
Bluff Your Way Through Black-Scholes

Saurav Sen

December 2000

Contents

What is Black-Scholes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The Classical Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . 1
Some Useful Background Mathematics . . . . . . . . . . . . . . . . . . . . . 1
Assumptions in the Classical Black-Scholes Model . . . . . . . . . . . . . . . 5
The Equation dS/S = µdt+ σdW . . . . . . . . . . . . . . . . . . . . . . . . 6
Deriving the Black-Scholes Equation: Method I . . . . . . . . . . . . . . . . 6
Deriving the Black-Scholes Equation: Method II . . . . . . . . . . . . . . . . 7
Comparison of Methods I and II . . . . . . . . . . . . . . . . . . . . . . . . . 8
What is Delta-Hedging? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Deriving the Black-Scholes Equation: Method III . . . . . . . . . . . . . . . 8
Market Price of Risk or Sharpe Ratio . . . . . . . . . . . . . . . . . . . . . . 9
Solving the Black-Scholes PDE . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pricing a European Call Using Black-Scholes . . . . . . . . . . . . . . . . . . 9
Why is there no µ in the Black-Scholes formula? . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

What is Black-Scholes?

Black-Scholes is a framework for pricing options (and corporate liabilities, according to the
title of the 1973 paper by Fisher Black and Myron Scholes which started everything).

The Classical Black-Scholes Model

The so-called classical Black-Scholes model is a simplification of the general Black-Scholes
framework. It is very well-known and widely used in practice, even though it has some obvi-
ous shortcomings. The main reason for this seems to be that the cost/benefit ratio of using
a significantly more accurate version is too high for most everyday purposes. Specifically,
the quantity that is of greatest interest is usually the volatility of stock returns, σ. Classical
Black-Scholes assumes a constant σ, and empirical evidence suggests that the first general-
isation which is significantly more accurate for out-of-sample data is a stochastic volatility
model, where σ is determined as the solution to another stochastic differential equation
(SDE). Additionally, classical Black-Scholes often provides a fairly good insight into option
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pricing anyway. For this and other reasons, we concentrate on classical Black-Scholes in the
present course.

Some Useful Background Mathematics

1. Brownian Motion: Brownian motion can be defined in several equivalent ways. Here
is one simple definition: The process {Wt : t ≥ 0} is called a Brownian motion with
respect to the probability measure P if

• W0 = 0 and Wt has continuous sample paths.

• Wt ∼ NP (0, t) , i.e. Wt is normally distributed with mean 0 and variance t under
the probability measure P.

• Wt −Ws ∼ NP (0, t− s) and is independent of the history of the process until
time s. In words, Brownian motion has independent, Gaussian increments.

The covariance function for a Brownian motion is calculated as follows. If t > s,

E [WtWs] = E
[
(Wt −Ws)Ws +W 2

s

]
= E [Wt −Ws]E [Ws] + E

[
W 2
s

]
= s

The first term on the second line follows from independence of increments. Similarly,
if s > t, then we can show that E [WtWs] = t. Thus we have the result:

E [WtWs] = min {t, s}

Brownian motion is a martingale. A martingale is a constant expectation process. Mt

is called a P− martingale if

E
P

t [MT ] = Mt

For a Brownian motion,

E
P

t [WT ] = EPt [WT −Wt +Wt]

= EPt [WT −Wt] +Wt

= Wt

The first term on the second line has expected value zero, and the second term is known
at time t, hence we can write Wt instead of EPt [Wt] . For other properties of Brownian
motion, see the references and exercise sheets.

2. Ito Integrals: Ito integrals are one way of assigning meaning to the symbol

I =

∫ T

0

f (t,Wt) dWt
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They are defined in a manner similar to Riemann integrals in deterministic calculus,
i.e. as the limit of an approximation by discrete sums.

I ≈
N−1∑
n=0

f (tn,Wtn)
{
Wtn+1 −Wtn

}
Note that the function is evaluated at the left end point tn of each sub-interval. For
deterministic integrals, the choice does not matter - we could choose any point in the
sub-interval and the sum would converge to the same value (provided the function was
integrable). However, for stochastic integrals they can give different answers. The Ito
definition uses the left end-point. The Stratanovich definition uses the midpoint of each
subinterval, (tn + tn+1) /2. The Stratanovich definition has the advantage that rules of
classical Newtonian calculus translate directly to the stochastic setting. However, the
Ito definition is more relevant in the context of finance, since it is non-anticipating (We
know prices at the start of each time period - not halfway through into the future).
The main thing to note about Ito integrals is that I is a random variable (unlike the
deterministic case). Additionally, since I is essentially the limit of a sum of normal
random variables, I is normally distributed too, and can be characterised by its mean
and variance. The two main results used by us are:

E

[∫ T
0
f (t,Wt) dWt

]
= 0

E

[(∫ T
0
f (t,Wt) dWt

)(∫ T
0
g (t,Wt) dWt

)]
=
∫ T

0
E [f (t,Wt) g (t,Wt)] dt

A consequence of the second property is that

E

[(∫ T
0
f (t,Wt) dWt

)2
]

=
∫ T

0
E

[
f (t,Wt)

2] dt
This is called the Ito isometry.

3. Ito’s Lemma: Ito’s lemma forms the basis for defining a set of calculus-like rules for
stochastic processes. In a simple form, it says that if

dXt = µtdt+ σtdWt

where µt and σt are Ft−adapted, i.e. known for sure at time t, and if f (t, x) is
continuously differentiable once in the first argument and twice in the second, then
f (t,Xt) is also an Ft− adapted process, and

df (t,Xt) =

{
∂f

∂t
(t,Xt) + µt

∂f

∂x
(t,Xt) +

1

2
σ2
t

∂2f

∂x2
(t,Xt)

}
dt+ σt

∂f

∂x
(t,Xt) dWt

One way of ‘deriving’ Ito’s lemma is to Taylor-expand f, use the fact that dW 2 → dt
as dt → 0, and retain terms to order dt. See the exercise sheets for examples on how
to apply Ito’s lemma.

3



4. Moment-Generating Functions (MGF’s): You can find information on MGF’s in
any textbook on basic probability. If X is a random variable, then its MGF is defined
as

MX (θ) := E
[
eθX
]

= E
[
1 + θX + 1

2!
θ2X2 + 1

3!
θ3X3 + ...+ 1

n!
θnXn + ...

]
= 1 + θE [X] + 1

2!
θ2
E

[
X2
]

+ 1
3!
θ3
E

[
X3
]

+ ...+ 1
n!
θnE [Xn] + ...

The reason for the name should now be obvious: The k−th moment of X is the k−th
derivative of the MGF, evaluated at θ = 0. One result that is particularly relevant in
finance is the MGF of a normal distribution. If X ∼ N (µ, σ2) , then

MX (θ) = eθµ+ 1
2
θ2σ2

Here is a proof:

X ∼ N
(
µ, σ2

)
⇒ X = µ+ σφ

where φ ∼ N (0, 1) . Hence

MX (θ) = E
[
eθX
]

= E
[
eθ{µ+σφ}] = eθµE

[
eθσφ

]
The MGF of X is therefore equal to the MGF of φ, with θ replaced by θσ. So we
calculate the (easier) MGF of φ :

E

[
eθφ
]

=
1√
2π

∫ ∞
−∞

eθxe−x
2/2dx

=
1√
2π

∫ ∞
−∞

eθx−x
2/2dx

=
1√
2π

∫ ∞
−∞

e−
1
2(x2−2θx+θ2−θ2)dx

=
1√
2π

∫ ∞
−∞

e−
1
2

(x−θ)2+ 1
2
θ2

dx

= e
1
2
θ2 1√

2π

∫ ∞
−∞

e−u
2/2du where u = x− θ

= e
1
2
θ2

Thus

MX (θ) = E
[
eθX
]

= eθµE
[
eθσφ

]
= eθµ+ 1

2
θ2σ2

5. Kolmogorov Backward Equation: Kolmogorov’s backward equation relates the
solution of the PDE

Ft +
1

2
σ (t, x)2 Fxx + µ (t, x)Fx + r (t)F = 0

F (T, x) = ψ (x)
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with the solution of the SDE

dx = µ (t, x) dt+ σ (t, x) dW

Consider the function

H (t, x) = F (t, x) exp
{∫ t

0
r (s) ds

}
= F (t, x)R (t) ∈ Ft

Since R is a function of time alone, the usual product rule of differentiation can be
applied

dH = FdR +RdF

= rFRdt +R

{(
Ft +

1

2
σ2Fxx + µFx

)
dt+ σFxdW

}
= R

[
Ft +

1

2
σ2Fxx + µFx + rF

]
+ σRFxdW

The first term is zero because F satisfies the PDE. In integrated form

H (T, x (T ))−H (t, x (t)) =

∫ T

t

σ (s, x)R (s)Fx (s, x) dWs

Taking expectations, we have, since E [dW ] = 0,

H (t, x (t)) = Et [H (T, x (T ))]

⇒ F (t, x) exp
{∫ t

0
r (s) ds

}
= Et

[
F (T, x) exp

{∫ T
0
r (s) ds

}]
⇒ F (t, x) = Et

[
ψ (x) exp

{∫ T
t
r (s) ds

}]
In other words, if x is a solution of the SDE

dx = µ (t, x) dt+ σ (t, x) dW

then the solution of the PDE

Ft +
1

2
σ (t, x)2 Fxx + µ (t, x)Fx + r (t)F = 0

F (T, x) = ψ (x)

is given by

F (t, x) = Et

[
ψ (x) exp

{∫ T
t
r (s) ds

}]
Note that this works even when r is stochastic! Thus we have a recipe for solving
PDE’s: form the appropriate SDE and then take expectations as above. For more on
Kolmogorov’s backward equation, see the model solutions.
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Assumptions in the Classical Black-Scholes Model

• The market consists of a continuous-trading, perfectly elastic economy. Perfect elastic-
ity means that the process driving the stock price is unaffected by swings in demand, or
equivalently that all investors are price-takers. Assets are stock (risky), cash (riskless)
and a derivative (defined in terms of the stock price at maturity).

• Efficient Market Assumption: All information about the past performance of the stock
is contained in the stock price S, which is observable to all market participants. This
means that the stock price is a Markov process.

• There are no transaction costs.

• Stock can be infinitely subdivided and short selling (selling something you do not own)
is allowed, i.e. fractional and negative holdings of stock are permitted.

• The risk-free continuously compounded interest rate r is constant.

• Stock prices are assumed to evolve according to the SDE:

dS

S
= µdt+ σdW

where µ and σ are constants and W is a standard Brownian motion.

• The price of an option at time t, which we write as V (t, S) is a deterministic function
of t and S.

The Equation dS/S = µdt+ σdW

The equation

dS

S
= µdt+ σdW

is often referred to as the geometric Brownian motion assumption in Black-Scholes. This is
because the solution to the equation is

St = S0e
(µ− 1

2
σ2)t+σW

which looks like geometric growth driven by a drifting Brownian motion. To see this, define
Y = f (t, S) = logS. Then using Ito’s lemma, we have:

ft = 0; fS = 1/S; fSS = −1/S2

dY = df (t, S) =
(
ft + µSfS + 1

2
σ2S2fSS

)
dt+ σSfSdW

=
(
µ− 1

2
σ2
)
dt+ σdW

i.e. d logS =
(
µ− 1

2
σ2
)
dt+ σdW
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We can now integrate this sum of linear differentials to get

logSt − logS0 =
(
µ− 1

2
σ2
)
t+ σWt

i.e. St = S0e
(µ− 1

2
σ2)t+σW

Note that unlike the deterministic case, the derivative of logS is not 1/S. See model solutions
to the exercises for more on this point.

µ represents the average rate of growth of the stock and σ the uncertainty. It is easy to
check, using the moment generating function technique, that

EtST = Ste
µ(T−t)

Deriving the Black-Scholes Equation: Method I

The stock price and riskless cash evolve as follows

dS/S = µdt+ σdW

dB/B = rdt

Using Ito’s lemma,

dV =
(
Vt + 1

2
σ2S2VSS + µSVS

)
dt+ σSVSdW

Want to construct a self-financing replicating portfolio (x, y) of x cash and y stock for this
option. The value of this portfolio is

π = xB + yS

In continuous time, self-financing means

dπ = xdB + ydS

To replicate, we want V and π to follow the same SDE’s.

dπ = (xrB + yµS) dt+ yσSdW

Matching the volatility terms of dV and dπ, we get y = VS. Now matching drift terms, we
get

Vt + 1
2
σ2S2VSS = xrB

With this choice, π = V, so we can write xB = π − yS = V − SVS. Substituting this into
the equation above gives:

Vt + 1
2
σ2S2VSS + rSVS − rV = 0

which is the Black-Scholes equation.
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Deriving the Black-Scholes Equation: Method II

Here is a method given by Wilmott, Howison and Dewynne.

dS/S = µdt+ σdW

Ito’s lemma implies, as before:

dV =
(
Vt + 1

2
σ2S2VSS + µSVS

)
dt+ σSVSdW

Now we construct a portfolio

Π = V −∆S

consisting of one option and short ∆ of the stock. Then

dΠ = dV −∆dS

=
(
Vt + 1

2
σ2S2VSS + µS (VS −∆)

)
dt+ σS (VS −∆) dW

Choose ∆ = VS to knock out the dW term. Now the portfolio grows at a deterministic rate.
By no-arbitrage, this rate must equal r, i.e.

dΠ =
(
Vt + 1

2
σ2S2VSS

)
dt = rΠdt = r (V − SVS) dt

Rearranging this equation gives Black-Scholes

Vt + 1
2
σ2S2VSS + rSVS − rV = 0

Comparison of Methods I and II

In method 1, we chose a self-financing portfolio of cash and stock to replicate the option. In
method 2, we chose a portfolio of option and stock to replicate cash.

What is Delta-Hedging?

In finance jargon, the option delta refers to the amount of stock needed to hedge the option
position. This is shown more explicitly in method 2, where ∆ = VS is the amount of stock
that needs to be sold to make the hedged portfolio Π instantaneously riskless. In method
1, the delta is given by y = VS and here it is the amount of stock that needs to be bought,
since we are replicating the option and not cash as in method 2. In the perfect Black-Scholes
world where uncertainty is driven by a standard Brownian motion and time is continuous,
delta-hedging is a perfect strategy. More realistically, the delta-hedging eliminates leading
order risk. See Bjork for a description of Gamma-neutral hedging.
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Deriving the Black-Scholes Equation: Method III

In the market measure P,

dS/S = µdt+ σdW = rdt+ σ

(
dW +

µ− r
σ

dt

)
If µ−r

σ
is sufficiently well-behaved (and it is for the constant-parameter classical Black-Scholes

case), we can write dW+ µ−r
σ
dt as dW̃ , a standard Brownian motion under an equivalent (and

in this case unique) probability measure P̃. For the interested reader, this is a consequence
of Girsanov’s theorem. Under this new measure,

dS/S = rdt+ σdW̃

Since the average rate of growth of the stock under this new measure is r, we recognise P̃
to be the risk-adjusted measure. In fact, it can be verified that the relative price process
Z = B−1S is a martingale under this measure. Now if V (t, S) is the price of an option, then
Ito’s lemma gives:

dV =
(
Vt + 1

2
σ2S2VSS + rSVS

)
dt+ σSVSdW

In the risk-adjusted measure, all assets grow at the average rate r, i.e. we can write

Ẽ [dV ] =
(
Vt + 1

2
σ2S2VSS + rSVS

)
dt = rV dt

Cancelling dt and rearranging gives the Black-Scholes equation

Vt + 1
2
σ2S2VSS + rSVS − rV = 0

Market Price of Risk or Sharpe Ratio

In the market measure, µ represents the average rate of growth of the stock. Since the stock
is risky, we expect µ > r. The difference µ − r measures the amount of risk inherent in the
stock. σ, on the other hand, measures volatility, or market-wide risk. The quantity

µ− r
σ

therefore represents the excess return over the risk-free rate for the stock, normalised by
market volatility. This is called the market price of risk.

Solving the Black-Scholes PDE

The Black-Scholes PDE is

Vt + 1
2
σ2S2VSS + rSVS − rV = 0

V (T, S (T )) = ψ (S (T ))
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Here, V (t, S) is the price of the derivative at time t, and its value at time T is a deterministic
function of the stock price at that time. We recognise this as a Kolmogorov backward PDE,
and so the solution is simply given as follows:

V (t, S) = e−r(T−t)EQt [ψ (S (T ))]

Here, we use the measure Q since the corresponding SDE is

dS

S
= rdt+ σdW

The drift is r, which means we must be in the risk-adjusted measure. The solution of this
SDE is

S (T ) = S (t) exp
{(
r − 1

2
σ2
)

(T − t) + σWT−t
}

Thus under the measureQ, S (T ) is lognormally distributed with parameters
(
r − 1

2
σ2
)

(T − t)
and σ2 (T − t) , conditional on S (t) . In principle at least, we can now evaluate the expecta-
tion and price the derivative in one step.

There is of course another way to solve the Black-Scholes PDE, by transforming it to a
standard heat equation. A very good outline of this method can be found in Wilmott,
Howison & Dewynne, so it is not repeated here.

Pricing a European Call Using Black-Scholes

A European call option is a contract that gives its holder the right (but no obligation) to buy
a unit of the underlying stock for a specified price K, called the strike price, at a specified
future date T called the maturity date, but not before that (hence, ‘European’). The payoff
from a European call is

ψ (S) = max {S −K, 0}

Black and Scholes showed that the price of such an option is given by

C (t, S;T,K) = SΦ (d1)−Ke−r(T−t)Φ (d2)

where Φ (.) stands for the cumulative distibution of a standard Gaussian random variable
N (0, 1) , and

d1,2 =
log (S/K) +

(
r ± 1

2
σ2
)

(T − t)
σ
√
T − t

To prove this, we use the Kolmogorov solution

C (t, S;T,K) = e−r(T−t)EQt [max {S −K, 0}]
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Write wX (x) for the probability density function of the random variable X. Then

C = e−r(T−t)
∫ ∞

0

max {S −K, 0}wS (S) dS

= e−r(T−t)
∫ ∞
K

(S −K)wS (S) dS

= e−r(T−t)
∫ ∞
K

SwS (S) dS −Ke−r(T−t)
∫ ∞
K

wS (S) dS

= Term I - Term II

Term II = Ke−r(T−t) Pr [S (T ) > K]

= Ke−r(T−t) Pr [logS (T ) > logK]

= Ke−r(T−t) Pr
[
logS (t) +

(
r − 1

2
σ2
)

(T − t) + σ
√
T − tφ > logK

]
= Ke−r(T−t) Pr

[
φ >

log (K/S (t))−
(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

]

= Ke−r(T−t) Pr

[
φ >
− log (S/K)−

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

]
= Ke−r(T−t) (1− Φ (−d2))

= Ke−r(T−t)Φ (d2)

Term I = e−r(T−t)
∫ ∞
K

SwS (S) dS

= e−r(T−t)
∫ ∞

logK

eYwY (Y ) dY

where Y = logS. Now since Y is normally distributed,

Term I =
e−r(T−t)√

2πσ2 (T − t)

∫ ∞
logK

exp

{
Y −

[
Y −

(
r − 1

2
σ2
)

(T − t)
]2

2σ2 (T − t)

}
dY

=
e−r(T−t)√

2πσ2
Y

∫ ∞
logK

exp

{
Y − [Y − µY ]2

2σ2
Y

}
dY

=
e−r(T−t)√

2πσ2
Y

∫ ∞
logK

exp

{
− 1

2σ2
Y

(
−2σ2

Y Y + Y 2 − 2µY Y + µ2
Y

)}
dY

=
e−r(T−t)√

2πσ2
Y

∫ ∞
logK

exp

{
− 1

2σ2
Y

(
Y 2 − 2

(
µY + σ2

Y

)
Y +

(
µY + σ2

Y

)2 −
(
µY + σ2

Y

)2
+ µ2

Y

)}
dY

=
e−r(T−t)√

2πσ2
Y

∫ ∞
logK

exp

{
− 1

2σ2
Y

([
Y −

(
µY + σ2

Y

)]2 − (µY + σ2
Y

)2
+ µ2

Y

)}
dY

=
e−r(T−t)√

2πσ2
Y

∫ ∞
logK

exp

{
− 1

2σ2
Y

([
Y −

(
µY + σ2

Y

)]2 − 2µY σ
2
Y − σ4

Y

)}
dY

=
e−r(T−t)√

2πσ2
Y

eµY + 1
2
σ2
Y

∫ ∞
logK

exp

{
− 1

2σ2
Y

[
Y −

(
µY + σ2

Y

)]2}
dY
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Now we have

µY +
1

2
σ2
Y = logS (t) +

(
r − 1

2
σ2

)
(T − t) +

1

2
σ2 (T − t)

= logS (t) + r (T − t)

Therefore,

e−r(T−t)eµY + 1
2
σ2
Y = elogS(t) = S (t)

Additionally, if we write

U = Y −
(
µY + σ2

Y

)
= Y − logS (t)−

(
r +

1

2
σ2

)
(T − t)

Then

1√
2πσ2 (T − t)

∫ ∞
logK

exp

{
− 1

2σ2
Y

[
Y −

(
µY + σ2

Y

)]2}
dY

=
1√

2πσ2
Y

∫ ∞
logK−logS(t)−(r+ 1

2
σ2)(T−t)

exp

{
− U2

2σ2
Y

}
dU

Now if we write Z = U/σY , then the above integral becomes

1√
2π

∫ ∞
logK/S(t)−(r+ 1

2σ
2)(T−t)

σ
√
T−t

e−
1
2
Z2

dZ

= Pr

[
φ >

logK/S (t)−
(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

]
= Pr [φ > −d1]

= 1− Φ (−d1)

= Φ (d1)

Therefore,

Term I = SΦ (d1)

Adding Term I and Term II, we have the result

C (t, S;T,K) = SΦ (d1)−Ke−r(T−t)Φ (d2)
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Why is there no µ in the Black-Scholes formula?

Black-Scholes prices derivatives in terms of the underlying stock. If we wanted to price the
stock itself, we’d need to know µ. Stock returns are assumed to be normally distributed,
and a normal distribution can be described completely by its mean and variance. Since we
ultimately take expectations, we can knock out the first moment of returns, and so the price
of a derivative is now explicitly dependent on the stock price itself and the second moment
of returns, i.e. the volatility.

A useful analogy is that the definition of a metre itself might be fairly tricky, but once it is
unambiguously defined, we can measure the length of a room precisely in terms of metres.
Black-Scholes does not attempt to price stocks. Rather, it uses the price of the underlying
as given and prices derivatives in terms of this underlying stock price.
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