical factor in this
eguation is CPU time. Core size and VO requests have a small effect on cost. In fact, the standard
measure is CPU time and cost atone, hecause the core and 170 measures have regligible impact. For
example, reducing the core size by factors of 10 or 100 (ie., from 145K 10 14.5K or 1.45K) for the
binumial example in Table 2 reduces cost only from $.21 1o $.179 and $.175, respectively.

2 This implies the following CPU cost equations. Binomial cost = [(Coinpilation Costii(#
Options Valued)| + Exccution Cost; Finile Difference Costs = (Compilation 1 Execution Costpit#
Options Vatued). These formulas suggest that as the number of eptiens valued increases, the fintie
difference techniquas should become less expensive than the binemial method on a per-option basis.
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onstrates that as the number of options increases, the finite difference cost per
option approaches zero while the binomial cost per option valued is asymptotic to
the execution cxpense. When more than 300 (460, 610) options are being valued
EDE2 (FDI2, FDIN). is less cxpensive per option than the binomial method.
Thus, for individuals or firms computing a large number of option values, the
finite difference methods may be more cost-efficient. These conclusions must be
reconsidered when valuing the typical call option on a dividend-paying stock.
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2. Calls with Dividends

Mast financial securities have either contracted or expected payouts. While
the payouts can be discrete or continuous, and either a fixed dollar amount, a
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fixed yield, or stochastic, the most common type of stock dividend is an ex-
pected, discrete, fixed cash dividend. The reason is that typically, corporations
maintain a stable quarterly dividend policy. All payouts complicate the valuation
process, but a discrete, fixed cash dividend is onc of the most difficult for contin-
uous-time option techniques because each discrete payout requires an additional
boundary condition and may alter the parameters of the stochastic process.

Here, the five approximation techniques considered in the no-dividend case
are re-examined when the underlying stock pays discrete quarterly dividends.
The finite difference technigues can accommodate discrete cash dividends more
casily than can the binomial technique because the density of the binomial grid
partition increases at each ex-dividend date. To see this, recal! that in the simple
coincident binomial process, the number of stock price steps grows by one for
each additional time increment prior to the first ex-dividend date. However, after
each dividend payment, the binomial process is no longer coincident and for cach
additional time step the number of stock price steps increases by 2 (n + 1} where
n is the number of the specific time step. Figure 0 depicts the binomial with
discrete dividends. For a relatively small number of discrete fixed payouts, the
binomial process ‘‘explodes,’” becoming computationally impractical. Currently
listed stock options have a maximum expiration of nine months for a maximum
of three dividends during the life of any option. One discrete cash dividend seri-
ously compromises the efficiency of the pure binomial process, and three erode it
entirely.

If a stock pays a fixed dividend yield, the binomial process will remain cotn-
cident since up/down and down/up movements after the ex-dividend date will
lead to coincident points. Thus, a fixed dividend yield (BEDY) will be a more
efficient binomial solution technique. However, a fixed dividend yield is an ap-
proximation to the actual fixed cash dividend that most corporations pay.

If the fixed dividend yield BFDY is a good approximation to the fixed cash
dividend BFCD, this accuracy may circumvent the binomial’s efficiency prob-
lems caused by the exploding grid partition. Unfortunately, the fixed dividend
yield assumptio: will produce incorrect hedge ratios. Even with a fixed dividend
yield, the efficiency of the binomial process will be reduced whenever there is a
positive probability of prematurely exercising an American call option at each
ex-dividend date. Here we cannot achieve the economy gained by jumping time
from the final expiration date to the current date. Instead, only smaller jumps are
permissible to each intermediate ex-dividend date where the boundaries for early
cxercise must be checked.

For all finite difference methods, the fineness of the grid partition is not
affected by discrete cash dividends. Instead, the grid mesh is kept constant and
interpolation is performed. Previous tables for valuing call options with no divi-
dends showed that the implicit methods were more cconomical than the explicit
techniques due to the former’s less stringent stability requirements. Furthermore,
the logarithmic transformation enhanced the efficiency of both technigues and
the increased economy for the explicit method was dramatic. This increased effl-
ciency of the logarithmic transformation is still obtainable when the stock pays
discrete cash dividends. However, due to the nonlinearity of the logarithmic
transformation at each ex-dividend date, the grid must be transformed from the
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logarithm of the stock price back to stock price spuce, the dividend paid, and
then retransformed back to the logarithm of the stock price. Fortunately, thig
back and forth use of the logarithmic transformation at each ex-dividend date
does not destroy its efficiency. (Figure 2 demonstrates this point.)22

Table 3 compares the convergence and accuracy of six solution techniques
for nine call option values when the parameters are as given previously in Table
1. Here the stock pays a $0.50 quarterly cash dividend. The binomial fixed yield,
BFDY . is 5 percent annually or 1.25 percent quarterly, which is equivalent to a
$0.50 cash dividend when the stock price is $40.

TABLE 3
Call Option Values for S = $40.00, ¢ = 0.3, r = 5%, and [ = $0.50

Exercise Solution Time to Maturity

Price (%) Technigue {moantha)
1.0 4.0 7.0
BFCDe 510 573 6.34
BrFDYb 510 574 6.34
FDE1 = 510 574 6.35
35.00 FDE2d 510 574 6.35
FDi1d 510 5.74 6.34
FDj2d 510 5.74 6.35
BFCD 1.27 269 3.55
8FDY 1.27 2.68 3.54
FOE1 1.27 2.70 357
40.00 FDE2 1.27 2.70 3.57
FDI 1.26 2.69 3.56
FDI2 126 2.69 3.57
BFCD 0.12 1.04 1.82
BFDY 12 1.03 1.80
FOEA g1z 1.04 1.83
45.00 FDE2 013 1.05 1.84
FDI 012 1.04 1.82
FDI2 0.13 1.05 1.84

a. The values for the fixed dividend approach to the binomial approximation are calculated
for 140, 160, and 140 steps for 1.0, 4.0, and 7.0 month matu-ities, respectively.

b. The values for the fixed dividend yield appreach to the binomial approximation are
calculated for 140, 200, and 210 steps for 1.0, 4.0, and 7.0 monih rnaturities,
respectively.

¢ The valyes for FDE1 are calculated using 200 steps in stock price and 320 steps/month
in time.

d. The values of FCEZ, FDI1, and FDI2 are calculated using 200 steps in stock price and 80
steps/month in time.

First note that all six methods converged for the stock price and time step
sizes reported. It was necessary to make the step sizes in Table 3 different from

22 An analytic solution to the problem of valuing an American call option on a dividend paying
stack (see [29], [17], and [33]) might be more efficient than an approximation. The purpose of this
paper is to compare alternative approximation techniques, so these analytic solutions arc not consid-
ered.
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those in Table 1 because of dividends. The steps were chosen to insure conver-
gence subject to the restriction that the dividend payments and expiration dates
fall on and not between time steps. This choice avoids interpolation errors that
would diminish accuracy. All the methods are accurate and are within one or two
cents of sach other. The binomial fixed dividend yield closely approximates the
fixed cash dividend for these nine call option values. The quality of this fixed
dividend yield approximation is examined in Table 4.

A graphical surinary of the efficiency of these solution techniques is pro:
vided by Figure 2 (other graphs are available upon request}. Here the cost per call
option computed versus the number of options valued is presented for two divi-
dends. The graph shows that the logarithmically transformed finite difference
(FDE2) is less expensive than the binomial fixed cash dividend (BFCD) in every
case. BFDY is quickly dominated by FDE2 for valuing multiple call options with
many stock prices due to the binomial’s conditional starting point that nccessi-
tates re-cxecution for each value. However, FDEZ is dominated by BFDY when
computing muitiple call options with many different exercise prices.

Table 4 comparcs the binomial fixed dividend yield as an approximation to
the fixed cash dividend for quarterly cash dividends ranging from $0.50 to $4 and
equivalent quarterly yields ranging from 1.25 to 10 percent when the stock price
is $40. It is surprising that the biases previously mentioned approximately can-
cel. BEDY is a very accurate approximation to BFCD for the one- and twe-divi-
dend cases (i.e., expirations of one and four months). Even in the three-dividend
case, the maximun error was 5 cents for a cash dividend of $2 when the excrcise
price and option’s expiration date werce $35 and seven moaths, respectively,

B. PutOptions

Atevery instant. American put options have a positive probability of prema-
ture exercisc regardless of whether the stock pays dividends [26]. Thus, there is
always a critical stock price, independent of the current stock price, below which
it is optimal to excreise the American put. Because of this possibility of early
excrcise, an exercise condition comparing the value of the puat if held to the value
if exercised must be checked at every instant.

A main advantage of the binomial method over all finite differcnce teeh-
niques for valuing American call options is attributable to the binomial formula
that allows jumping over many time steps and computing values at only the cx-
dividend dates. This computational advantage is obviously not plausible wher
valuing American puts, cven if the stock pays no dividends. Discrete cash divi-
dend payments will further complicate the hinomial technique because of the
~exploding ' tree problem.

In the next few pages, the accuracy and efficiency of several solution tech-
niques for valuing American put options are compared, first with no dividends in
subsection |, and then with dividends in subsection 2. The binomial fixed cash
dividend (BFCD) approach is not presented because it is always dominated by
the fnite difference techniques. Only the binomial fixed dividend yicld (BFDY)
is presented for put valuation. To check the convergence and approximation crror
of the binomial fixed dividend yield, put values for a logarithimically transforme
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FIGURE 2

Cost Comparison of Binomial and Finite Difference
Approximations for American Calls on Dividend
Paying Stocks (Two Dividend Payments)

explicit finite difference method with a fixed dividend yield, (FDE2DY), are also
presented in tables but not in the graphs.

1. Puts without Dividends

Table 5 compares the convergence and accuracy of four solution technigues
for nine put option values when the parameters are as previously given and the
underlying stock does not pay dividends. All four methods converged to valucs
within one cent of each other for the time and stock price step sizes reported.

Figure 5 presents the computational efficiency for the four solution tech-
niques of Table 5 for valuing multiple options, We considered a variety of exer-
cise prices and expiration dates to value a range of put vptions. The hinomial
technique is more efficient for valuing a small number of puts; but at nine options
valued, the finite differcnce methods become competitive and are dominant
thereafter. As with calls, the logarithmically transformed explicit finite difter-
ence method is most efficient. The binomial computation cost per option ap-
proaches an asymptote as before because it is necessary to re-execute the pro-
gram for each option valued. This re-execution is not pecessary with the finite
difference techniques. The binomial execution costs are much greater when valu-
ing American puts rather than calls because time jumping is not feasible. The
finite difference methods become more economical when only about ten Ameri-
can put options are being valued, whereas the finite differences did not dominate
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Cost Comparison of Binomial and Finite Difference
Approximations for American Puts on Non-Dividend
Paying Stocks

the binomial method until more than about 300 American call values were com-
puted. Thus, practitioners interested in efficiently valuing put options would re-
duce their computation costs by using finite difference techniques, even if divi-
dend payments were not considered. 24

2. Puts with Dividends

Table 6 compares the binomial fixed dividend yield as an approximation to
the fixed cash dividend computed by the logarithmically transformed explicit fi-
nite difference technique FDE2CD. In addition, this explicit finite difference
technique modified for a fixed dividend yield FDE2DY is also computed to check
the binomial put scheme BFDY. All the parameters are as given in Table 5, and
the cash dividend is $0.50, which together imply a quarterly yield of 1.25 per-

2 The fixed dividend yield assumption maintains lincar hemogeneity in § and X for both the
binomial and finite difference processes. Thus, if this assumption were employed for the finite differ-
ence methods, they would also dominate the binomial method for fixed dividend yield.

2 In a recent paper, Johnson [23} demonstrated that American puts without dividends can be
analytically approximated. This analytic approximation is both accurate and highly efficicnt for rea-
sonable parameters. Furthermore, Geske ard Johnson [21] have recently presented an exact analytic
solution to the partial differential equation that is computationally e¢fficient because its evatuation
requires very few critical stock price computations. It can also be used for valuing puts on stocks with
dividends.
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TABLE 5
Put Option Values for 5 = $40.00, ¢ ~ 0.3, andr = 5%
Exercise Solution Tirne to Maturity
Price (§) Technique {months}
. i . 1.0 ___4.0 70
Binomial 2 008 0.70 1.22
FDE2® 008 070 1.21
3500 FOi & (.08 069 1.2
FDI2 2 0.08 069 1.21
Bnomial RN D 48 317
FDE2 131 248 318
4000 FOI 130 547 316
FDIZ2 1.30 247 3.16
T Binomial 506 571 624
FDE2 5.06 570 623
46.00 FDI 5 06 5 70 523

FDI2 506 5.70

a. Thevalues reported are for N = 150
b The valugs reported are for 200 steps in stock price and 45 steps/maonth in fime (tor

FDE2. N, =~
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cent. At this point of comparison, the implicit methods are dropped because they
are less efficient than the explicit technique.

TABLE 8
Put Option Values for § = $40, ¢ = 0.3, and r = 5%, and £ = $0.50

Exercise Solution Tirme to Maturity
Price ($) Technigue {months)
] 10 4.0 7.0

BFDya 011 (.88 1.65

35.00 FDEZDY Y 011 088 1.54
FDE2CD® 0.11 0. 1.59
BFDY 1.56 2.91 375

40.00 FOE2DY 155 290 374
FDE2CD 1.56 293 3.80
BFDY 550 6.30 7.00

45.00 FDEZDY 550 829 6.98
FDE2CD 550 6.31 7.02

a. Thevalues for the fixed dividend yield approach o the binomial approximation BFDY are
calculated for 140, 160, and 140 steps for 1.0 40 and 7.0 month maturities,
respectively.

b. The values for the fixed dividend yield FDE2DY are calculated for 200 steps in stock
price and 80 steps/month in time.

¢. Tne values for the fixed cash dividend FDE2CD are calculated for 200 steps in stock

~price and 80 steps/monthin time.

First, note that all three methods converge. Again, the fixed dividend yield
is shown to be an accurate approximation to the fixed cash dividend. The naxi-
mum discrepancy between FDE2CD and BFDY is five cents for an at-the-money
put with a seven-month expiration, and thus three scheduled dividend payments.

Figure 6 summarizes the cost comparisons for the three solution techniques
in Table 6 for valuing multiple put options on stocks for two dividend payments.
Again the binomial fixed dividend yield is more efficient than the logarithmically
transformed explicit finite difference method when the multiple options are gen-
erated by varying the exercise price for a single stock price. Conversely, when
the multiple options are valued for multiple stock prices and a single exercise
price, the explicit finite difference scheme asserts its efficiency after only a few
options are valued. As before, if the fixed dividend yield were used for the finite
diffcrence schemes, thus maintaining linear homogeneity in § and X, they would
dominate the pure binomial process for both multiple exercise and multiple stock
prices.

IV.  Summary and Conclusion

In summary, the results for puts and calls are stmiliar. All approximation
methods analyzed converge and are accurate. The binomial technique, the im-
plicit and the logarithmically transformed explicit, finite difference methods are
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“best,”’ and each has its strong points. The binomial method works well for
computing a small number of options on stocks without dividends, but is ineffi-
cient when effects of cash dividends must be analyzed. However, the assumption
of a fixed dividend vield is shown to be a reasonably accurate and efficient ap-
proximation. Unfortunately, the fixed dividend yield produces an incorrect hedge
ratio. The binomial technique also loses efficiency when valuing American op-
tions. Furthermore, because the binomial process has a conditional starting point
it is less cfficient than the two finite difference methods for valuing multiple op-
tions.

The explicit finite difference method should not be discarded for stability
problems because these can be readily overcome. In addition, when transformed
logarithmically, the explicit method is more efficient than the implicit roethod
because it does not require the selution of a set of simultaneous equations. The
binomial technique is more intuitive and also may be more readily implemented
than the finite difference methods. Thus, it is pedagogicatly superior. in conclu-
sion, researchers computing a smaller number of option values may prefer the
binomial approximation, while practitioners in the busincss of computing a
larger number of option values will generally find that the finite difference ap-
proximations are more efficient.
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