
1D. M. Chance, TN97-04 The Cox-Ingersoll-Ross Term Structure Model

TEACHING NOTE 97-04:

THE COX-INGERSOLL-ROSS TERM STRUCTURE MODEL

Version date: January 9, 2002 D:\TN97-04.WPD

Cox-Ingersoll-Ross (1985) developed one of the first general equilibrium theories of the term

structure of interest rates.  Out of that theory came a model for the pricing of zero coupon bonds and

derivatives.  The CIR model is based on the following stochastic process for the short rate:

The model does provide for pricing in a general equilibrium framework but would require the market

price of risk, an unobserved value, defined as .  Most applications of the CIR model

assume the local expectations hypothesis, which is equivalent to the equivalent martingale/risk

neutral assumption.  In that case, the value of a $1 face value pure discount bond is 

The model features mean reversion and the square root term on the volatility ensures that the

interest rate will not fall below zero.  Interest rates are distributed as a chi-square.  This model, like

that of Vasicek, does not fit the current term structure but rather provides the current term structure.

As a result, its prices, though internally free from arbitrage, would not be consistent with arbitrage-

free prices in the market.  Consequently, users of this model could suffer arbitrage losses.

CIR give the price of a futures contract expiring at T where the underlying pure discount

bond expires at s with s > T as
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and the values A(s - T) and B(s - T) are forward based values, computed as in the formulas above

for A(T - t) and B(T - t) by simply substituting the maturity of s - T.

A call option with strike X expiring at time s where s > T is given by the following formula,

The put price for this (and most of the other models) can be obtained from put-call parity using the

value P(t,s) as the value of the underlying and P(t,T) as the discount function on the exercise price.

American option prices must be calculated using a tree.  One suggested tree that simplifies

this model is based on an expansion of the variable  while another suggested approach

divides this by the standard deviation (Tian (1993)).  We illustrate that approach here, following the

material in Ritchken (1996, Ch. 23).  This approach leads to a stable tree, i.e., probabilities in the

interval [0,1].

Consider the following model.  We let the time step increment be .2 years, the current rate

be 10 %, F = 10 %, " = .6, and : = 10 %.   In other words, we start off at a rate of 10 % with a
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volatility of 10 %.  The long run mean rate is also 10 % and the rate pulls back toward the mean at

a rate of 60 %.  We then derive the tree for the transformed variable   .  With a starting

value of r = .1, we have x = 6.3245.  The variable x will follow the stochastic process, dx = :(x)dt

+ dz.  The binomial tree will expand according to the following rule: x+ = x + ()t)½ and x- = x -

()t)½.  Following this rule gives us a tree for x that expands as follows:

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

8.5606

8.1134

7.6620 7.6662

7.2190 7.2189

6.7718 6.7718 6.7718

6.3246 6.3246 6.3246

5.8773 5.8773 5.8773

5.4301 5.4301

4.9829 4.9829

4.5357

4.0885

Transforming this number gives us the continuously compounded rate on one-period default-free

bonds.  That rate will be r = F2x2/4.  Using the values in the tree above gives us the tree of one-period

interest rates as follows:
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Time 0 Time 1 Time 2 Time 3 Time 4 Time 5

18.3 %

16.5 %

14.7 % 14.7 %

13.0 % 13.0 %

11.5 % 11.5 % 11.5 %

10 % 10 %  10 %

8.6 % 8.6 % 8.6 %

7.4 % 7.4 %

6.2 % 6.2 %

5.1 %

4.2 %

The probability of an up-move is found as

indicating that this probability changes with the level of r and is determined, among other things, by

the next two possible rates, r+ and r-.  The probability of a down move is simply 1 - p(r).  With these

probabilities changing in the tree, we should construct a tree of up probabilities.  For the first one,

note that a = .6, : = .1, r = .1, r+ = .115 and r- = .086.  Then the initial up probability is [.6(.1 - .1)(.2)

+ (.1 - .086)]/(.115 - .086) = .482.  The remaining probabilities are similarly found and the tree of

probabilities is presented below (note that we automatically lose the final period):
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Time 0 Time 1 Time 2 Time 3 Time 4

.273

.321

.372 .372

.426 .426

.482 .482 .482

.543 .543

.609 .609

.682

.763

We can now find the one-period default-free discount bond prices by using the above rates

multiplied by the time step, .2.  In other words the current price is e-.1(.2) = .980.  As another example,

look ahead to the price after the rate has gone up two periods and down one.  The rate will then be

11.5 %.  The bond price is, therefore, e-.115(.2) = .977.

We can also price bonds of greater than one period maturity.  In that case the forward rate

for one-period bonds, one period hence will equal the expected spot rate.  For example, suppose we

are in time period 3 and the spot rate has gone up two times and down once.  We are at the node

where the one period bond price is .977, the one period rate is 11.5 % and the probability of an up

move is .426.  If the rate moves up, the next bond price will be .974 and if the rate moves down the

next bond price will be .980.  The price of a two-period bond will equal the one-period bond price

times the forward price.  The forward price can be found as the expected future spot price, which is

given as .974(.426) + .980(1 - .426) = .977.  Thus, the two-period bond price can be found as

.977(.977) = .955.  In a similar manner we can find the prices of bonds of greater maturities.  For

example, a three period bond price will equal the price of a two-period bond times the one-period

ahead forward rate, which can be derived as the expected future spot rate.  Keep in mind, however,

that the forward price equals the expected future spot price only under the local expectations,
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hypothesis, which is the same as the equivalent martingale hypothesis/no-arbitrage hypothesis.  It

means that the expected return over the shortest holding period, here one time step, is the same for

all bonds.

We can derive the price of a bond of any maturity an alternative way.  We start at time 5 and

price the one-period bonds as the probability-weighted discounted (at the appropriate one-period

rate) average of the next two possible prices.  After filling in all time 5 prices of one-period bonds,

we step back to time 4 and recognize that 2-period bonds at time 4 will evolve into 1-period bonds

at time 5.  We then simply take the probability-weighted discounted average of the next two 1-period

bond prices at time 5.  For example, at the top-most node at time 5 we have a one-period rate of 18.3

%, meaning that the one-period bond price is e-.183(.2) = .964.  At the node just below, the one-period

bond price is e-.147(.2) = .971.  Stepping back to the top-most node at time 4, let us price a two-period

bond at that time.  We see that this two-period bond price will evolve into a one-period bond price

of either .964, with (equivalent martingale) probability .273, or .971, with (equivalent martingale)

probability 1- .273 - .727.  The expected price one period later is, thus, .964(.273) + .971(.727) =

.969.  We then discount this back from period 5 to period 4 at the one-period rate in the period four

cell, which is 16.5 %.  So we have .969e-.165(.2) = .9375.  This procedure is then repeated throughout

the tree.

Hull and White (1990) have proposed a modification of the CIR model that permits input of

the current term structure.  They introduce a time varying volatility, drift and mean reversion

parameter:

The drift term N(t) is given as a(t)b + 2(t) minus a risk premium, if applicable, and 2(t) is given by

a more complex formula in the paper.  The solution for the bond price is the same but the following

are slightly different:
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where many of the parameters are time independent.  For time dependent parameters and the case

of American options, they recommend a trinomial tree.

Hull and White (1993) also propose another variation of the form

where a is constant.  Again, they use a trinomial tree to calculate these values.
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