
CHAPTER 2

The Diffusion Equation

In this chapter we study the one-dimensional diffusion equation

∂u

∂t
= γ

∂2u

∂x2
+ p(x, t),

which describes such physical situations as the heat conduction in a one-dimensional

solid body, spread of a die in a stationary fluid, population dispersion, and other

similar processes. In the last section we will also discuss the quasilinear version

of the diffusion equation, known as, the Burgers’ equation

∂u

∂t
+ u

∂u

∂x
− γ

∂2u

∂x2
= p(x, t)

which arises in the context of modelling the motion of a viscous fluid as well as

traffic flow.

We begin with a derivation of the heat equation from the principle of the

energy conservation.

2.1. Heat Conduction

Consider a thin, rigid, heat-conducting body (we shall call it a bar) of length

l. Let θ(x, t) indicate the temperature of this bar at position x and time t, where

0 ≤ x ≤ l and t ≥ 0. In other words, we postulate that the temperature of the

bar does not vary with the thickness. We assume that at each point of the bar

the energy density per unit volume ε is proportional to the temperature, that is

ε(x, t) = c(x)θ(x, t), (2.1.1)

where c(x) is called heat capacity and where we also assumed that the mass

density is constant throughout the body and normalized to equal one. Although

the body has been assumed rigid, and with constant mass density, its material

properties, including the heat capacity, may vary from one point to another.
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24 2. THE DIFFUSION EQUATION

To derive the ”homogeneous” heat-conduction equation we assume that there

are no internal sources of heat along the bar, and that the heat can only enter

the bar through its ends. In other words, we assume that the lateral surface

of the bar is perfectly insulated so no heat can be gained or lost through it.

The fundamental physical law which we employ here is the law of conservation

of energy . It says that the rate of change of energy in any finite part of the

bar is equal to the total amount of heat flowing into this part of the bar. Let

q(x, t) denote the heat flux that is the rate at which heat flows through the body

at position x and time t, and let us consider the portion of the bar from x to

x +4x. The rate of change of the total energy of this part of the bar equals the

total amount of heat that flows into this part through its ends, namely

∂

∂t

∫ x+4x

x

c(z)θ(z, t)dz = −q(x +4x, t) + q(x, t). (2.1.2)

We use here commonly acceptable convention that the heat flux q(x, t) > 0 if the

flow is to the right.

In order to obtain the equation describing the heat conduction at an arbitrary

point x we shall consider the limit of (2.1.2) as 4x → 0. First, assuming that

the integrand c(z)θ(z, t) is sufficiently regular, we are able to differentiate inside

the integral. Second, dividing both sides of the equation by 4x, invoking the

Mean-Value Theorem for Integrals, and taking 4x → 0 we obtain the equation

c(x)
∂θ

∂t
= −∂q

∂x
(2.1.3)

relating the rate of change of temperature with the gradient of the heat flux. We

are ready now to make yet another assumption; a constitutive assumption which

relates the heat flux to the temperature. Namely, we postulate what is known as

Fourier’s Law of Cooling , that the heat flows at the rate directly proportional to

the (spatial) rate of change of the temperature. If in addition we accept that the

heat flows, as commonly observed, from hot to cold we get that

q(x, t) = −κ(x)
∂θ

∂x
. (2.1.4)

where the proportionality factor κ(x) > 0 is called the thermal conductivity .

Notice the choice of the sign in the definition of the heat flux guarantees that if
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the temperature is increasing with x the heat flux is negative and the heat flows

from right to left, i.e., from hot to cold.

Combining (2.1.3) and (2.1.4) produces the partial differential equation

c(x)
∂θ

∂t
=

∂

∂x
(κ(x)

∂θ

∂x
), 0 < x < l, (2.1.5)

governing the heat flow in a inhomogeneous (κ is in general point dependent) one-

dimensional body. However, if the bar is made of the same material throughout,

whereby the heat capacity c(x) and the thermal conductivity κ(x) are point

independent, (2.1.5) reduces to

∂θ

∂t
= γ

∂2θ

∂x2
, 0 < x < l, (2.1.6)

where

γ =
κ

c
. (2.1.7)

This equation is known as the heat equation, and it describes the evolution

of temperature within a finite, one-dimensional, homogeneous continuum, with

no internal sources of heat, subject to some initial and boundary conditions.

Indeed, in order to determine uniquely the temperature θ(x, t), we must specify

the temperature distribution along the bar at the initial moment, say θ(x, 0) =

g(x) for 0 ≤ x ≤ l. In addition, we must tell how the heat is to be transmitted

through the boundaries. We already know that no heat may be transmitted

through the lateral surface but we need to impose boundary conditions at the ends

of the bar. There are two particularly relevant physical types of such conditions.

We may for example assume that

θ(l, t) = α(t) (2.1.8)

which means that the right hand end of the bar is kept at a prescribed temperature

α(t). Such a condition is called the Dirichlet boundary condition. On the other

hand, the Neumann boundary condition requires specifying how the heat flows

out of the bar. This means prescribing the flux
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q(l, t) = κ(l)
∂θ

∂x
(l, t) = β(t). (2.1.9)

at the right hand end. In particular, β(t) ≡ 0 corresponds to insulating the right

hand end of the bar. If both ends are insulated we deal with the homogeneous

Neumann boundary conditions .

Remark 2.1. Other boundary conditions like the periodic one are also pos-

sible.

2.2. Separation of Variables

The most basic solutions to the heat equation (2.1.6) are obtained by using

the separation of variables technique, that is, by seeking a solution in which the

time variable t is separated from the space variable x. In other words, assume

that

θ(x, t) = T (t)u(x), (2.2.1)

where T (t) is a x-independent function while u(x) is a time-independent function.

Substituting the separable solution into (2.1.6) and gathering the time-dependent

terms on one side and the x-dependent terms on the other side we find that the

functions T (t) and u(x) must solve an equation

T ′

T
= γ

u′′

u
. (2.2.2)

The left hand side of equation (2.2.2) is a function of time t only. The right hand

side, on the other hand, is time independent while it depends on x only. Thus,

both sides of equation (2.2.2) must be equal to the same constant. If we denote

the constant as −λ and specify the initial condition

θ(x, 0) = u(x), 0 ≤ x ≤ l, (2.2.3)

we obtain that

θ(x, t) = e−λtu(x) (2.2.4)

solves the heat equation (2.1.6) provided we are able to find u(x) and λ such that

−γu′′ = λu (2.2.5)
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along the bar. This is an eigenvalue problem for the second order differential

operator K ≡ −γ d2

dt2
with the eigenvalue λ and the eigenfunction u(x). The

particular eigenvalues and the corresponding eigenfunctions will be determined

by the boundary conditions that u inherits from θ. Once we find all eigenval-

ues and eigenfunctions we will be able to write the general solution as a linear

combinations of basic solutions (2.2.4).

Homogeneous Boundary Conditions.

Let us consider a simple Dirichlet boundary value problem for the heat con-

duction in a (uniform) bar held at zero temperature at both ends, i.e.,

θ(0, t) = θ(l, t) = 0, t ≥ 0, (2.2.6)

where initially

θ(x, 0) = g(x), 0 < x < l. (2.2.7)

This amounts, as we have explained earlier, to finding the eigenvalues and the

eigenfunctions of (2.2.5) subject to the boundary conditions

u(0) = u(l) = 0. (2.2.8)

Notice first that as evident from the form of the equation (2.2.5) the eigenvalues

λ must be real. Also, it can be easily checked using the theory of second order

ordinary linear differential equations with constant coefficients that if λ ≤ 0,

then the boundary conditions (2.2.8) yield only the trivial solution u(x) ≡ 0.

Hence, the general solution of the differential equation (2.2.5) is a combination

of trigonometric functions

u(x) = a cos ωx + b sin ωx (2.2.9)

where we let λ = γω2 with ω > 0. The boundary condition u(0) = 0 implies that

a = 0. Because of the second boundary condition

u(l) = b sin ωl = 0 (2.2.10)

ωl must be an integer multiple of π. Thus, the eigenvalues and the eigenfunctions

of the eigenvalue problem (2.2.5) with boundary conditions (2.2.8) are

λi = γ

(
iπ

l

)2

, ui(x) = sin
iπ

l
x, i = 1, 2, 3, . . . . (2.2.11)
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The corresponding basic solutions (2.2.4) to the heat equation are

θi(x, t) = exp

(
−γi2π2

l2
t

)
sin

iπ

l
x, i = 1, 2, 3, . . . . (2.2.12)

By linear superposition of these basic solutions we get a formal series

θ(x, t) =
∞∑
i=1

aiui(x, t) =
∞∑
i=1

exp

(
−γi2π2

l2
t

)
sin

iπ

l
x. (2.2.13)

Assuming that the series converges we have a general series solution of the heat

equation with the initial temperature distribution

θ(x, 0) = g(x) =
∞∑
i=1

ai sin
iπ

l
x. (2.2.14)

This is a Fourier sine series on the interval [0, l] of the initial condition g(x)1. Its

coefficients ai can be evaluated explicitly thanks to the remarkable orthogonality

property of the eigenfunctions. Indeed, it is a matter of a simple exercise on

integration by parts to show that
∫ l

0

sin
kπ

l
x sin

nπ

l
xdx 6= 0 (2.2.15)

only if n = k, and that ∫ l

0

sin2 kπ

l
x =

l

2
. (2.2.16)

Multiplying the Fourier series of g(x) by the k-th eigenfunction and integrating

over the interval [0, l] one gets that

ak =
2

l

∫ l

0

g(x) sin
kπ

l
xdx, k = 1, 2, 3, . . . . (2.2.17)

Example 2.2. Consider the initial-boundary value problem

θ(0, t) = θ(2, t) = 0, θ(x, 0) = g(x) =





x, 0 ≤ x ≤ 1,

−x + 2, 1 ≤ x ≤ 2,
(2.2.18)

for the heat equation for a homogeneous bar of length 2. The Fourier coefficients

of g(x) are

a2k+2 ≡ 0, a2k+1 = (−1)k 8

(2k + 1)2π2
, k = 0, 1, 2, . . . . (2.2.19)

1Fourier series are introduced and treated extensively in Appendix B
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The resulting series solution is

θ(x, t) = 8
∞∑
i=0

(−1)i

(2i + 1)2π2
exp

(
−(2i + 1)2π2t

4

)
sin(i +

π

2
)x. (2.2.20)

Notice first that although the initial data is piecewise differentiable the solution

is smooth for any t > 0. Also, as long as the initial profile is integrable (e.g.,

piecewise continuous) on [0, 2] its Fourier coefficients are uniformly bounded,

namely:

|ak| ≤
∫ 2

0

|g(x) sin kπx| dx ≤
∫ 2

0

|g(x)| dx ≡ M. (2.2.21)

Consequently, the series solution (2.2.20) is bounded by an exponentially decaying

time series

|θ(x, t)| ≤ M

∞∑
i=0

exp

(
−(2i + 1)2π2t

4

)
. (2.2.22)

This means that solution decays to the zero temperature profile, a direct conse-

quence of the fact that both ends are hold at zero temperature.

This simple example shows that in the case of homogeneous boundary con-

ditions any initial heat distributed throughout the bar will eventually dissipate

away. Moreover, as the Fourier coefficients in (2.2.20) decay exponentially as

t → ∞, the solution gets very smooth despite the fact that the initial data was

not. In fact, this is an illustration of the general smoothing property of the heat

equation.

Theorem 2.3. If u(t, x) is a solution to the heat equation with the initial

condition such that its Fourier coefficients are uniformly bounded, then for all

t > 0 the solution is an infinitely differentiable function of x. Also, u(t, x) → 0

as t →∞, in such a way that there exists K > 0 such that |u(t, x)| < Ke−γπ2t/l2

for all t ≥ t0 > 0.

The smoothing effect of the heat equation means that it can be effectively used

to de-noise signals by damping the high frequency modes. This, however, means

also that it is impossible to reconstruct the initial temperature by measuring the

temperature distribution at some later time. The heat equation cannot be run

backwards in time. There is no temperature distribution at t < 0 which would
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produce a non-smooth temperature distribution at t = 0. Had we tried to run it

backwards, we would only get noise due to the fact that the Fourier coefficients

grow exponentially as t < 0. The backwards heat equation is ill possed.

Inhomogeneous Boundary Conditions.

There is a simple homogenization transformations that converts a homoge-

neous heat equation with inhomogeneous Dirichlet boundary conditions

θ(0, t) = α(t), θ(l, t) = β(t), t ≥ 0, (2.2.23)

into an inhomogeneous heat equation with homogeneous Dirichlet boundary con-

ditions. Suppose

ω(x, t) = θ(x, t)− α(t) +
α(t)− β(t)

l
x (2.2.24)

where θ(x, 0) = g(x). θ(x, t) is a solution of a homogeneous heat equation if and

only if ω(x, t) satisfies the inhomogeneous equation

∂ω

∂t
− ∂2ω

∂t2
=

α′ − β′

l
x− α′ (2.2.25)

subject to the initial condition

ω(x, 0) = g(x)− α(0) +
α(0)− β(0)

l
x, (2.2.26)

where

ω(0, t) = ω(0, l) = 0. (2.2.27)

Note that ω(x, t) is a solution to the homogeneous heat equation if and only if

the Dirichlet boundary conditions are constant. As the homogeneous boundary

conditions are essential in being able to superpose basic solutions (eigensolutions)

the Fourier series method can be used now in conjunction with the separation of

variables to obtain solutions of (2.2.25).

Example 2.4. Consider

∂ω

∂t
− ∂2ω

∂t2
= x cos t, 0 < x < 1, t > 0, (2.2.28)

subject to the initial condition

ω(x, 0) = x, (2.2.29)
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and the following homogeneous boundary conditions:

ω(0, t) =
∂ω

∂x
(1, t) = 0, t > 0. (2.2.30)

First, let us look for a solution of the homogeneous version of (2.2.28) with the

given boundary conditions (2.2.30) using the separation of variables method. To

this end the reader can easily show that the eigenfunctions are:

ui(x) = sin λix, λi =
(2i + 1)π

2
, i = 0, 1, 2 . . . . (2.2.31)

By the analogy with the form of the solution to the homogeneous heat equation

let us suppose a solution of (2.2.28) as a series of eigenfunctions

ω(x, t) =
∞∑
i=0

αi(t) sin λix. (2.2.32)

Also, represent the right-hand side of (2.2.28) as a series of eigenfunctions. Namely,

write

x cos t =

( ∞∑
i=0

bi sin λix

)
cos t, (2.2.33)

where

bi =

∫ 1

0

x sin λixdx =
(−1)i

λ2
i

. (2.2.34)

Substituting the solution (2.2.32) with (2.2.33) for its right hand side we are able

to show that the unknown functions αi(t) satisfy an inhomogeneous ordinary

differential equation

dαi

dt
+ λ2

i αi =
(−1)i

λ2
i

cos t. (2.2.35)

Using the method of undetermined coefficients it is easy to obtain its solution

αi(t) = Ae−λ2
i t + (−1)i[

cos t

1 + λ4
i

+
sin t

λ2
i (1 + λ4

i )
]. (2.2.36)

From the initial condition (2.2.29) and using (2.2.32) one can calculate that

A =
(−1)i+1(λ4

i − λ2
i + 1)

λ2
i (λ

4
i + 1)

. (2.2.37)

This enables us to construct the solution (2.2.32).
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Periodic Boundary Conditions.

Heat flow in a circular ring is governed by the same homogeneous heat equa-

tion as is heat conduction in a rod (2.1.6), however, this time subject to periodic

boundary conditions

θ(π, t) = θ(−π, t),
∂θ

∂x
(π, t) =

∂θ

∂x
(−π, t), t ≥ 0, (2.2.38)

where −π < x < π is the angular variable, and where we assume that the heat

can only flow along the ring as no radiation of heat from one side of the ring to

another is permitted2.

Benefiting from the separation of variables technique we are seeking a solution

in the form θ(x, t) = e−λtu(x). Assuming for simplicity that γ = 1, we arrive, as

before, at the associated eigenvalue problem

d2u

dx2
+ λu = 0, u(π) = u(−π), u′(π) = u′(−π). (2.2.41)

Its solutions are combinations of trigonometric sine and cosine functions

ui(x) = ai cos ix + bi sin ix, i = 0, 1, 2, . . . , (2.2.42)

with the eigenvalues

λi = i2, i = 0, 1, 2, . . . . (2.2.43)

The resulting infinite series solution is

θ(x, t) =
1

2
a0 +

∞∑
i=1

e−i2t [ai cos ix + bi sin ix] . (2.2.44)

If we postulate the initial condition θ(x, 0) = g(x) the coefficients ai and bi must

be such that

g(x) =
1

2
a0 +

∞∑
i=1

[ai cos ix + bi sin ix] , (2.2.45)

2The heat conduction equation for a heated ring can easily be derived from the two-

dimensional heat equation
∂θ

∂t
=

∂2θ

∂x2
+

∂2θ

∂y2
(2.2.39)

by rewriting its right hand side in polar coordinates (r, α)

∂θ

∂t
=

1
r

∂

∂r

(
r
∂θ

∂r

)
+

1
r2

∂2θ

∂α2
, (2.2.40)

and assuming that the solution is r independent.
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which is precisely the Fourier series of the initial condition g(x) provided

ai =
1

π

∫ π

−π

g(x) cos ixdx, bi =
1

π

∫ π

−π

g(x) sin ixdx, i = 0, 1, 2, . . . . (2.2.46)

2.3. Uniqueness of Solutions

In this section we investigate the uniqueness of solutions to the initial-boundary

value problem for the heat equation. To this end let us consider solutions of the

homogeneous heat equation

∂θ

∂t
=

∂2θ

∂x2
, 0 < x < l, 0 < t < ∞, (2.3.1)

with the initial condition

θ(x, 0) = g(x), (2.3.2)

and the boundary conditions

θ(0, t) = α(t), θ(l, t) = β(t). (2.3.3)

Suppose that θ1 and θ2 are two solutions of (2.3.1) both satisfying the initial

condition (2.3.2) and boundary conditions (2.3.3). As the equation (2.3.1) is

linear the function ω(x, t) ≡ θ1 − θ2 is also a solution but with the zero initial

profile and the homogeneous boundary conditions.

Let us multiply (2.3.1) by ω(x, t) and integrate the resulting equation with

respect x on the interval [0, l] to obtain
∫ l

0

ω
∂ω

∂t
dx =

∫ l

0

∂2ω

∂x2
ωdx. (2.3.4)

Assuming that ω(x, t) is regular enough, and integrating the right-hand side by

parts we reduce the relation (2.3.4) to

1

2

d

dt

∫ l

0

ω2dx = ω
∂ω

∂x

∣∣∣
l

0
−

∫ l

0

(
∂ω

∂x

)2

dx = −
∫ l

0

(
∂ω

∂x

)2

dx ≤ 0. (2.3.5)

Let

I(t) ≡ 1

2

∫ l

0

ω2dx ≥ 0. (2.3.6)

Then,

I(t)− I(0) = −
∫ t

0

∫ l

0

(
∂ω

∂x

)2

dxdt ≤ 0. (2.3.7)
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However, I(0) = 0 implying that I(t) ≤ 0. On the other hand according to its

definition I(t) ≥ 0. Hence, I(t) ≡ 0. This is possibly only if ω(x, t) ≡ 0 proving

that θ1(x, t) = θ2(x, t) everywhere. Note that the same technique can be used

to prove uniqueness of solutions to other boundary value problems as long as

ω ∂ω
∂x

= 0 at x = 0 and x = l.

2.4. Fundamental Solutions

The idea of the fundamental solution of a partial differential equation is an

extension of the Green’s function method for solving boundary value problems of

ordinary differential equations. To set the stage for further considerations let us

briefly review the main points of the that method3.

Consider a homogeneous boundary value problem for the linear ordinary dif-

ferential equation

L(u) = δ(x− ξ), u(0) = u(l) = 0, 0 < x < l, (2.4.1)

where L(u) denotes a linear second-order differential operator actig on the func-

tion u(x) defined on [0, l] interval, while δ(x − ξ) ≡ δξ(x) is the (Dirac) delta

function at ξ. Note that if the boundary conditions are inhomogeneous we can

use the homogenization transformation (2.2.24) to transform the problem into

one with the homogeneous boundary conditions and a different inhomogeneous

right hand side.

Let u(x, ξ) = G(x, ξ) denote the solution to (2.4.1). This is the Green’s

function of this particular boundary value problem. Once we found this solution

we can use linearity to obtain the general solution of

L(u) = f(x), u(0) = u(l) = 0, 0 < x < l, (2.4.2)

in the form of the superposition integral . Indeed, let

u(x) ≡
∫ l

0

G(x, ξ)f(ξ)dξ. (2.4.3)

3Details can be found in Section 1.2
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It is easy to see that u(x) solves the boundary value problem (2.4.2) as

L(u) =

∫ l

0

Lx(G)(x, ξ)f(ξ)dξ =

∫ l

0

δ(x− ξ)f(ξ)dξ = f(x) (2.4.4)

and the boundary conditions are satisfied. Lx(u) denotes here the partial differ-

ential operator induced by L. We will try to use the same idea in the context of

the heat equation.

Consider first the initial value problem for the heat conduction in an infinite

homogeneous bar subjected initially to a concentrated unit heat source applied

at a point y. We assume for simplicity that the thermal diffusivity γ = 1. This

requires solving the heat equation with the initial condition

u(x, 0) = δ(x− y), −∞ < x < ∞. (2.4.5)

To avoid any specific boundary conditions but to guarantee the uniqueness of

solutions (see Section 2.3) we require the solution to be square integrable at all

times, that is ∫ ∞

−∞
|u(x, t)|2 dx < ∞ for all t ≥ 0. (2.4.6)

This, in fact, implies that the solution vanishes at infinity.

Let us now take the complex separable solution to the heat equation

u(x, t) = e−k2teikx, (2.4.7)

where, as there are no boundary conditions, there are no restrictions on the choice

of frequencies k. Mimicking the Fourier series superposition solution when there

are infinitely many frequencies allowed we may combine these solutions into a

Fourier integral (see Appendix B.5)

u(x, t) =
1√
2π

∫ ∞

−∞
e−k2teikxδ̂y(k)dk (2.4.8)

to realize, provided we can differentiate under the integral, that it solves the heat

equation. Moreover, the initial condition is also satisfied as

u(x, 0) =
1√
2π

∫ ∞

−∞
eikxδ̂y(k)dk = δ(x− y), (2.4.9)
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where δ̂y(k) denotes the Fourier transform of the delta function δ(x− y), that is

δ̂y(k) =
1√
2π

e−iky. (2.4.10)

Combining (2.4.9) with (2.4.10) we find that the fundamental solution of the heat

equation is

F (x− y, t) =
1

2π

∫ ∞

−∞
e−k2teik(x−y)dk =

1

2
√

πt
e
−(x−y)2

4t . (2.4.11)

It is worth pointing out here that although the individual component of the

Fourier series (2.4.8) are not square integrable the resulting fundamental solu-

tion (2.4.11) is. Another interesting derivation of the fundamental solution based

on the concept of the similarity transformation can be found in [Kevorkian].

Remark 2.5. It is important to point out here that one of the drawbacks of

the heat equation model is - as evident from the form of the fundamental solution

- that the heat propagates at infinite speed. Indeed, a very localized heat source

at y is felt immediately at the entire infinite bar because the fundamental solution

is at all times nonzero everywhere.

With the fundamental solution F (x − y, t) at hand we can now adopt the

superposition integral formula (2.4.3) to construct the solution to the heat con-

duction problem of an infinite homogeneous bar with the an arbitrary initial

temperature distribution u(x, 0) = g(x) as

u(x, t) =
1

2
√

πt

∫ ∞

−∞
e
−(x−y)2

4t g(y)dy. (2.4.12)

That is, the general solution is obtained by a convolution of the initial data

with the fundamental solution. In other words, the solution with the initial

temperature profile g(x) is an infinite superposition over the entire bar of the

point source solutions of the initial strength

g(y) =

∫ ∞

−∞
δ(x− y)g(x)dx. (2.4.13)
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Inhomogeneous Heat Equation for the Infinite Bar .

The Green’s function method can also be used to solve the inhomogeneous

heat conduction problem

∂u

∂t
− ∂2u

∂x2
= p(x, t), −∞ < x < ∞, t > 0, (2.4.14a)

where the bar is subjected to a heat source p(x, t) which may vary in time and

along its length. We impose the zero initial condition

u(x, 0) = 0, (2.4.14b)

and some homogeneous boundary conditions. The main idea behind this method

is to solve first the heat equation with the concentrated source applied instanta-

neously at a single moment, and to use the method of superposition to obtain

the general solution with an arbitrary source term. We therefore begin by solving

the heat equation (2.4.14a) with the source term

p(x, t) = δ(x− y)δ(t− s). (2.4.15)

It represents a unit heat input applied instantaneously at time s and position y.

We postulate the same homogeneous initial and boundary conditions as in the

general case. Let

u(x, t) = G(x− y, t− s) (2.4.16)

denote the solution to this problem. We will refer to it as the general fundamental

solution or a Green’s function. Thanks to the linearity of the heat equation the

solution of the general problem is given by the superposition integral

u(x, t) =

∫ t

0

∫ ∞

−∞
G(x− y, t− s)p(y, s)dyds, (2.4.17)

where the forcing term may be also rewritten by the superposition formula as

p(x, t) =

∫ ∞

0

∫ ∞

−∞
p(y, s)δ(t− s)δ(x− y)dyds. (2.4.18)

If we replace the zero initial condition by u(x, 0) = f(x), then once again due to

the linearity of the differential equation we may write the solution as a combina-

tion of a solution to the homogeneous equation with inhomogeneous initial data
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and the solution with the homogeneous initial condition but a nonzero forcing

term

u(x, t) =

∫ ∞

−∞
F (x− y, t)f(y)dy +

∫ t

0

∫ ∞

−∞
G(x− y, t− s)p(y, s)dyds. (2.4.19)

To find the general fundamental solution in an explicit form let us take the

Fourier transform with respect to variable x of both sides of the differential equa-

tion (2.4.14a) with the forcing term (2.4.15). Using (2.4.10) we find that

dû

dt
+ k2û =

1√
2π

e−ikyδ(t− s), (2.4.20)

where û(k, t) denotes the Fourier transform of u(x, t), and where k is viewed as

a parameter. This is an inhomogeneous first order linear ordinary differential

equation for the Fourier transform of u(x, t) with the initial condition

û(k, 0) = 0 for s > 0. (2.4.21)

Using the integrating factor method with the integrating factor ek2t we obtain

that

û(k, t) =
1√
2π

ek2(t−s)−ikyσ(t− s), (2.4.22)

where σ(t− s) is the usual step function. The Green’s function is than obtained

by the inverse Fourier transform

G(x− y, t− s) =
1√
2π

∫ ∞

−∞
eikxû(k, t)dk. (2.4.23)

Using the formula (2.4.11) of the fundamental solution we deduce that

G(x− y, t− s) =
σ(t− s)

2π

∫ ∞

−∞
eik(x−y)+k2(t−s)dk (2.4.24)

=
σ(t− s)

2
√

π(t− s)
exp

{
−(x− y)2

4(t− s)

}
.

The general fundamental solution (Green’s function) is just a shift of the fun-

damental solution for the initial value problem at t = 0 to the starting time

t = s. More importantly, its form shows that the effect of a concentrated heat

source applied at the initial moment is the same as that of a concentrated initial

temperature.
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Finally, the superposition integral (2.4.17) gives us the solution

u(x, t) =

∫ t

0

∫ ∞

−∞

p(y, s)

2
√

π(t− s)
exp

{
−(x− y)2

4(t− s)

}
dsdy (2.4.25)

of the heat conduction problem for the infinite homogeneous bar with a heat

source.

Heat Equation for the Semi-infinite Bar .

To illustrate how the Green’s function method can be applied in the case of

the semi-infinite domain we consider the heat equation with the concentrated

forcing term

∂u

∂t
− ∂2u

∂x2
= δ(x− y)δ(t), 0 ≤ x < ∞, t > 0 (2.4.26a)

and impose the zero initial condition, i.e., u(x, 0) = 0, and the homogeneous

boundary conditions

u(0, t) = 0, lim
x→∞

u(x, t) = 0. (2.4.26b)

As we have remarked earlier the effect of such a concentrated instantaneous heat

source is the same as that of the concentrated initial distribution. Thus, the only

difference between this case and the case of the fundamental solution (2.4.5) is

the imposition of the boundary condition at x = 0. One possible way to tackle

this difficulty is to consider in place of this semi-infinite problem such an infinite

domain problem in which the homogeneous ”boundary” condition at x = 0 is

permanently satisfied.

Hence, consider the heat conduction problem for an infinite homogeneous bar

with δ(t)[δ(x− y)− δ(x + y)] as the forcing term, homogeneous initial condition,

and the homogeneous boundary conditions at infinities. In other words, in the

infinite domain we apply a unit strength source at x = y, and simultaneously

a negative source of unit strength at x = −y. This approach is known as the

method of images . Once again, due to the linearity of the heat equation and

that of the forcing term, the temperature profile at t > 0 will be the sum of

two fundamental solutions F (x− y, t) and F (x + y, t) each corresponding to one

of the source terms. In particular, due to the skew-symmetry of these solutions

the combined solution will always be vanishing at x = 0. Moreover since all the
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boundary conditions of the original problem (2.4.26a) are satisfied, and since the

second source term δ(t)δ(x + y) is outside of the original semi-infinite domain,

the Green’s function

G(x− y, t) ≡ F (x− y, t)− F (x + y, t) (2.4.27)

is the solution of (2.4.26a), where the fundamental solution F is defined by (2.4.11).

In conclusion, the solution of the inhomogeneous heat conduction problem for

a semi-infinite bar

∂u

∂t
− ∂2u

∂x2
= p(x, t), 0 ≤ x < ∞, t > 0, (2.4.28)

with the initial condition u(x, 0) = 0 and the homogeneous boundary condi-

tions (2.4.26b) has the form

u(x, t) =

∫ t

0

∫ ∞

0

p(y, s)

2
√

π(t− s)

{
exp

[
−(x− y)2

4(t− s)

]
− exp

[
−(x + y)2

4(t− s)

]}
dyds.

(2.4.29)

Example 2.6. Suppose that a semi-infinite homogeneous bar is initially heated

to a unit temperature along a finite interval [a, b], where a > 0. Assume also that

at x = 0 the temperature is held at zero (by attaching an infinite rod of this

temperature) and vanishes at infinity. This corresponds to the following initial

value problem for the heat equation:

∂u

∂t
=

∂2u

∂x2
, u(x, 0) = σ(x− a)− σ(x− b) =





0, if 0 < x < a,

1, if a < x < b,

0, if x > b,

(2.4.30a)

with the homogeneous boundary conditions

u(0, t) = 0, lim
x→∞

u(x, t) = 0, t > 0.

The method of images and the superposition formula (2.4.12) yield the solution

u(x, t) =
1

2
√

πt

(∫ b

a

e−
(x−y)2

4t dy +

∫ −b

−a

e−
(x−y)2

4t

)
dy (2.4.31)

=
1

2

{
erf

(
x− a

2
√

t

)
+ erf

(
x + a

2
√

t

)}
− 1

2

{
erf

(
x− b

2
√

t

)
+ erf

(
x + b

2
√

t

)}
,



2.5. BURGERS’ EQUATION 41

where the error function

erfz ≡ 2√
π

∫ z

0

e−η2

dη. (2.4.32)

Note that the error function is odd and that its asymptotic value at infinity is 1.

2.5. Burgers’ Equation

In this last section we will study the quasilinear version of the diffusion equa-

tion
∂u

∂t
+ u

∂u

∂x
− ε

∂2u

∂x2
= 0, ε > 0, (2.5.1)

to show how the solution methods developed in previous sections for the heat

equation may be used to obtain solutions for other equations. Also, Burgers’

equation is a fundamental example of an evolution equation modelling situations

in which viscous and nonlinear effects are equally important. Moreover, it plays

somewhat important role in discussing discontinuous solutions (shocks) of the

one-dimensional conservation law

∂u

∂t
+ u

∂u

∂x
= 0, (2.5.2)

a topic which will not be discussed here (see for example [Knobel], [Smoller]).

We start by looking at ways at which the methods for solving the initial-

boundary value problems of heat equations can be used to solve (2.5.1).

The Cole-Hopf Transformation .

This is a change of dependent variable w = W (u) which enables us to trans-

form Burgers’ equation into the linear diffusion equation studied already in this

chapter. Let

u ≡ −2ε
wx

w
, (2.5.3)

where wx denotes partial differentiation. Calculating all derivatives and substi-

tuting them into (2.5.1) yields

wx(εwxx − wt)− w(εwxx − wt)x = 0. (2.5.4)

In particular, if w(x, t) solves the diffusion equation

εwxx − wt = 0, (2.5.5)

the function u(x, t) given by (2.5.3) satisfies Burgers’ equation (2.5.1).
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Initial Value Problem on the Infinite Domain .

Let us consider the following initial value problem:

∂u

∂t
+ u

∂u

∂x
− ε

∂2u

∂x2
= 0, u(x, 0) = g(x), −∞ < x < ∞, (2.5.6)

and suppose that we are looking for the solutions which satisfy the corresponding

diffusion equation (2.5.5). According to (2.5.3), the initial condition for the new

variable w(x, 0) must be such that

g(x)w(x, 0) = −2εwx(x, 0). (2.5.7)

The general solution of this linear ordinary differential equation for w(x, 0) is

w(x, 0) = A exp

[
− 1

2ε

∫ x

0

g(s)ds

]
, (2.5.8)

where A is a constant, and where we assume that the integral exists. Hence, we

essentially need to solve the following initial value problem for the homogeneous

diffusion equation with the inhomogeneous initial condition:

εwxx − wt = 0, w(x, 0) = h(x), −∞ < x < ∞. (2.5.9)

Its solution has the form of (2.4.12) :

w(x, t) =
1

2
√

πεt

∫ ∞

−∞
e
−(x−y)2

4εt h(y)dy (2.5.10)

where we replaced t by εt Note that the parameter ε may be eliminated from

the equation, and so from the solution, by an appropriate scaling of variables.

We retain it, however, so we one can later study the asymptotic behavior of

solutions when ε → 0. Differentiating with respect to x and using the Cole-Hopf

formula (2.5.3) we compute that

u(x, t) =

∫∞
−∞

(x−y)
t

exp
[
−(x−y)2

4εt

]
h(y)dy

∫∞
−∞ exp

[
−(x−y)2

4εt

]
h(y)dy

, (2.5.11)

where

h(y) ≡ exp

[
− 1

2ε

∫ x

0

g(s)ds

]
, (2.5.12)

as the constant A cancels out.
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Boundary Value Problem on a Finite Interval .

Using separation of variables method, we solve here the following initial-

boundary value problem:

∂u

∂t
+ u

∂u

∂x
− ε

∂2u

∂x2
= 0, u(x, 0) = g(x), 0 < x < a, (2.5.13a)

u(0, t) = u(a, t) = 0, t > 0. (2.5.13b)

After Cole-Hope transformation we obtain the corresponding initial-boundary

value problem for the diffusion equation:

wt − εwxx = 0, w(x, 0) = Ah(x), 0 < x < a, (2.5.14a)

wx(0, t) = wx(a, t) = 0, t > 0. (2.5.14b)

As the boundary condition are homogeneous the solution w(x, t) can easily be

derived (see page 27) as

w(x, t) =
a0

2
+

∞∑

k=1

ake
−( kπ

a
)2t cos

kπ

a
x, (2.5.15)

where

ak =
2A

aπ

∫ a

0

h(x) cos
kπ

a
xdx. (2.5.16)

From the Cole-Hope transformation formula (2.5.3) one now gets the solution to

the initial vale problem (2.5.13)

u(x, t) = 2ε
π
a

∑∞
k=1 kak exp

[−(kπ
a

)2t
]
sin kπ

a
x

a0

2
+

∑∞
k=1 ak exp

[−(kπ
a

)2t
]
cos kπ

a
x

(2.5.17)

Example 2.7. Consider Burgers’ equation

ut + uux − εuxx = 0, −∞ < x,∞, (2.5.18)

with the the piecewise initial condition

u(x, 0) = 2σ(x)− 1 =





1, if x < 0

−1, if x > 0.
(2.5.19)

The initial condition of the associated diffusion equation (2.5.5) may now be

obtained from (2.5.7):

w(x, 0) = Ae
1
2ε
|x|. (2.5.20)
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The solution w(x, t) takes the form of (2.4.12) with t replaced by εt. Namely,

w(x, t) =
1

2
√

πεt

∫ ∞

−∞
e
−(x−y)2

4εt e
|y|
2ε dy. (2.5.21)

Therefore, the solution of the original initial value problem is given by (2.5.11):

u(x, t) =

∫∞
−∞

(x−y)
t

exp
[
−(x−y)2

4εt

]
)e

|y|
2ε dy

∫∞
−∞ exp

[
−(x−y)2

4εt

]
e
|y|
2ε dy

. (2.5.22)

Integrating independently from −∞ to 0 and from 0 to ∞, and using the substi-

tution

η =
(x− y ± t)

2
√

εt
,

respectively, we finally obtain

u(x, t) =
e−

x
ε erfc

(
x−t
2
√

εt

)
− erfc

(
− x+t

2
√

εt

)

e−
x
ε erfc

(
x−t
2
√

εt

)
+ erfc

(
− x+t

2
√

εt

) , (2.5.23)

where the complimentary error function

erfc(z) ≡ 1− erf(z) =
2√
π

∫ ∞

z

e−η2

dη. (2.5.24)




