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“A complex system that works is invariably found to have evolved

from a simple system that worked.” - John Gall
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Economic Objectives

• A pricing model with multiple risks, which enables security pricing for
hybrid derivatives with default risk.

• Extraction of stable default probability functions for state-dependent de-
fault.

• A hybrid defaultable model combining the features of both, structural
and reduced-form approaches.

• Using information from the equity and bond markets in a no-arbitrage
framework.

• Using observable market inputs, so as to value complex securities via
relative pricing. e.g: debt-equity swaps, distressed convertibles.

• Managing credit portfolios and baskets, e.g. collateralized debt obliga-
tions (CDOs).

Essentially, the viewpoint taken by the model is that all credit risk can be

determined from market risk state variables.
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Technical Objectives

• A risk-neutral setting in which the joint process of interest

rates and equity are modeled together with the boundary

conditions for security payoffs, after accounting for default.

• The model is embedded on a recombining lattice for fast

computation time of polynomial complexity.

• Cross-sectional spread data permits calibration of an implied

default probability function which dynamically changes on the

state space defined by the pricing lattice.
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Default Modeling Issues

• Anticipated vs Unanticipated Default - Our model contains both default
types

• The short-term spread puzzle.

• Structural model with jumps vs hazard-rate models

• Statistical vs Risk-Neutral default probabilities.

• Asymmetric Information

– About firm value (Duffie & Lando, 2001)

– About default barrier (CreditMetrics)

5



Motivating Example - Jump to Default Equity

• Based on Merton (1976), solution by Samuelson (1972), the call option
price on defaultable equity:

Call on defaultable equity = exp(−ξT ) BS[S0e
ξT , K, T, σ, r]

= BS[S0, K, T, σ, r + ξ]

• Discrete-time setting:

s(t + h) =





uS(t) w/prob q exp(−ξh)
dS(t) w/prob (1− q) exp(−ξh)

0 w/prob 1− exp(−ξh)

• Risk-neutral martingale measure, after default adjustment:

q =
exp(rh)− d exp(−ξh)

u exp(−ξh)− d exp(−ξh)
=

exp[(r + ξ)h]− d

u− d

• Numerical values: r = 0.10, σ = 0.20, ξ = 0.01, and h = 0.25. Then,
the risk-neutral probability q = 0.766203. If there were no defaults, i.e.
ξ = 0, then q = 0.740548. [See binbsdef.xls]
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Related Papers for Hybrid Securities

• Schonbucher (2002): Stochastic r, with exogenous λ (discrete time).

• Das and Sundaram (2000): Stochastic r, with endogenous λ (discrete
time).

• Carayannopoulos and Kalimipalli (2000): Stochastic S, with endogenous
λ (discrete time).

• Davis and Lischka (1999): Stochastic r and S, with exogenous hazard
rate λ (continuous time).

• Jarrow (2001): Stochastic r, S (dividend process), and liquidity π, with
exogenous λ (continuous time).
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Subsumed Models - 1

• If r is switched off and the hazard rate model is also switched off, we get
the Cox-Ross-Rubinstein (CRR, 1979) model.

• If the hazard rate model is switched off, we get the Amin and Bodurtha
(1995) framework.

• If the equity process and default processes are turned off, we get the
model of Heath, Jarrow and Morton (1990).

• If the interest rate model is turned off, then we are left with the convert-
ible pricing model of Carayannopoulos and Kalimipalli (2001).
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Subsumed Models - 2

• Switching off only the equity component of the model leaves us with the
defaultable debt models of Madan and Unal (1995), Duffie and Singleton
(1999) and Schonbucher (1998). And in discrete-time implementation
form it corresponds to the model of Das and Sundaram (2000), and
Schonbucher (2002), which is similar to the earlier paper by Davis and
Lischka (1999).

• Turning off only the interest rate process results in the discrete time
version of Merton (1974), but more-so, Cox and Ross (1976), but with
non-linear default barriers.

• The model is closest to the work of Jarrow (2001) and Jarrow-Lando-
Yu (1999) but with endogenous PDs, and allowance for unanticipated
default.

Many of these papers do not explicitly involve the equity process and its link
to default modeling within a hazard rate model. This approach, therefore, is
able to create a link between structural and reduced form models.
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Term Structure Model - Recombinant HJM

• Time interval [0, T ∗]. Periods of length h.

• Assuming no arbitrage, there exists an equivalent martingale measure Q
for all assets, including defaultable ones. .

• Forward rates follow the stochastic process:

f(t + h, T ) = f(t, T ) + α(t, T )h + σ(t, T )Xf

√
h, (1)

• Time–t price of a default-free zero-coupon bond of maturity T ≥ t.

P (t, T ) = exp



−

T/h−1∑

k=t/h

f(t, kh) · h



 (2)
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Martingale Condition

• Let B(t) be the time–t value of a “money-market account” that uses an
initial investment of $1, and rolls the proceeds over at the default-free
short rate:

B(t) = exp





t/h−1∑

k=0

r(kh) · h



 . (3)

• Let Z(t, T ) denote the price of the default-free bond discounted using
B(t):

Z(t, T ) =
P (t, T )

B(t)
. (4)

• Z(t, T ) is a martingale under Q, for any t < T , i.e. Z(t, T ) = Et[Z(t+h, T )]:

Et

[
Z(t + h, T )

Z(t, T )

]
= 1. (5)
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Risk-Neutral Drift & Equity Process

• Risk-neutral drift:

T/h−1∑

k=t/h+1

α(t, kh) =
1

h2
ln


Et


exp



−

T/h−1∑

k=t/h+1

σ(t, kh)Xfh3/2









 . (6)

• Define the risk-neutral discrete-time equity process as follows:

ln

[
S(t + h)

S(t)

]
= r(t)h + σsXs(t)

√
h (7)
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Joint Defaultable Stochastic Process - Hexanomial Tree

Joint process requires a probability measure over the random shocks [Xf(t), Xs(t)]
AND the default shock.

This probability measure is chosen to (i) obtain the correct correlations, (ii)
ensure that normalized equity prices and bond prices are martingales after
default, and (iii) still ensure the lattice is recombining.

Our lattice model is hexanomial, i.e. from each node, there are 6 emanating
branches or 6 states. The following table depicts the states:

Xf Xs Probability
1 1 1

4
(1 + m1)[1− λ(t)]

1 −1 1
4
(1−m1)[1− λ(t)]

−1 1 1
4
(1 + m2)[1− λ(t)]

−1 −1 1
4
(1−m2)[1− λ(t)]

1 −∞ λ(t)
2

−1 −∞ λ(t)
2

where λ(t) is the probability of default at each node of the tree.

We solve for m1 and m2 to satisfy the conditions above.
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Lattice Recombination

For recombination, it is essential that the drift of the process for

equity prices be zero. Hence, we write the risk-neutral stochastic

process for equity prices as follows:

ln

[
S(t + h)

S(t)

]
= σsXs(t)

√
h (8)

where the probability measure over Xs(t) is such that

E[exp(σsXs(t)
√

h)] = exp[r(t)h].
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Verification Calculations

To begin with, we first compute the following intermediate results:

E(Xf) =
1

4
[1 + m1 + 1−m1 − 1−m2 − 1 + m2](1− λ(t))

+
λ(t)

2
[1− 1]

= 0

V ar(Xf) =
1

4
[1 + m2 + 1−m1 + 1 + m2 + 1−m2](1− λ(t))

+
λ(t)

2
[1 + 1]

= 1

E(Xs|no def) =
1

4
(1− λ(t))× [1 + m1 − 1 + m1 + 1 + m2 − 1 + m2]

=
m1 + m2

2
(1− λ(t))
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Solving for m1, m2

Now, we compute the two conditions required to determine m1 and m2. Use
the expectation of the equity process to determine one equation. We exploit
the fact that under risk-neutrality the equity return must equal the risk free
rate of interest. This leads to the following:

E

[
S(t + h)

S(t)

]
= E[exp(σsXs(t)

√
h)]

=
1

4
(1− λ(t))[eσs

√
h(1 + m1) + e−σs

√
h(1−m1)

+eσs

√
h(1 + m2) + eσs

√
h(1−m2)] +

λ(t)

2
[0]

= exp(rh)

Hence the stock return is set equal to the riskfree return.

m1 + m2 =

4er(t)h

1−λ(t)
− 2(a + b)

a− b
= A

a = exp(σs

√
h)

b = exp(−σs

√
h)
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Correlation Specification

The correlation between [Xf(t), Xs(t)] is defined as ρ, where −1 ≤ ρ ≤ 1.

Cov[Xf(t), Xs(t)] =
1

4
(1− λ(t))[1 + m1 − 1 + m1 − 1−m2 + 1−m2]

+
λ(t)

2
[−∞+∞]

=
m1 −m2

2
(1− λ(t)).

Setting this equal to ρ, we get the equation

m1 −m2 =
2ρ

1− λ(t)
= B.

Solving the two equations for A and B gives:

m1 =
A + B

2

m2 =
A−B

2
These values may now be substituted into the probability measure in the table
above.
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Embedding Default Risk

As noted before, λ(t) = 1− e−ξ(t)h, and we express the hazard rate ξ(t) as:

ξ[f(t), S(t), t, y; θ] ∈ [0,∞)

This is a function of the term structure of forward rates, and the stock price
at each node and time. y may be (for example) the firm’s target D/E ratio.

Note that this function may be as general as possible.

We impose the condition ξ(t) ≥ 0.

θ is a parameter set that defines the function.

A similar endogenous hazard rate extraction has been implemented in Das and
Sundaram (2000), Carayannopoulos and Kalimipalli (2001), and Acharya, Das
and Sundaram (2002).
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Cross sectional Calibration of Risk-Neutral Hazard Rates

For pricing purposes, we need the expected risk-neutral hazard

rate of default, i.e. E[ξ(t)], not the physical one, E[ξP (t)].

An example of a fitting function is:

ξ(t) = exp[a0 + a1r(t)− a2 lnS(t) + a3(t− t0)]

=
exp[a0 + a1r(t) + a3(t− t0)]

S(t)a2

In this version of the hazard rate function, with S(t) replaced

with its natural logarithm, we get that as S(t) → 0, ξ(t) → ∞,

and as S(t) → ∞, ξ(t) → 0. For this parameterization, it is

required that a2 ≥ 0.
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Calibrating multiple debt issues

If the issuer has several issues, with varying subordination levels,

each of these may be calibrated separately, using the exact same

procedure as in the previous subsection.

Given that we know the recovery rates for each issued security,

based on subordination and other conditions, we can search over

default probabilities that best fit all the different bonds issued

by one issuer.

Of course, the real problem is that we often wish to price the

issue rather than use it for calibration. In such a case, a compara-

ble issuer’s debt may be used to determine default probabilities,

which can then be used for pricing.
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Correlated default analysis

The model may be used to price a credit basket security. There are many
flavors of these securities, and some popular examples are nth to default
options, and collateralized debt obligations(CDOs).

Use Monte Carlo simulation, under the risk-neutral measure, based on the
parameters fitted on the lattice.

Given a basket of N bonds of distinct issuers, we may simulate default times
(τi) for each issuer (i = 1...N) based on their stock price correlations.

Thus, we first compute a stock price or stock return covariance matrix, de-
noted ΣS ∈ RN×N . Under the risk-neutral measure, the return for all stocks
is r(t).
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Incorporating Liquidity

• Adapt the approach of Ericsson and Renault (1998).

• At every node on the tree, there is a small probability, denoted π(.), that
the security may require liquidation at a non-zero transaction cost κ.

• The function π may be set to be correlated with the probability of default.
The regression framework of Altman, Brooks, Resti and Sironi (2002)
suggests one such linear relationship.

• Or, a non-linear form:

π =
1

1 + e−w
, w = γ0 + γ1ξ

In this setting, π ∈ [0,1], and if γ1 = 0, then liquidity risk is independent
of default risk. If γ1 > 0, liquidity risk is positively correlated with default
risk, and vice versa.
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Credit Default Swaps (CDS)

Default swaps are one of the useful instruments we may employ to calibrate
the model.

The price of a default swap is quoted as a spread rate per annum.

Therefore, if the default swap rate is 100 bps, paid quarterly, then the buyer
of the insurance in the default swap would pay 25 bps of the notional each
quarter to the seller of insurance in the default swap.

The present value of all these payments must equal the expected loss on
default anticipated over the life of the default swap.

In the event of default, the buyer of protection in the default swap receives
the par value of the bond less the recovery on the bond.

In many case, this is implemented by selling the bond back to the insurance
seller at par value.
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Numerical and Empirical Implementations

• Term structure of default swap spreads.

• Calibration of default function to CDS data: industrial &

financial companies.

• Distressed callable, convertible debt.

• Historical default function for high and low quality credit

companies.
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Numerical Example - Term Structure of Default Swap Spreads

Hazard Rate:

ξ(t) = exp[a0 + a1r(t) + a3(t− t0)]/S(t)a2

Periods in the model are quarterly, indexed by i.

The forward rate curve is very simple and is just f(i) = 0.06 + 0.001i. The
forward rate volatility curve is σf(i) = 0.01 + 0.0005i.

The initial stock price is 100, and the stock return volatility is 0.30. Correla-
tion between stock returns and forward rates is 0.30, and recovery rates are
a constant 40%.
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Calibrating the default function to CDS data

Calibration to the term structure of default swap spreads of IBM.

Two dates: 02-Jan-2002 and 28-Jun-2002.

The stock price on the 2 dates was $72.00 and $121.10 respectively. Stock
return volatility was roughly 40% on both dates.

Recovery rates on default were assumed to be 40% and the correlation be-
tween short rates (i.e. 3 month tbills) and the stock return of IBM was
computed over the period January 2000 to June 2002; it was found to be
almost zero, i.e. 0.01528.

The yield curves for the chosen dates were extracted from the historical
data pages provided by the Federal Reserve Board. We converted these into
forward rates required by our model. Forward rate volatilities were set to the
average historical volatility over the periods January 2000 to June 2002.
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Calibrating Financial Companies

• Analysis of a financial company, namely AMBAC Inc (ticker
symbol: ABK).

• It is postulated that default processes in the finance sector
are different because firms have extreme leverage.

• However, the model calibrates just as easily to the default
swap rates for AMBAC.

• For comparison, we calibrated the model on the same dates
as we did for IBM.
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Distressed Callable-Convertibles

• A combination of equity and interest rate risk impact the callability and
convertibility of the bond.

• Default risk affects both call and convertible option values.

• Duration of the bond may increase or decrease with default risk.

– Default risk shortens effective maturity.

– It also reduces the impact of the call and convert options, thereby
extending maturity.

• We examine varying levels of stock volatility (20% and 40%).

• 3 cases: (a) callable only, (b) convertible only, (c) callable-convertible.

[dss.xls]
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Historical Time-series & Cross-sectional Calibration

• Calibrate 2 firms: IBM and UAL (high & low credit quality)

• Period: January 2000 - June 2002 (655 trading days)

• For each date, we fit the four parameters {a0, a1, a2, a3} of
the default function to the cross-sectional data on default
swap spreads, the stock price and volatility, as well as the
current term structure of interest rates.

• Compute ξ for initial parameters of the lattice each day.

• Compare parameters and ξ to state variables.
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Correlation of ξ and state variables

Panel A: IBM
PD ξ S(0) σ f(0,0)

PD 1.0000 0.9873 -0.7641 0.3816 -0.4191
ξ 0.9873 1.0000 -0.7917 0.3991 -0.4744
S(0) -0.7641 -0.7917 1.0000 -0.3991 0.3192
σ 0.3816 0.3991 -0.3991 1.0000 -0.7229
f(0,0) -0.4191 -0.4744 0.3192 -0.7229 1.0000

Panel B: UAL
PD ξ S(0) σ f(0,0)

PD 1.0000 0.9942 -0.9761 0.9510 -0.9242
ξ 0.9942 1.0000 -0.9495 0.9619 -0.9172
S(0) -0.9761 -0.9495 1.0000 -0.8775 0.8928
σ 0.9510 0.9619 -0.8775 1.0000 -0.8938
f(0,0) -0.9242 -0.9172 0.8928 -0.8938 1.0000
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Summary

ECONOMIC OBJECTIVES TECHNICAL GOALS

Hybrid risks model for securities
with default risk

Combine structural and reduced-
form approaches

Extraction of stable PD functions Recombining lattice for fast com-
putation

Using observable market inputs
from the equity and bond mar-
kets, so as to value complex secu-
rities via relative pricing in a no-
arbitrage framework, e.g: debt-
equity swaps, distressed convert-
ibles

A risk-neutral setting in which the
joint process of interest rates and
equity are modeled together with
the boundary conditions for secu-
rity payoffs, after accounting for
default.

Simple cross-sectional calibration
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