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Abstract

We discuss the hedging of Bermudan swaptions in Black-Karasinski short
rate model. We are most interested in the hedging portfolio value distri-
bution when the volatility term in BK model follows a diffusion process.
We will propose several slightly different hedging strategies and look at the
hedging performance under different scenarios.
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1 Introduction

Interest rate derivatives market is the largest derivatives market in the world.
According to ISDA 2007 mid-year market survey[4], the notional amount
outstanding of interest rate derivatives grew by 21 percent to $347.09 trillion.
Corporations and financial institutions use interest rate derivatives to hedge
their interest rate risk, such as mortgage. Hedge funds use these tools to
hedge interest rate risks and/or do speculation. Swaption (to be define in
next section) is among the most widely used interest rate derivatives.

However, in classical textbooks on interest rate derivatives, there is little
discussion on the hedging of swaptions. Some of the existing textbooks[1]
only discuss the delta hedging with bonds. However, there is also a stochas-
tic volatility effect in the swaption market. Therefore, we would like to
explore the delta- and vega-hedging issues of the commonly used instru-
ment, Bermudan swaption, under a stochastic volatility setting. Bermudan
swaption is similar to a Bermudan stock option, which means it can be exer-
cise on a series of dates. We would like to try several hedging strategies and
obtain the hedging portfolio value distributions. And by looking at the PnL
fluctuation along each hedging path, we can have an idea of the robustness
of these hedging strategies.

Because of time limit, we will implement our pricing model in Black-
Karasinski short rate model. Although the current market standard model is
market model, short rate model can still give a more intuitive understanding
of the derivatives’ behaviors due to its simplicity.

This report is organized as follows. Section 2 gives backgrounds of the
instruments involved. Section 3 outlines Black-Karasinski model and the
pricing and greeks computation of swaptions in this model. Section 4 de-
scribes the hedging strategies to be used in experiments. Section 5 presents
the numerical results. And Section 6 concludes this report.

2 Instruments

The building brick of all of the following interest rate derivatives is the spot

rate curve. This curve is simply a series of spot rates at different tenors.
We can calculate the discount factors P (0, Ti) at these tenors by continuous
compounding. In order to obtain the discount factors on tenors outside these
know ones, we assume quadratic instantaneous forward rate. By doing so,
we can obtain discount factors at any time, i.e. the discount curve.

In interest rate modeling, we use the concept of short rate. The short
rate, usually written rt is the interest rate at which an entity can borrow
money for an infinitesimally short period of time from time t, i.e.

P (t, T ) = Et[e
−

∫ T

t
rsds]
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The most basic interest rate derivative is an interest rate swap. A swap
is a OTC agreement between two counterparties to exchange interest rate
payment on a prespecified notional amount. One counterparty (the fixed
payer) agrees to pay periodically the other counterparty (the fixed receiver)
a fixed coupon, usually semi-annually, in exchange for receiving periodic
LIBOR, usually quarterly. The payment from the fixed payer is call the
fixed leg of the swap while the payment from the fixed receiver is called the
floating leg. The value of a swap is the difference between the two legs.

Suppose we have a discount curve. The start date of the swap is Tstart

and the maturity date is Tmat. The coupon dates of this swap are T1 <

. . . < Tn.
The DV01 is defined as

L =
n∑

j=1

αjP (0, Tj) (1)

where αj is the day count fraction between the coupon payment dates.
If the coupon rate is , then the value of the fixed leg is

PVfixed = CL (2)

And the value of floating leg is[2]

PVfloating = P (0, Tstart) − P (0, Tmat) (3)

The break-even coupon rate is the one that makes the values of fixed and
floating legs equal

Cbreak−even =
PVfloating

L
(4)

European swaptions are OTC-traded European calls (payers) and puts
(receivers) on forward swap rates. For example, a 5.50% 1Y→5Y (“1 into
5”) receiver swaptions gives the holder the right to receive 5.50% on a 5 year
swap starting in 1 year.

Bermudan swaptions are similar to the European ones. But as in the
equity option case, “Bermudan” means the holder has the right to exercise
the option on a set of dates instead of one.

We will discuss the pricing of swaptions after we introduce the Black-
Karasinski short rate model in the next section.

As we are concerned about hedging, we will use European swaptions to
hedge the vega risk of a Bermudan swaption and use swaps to hedge its
residual delta risk. Details will be discussed in Section 4.
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3 Pricing Under Black-Karasinski Model

Black-Karasinski short rate model (BK model) was proposed by Fischer
Black and Piotr Karasinski in 1991. In this model, the logarithm of instan-
taneous short rate ln(r(t)) evolves under the risk-neutral measure according
to[1]

d ln(r(t)) = [θ(t) − a(t) ln(r(t))] dt + σ(t)dW (t) (5)

In our implementation, we assume θ is a time-dependent parameter in order
to fit the discount curve but a and σ are time-independent.

Since in traditional Black’s model, which is the basis of market quotes
of volatilities, the pricing formulas for caps and swaptions are based on the
assumption of lognormal rates, it seemed reasonable to choose the same
distribution for the instantaneous short rate process. Moreover, the short
rate will not go negative as in Hull-White model. Though this model is
relatively simple, there is no closed-form formulas for bonds. We will use
a trinomial tree[3] to price swaptions. Further, since there is only finite
states in the trinomial tree, this procedure also partially overcomes a major
drawback of BK model, which is that the expectation of a money market
account value is infinite.

In the trinomial tree implementation, we calculate the branching prob-
abilities to match the first and second moments of the underlying distribu-
tion of the short rate process. Then we use the parameter θ(t) to match
the discount factors at different tenors. In market practice, the parameters
a (mean-reversion speed) and σ (volatility term) are calibrated to the caps
and/or swaptions prices. Here we just take them as given. Because the tree
needs to be generated until the maturity of the underlying swap, the tree
construction will be the most time-consuming part in our computation.

We will illustrate in detail how to price a payer swaption in a tree[1].
Consider an interest rate swap first resetting on Tstart and paying at

T1 < . . . < Tn := T . Assume the swaption holder has the right to enter
this swap at any of the reset times Tstart = T ′

h < T ′

h+1 < . . . < T ′

k := Tmat

with Tk < T , all of which are on payment dates. If there is only one reset
time, i.e. Tstart = Tmat, this will be an European swaption. Therefore we
can price the two swaptions in the same framework.

In order to value a Bermudan swaption, we have to discretize time. We
build a equally-spaced time grid T̃1, . . . , T̃m containing both the payment
dates and the reset dates. For i ∈ {1, . . . , m} denote the short rate value on
a generic spatial node j at time T̃i by ri,j . Denote by Pi,j(Ts) the bond price
P (T̃i, Ts) at time T̃i and spatial node j. At each node, we use pu, pm, pd to
stand for upward, middle and downward branching risk-neutral probabilities
respectively.

The pricing algorithm is as follows

1. Set i = m.
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0 1 2 3

Figure 1: a typical BK trinomial tree

2. (Adding a new zero-coupon bond) Set Pi,j(T̃i) = 1 for all j.

3. (Backward induction)

Pi−1,j(Ts)

=e−ri−1,j(T̃i−T̃i−1)[puPi,j+1(Ts) + pmPi,j(Ts) + pdPi,j−1(Ts)]
(6)

for all Ts ≥ T̃i.

4. If T̃i−1 is not a payment date then decrease i by one and go back to
the preceding step. Otherwise go on to the next step.

5. (A payment date reached) If T̃i−1 > Tmat, decrease i by one and go to
step 2. Other wise move on to step 6.

6. (Exercise time reached) Based on the bonds’ values, we can calculate
the value of the swap with first reset date T̃i−1 and last payment date
T at each spatial node j. If T̃i−1 = Tmat then define the backwardly-
Cumulated value from Continuation (CC) of the swaption as the swap
value at each node j at current time level in the tree

CCi−1,j := IRSi−1,j

Else, when T̃i−1 < Tmat, if the underlying swap value is larger than
CC, then set CC equal to the swap value. If T̃i−1 = Tstart, decrease i
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by one and go to step 10. Decrease i by one and move on to the next
step.

7. (Same as step 2) Set Pi,j(T̃i) = 1 for all j.

8. (Backward induction) We use the same equation as in step 3 for the
backward induction of bond prices and replace the bond price in that
equation with CC for continuation value backward induction. More
precisely,

CCi−1,j = e−ri−1,j(T̃i−T̃i−1)[puCCi,j+1 + pmCCi,j + pdCCi,j−1] (7)

9. If T̃i−1 is not a payment date or exercise date then decrease i by one
and go back to the preceding point. Otherwise, if T̃i−1 is a exercise
date go to step 6. If T̃i−1 is a payment date decrease i by one and go
to step 7.

10. We have reached the first execution date. We will continue the back-
ward induction of CC until time 0. The terminal CC is the price for
the swaption.
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Figure 2: execution boundary for a Bermudan swaption

Figure 2 shows a typical execution boundary for a Bermudan swaptions
with 10 execution opportunities per year. Note there is a sudden jump in
the critical point before maturity.

One way to check the validity of the pricing results is put-call parity for
swaptions

PVreceiver − PV payer = PVswap paying K (8)
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Once we have the pricing function, we can compute the greeks (in a
relatively naive way). We bump the yield curve by 1bp to calculate the
delta. And we bump the volatility term in BK model to calculate the vega.
Swaps’ delta can be calculated in a similar way.

4 Hedging Strategies

In the following numerical experiments, we will hedge a long position in a
Bermudan swaption in two ways. We first try to delta-hedge our long posi-
tion in Bermudan swaption only with the next forward starting underlying
swap. Then we try first vega-hedging with a portfolio of European swap-
tions on each execution dates (because Bermudan swaptions have exposure
to a series of forward volatilities) and use the next forward starting underly-
ing swap to hedge the residual delta risk. In constructing the vega hedging
portfolio, we will experiment execution-probability-weighted portfolio. At
each execution date in the trinomial tree, we count the execution nodes and
divide it by the total number of nodes on that date to obtain the conditional
execution probabilities. The probabilities are conditional in the sense that
we assume that the Bermudan swaption will be executed according to these
conditional probabilities on each execution date and once it is executed, it
will not exist any more.

In summary, the hedging strategies are

1. delta-hedge only with the next forward starting underlying swap.

(a) Construct a position in a swap starting from next execution date
to eliminate delta risk.

(b) Proceed to next hedging date. If it happens to be an execution
date, unwind the previous swap position and enter a new forward
starting swap position. Otherwise rebalance the swap position.
Calculate financing cost. Repeat this step until the maturity of
the Bermudan swaption and go to the next step.

(c) Unwind all the position in hedging portfolio and calculate the
final PnL of this hedging path.

2. vega-hedge with a portfolio of execution-probability-weighted Euro-
pean swaption on each execution date and delta-hedge residual risk
with the next forward starting underlying swap.

(a) Construct a position in a portfolio of European swaptions to elim-
inate vega risk and enter a swap starting from next execution date
to hedge residual delta risk.

(b) Proceed to next hedging date. If it happens to be an execution
date, unwind the previous swaptions and swap positions, and en-
ter a new portfolio of swaptions and a new forward starting swap
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position. Otherwise rebalance the swaptions and swap positions.
Calculate financing cost. Repeat this step until the maturity of
the Bermudan swaption and go to the next step.

(c) Unwind all the positions and calculate the final PnL of this hedg-
ing path.

In our hedging simulation we generate the shocks to the curve and the
volatility term in the following way. The volatility follows a zero-drift diffu-
sion process

dσ = ησdW (9)

η is the vol of vol. This assumption is similar to the famous SABR model
in interest rate derivatives modeling.

And on the yield curve, we generate a parallel shift

dr = σr(1)dW (10)

r(1) is the first known value on the yield curve.
Because the BK model is based on constant vol assumption and we are

generating random vol shocks, we anticipate the replicating cost would be
higher than the price return from this model. And since we are long a
position in Bermudan swaptions, we expect the average PnL of the hedging
portfolio to be positive. What’s more, because of discrete hedging on an
equally-spaced time grid, there might be big fluctuations along each path.

In practice, swaptions traders use underlying swaps to hedge and they
hedge the vega risk on a portfolio level. Traders rebalance their hedging
when needed, e.g. residual risks growing bigger than a certain level. The
credit risk involved with swaption is handled by a separate counterparty risk
group.

5 Numerical Results

We use the yield curve in Table 1 and the parameters listed in Table 2. The
notional is fixed at one. And we hedge a long position until the swaption
maturity.

Tenor Spot Rate

1 5%
2 5.75%
3 6.25%
4 6.75%

Table 1: initial yield curve
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Parameter Value

σ0, initial value of vol term in BK model 0.1
η, vol of vol 0.1

α, mean-reversion term in BK model 0.15
dt, time step length in trinomial tree 0.05

Tstart, Bermudan swaption starting date 2
Tmat, Bermudan swaption maturity 3

T , underlying swap maturity 4
K, Bermudan swaption strike 5%

M , Bermudan execution times per year 4
N , underlying swap payment per year 2

Table 2: parameters in numerical experiments
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Figure 3: hedging portfolio PnL paths

We test the two hedging strategies mentioned above under two settings,
hedging frequency per year (parameter HF ) being 4 and 20. Thus there are
four combinations. For each scenario, we generate 200 paths.

Figure 3 shows the PnL paths under the four scenarios. It is interesting
to see that with vega-hedging, the PnL’s variance becomes extremely large,
and increasing hedging frequency does not solve this problem. We think this
is due to either the dubious nature of the weight for the portfolio, i.e. the
execution probability, or the discrete hedging routine. With delta-hedging
only, the PnL seems much better. There is no big fluctuation.
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Figure 4: hedging portfolio PnL histogram for delta-hedging strategy

Figure 4 plots histograms of the hedging portfolio PnL at maturity for
delta-hedging cases. The price of the Bermudan swaption returned from the
BK trinomial tree, which is discounted to time 0, is 0.0467. The mean PnL
at maturity with HF = 4 is 0.0484, and standard deviation is 1.18 × 10−2.
The mean PnL at maturity with HF = 20 is 0.0460, and standard deviation
is 9.57× 10−3. From the histograms, it is also clear that increasing hedging
frequency makes the distribution more concentrated.

The hedging costs are not higher than the premium from our limited
experiments. We can see a lot of path PnL’s ending below the premium of the
Bermudan swaption. Under stochastic vol setting, a delta-neutral portfolio is
exposed to gamma and vega risks. But vega risk is much much smaller than
delta risk (several scales’ difference). That’s why a delta-hedging strategy is
more robust than a bad delta- and vega-hedging strategy. The lower mean
hedging cost is due to the mechanism of the vol process in Equation 9. The
volatility is distributed as lognormal with mean at σ0. In this distribution,
the probability of under the mean is bigger than the probability of above the
mean. With limited sampling (because of computation burden), this results
in a average volatility smaller than σ0 over a path. This may explain why
the mean PnL of the delta-hedging strategy is smaller than the premium of
the Bermudan swaption. If we increase the path number, we may see big
volatilities appear and raising the average hedging cost.

We also did some preliminary tests with equally-weighted vega-hedging
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portfolios and obtained similar results to the execution-probability-weighted
portfolio case. Hedging vega risk with the European swaption on next ex-
ecution date only also yields bad results, which confirms that Bermudan
swaptions are subject to the risks of a series of forward volatilities, not only
at a single point.

6 Conclusion

This report investigates the hedging issues related to a Bermudan swaption.
We construct our pricing and greeks computation on Black-Karasinski short
rate model. We generate parallel shocks to the whole yield curve and shocks
to volatility term in BK model. And in the hedging simulation, we test both
delta-hedging only strategy and delta- and vega-hedging strategy.

In the delta-hedging only case, we use the next forward starting swap to
hedging our delta risk and leave the vega risk unhedged. This strategy seems
to be quite robust based on our limited observations. And by increasing
hedging frequency, we succeed to reduce the PnL variance of the hedging
portfolio. The discounted mean PnL’s at maturity are lower than the price
of the Bermudan swaption. This result can be explained by the model and
simulation assumptions.

In the delta- and vega-hedging case, we use the next forward start-
ing swap and the European swaptions matured on the execution dates
of the Bermudan swaption. Either with equally-weighting or execution-
probability-weighting, the hedging portfolio PnL’s seems not quite satisfied.
In the bigger sample of execution-probability-weighting case, the mean PnL
is too big and there are a lot of blowups on the paths. We think this is due
to the portfolio construction of the European swaptions.

Most of interest rate modeling textbooks shed little light on the hedging
issues of swaptions. We produce some simulation results under a toy model.
The further work could be done by using more sophisticated pricing models,
e.g. market models, and more realistic simulation assumptions/market data.
Finding the proper vega hedging portfolios is still a very important problem
to be solved.
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