

Kondor+ Basic Course

Eleonore Charrez
Risk Learning

THOMSON REUTERS

Emanuel Derman

- Physics PhD
- globally revered financial expert
- former top Goldman Sachs executive
- professor at Columbia University,
" a leading "quant" having spent a big chunk
- of his professional life trying to determine whether the markets are mathematically tamable:
"It's not that physic s is better, but rather that finance is harder. In physics you are playing against God, and He doesn't change His laws very often. In finance, you are playing against God'screatures, agents who value assets based on their ephemeral opinions."

Emanuel Derman

"No mathematical model can capture the intric acies of human psychology. Watching people put too much faith in the power of formalism and mathematics, I saw that if you listen to the models' siren song for too long, you may end up on the rocks or in the whirlpool."

Emanuel Derman

"As a physicist, when you propose a model of Nature, you are pretending you can guess the structure created by God. Perhapsit is possible because God doesn't pretend. But as a quant, when you propose a new model of value, you are pretending you can guess the structure created by other people. As you say that to yourself, if you are honest, your heart sinks. You are just a poor pretender and you know immediately there is no chance at all that you are truly right. When you take on other people, you are pretending you can comprehend other pretenders, a much more diffic ult task."

John Meriwhether, LTCM

"The huric ane is not more or less likely to hit because huric ane insurance has been written.
In financial markets this is not true. The more people write financial insurance, the more likely it is that disaster will happen because the people who know you have sold the insurance can make it happen".

FX Spot

Figure 1. Global aggregate daily FX turnover by BIS* (billions of USD)

Data for 1989 and 1992 include only spot, forward and FX swaps, not options or cross-currency interest rate swaps.

Daily FX Market transactions

Figure 3. Daily global traditional FX market turnover (billions of USD)

FX Spot

- USD 2+ trillion per day
- Major Currencies : USD, EUR, CHF, ...
- Direct \& Indirect Quote
- A direct quote is when THE US Dollar is the base currency (majority of currencies)
- An indirect quote is when the USD is the quoted currency (the exceptions) EUR, GBP, AUD, NZD (and most UK ex-colonies)

Kondor + Ccy set up - required steps

- Geographical Area definition
- Country Definition
- City Definition
- Holiday Calendar definition
- New Ccy record insertion
- New Ccy Pairs market convention set-up
- Set-up the Forex Base Rates, if used
- Points definitions, if new pair is swap pair
- Volatilities definitions, if new pair is option pair
- Realtime link of new Ccy pair, points cned volatilities
- Yield curve definition
- Calculation Parameters

Revaluation

You run revaluations to determine your breakeven price for tomorrow. Revaluation results and reports display profit or loss in the local currency that results from the insertion of deals since the previous revaluation.
(Administration Guide p. 143)

Yield curve structure - theories

- Expectation hypothesis : if higher interests are expected investors invest in short term paper. Theory for basis of forward rates.
- Liquidity Preference : Liquidity premium for long term paper (theory can't explain inverse yield curves...).
- Market segmentation theory : each marke \dagger segment is independent and market participants only participate in one segment (theory explains humps on yield curve).

Calibration Instruments

- US govemment short curve : T-bills, FRAs, swaps and liquid coupon bearing bonds in the AA rating category.
- UK govemment c urves: UK government bonds (gilts), gilt sale and repurchase transactions (gilt repos), interbank loans, short sterling futures, FRAs and swaps.
- UBOR yield curve
\rightarrow combination of spot LIBOR rates, FRAs, IR futures and swap rates.
- 1-month to 12-month LIBOR rates to estimate the short end of the curve. But LIBOR rates are not available for maturities longer than 1 year \rightarrow
- for the medium and long IR Futures, FRAs and/or swaps.

Note : There are many combinations of bonds, futures, FRAs and swaps that can be used to construct a yield curve. Of course, if the data were perfect and markets were arbitrage free, the choice of instruments should not matter. However, given the inevitable noise in market data, the choice of securities does have an impact on the shape of the yield thomson reuters

Zero Curve - Technical Details

Zero Curves generally use :

- cash BAs/LIBOR out to 3 months
- interpolate from the futures strip from 3 months out to 1 year
- benchmark bond + swap spread thereafter (2, 3, 4, 5, $7,10, \ldots$ years)
- as of 1 year, the semiannual par swap rates are linearly interpolated
- discount factors are bootstrapped to exact swap curve dates, allowing for unequal periods (due to weekends and/or holidays)
- continuously compounded zero rates are derived from discount factors at bootstrap dates
- rates at arbitrary dates are linearly interpolated

Bootstrapping

=iterafive coupon stripping technique to obtain zero coupon yields, i.e. the zero curve.
problem with bootstrapping :

- even a small amount of noise in securities prices can result in large spikes in the forward curve, especially at longer maturities
\rightarrow if the yield curve is to be used to make inferences on the volatility and correlation structure of interest rates it is better not to derive the yield curve using the bootstrap technique, but semi-parametric and parametric models (Nelson, Siegel, Svensson) for yield curve fitting (used by the Bank of England, the European Central Bank and the US Federal Reserve)

BOOTSTRAP METHODOLOGY - Kondor

1. Use of deposit and swap rates as market rates.
2. Computation of discount factors with bootstrapping method.
3. Determination of the zero coupon yield curve.
4. Determination of the implied par curve.
\& DF p. 26 \& 27... (Curves Guide)

Zero Curve - Formulas

1. Cash BA/ UBOR disc ount factors:

$$
D F_{\text {aqus }}=1 /\left(1+\frac{r}{100} \cdot \frac{d a y s}{D C}\right)
$$

$r=$ money market rate in percent form
days $=\quad$ actual days between valuation and maturity
$D C=$ day count convention (actual 360 or 365)

Zero Curve - Formulas

2. Cash BA/ UBOR disc ount factors are converted to continuous compounded zero rates:

$$
r_{i}=-\left(\frac{365}{d a y s}\right) \cdot \ln \left(D F_{i}\right)
$$

Zero Curve - Formulas

3. Cash BA/ LBOR rate at the nearest futures contract date is linearly interpolated from the continuous rates computed in 2. above. The disc ount factor at this date is then computed using:

$$
D F_{\text {stat }}=e^{-\gamma_{\text {3tan }} \cdot d \varphi 5 / 365}
$$

Zero Curve - Formulas

4. Disc ount factors out along the futures strip are computed recursively using:

$$
D F_{e x d}=\frac{D F_{3 e g i n}}{} /\left(1+\frac{F}{100} \cdot \frac{d a y s}{D C}\right)
$$

DFend = discount factor at the end of the contract in question DFbegin = discount factor at the beginning of the contract $\mathrm{F}=$ forward rate implied in the futures price $=(100-$ futures price $)$ days = actual days covered by the futures contract

Continuously compounded zero rates are derived from these discount factors using the formula in 2 ..

Zero Curve - Formulas

5. Discount factors out along the bond + swap spread strip (1 or 2 years + (depending on the currencies / countries / liquidity / ...) are computed recursively to exact dates in half year increments using:

$$
D F_{i}=\left(1-R_{\mathrm{i}} \cdot C D F_{i-05}\right) /\left(1+R_{\mathrm{i}} \cdot \frac{d a y s_{i}}{D C}\right)
$$

DFi = discount factor at year i
$\mathrm{Ri}=$ par all-in swap rate at year i
CDFi-0.5 = cumulative discount factor to the previous swap date

Zero Curve - studies

BANEFOR INTERAATIONAL SETTLEMENTS

BIS Papers

No 25

Zero-coupon yield curves: technical documentation

Monetary and Economic Department
Odsber 2005

Yield Curves - Kondor+

Vasiceck-Fong Cluster Bootstrap Iterative Bootstrap LinearTime-splines

		Tenor Yield		Tenor	Vield	Tenor	Yield		
		1M	2.6376						
		1 M	0.7632	1 M	0.7519	2 M	2.6376		
Tenor	Vield			2M	0.7862	2M	0.7519	3M	2.6376
1 Y	1.0228	3M	0.8084	3M	0.7519	4M	2.6376		
2 V	1.02701	4M	0.8329	4 M	0.7519	5 M	2.6376		
3 Y	1.9069	5 M	0.8537	5 M	0.7790	6 M	2.6376		
4 V	3.0040	6M	0.8766	6M	0.8156	7 M	2.6376		
5 V	3.4253	7M	0.9003	7 M	0.8534	8M	2.6376		
6 V	2.8738	8M 9 M	0.92448	8 M	0.8877	9M	2.6376		
7 V	2.4205	10 M	0.9678	10M	0.9609	10M	2.6376		
8 V	2.5376	11 M	0.9900	11 M	0.9938	11 M	2.6376		
9 V	2.9315	1 V	1.0123	1 V	1.0259	1 V 2 V	2.6376 2.6376		
10 Y 11 Y	3.3456	2 V	1.3879	2 V	1.4370	2 V 3 V	2.6376 2.6376		
11 V	3.6511	3 Y	2.0004	3 Y	2.1283	4 Y	2.6376 2.6376		
12 V 13 Y	3.8563	4V	2.8466	4 V	3.2885	5 Y	2.6376 2.6376		
13 Y 14 Y	3.9886	5 Y	3.4265	5 Y	5.9302	6 Y	2.6376		
14 Y 15 Y	4.0683	6Y	3.0566	6 V	2.3650	7 V	2.6376		
15 V 16 V	4.1099	7 V	2.5275	7 V	2.6233	8 V	2.6376		
17 V	4.1203	8 y 9 y	2.4851 2.7767	8 V	2.7292	9 Y	2.6376		
18 V	4.1033	11 V	2.7767	$\frac{9 \mathrm{Y}}{11 \mathrm{Y}}$	$\begin{array}{r}2.8756 \\ \hline 3.1530\end{array}$	11 V	2.6376		
19 Y 20 Y	4.0780	12 V	3.6901	12 V	3.2859	12V	2.6376		
20 Y	4.0478	13 Y	3.8764	13 Y	3.4196	13 V	2.6376		
21 V	4.0152	14 Y	4.0036	14 V	3.5521	14 Y	2.6376		
22 V	3.9819	15 Y	4.0845	15 Y	3.6851	15 Y	2.6376		
23 Y	3.9491	16 Y	4.1236	16 Y	3.8183	16 Y	2.6376		
24 Y	3.9178	17 V	4.1309	17V	3.9513	17 V	2.6376		
25 V 26 Y	3.8885	18 V	4.1151	18 Y	4.0838	18 Y	2.6376		
26 Y	3.8615	19 Y	4.0862	19 Y	4.2174	19 Y	2.6376 3.1629		
27 V 28 Y	3.8372	20 Y	4.0531	20 Y	4.2357	20 Y	3.1629 3.7770		
28 V	3.8155	21 V	4.0192	21 V	4.1928	21 V	3.7770 4.1876		
29 Y 30 Y	3.7965	22 V	3.9838	22 V	4.1500	22V	4.1876 4.4264		
30 Y	3.7801	23 Y	3.9472	23 V	4.1071	24 Y	4.4264 4.5256		
		24 Y	3.9096	24 Y	4.0639	25 Y	4.5162		
		25 V	3.8701	25 V	4.0212	26 Y	4.4310		
		26 Y	3.8306	27 Y	3.9354	27V	4.3017		
		28 V	3.7496	28 V	3.8864	28 V	4.1597		
THOMSON REUTERS		29Y	3.7092	29 V	3.8032	29 Y	4.0381		
		30 Y	3.6916	30 V	3.7194	30 Y	3.9675		

Vasiceck-Fong

Cluster Bootstrap

Iterative Bootstrap

LinearTime-splines

NEWTON RAPHSON METHODOLOGY

Kondor+ uses a sophisticated implementation of the Newton Raphson methodology swap yield curves.
You can model every instrument of the swap yield curve as a series of fixed cash flows with an NPV of zero. Kondor+ derives some other equations by performing interpolations along the zero coupon or discount factor curves.
Kondor+ then solves the non-linear system of equations using the Newton Raphson process.

Yield Curve Definition - K+ steps needed

- Define appropriate maturity time bands
- Currency Reference index (basket) for Money Market and insert Money Mkt. Floating Rates into this basket.
- Currency Reference index (basket) for Swap (IRS) quotation and insert Swap. Floating Rates into this basket.
- Realtime links of all Floating rates.
- Define the Yield curve

Libor Panel Banks

BBA Panels for LIBOR :

- Australian Dollar (AUD)
- Canadian Dollar (CAD)
- Swiss Franc (CHF)
- Danish Krone (DKK)
- Euro (EUR)
- Sterling (GBP)
- Japanese Yen (JPY)
- New Zealand Dollar (NZD)
- US Dollar (USD)

Libor Panel Banks

STERUNG (GBP) - 16 BANKS

Abbey National plc, Bank of America, BNP Paribas, Barclays Bank plc, Citibank NA, Deutsche Bank AG, HBOS, HSBC, JP Morgan Chase, Lloyds TSB Bank Plc, Rabobank, Royal Bank of Canada, The Bank of Tokyo-Mitsubishi Ltd, The Royal Bank of Scotland Group, UBS AG, Westdeutsche Landesbank AG

Composition can change. For details check <0\#LIBORRICS>

EURIBOR Fixing Banks

Panel Banks fixing EURIBOR and EONIA :

Rates are set with the help of the ECB (European
Central Bank)
47 Banks set the rates 49 are members, 2 banks rotating every 6 months

Composition can change. For details check <0\#LIBORRICS>

...IBORs

And many other ... IBORs

- EIBOR (United Arab Emirates)
- HIBOR (Hong Kong)
- JIBOR (Jakarta)
- KIBOR (Kazakhstan)
- LIBORO1 \rightarrow BBA
- MIBOR (Madrid)
- PIBOR (Paris)
- SIBOR (Singapore)
- TIBOR (Tokyo)
- WIBOR (Warsaw)
- ...

Forward Points

- High / Low \rightarrow subtrac \dagger
- Low / High \rightarrow add
- in the US (direct quote):
- High / Low \rightarrow Discount for the USD
- Low / High \rightarrow Premium for the USD
- in London (indirect quote) :
- High / Low \rightarrow Premium for the GBP
- Low / High \rightarrow Discount for the GBP

Forward Points - Steps

Example with EURUSD=

Step 1: \$ x interest rate
Step 2 : \$ into EURO
Step 3 : Euro x interest rate
Step 4 : Total USD sum (i.e step 1)
-------------------------------- = Forward exchange rate
Total Euro Sum (i.e. step 3)

Step 5 : Forward exchange rate - Spot rate $=$ Forward points

Forward Points - Example !!!

Step 1 : \$ x interest rate
USD 1000×3 M USDD @ $1.09 \%=$ USD $2.75 \rightarrow 1002.75$
Step 2 : \$ into EURO
USD 1000 into EURO => EUR= = USD 1000/1.2391 = Euro 807.04
Step 3 : Euro x interest rate
EUR $807.04 \times$ EURD $=$ at $3 \mathrm{M} @ 2.09 \%$ $807.04 \times 2.09 \% \times 90 / 360=$ Euro $4.22=$ Euro 811.26
Step 4 : Total USD sum (i.e step 1)

> = Forward exchange rate

Total Euro Sum (i.e. step 3)
EUR of Step 3 at current spot rate i.e. $811.26 \times 1.2391=$ USD 1005.23
To be compared with USD at step 1..
Step 5 : Forward exchange rate - Spot rate = Forward points
1002.75
$=---------=1.2360 \rightarrow 1.2391$ (fx spot) $-1.2360=31 \mathrm{bp}($ QED $)$
811.26

Cash Assets / Positions vs Swaps

Cash Assets	Swaps
On-Balance sheet	Off-Balance Sheet
Require funding	No funding required
Assets may not be easy to buy (f.ex. S\&P 500)	Cash Flow exchange \rightarrow no credit risk
If bought \rightarrow credit risk	Swaps are often more tax friendly
Fully taxed (profits / losses /... need to be declared due to on- balance sheet)	

FX Swaps

Simultaneous spot and forward transactions : Buy / Sell or Sell / Buy

A FX swap consists of two legs:

- a spot foreign exchange transaction, and
- a forward foreign exchange transaction

These two legs are executed simultaneously for the same quantity \rightarrow offset each other
\rightarrow FX swaps can be viewed as FX risk-free collateralised borrowing / lending

It is also common to trade forward-forward, where both transactions are for (different) тudmankernd dates.

FX Swaps

FX swaps have been employed
" to raise foreign currencies, both for financial institutions and their customers, including exporters and importers, as well as institutional investors who wish to hedge their positions.

- to move given currency deals forward or backward in time
- for speculative trading, typically by combining two offsetting positions with different original maturities.

FX swaps are most liquid at terms shorter than one year, but transactions with longer maturities have

Outright Forward

An agreement between a bank and another party to exchange one currency for another at some future date. The rate at which the exchange is to be made, the delivery date, and the amounts involved are fixed at the time of agreement. \Rightarrow used to lock in an exchange rate on a specific date.

Outright Forward

三 single leg FX Swap

Outright Forward

Spot

+ interest ccyl
- Interest ccy2
$=F W D$
To hedge a FWD buying Eg buy USD vs EUR in 6M \rightarrow
Sell FX Spot USD \& buy Euro
Borrow FX - USD Deposit FX - EUR

NDF Outright Forward

\equiv hedging of currencies

- for currencies where government regulations restrict foreign access to the local currency or
- the parties want to compensate for risk without a physical exchange of funds.
Agreed on trade date:
- principal a mount,
- forward exchange rate,
- fixing date and
- forward date
\& basis for the net settlement that is made at maturity in a fully convertible currency.

NDF Outright Forward

At maturity / fixing date, in order to calculate the net settlement, the forward exchange rate agreed at execution is set against the prevailing market 'spot exchange rate' on the fixing date which is two days before the value (delivery) date of the NDF.

NDF Outright Forward - Example

In an NDF, the forward rate used follows the same methodology as the outright forward, but the actual funds exchanged on the value date at maturity will depend on the prevailing spot exchange rate.

If the prevailing spot rate is worse than the forward rate, the NDF is an asset and the holder of the NDF will be receiving funds from the counterparty as settlement. The opposite holds true if the NDF contract is a liability because prevailing spot rates are better that the original forward rate agreed at inception.

NDF Outright Forward

Risk: If the underlying reason for wishing to set the exchange rate for a future delivery date no longer exists, the forward exchange contract may need to be cancelled at prevailing market rates. The unwinding of the position may incur a profit or a loss. (i.e. the 'mark to market' value of the contract).

Forward Contract Pros	Forward Contract Cons
No upfront cost	Counterparty risk i.e. failure to deliwer funds at the
delivery date	

NDF - Calculation

1. What is the profit / loss for the following NDF deal:

COP= (Colombian Peso) trades @ 1960-70
NDF 1 Y 70 - 80
\rightarrow Forward rate of 2030-2050
a.) You are a corporate client \& you need COP in 1 Y .

If you have USD 1000 how many COP= would you get in 1 year with the forward rate?

NDF - Calculation

1 year later.....
COP= has appreciated to 1830-1850
What is your profit/loss?

- sum 1 year ago / today's fixing rate
- $\quad \rightarrow$ 2'050'000/1'850 $=1108.108$
- USD1108.108 - USD 1000 = USD 108.108
- $\quad \rightarrow$ your profit $=$ USD 108.108

NDF - Calculation

1 year later.....
The COP= has depreciated to 2130 - 2150
What is your profit / loss?

- sum 1 year ago / today's fixing rate
- $\quad \rightarrow$ 2'050'000/2'150 $=$ USD 953.49
- USD 1000 - USD 953.49 = USD 46.51
- $\quad \rightarrow$ your loss = USD 46.51

NDF - Calculation - Exercise

Argentinian Peso ARS=3.8550 / 00
NDF 1 Y 0.50 - 0.60
What is the NDF Rate for USD 1'000?
1 year later.....

- The ARS= has depreciated to 4.1000 What is your profit / loss?
- The ARS= has appreciated to 3.6000

What is your profit / loss?

NDF - Calculation - Exercise

sum 1 year ago / today's fixing rate

1. $\rightarrow 3.8600+0.60=3.8660 * 1000=3866$

3866/4.1000 = USD 942.93
USD 1000 - USD 942.93 = USD 57.07
\rightarrow your loss = USD 57.07
2. $\rightarrow 3.8600+0.60=3.8660 * 1000=3866$
$3866 / 3.6000=$ USD 1'073.89
USD 1'073.89 - USD $1000=$ USD 73.89
\rightarrow your profit $=$ USD 73.89

Time Option \& Take Up

A take Up is an exercise from a Time Option deal, Time Option Deals are different from normal FX Swap deals in the fact that they integrate the optionality in the contract.

When inserting this kind of deal, in terms of position keeping you have the ability to impact either the Maturity Date or the Option Date (depends on the Admin > Application Config choice: Time Option Worst Case Scenario.

Roll back - roll over

Rollback and Rollover liquidates the full amount or partial amount of FX swap or outright forward deals before (rollback) or after (rollover) their maturity date. This means that you can split the deal into many parts having separate settlement instructions. The separate parts can be pre-delivered or rolled over.

You can perform a roll back if you decide to liquidate, by changing the rate, all or part of an FX swap or outright forward deal that is not a time option.

Liquidation vs. Termination

1. Liquidation : stays in books
2. Termination : removed from books
i.e. difference lies in Cash Flows
3. (assignment) : partial termination / liquidation

Loans \& Deposits

On-Balance Sheet Items \rightarrow
 count for capital requirement measures

Risk is measured by weighting all assets by a given series of coefficients.

Risk - asset ratio is calculated, in accordance to BIS rules

Deposits

Conditions:
-Deposit till end of contract
-None of the 2 parties ask for early cancellation
-Interests payable at end
-For longer than 1 year : interests annually \& at end
Any deposit which doesn't have a maturity and can be called... Call Account... where the conditions are :

- Related to the call frequency ($24 \mathrm{~h}, 48 \mathrm{~h}, 7 \mathrm{~d}$...)

Deposits

1.) most currencies: 360

UK: 365
2.) real number of days $\boldsymbol{\rightarrow}$ possibility of 365 / 360

Yield quotes

1.) BEY (US Bond market)

$$
B(t, T)=\frac{100}{\left(1+R^{T}\right)^{\left(\frac{(T-t)}{365}\right.}}
$$

2.) $M M$ yield (interbank $L \& D s) \quad B(t, T)=\frac{100}{\left(1-R^{T}\left(\frac{(T-1)}{365}\right)\right)}$
3.) Discount rates (CPs, T-Bills) $\quad B(t, Y)=100-R^{T}\left(\frac{T-t}{365}\right) * 100$

Day Count \& Yield/Discount Conventions

		Day Count	Yield
US	Depo/CD T-Bill Treasuries	Act/360 Act/360 Act/act, semi-an.	BEY
Euromarket	Depo Eurobonds	Act//360 $30 E / 360$	Yield
UK	Depos/CD/CP Gilt	Act/365 Act/365, semi-an.	BEY

Loans \& Deposits

Risk :
 Interest rates, i.e. yield curve

\rightarrow Mismatching / gap

Investment Swap = Funding Swap

An Investment Swap is not impacting the Fx Swap positions, but generates

- 1 Spot deal
- 1 synthetic deposit
- 1 synthetic loan

L\&D \rightarrow impacting Balance sheet i.e. on balance sheet item, not off balance sheet as Fx Swaps.

Cash Flow Deals

Cash flow deals are very often used internally for consolidation (calibration) purpose between for example monthly results of an accounting department and the results of trading department.
Adding the extra cash flow you can rebalance the results of both department

Cash Flow Deals

Retail (i.e. small deals) are aggregated and integrated within K+ as CF deals (due to different maturities of the retail deals)

Call Account

A bank account that pays a higher rate of interest than an ordinary account. You have to ask the bank a short time before if you want to take money out.

Particularity of Call Account:
-l account per client \& tenor \& currency
Q : you have 1 client who makes deposits in

- USD, EUR, GBP \& CHF
- In all currencies your client does 1W, IM \& 3M deposits.
How many CA do you have to set up for this folliewntrirs

Forward Rates

Forward interest rates are the rates of interest implied by current zero rates for periods of time in the future.
\rightarrow If an investor thinks that rates in the future will be different from today's forward rates there are many different trading strategies...

- Forward IAM
- FRAs
- Futures
- IRS
- ...

Forward Rates

Forward Rates are the rates of interest implied by current zero rates for periods of time in the future (continuous compounding).

Year n	Zero rate for an n- year investment (\% p.a.)	Forward rate for nth year (\% p.a.)	return
1	3.0		$100 e^{0.03 \times 1}=103.05$
2	4.0	5.0	$100 e^{0.04 \times 2}=108.33$
3	4.6	5.8	
4	5.0	6.2	
5	5.3	6.5	

Forward Rates - CALCULATE !!!

$\mathbf{1}^{*} \mathbf{3} \%+\mathbf{1}^{*} \mathbf{x} \%=\mathbf{2}^{*} \mathbf{4} \%$
else...
ARBITRAGE...!!

Forward Rates - CALCULATE !!!

$$
R_{f}=R_{2}+\left(R_{2}-R_{1}\right) \frac{T_{1}}{\left[T_{2}-T_{1}\right]}
$$

Where
$R=$ interest rate of period $f, 1,2, \ldots$ i.e. $>\mathrm{t}_{0}$ T = Time

Year n	Zero rate for an n- year investment (\% p.a.)	Forward Rate (calc)	Forward Rate
1	3.0	$=0.04+(0.04-0.03) *(1 /(2-1)$	5%
2	4.0	$=0.05+(0.05-0.04) *(2 /(3-2)$	7%
3	5.0	$=0.06+(0.06-0.05) *(3 /(4-3)$	9%
4	6.0	$=0.07+(0.07-0.06) *(4 /(5-4)$	11%
5	7.0		

Forward Rates - CALCULATE !!!

To calculate the marked-to-market value of a FRA, Kondor+ first calculates the forward rate. Kondor+ calculates estimated (forward) floating rate used for marked-to-market calculations as follows:

$$
\text { Forward Rate }=\left(\frac{\text { Discount Factor }_{\text {Value Date }}}{\text { Discount Factor } \text { Maturity Date }}-1\right) \times \frac{\text { Basis } \times 100}{\text { No. of Days }_{\text {(Value Date, Maturity Date) }}}
$$

Loans \& Deposits - Forward Loans

Need of forward loans:

- A business would like to lock in the "current" low borrowing rates from money markets
- A bank would like to lock in the "Current" high lending rates
- A business may face a floating-rate liability at time $\dagger 1$. The business may want to hedge this liability by securing a future loan with a known cost

FRAs

Off-Balance Sheet Items \rightarrow no capital requirement measures
= single period IR swaps

- Notional borrowing or lending
- Exchange of cash equal to the difference between the actual rate on the day and the rate agreed in the FRA
- The buyer of the FRA is the notional borrower, i.e. party seeking protection against a rise in rates
- Seller is the notional lender - the party seeking protection against a fall in rates

FRAs

- CA : contract amount
- CR : contract rate (usually Libor)
\rightarrow Ref Data: Libor 3 or 6 M ? ? ?
- CP : contract period
- Fixing date : T+2
- Settlement date
- Settlement sum
- perfect instrument to hedge gaps of loans \& deposits
- MM equivalent of forward-FX contracts

FRAs

| Buy a FRA | Fixed rate
 loan,
 running
 from tl to
 t2 with
 rate fixed
 $@$ t0 |
| :--- | :--- | :--- |$+$| Floating |
| :--- |
| rate |
| deposit, |
| running |
| from t1 to |
| t2 with |
| rate fixed |
| at tl |

FRAs are contracted @t0 and settled @ $\dagger 1$

Futures

- A contract that conveys the obligation to buy or sell a particular item at a certain price for a limited time.
- Both the buyer and the seller of the contract are obligated to perform

Specifications of Futures contracts

- Underlying asse†
- Contract Size / Unit of trading
- Price quotes : easy to understand $\boldsymbol{\rightarrow}$ priced and quoted similar to the underlying
- Minimum Price move : consistent with the way the underlying is traded
- Last trading day and time (for settlement price)
- Delivery Arrangements (in case of physical delivery possibility)
- Delivery Months : specified by the Exchanges
- Delivery Day
- Trading hours
" ????? Anything else ????? \rightarrow BACKGROUND

Specifications of CME ® Eurodollars 0\#ED:

A leader looks the part. And nothing comes close :

- open interest ~ 6.7 mio contracts
" = ~ 6 bn in volume
- Daily volume of ~ 2.8 million for CME Eurodollar futures and options on futures.
- ~ With 95\% of CME Eurodollar futures trading electronically on the CME Globex® platform.
- EDs are USDs on deposit in commercial banks located outside of the US. ED deposits play a major role in the international capital market, and they have long served as a benchmark interes \dagger rate for corporate funding.
- CME® Eurodollar futures contracts reflect the BBA 3-month ED Interbank Time Deposits

Specifications of ED:

- Trade Unit Eurodollar Time Deposit having a principal value of \$1,000,000 with a three-month maturity.
- Point Descriptions 1 point $=.01=\$ 25.00$
(i.e. from 94.63 to 94.64)
- Contract Listing Mar, Jun, Sep, Dec, Forty months in the March quarterly cycle, and the four nearest serial contract months.
- Strike Price Interval
- Product Code
- Contract description

Clearing \& Ticker =ED GLOBEX=GE

CME/ED

Details on ED:

Buy ED: Future = promise to "deposit" USD 100 - ($1 \times$ ft0 exp yf) @ t1 and receive 100 in 3 M

Then implied annual interest rate on this loan =
Ft0 $=(100-Q t 0) / 100$

Eg. Future price of $99.60=$ implied FWD rate of 0.04%

Other STIR contracts

<FUT/IR1>

Eurex 3 M Euribor Future <0\#FEU3:>
LIFFE Euribor <0\#FEI:>
LIFFE Short Sterling <0\#FSS:>
<FUTURES>
<LIF/FUTEX3>
<LIF/FSS>
<LIF/FEI>

FRAs vs Short term Interest Rate Future

FRAs	STIR Future
Flexible	Standard
Confidentiality	Terms known
No margin requirement	Margin requirement Mark to market
@ settlement (t1) change hands of different interest rate quotes	CFs Daily on price quote
Sell FRA	Sell Future (but buy STIR)
Non netting of contracts	Fungible \rightarrow netting of contracts
Convexity	Linear price

Bonds

on balance sheet assets / liabilifies
Become off balance sheet by

- Securitization
- IRS
- Asset Swaps
- ...

Ranking:

- Senior (guaranteed or not guaranteed),
- Subordinate (guaranteed or not
guaranteed),
- Junior,
- Mezzanine...

Debt Recovery Rate

Senior Secured Bank Loans	70.26 \%
Senior Secured bonds	55.15%
Senior unsecured bonds	51.31%
Senior subordinated bonds	39.05%
Subordinated bonds	32.74%
Junior subordinated bonds	20.39%

Bond Ratings: Probability of default

Probability of default in \% based on long term debt analysis by S\&P

Hedging

\rightarrow ' 60 s hedge only (i.e. reduce risk)
'60s \rightarrow hedge (i.e. reduce risk) \& expected return
\rightarrow Minimize the price risk \& maximize the expected P\&L over the hedging period

Hedging risk :
" Maturity mismatch

- Proxy hedging

Batch Process

- Not on a regular basis (once...) : just after installation or end of year when closing out positions / archiving deals
- Regularly : f.ex. Varifying that KplusBatch ran correctly (nightly K+ batch process) or Performing revaluations
- Periodically : after installation and setting up of the database, f.ex. Veryfiying the integrity of the K+ database

Only ONE User \rightarrow SUPERUSER, part of Admin Group
Admin Guide p. 64 ff

Batch Process

- Run at lam (if change of time $\boldsymbol{\rightarrow}$ Admin Guide)
- Sequential or distributed
- Batch run : real-time servers stop and are reinitialized once batch job finished
- If batch job failed \rightarrow run manually

Batch Process

To check the batch job:

- Audit trail
- Log files
- Batch Monitor (Admin > System > ...)

Which batch jobs are run ????

Admin Guide p. 72 ff.

Verify Positions

Position Checker:

- allows to verify positions and cash flows for coherency with the deals that generated them.
You must verify positions and cash flows:
- when a $\mathrm{K}+$ warning message indicates that there is a problem related to a position or cash flow table
- whenever you are unsure of the accuracy of a position or cash flow, for example, if a crash occurs and data in position tables is lost
- when upgrading K+

Positions \& Cash Flows Checker also allows to update positions and cash flow records to restore coherency with the deals that generated them.

Schedule Checker

- recalculates rates and cashflows
- verifies fixing and forward dates
- verifies all dates

Schedules can be selected by

- types of instrument,
- hierarchy,
- floating rates, or
- Cities

Admin Guide p. 127 ff.

Revaluations

- You run revaluations to determine your breakeven price for tomorrow. Revaluation results and reports display profit or loss in the local currency that results from the insertion of deals since the previous revaluation.
- As all revaluation rates are against the local currency, Kondor+ calculates and applies the revaluation rates between two foreign currencies where all pairs have a direct quotation mode as follows:

	Results displays the P/L from start, daily, monthly, and yearly for each currency pair. Kondor+ displays the total P / L in red at the end of each column.	
	FOR:	RESULTS DISPLAYS:
......	Spot, according\|to the level of hierarchy	P/L for each currency pair in spot positions total local P/L for each group of currency pairs in red overall local P/L in the last columns of the table
	Securities, futures, options, papers, warrants, and OTC options, according to the level of hierarchy	- P / L from Start - Daily P/L - Monthly P/L (P/L for the current month) - Yearly P / L (P / L for the current year
	Money market, according to the level of hierarchy, calculation method, and deals (periodic-collateralized loans \& deposits, IAM-discounted loans \& deposits, repos, and paper \& CDs)	Mat. Start P/L P/L from Start Total Start P/L Daily P/L Monthly P/L (P/L for the current month) Yearly P / L (P / L for the current year)
Admin Guide p. 142 ff.	Call accounts, according to the level of hierarchy	Mat. P/L from Start P/L from Start Total Start P/L Daily P/L Monthly P / L (P / L for the current month) Yearly P / L (P / L for the current year)
\%ider	FX swap	Different views, according to the Calculation Method: Daily Fwd Cost to Close Daily Fwd Swan Diff Dailv Fud Linear Daiky Fwd Summany Global Summary Carry Summany If you enter a Report Currency or Basket Currency, Kondort displays the P/L for each currency pair in it, in addition to the other results (see EX Swan Revaluation Methodology).

Reval

- seven most recent revaluation reports on bonds, equities, futures, options, warrants
- five most recent revaluation reports on L \& Ds (periodic \& IAM), repos, paper \& CDs, call accounts

Admin Guide p. 142 ff.

