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Abstract. We give an easy example of two strictly positive local martingales which
fail to be uniformly integrable, but such that their product is a uniformly integrable
martingale. The example simplifies an earlier example given by the second author.
We give applications in Mathematical Finance and we show that the phenomenon is
present in many incomplete markets.

1. Introduction and Known Results.

Let S = M +A be a continuous semimartingale, which we interpret as the discounted
price process of some traded asset; the process M is a continuous local martingale
and the continuous process A is of finite variation. It is obviously necessary that
dA ¿ d〈M,M〉, for otherwise we would invest in the asset when A moves but M
doesn’t and make money risklessly. Thus we have for some predictable process α:

(1) dSt = dMt + αt d〈M,M〉t.

It has long been recognised (see Harrison Kreps 1979) that the absence of “arbitrage”
(suitably defined) in this market is equivalent to the existence of some probability Q,
equivalent to the reference probability P, under which S becomes a local martingale;
see Delbaen and Schachermayer (1994) for the definition of “arbitrage” and a precise
statement and proof of this fundamental result. Such a measure Q is then called
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an equivalent local martingale measure or ELMM. The set of all such ELMM is
then denoted by Me(S), or Me for short. The result of that paper applies to the
more general situation of a locally bounded semimartingale S, but in the situation
of continuous S, perhaps the result can be proved more simply (see e.g. Delbaen
Schachermayer (1995b) for the case of continuous processes and its relation to no
“arbitrage”). In particular, it is tempting to define Q by looking at the decomposition
(1) of S and by setting

(2)
dQ
dP

∣∣∣∣
Ft

= E(−α ·M)t

provided the exponential local martingale E(−α·M) is a true martingale. Is it possible
for there to exist an equivalent local martingale measure for S, yet the exponential
local martingale E(−α ·M) to fail the martingale property? The answer is yes; our
example shows it. In the terminology of Föllmer Schweizer (1990), this means that
the ”minimal local martingale measure” for the process S does not exist, although
Me(S) is nonempty.

A second question where our example finds interesting application is to hedging of
contingent claims in incomplete markets. The positive contingent claim g, or more
generally a function that is bounded below by a constant, can be hedged if g can be
written as

(3) g = c+ (H · S)∞,

where c is a constant and where H is some admissible integrand (i.e. for some constant
a ∈ R, (H · S) ≥ −a). In order to avoid “suicide strategies” we also have to impose
that (H ·S)∞ is maximal in the set of outcomes of admissible integrands (see Delbaen
Schachermayer (1995a) for information on maximal elements and Harrison Pliska
(1981) for the notion of “suicide strategies”). We recall that an outcome (H · S)∞,
of an admissible strategy H, is called maximal if for an admissible strategy K, the
relation (K · S)∞ ≥ (H · S)∞ implies that (K · S)∞ = (H · S)∞. Jacka (1992), Ansel
Stricker (1994) and the authors (1995a) showed that g can be hedged if and only if
there is an equivalent local martingale measure Q ∈Me such that

(4) EQ[g] = sup{ER[g] | R ∈Me}.

Looking at (3) we then can show that H · S is a Q-uniformly integrable martingale
and hence that c = EQ[g]. Also the outcome (H ·S)∞ is then maximal. It is natural to
conjecture that in fact for all R ∈Me, we might have ER[g] = c, and the sup becomes
unnecessary which is the case for bounded functions g. However our example shows
that this too is false in general.

To describe our example, suppose that B and W are two independent Brownian
Motions and let Lt = exp(Bt − 1

2 t). Then L is a strict local martingale. For in-
formation on continuous martingales and especially martingales related to Brownian
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Motion we refer to Revuz-Yor (1991). Let us recall that a local martingale that is not
a uniformly integrable martingale is called a strict local martingale. The terminol-
ogy was introduced by Elworthy, Li and Yor (1994). The stopped process Lτ where
τ = inf{t | Lt = 1

2} is still a strict local martingale and τ <∞. If we stop Lτ at some
independent random time σ, then Lτ∧σ will be uniformly integrable if σ <∞ a.s. and
otherwise it will not be. If we thus define Mt = exp(Wt− 1

2 t) and σ = inf{t |Mt = 2}
then Lτ∧σ is not uniformly integrable since P[σ = ∞] = 1

2 . However if we change
the measure using the uniformly integrable martingale Mτ∧σ, then under the new
measure we have that W becomes a Brownian Motion with drift +1 and so σ < ∞
a.s.. The product Lτ∧σMτ∧σ becomes a uniformly integrable martingale!

The problem whether the product of two strictly positive strict local martingales
could be a uniformly integrable martingale goes back to Karatzas, Lehoczky and
Shreve (1991). Lepingle (1993) gave an example in discrete time. Independently
Karatzas, Lehoczky and Shreve gave also such an example but the problem remained
open whether such a situation could occur for continuous local martingales. The first
example in the continuous case was given in Schachermayer (1993), but it is quite
technical (although the underlying idea is rather simple).

In this note we simplify the example considerably. A previous version of this paper,
only containing the example of section 2, was distributed with the title ”A Simple
Example of Two Non Uniformly Integrable Continuous Martingales whose product is
a Uniformly Integrable Martingale”. Our sincere thanks go to L.C.G. Rogers, who
independently constructed an almost identical example and kindly supplied us with
his manuscript, see Rogers (1993).

We summarise the results of Schachermayer (1993) translated into the present context.
The basic properties of the counterexample are described by the following

Theorem 1.6. There is a continuous process X that is strictly positive, X0 = 1,
X∞ > 0 a.s. as well as a strictly positive process Y , Y0 = 1, Y∞ > 0 a.s. such that

(1) The process X is a strict local martingale under P, i.e. EP[X∞] < 1.
(2) The process Y is a uniformly integrable martingale.
(3) The process XY is a uniformly integrable martingale.

Depending on the interpretation of the process X we obtain the following results.

Theorem 1.7. There is a continuous semi-martingale S such that
(1) The semi-martingale admits a Doob-Meyer decomposition of the form dS =

dM + d〈M,M〉h.
(2) The local martingale E(−h ·M) is strict.
(3) There is an equivalent local martingale measure for S.

Proof. Take X as in the preceding theorem and define, through the stochastic loga-
rithm, the process S as dS = dM + d〈M,M〉 where X = E(−M). The measure Q
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defined as dQ = X∞Y∞ dP is an ELMM for S. Obviously the natural candidate for
an ELMM suggested by the Girsanov-Maruyama-Meyer formula, i.e. the ”density”
X∞, does not define a probability measure.

q.e.d.

Remark. If in the previous theorem we replace S by E(S), then we can even obtain a
positive price system.

Theorem 1.8. There is a process S that admits an ELMM as well as an hedgeable
element g such that ER[g] is not constant on the set Me.

Proof. For the process S we take X from theorem 1.6. The original measure P is
an ELMM and since there is an ELMM Q for X such that X becomes a uniformly
integrable martingale, we necessarily have that EQ[X∞ −X0] = 0 and that X∞ −X0

is maximal. However EP[X∞ −X0] < 0.
q.e.d.

As for the economic interpretation let us consider a contingent claim f that is maximal
and such that ER[f ] < 0 = sup{EQ[f ] | Q ∈ Me} for some R ∈ Me. Suppose now
that a new instrument T is added to the market and suppose that the instrument T
has a price at time t equal to ER[f | Ft]. The measure R is still a local martingale
measure for the couple (S, T ), hence the financial market described by (S, T ) still is
“arbitrage free” more precisely it does not admit a free lunch with vanishing risk; but
as easily seen the element f is no longer maximal in this expanded market. Indeed
the element T∞ − T0 = f −ER[f ] dominates f by the quantity −ER[f ] > 0! In other
words: before the introduction of the instrument T the hedge of f as (H · S)∞ may
make sense economically, after the introduction of T it becomes a “suicide strategy”
which only an idiot will apply.

Note that an economic agent cannot make arbitrage by going short on a strategy H
that leads to (H · S)∞ = f and by buying the financial instrument T . Indeed the
process −(H · S) + T − T0 is not bounded below by a constant and therefore the
integrand(−H, 1) is not admissible!

On the other hand the maximal elements f such that ER[f ] = 0 for all measures
R ∈Me have a stability property. Whatever new instrument T will be added to the
market, as long as the couple (S, T ) satisfies the NFLVR-property, the element f will
remain maximal for the new market described by the price process (S, T ). The set
of all such elements as well as the space generated by the maximal elements is the
subject of Delbaen Schachermayer (1996).

Section 2 of this paper gives an easy example that satisfies the properties of Theorem
1.6. Section 3 shows that the construction of this example can be mimicked in most
incomplete markets with continuous prices.

2. Construction of the Example
4



We will make use of two independent Brownian Motions, B and W , defined on a
filtered probability space (Ω, (Ft)0≤t,P), where the filtration F is the natural filtration
of the couple (B,W ) and is supposed to satisfy the usual assumptions. This means
that F0 contains all null sets of F∞ and that the filtration is right continuous. The
process L defined as

Lt = exp
(
Bt −

1
2
t

)
is known to be a strict local martingale with respect to the filtration F . Indeed,
the process L tends almost surely to 0 at infinity, hence it cannot be a uniformly
integrable martingale. Let us define the stopping time τ as

τ = inf
{
t | Lt =

1
2

}
.

Clearly τ <∞ a.s.. Using the Brownian Motion W we similarly construct

Mt = exp
(
Wt −

1
2
t

)
.

The stopping time σ is defined as

σ = inf{t |Mt = 2}.

In the case the process M does not hit the level 2 the stopping time σ equals ∞ and
we therefore have that Mσ either equals 2 or equals 0, each with probability 1/2. The
stopped process Mσ defined by Mσ

t = Mt∧σ is a uniformly integrable martingale. It
follows that also the process Y = Mτ∧σ is uniformly integrable and because τ < ∞
a.s. we have that Y is almost surely strictly positive on the interval [0,∞].

The process X is now defined as the process L stopped at the stopping time τ ∧ σ.
Note that the processes L and M are independent since they were constructed using
independent Brownian Motions. Stopping the processes using stopping times coming
from the other Brownian Motion destroys the independence and it is precisely this
phenomenon that will allow us to make the counterexample.

Theorem 2.1. The processes X and Y , as defined above, satisfy the properties listed
in Theorem 1.6.

(1) The process X is a strict local martingale under P, i.e. EP[X∞] < 1 and
X∞ > 0 a.s..

(2) The process Y is a uniformly bounded integrable martingale.
(3) The process XY is a uniformly integrable martingale.

Proof. Let us first show that X is not uniformly integrable. For this it is sufficient to
show that E[X∞] = E[Lτ∧σ] < 1. This is quite easy. Indeed

E[Lτ∧σ] =
∫
{σ=∞}

Lτ +
∫
{σ<∞}

Lσ∧τ .
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In the first term the variable Lτ equals 1
2 and hence this term equals 1

2P[σ =∞] = 1
4 .

The second term is calculated using the martingale property of L and the optional
stopping time theorem. ∫

{σ<∞}
Lσ∧τ =

∫ ∞
0

P[σ ∈ dt]E[Lτ∧t]

= P[σ <∞]

The first line follows from the independence of σ and the process L. Putting together
both terms yields E[Lτ∧σ] = 1

2P[σ =∞] + P[σ <∞] = 3
4 < 1.

On the other hand the product XY is a uniformly integrable martingale. To see this,
it is sufficient to show that E[X∞Y∞] = 1. The calculation is similar to the preceding
calculation and uses the same arguments.

E[X∞Y∞] = E[Lτ∧σ Mτ∧σ]

= E[Lτ∧σ Mσ] because Mσ is a uniformly integrable martingale

= 2E[Lτ∧σ 1{σ<∞}]

= 2P[σ <∞] = 1

q.e.d.

3. Incomplete Markets

All stochastic processes will be defined on a filtered probability space
(

Ω, (Ft)t≥0 ,P
)

.
For the sake of generality the time set is supposed to be the set IR+ of all non-negative
real numbers. The filtration is supposed to satisfy the usual hypothesis. The symbol
S denotes a d-dimensional semi-martingale S: Ω × IR+ → IRd. For vector stochastic
integration we refer to Jacod (1979). If needed we denote by x′ the transpose of a
vector x.

We assume that S has the NFLVR property and the set of ELMM is denoted by Me.
The market is supposed to be incomplete in the following sense. We assume that
there is a real-valued non-zero continuous local martingale W such that the bracket
〈W,S〉 = 0 but such that the measure d〈W,W 〉 (defined on the predictable σ-algebra
of Ω× IR+) is not singular with respect to the measure dλ where λ = Trace〈S, S〉.

Let us first try to give some economic interpretation to this hypothesis. The existence
of a local martingale W such that 〈S,W 〉 = 0 implies that the process S is not
sufficient to hedge all the contingent claims. The extra assumption that the measure
d〈W,W 〉 is not singular to dTrace〈S, S〉, then means that at least part of the local
martingale W moves at the same time as the process S. The incompleteness of the
market is therefore not only due to the fact that S and W are varying in disjoint time
sets but the incompleteness is also due to the fact that locally the process S does not
span all of the random movements that are possible.
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Theorem 3.1. If S is a continuous d-dimensional semi-martingale with the NFLVR
property, if there is a continuous local martingale W such that 〈W,S〉 = 0 but d〈W,W 〉
is not singular to dTrace〈S, S〉, then for each R in Me, there is a maximal element f
such that ER[f ] < 0.

Proof. The proof is broken up in different lemmata. Let W ′ be the martingale compo-
nent in the Doob-Meyer decomposition of W with respect to the measure R. Clearly
〈W ′,W ′〉 = 〈W,W 〉.

Lemma 3.2. Under the hypothesis of the theorem, there is a real-valued R-local
martingale U 6= 0 such that

(1) 〈S,U〉 = 0
(2) there is a bounded IRd-valued predictable process H that is S-integrable and

such that d〈U,U〉 = H ′ d〈S, S〉H so that the process N = H · S satisfies
〈N,N〉 = 〈U,U〉.

Proof of lemma 3.2. Let λ = Trace〈S, S〉. Since d〈W,W 〉 is not singular with re-
spect to dλ there is a predictable set A such that 1A d〈W,W 〉 is not identically
zero and absolutely continuous with repect to dλ. From the predictable Radon-
Nikodym theorem, see Delbaen-Schachermayer (1995b) it follows that there is a pre-
dictable process h such that 1A d〈W,W 〉 = h dλ. For n big enough the process
h1{‖h‖≤n}1[[0,n]] is λ integrable and is such that 1A 1{‖h‖≤n}1[[0,n]]d〈W,W 〉 is not zero
a.s.. We take U =

(
1A 1{‖h‖≤n}1[[0,n]]

)
·W ′. To find H we first construct a strategy

K such that d〈K · S,K · S〉/dλ 6= 0 a.e.. This is easy. We take for each coor-
dinate i, an investment Pi = (0, 0 . . . , 0, 1, 0, . . . ) in asset number i. On the pre-
dictable set d〈P1 · S, P1 · S〉/dλ 6= 0 we take K = P1, on the predictable set where
d〈P1 · S, P1 · S〉/dλ = 0 and d〈P2 · S, P2 · S〉/dλ 6= 0 we take K = P2 etc.. We now
take H = K 1A 1{‖h‖≤n}1[[0,n]]h

1/2 (dλ/d〈K · S, k · S〉).
q.e.d.

Remark. We define the stopping time νu as νu = inf{t | 〈N,N〉t > u}, where N is
defined as in lemma 3.2 above. If we replace the process (N,U), the filtration Ft and
the probability R by respectively the process (Nν0+t, Uν0+t)t≥0, (Fν0+t)t≥0 and the
conditional probability R[. | ν0 <∞] we may without loss of generality suppose that
R[ν0 = 0] = R[〈N,N〉∞ > 0] = 1. In this case we have that limu→0R[νu < ∞] = 1
and limu→0 νu = 0. We will do so without further notice.

Remark. The idea of the subsequent construction is to see the strongly orthogonal
local martingales U and N as time transformed independent Brownian Motions and
to use the construction of section 2. The first step is to prove that there is a strict
local martingale that is an exponential. The idea is to use the exponential E(B) where
B is a time transform of a Brownian Motion. However the exponential only tends to
zero on the set {〈B,B〉 =∞}.
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Lemma 3.3. There is a predictable process K such that the local R martingale E(K ·
N) is not uniformly R-integrable.

Proof of lemma 3.3. Take a strictly decreasing sequence of strictly positive real num-
bers (εn)n≥1 such that

∑
n≥1 εn2n < 1

8 .

We take u1 small enough so that R[νu1 < ∞] > 1 − ε1. From the definition of νu1

it follows that 〈N,N〉∞ > u1 on the set {νu1 < ∞}. For each k we look at the
exponential E(k ·N) and we let fk = (E(k ·N))νu1

. Since 〈N,N〉νu1
> 0 we have that

fk tends to zero a.s. as k tends to ∞.

Take k1 big enough to have R[fk1 < 1/2] > 1− ε1. We now define

τ1 = inf{t | (E(k1 ·N))t > 2 or < 1/2} ∧ νu1 .

Clearly R[τ1 < νu1 ] > 1− ε1 and hence

R
[
(E(k1 ·N))τ1 ∈ {1/2, 2}

]
> 1− ε1.

For later use we define X1 = (E(k1 ·N))τ1 and we observe that R[X1 = 2] > 1
3 − ε1

and R[X1 = 1
2 ] > 2

3 − ε1.

We now repeat the construction at time νu1 . Of course this can only be done on the
set {νu1 <∞} = {〈N,N〉∞ > u1}. Take u2 > u1 small enough so that

R[νu2 <∞] > R[νu1 <∞](1− ε2).

We define fk = (E(k · (N −Nνu1 )))νu2
and observe that fk tends to zero on the

set {νu1 < ∞} as k tends to infinity. Indeed this follows from the statement that
〈N −Nνu1 , N −Nνu1 〉∞ > 0 on the set {νu1 <∞}.

So we take k2 big enough to guarantee that R[fk2 < 1
2 ] > R[νu1 < ∞](1 − ε2).

We define τ2 = inf{t > νu1 | (E(k · (N −Nνu1 )))t > 2 or < 1
2} ∧ νu2 . Clearly

R[τ2 < νu2 ] > R[νu1 < ∞](1 − ε2). We define X2 = (E(k · (N −Nνu1 )))τ2 and we
observe that 1

2 ≤ X2 ≤ 2, R[X2 ∈ {1
2 , 2} | νu1 <∞] > 1− ε2.

Since ER[X2 | νu1 < ∞] = 1 we therefore have that R[X2 = 2 | νu1 < ∞] > 1
3 − ε2

and R[X2 = 1
2 | νu1 <∞] > 2

3 − ε2.

Continuying this way we construct sequences of
(1) stopping times νun with R[νun <∞] > R[νun−1 <∞](1− εn), ν0 = 0
(2) real numbers kn
(3) stopping times τn with νun−1 ≤ τn ≤ νun
(4) Xn = (E(kn · (N −Nνun−1 )))τn

so that
(1) 1

2 ≤ Xn ≤ 2
(2) Xn = 1 on the set {νun−1 =∞}
(3) R[Xn = 2 | νun−1 <∞] > 1

3 − εn
(4) R[Xn = 1

2 | νun−1 <∞] > 2
3 − εn.
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Let now K =
∑
n≥1 kn1]]νun−1 ,τn]]. Clearly E(K · N) is defined and (E(K ·N))τn =∏n

k=1Xk. We claim that ER[(E(K ·N))∞] < 1, showing that E(K·N) is not uniformly
integrable.

Obviously (E(K ·N))∞ =
∏
k≥1Xk. From the strong law of large numbers for mar-

tingale differences we deduce that a.s.

1
n

n∑
k=1

(
logXk − ER

[
logXk | Fνuk−1

])
→ 0.

On the set {νuk−1 < ∞} we have that ER
[
logXk | Fνuk−1

]
≤ ( 2

3 − εk) log 1
2 + ( 1

3 +

εk) log 2 ≤ −1
3 log 2 + 2εk log 2 ≤ − 1

6 log 2, at least for k large enough. It follows
that on the set

⋂
n≥1{νun < ∞} we have that

∑n
k=1 logXk → −∞ and hence

(E(K ·N))∞ = 0 on this set. On the complement, i.e. on
⋃
n≥1{νun = ∞} we

find that the maximal function (E(K ·N))∗∞ is bounded by 2n where n is the first
natural number such that νun = ∞. The probability of this event is bounded by εn
and hence ER [(E(K ·N))∞] ≤ η =

∑
n εn2n ≤ 1

8 .
q.e.d.

Remark. By adjusting the εn we can actually obtain a predictable process K such
that (E(K ·N))∞ = 0 on a set with measure arbitrarily close to 1.

Lemma 3.4. If L is a continuous positive strict local martingale, starting at 1, then
for α > 0 small enough the process L stopped when it hits the level α is still a strict
local martingale.

Proof of lemma 3.4. Simply let τ = inf{t | Lt < α}. Clearly ER[Lτ ] < α+ER[L∞] < 1
for α < 1− ER[L∞].

q.e.d.

If we apply the previous lemma to the exponential martingale L = E(K ·N) and to
α = η, we obtain a stopping time τ and a strict local martingale E(K · N)τ that is
bounded away from zero.

We now use the same integrand K to construct Z = E(K · U) and we define σ =
inf{t | Zt = 2}.

We will show that ER[Lτ∧σ] < 1 and that ER[Zτ∧σLτ∧σ] = 1. This will complete the
proof of the theorem since the measure Q defined by dQ = Zτ∧σdR is an equivalent
martingale measure and the element f = Lτ∧σ−1 is therefore maximal. On the other
hand ER[f ] < 0.

Both statements will be shown using a time transform argument. The fact that the
processes K ·N and K ·U both have the same bracket will now turn out to be useful.
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The time transform can be used to transform both these processes into Brownian
Motions at the same time.

Following Chapter V, section 1 in Revuz Yor (1991), we define

Tt = inf{u | 〈K ·N,K ·N〉u =
∫ u

0

K2
s d〈N,N〉s > t}.

As well known, revuz Yor (1991) there are

(1) a probability space (Ω̃, F̃ , R̃),

(2) a map π: Ω̃→ Ω,

(3) a filtration (F̃t)t≥0 on Ω̃,

(4) two processes β1 and β2 that are Brownian Motions with respect to (F̃t)t≥0

and such that 〈β1, β2〉 = 0,

(5) the variable γ =
∫∞

0
K2
s d〈N,N〉s◦π is a stopping time with respect to (F̃t)t≥0,

(6) β1
t∧γ = (K ·N)Tt ◦ π,

(7) β2
t∧γ = (K · U)Tt ◦ π,

(8) L̃ = E(β1) satisfies LTt ◦ π = L̃t∧γ ,

(9) Z̃ = E(β2) satisfies ZTt ◦ π = Z̃t∧γ ,
(10) τ̃ = inf{t |

(
E(β1)

)
t
< 1

2} satisfies τ ◦ π = Tτ̃ ,

(11) σ̃ = inf{t |
(
E(β2)

)
t
> 2} satisfies σ ◦ π = Tσ̃.

In this setting we have to show that ER[Lτ∧σ] = ẼR̃[L̃τ̃∧σ̃∧γ ] < 1. But on the set{∫∞
0
K2
s d〈N,N〉s <∞

}
we have, as shown above

ER
[
1{∫∞0 K2

s d〈N,N〉s<∞}Lτ∧σ
]

≤ ER
[
1{∫∞0 K2

s d〈N,N〉s<∞}L
∗
]

≤ η.

In other words ẼR̃
[
1{γ<∞}L̃∗γ

]
≤ η. So it remains to be shown that

ẼR̃
[
1{γ=∞}L̃τ̃∧σ̃

]
< 1− η.

Actually we will show that
ẼR̃
[
L̃τ̃∧σ̃

]
< 1− η.

This is easy and follows from the independence of β1 and β2, a consequence of
〈β1, β2〉 = 0! As in section 2 we have

ẼR̃
[
L̃τ̃∧σ̃

]
= ηR̃[σ̃ =∞] + R̃[σ <∞] =

1
2
η +

1
2
< 1− η
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since η ≤ 1
8 . To show that

ER [Lτ∧σZτ∧σ] = 1

we again use the extension and time transform. But
(
L̃Z̃
)τ̃∧σ̃

is a uniformly inte-
grable martingale, as follows from the easy calculation in section 2, and hence we
obtain

ER [Lτ∧σZτ∧σ] = ẼR̃
[
L̃τ̃∧σ̃∧γZτ̃∧σ̃∧γ

]
= 1.

The proof of the theorem is complete now.
q.e.d.

References

J.P. Ansel and C. Stricker (1994), Couverture des actifs contingents, Ann. Inst. Henri Poincaré 30,
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