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Valuation of American Futures Options: Theory
and Empirical Tests

ROBERT E. WHALEY*

ABSTRACT

This paper reviews the theory of futures option pricing and tests the valuation principles
on transaction prices from the S&P 500 equity futures option market. The American
futures option valuation equations are shown to generate mispricing errors which are
systematically related to the degree the option is in-the-money and to the option’s time
to expiration. The models are also shown to generate abnormal risk-adjusted rates of
return after transaction costs. The joint hypothesis that the American futures option
pricing models are correctly specified and that the S&P 500 futures option market is
efficient is refuted, at least for the sample period January 28, 1983 through December
30, 1983.

FUTURES OPTION CONTRACTS NOW trade on every major futures exchange and
on a wide variety of underlying futures contracts. The Chicago Mercantile
Exchange, the Chicago Board of Trade, the New York Futures Exchange, and
the Commodity Exchange now collectively have more than twenty options written
on futures contracts, where the underlying spot commodities are financial assets
such as stock portfolios, bonds, notes and Eurodollars, foreign currencies such as
West German marks, Swiss francs and British pounds, precious metals such as
gold and silver, livestock commodities such as cattle and hogs, and agricultural
commodities such as corn and soybeans. Moreover, new contract applications are
before the Commodity Futures Trading Commission and should be actively
trading in the near future.

With the markets for these new contingent claims becoming increasingly active,
it is appropriate that the fundamentals of futures option valuation be reviewed
and tested. Black [5] provides a framework for the analysis of commodity futures
options. Although his work is explicitly directed at pricing European options on
forward contracts, it applies to European futures contracts as well if the riskless
rate of interest is constant during the futures option life.! The options currently

* Asseciate Professor of Finance, University of Alberta and Visiting Associate Professor of Finance,
University of Chicago. This research was supported by the Finance Research Foundation of Canada.
Comments and suggestions by Fred D. Arditti, Warren Bailey, Giovanni Barone-Adesi, Bruce Cooil,
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Journal are gratefully acknowledged.

! Cox, Ingersoll, and Ross [11, p. 324] demonstrate that the price of a futures contract is equal to
the price of a forward contract when interest rates are nonstochastic.
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trading, however, are American options, and only recently has theoretical work
begun to focus on the American futures option pricing problem.?

The purpose of this paper is to review the theory underlying American futures
option valuation and to test it on transaction prices from the S&P 500 equity
futures option market. In the first section of the paper, the theory of futures
option pricing is reviewed. The partial differential equation of Black ([5]) is
presented, and the boundary conditions of the American and European futures
option pricing problems are shown to imply different valuation equations. For
the American futures options, efficient analytic approximations of the values of
the call and put are presented, and the magnitude of the early exercise premium
is simulated.

In the second section of the paper, the American futures option valuation
principles are tested on S&P 500 futures option contract data for the period
January 28, 1983 through December 30, 1983. Included are an examination of
the systematic biases in the mispricing errors of the option pricing models, a test
of the stationarity of the volatility of the futures price change relatives, and a
test of the joint hypothesis that the American futures option models are correctly
specified and that the S&P market is efficient. The paper concludes with a
summary of the major results of the study.

1. Theory of Futures Option Valuation

An option on a futures contract is like an option on a common stock in the sense
that it provides its holder with the right to buy or sell the underlying security at
the exercise price of the option. Unlike a stock option, however, a cash exchange
in the amount of the exercise price does not occur when the futures option is
exercised. Upon exercise, a futures option holder merely acquires a long or short
futures position with a futures price equal to the exercise price of the option.
When the futures contract is marked-to-market at the close of the day’s trading,
the option holder is free to withdraw in cash an amount equal to the futures
price less the exercise price in the case of a call and the exercise price less the
futures price in the case of a put. Thus, exercising a futures option is like
receiving in cash the exercisable value of the option.

A. Assumptions and Notation

Black [5] provides the groundwork for futures option valuation. Although his
work is directed at pricing a European call option, it is general in the sense that
the partial differential equation describing the dynamics of the call option price
through time applies to put options as well as call options and to American
options as well as European options. The assumptions necessary to develop
Black’s partial differential equation are as follows:

% Following Black’s [5] seminal article, Moriarity, Phillips, and Tosini [18], Asay [1], Wolf [24],
and others discussed the European futures option pricing problem. Other than the studies by Whaley
[22] and Stoll and Whaley [21], the theoretical work on American futures options is unpublished and
includes studies by Ramaswamy and Sundaresan [19] and Brenner, Courtadon, and Subrahmanyam

[9).
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(A1) There are no transaction costs in the option, futures, and bond markets.
These include direct costs such as commissions and implicit costs such
as the bid-ask spread and penalties on short sales.

(A2) Markets are free of costless arbitrage opportunities. If two assets or
portfolios of assets have identical terminal values, they have the same
price, and/or, if an asset or portfolio of assets has a future value which
is certain to be positive, the initial value (cost) of the asset or portfolio
is certain to be negative (positive).

(A3) The short-term riskless rate of interest is constant through time.

(A4) The instantaneous futures price change relative is described by the
stochastic differential equation,

dF/F = p dt + o dz,

where u is the expected instantaneous price change relative of the futures
contract, ¢ is the instantaneous standard deviation, and z is a Wiener
process.

Assumptions (A1) and (A2) are fairly innocuous. Transaction costs are trivial
for those making the market in the various financial assets, and available
empirical evidence suggests investors behave rationally. Assumption (A3) may
appear contradictory, since some futures options are written on long-term debt
instrument futures contracts® where the driving force behind the volatility of the
futures price change relatives is interest rate uncertainty. The two interest rates
are, to some degree, separable, however. Assumption (A3) describes the behavior
of the short-term interest rate on, say, Treasury bills, while the volatility of T-
bond futures prices, for example, is related to the volatility of the long-term U.S.
Treasury bond forward rate.* Assumption (A4) describes the dynamics of the
futures price movements through time. It is important to note that no assumption
about the relationship between the futures price and the price of the underlying
spot commodity has been invoked.” The valuation results presented in this
section, therefore, apply to any futures option contract, independent of the nature
of the underlying spot commodity.

8 The Chicago Board of Trade, for example, lists options on U.S. T-bond and T-note futures
contracts.

* A priori, the assumption of constant short-term interest rate is untenable for all option pricing
models. A constant short-term rate implies a constant, flat term structure, with interest rate
uncertainty having no bearing on the volatility of the underlying asset prices. Such is hardly the case.
The validity of such option pricing models, however, need not be evaluated on the basis of their
assumptions and can be judged on the merits of their predictions.

® Note that Assumption (A4) defines the dynamics of the futures price movements with no reference
to the relationship between the futures price and the price of the underlying spot commodity. Whether
such an assumption is more appropriate for the futures price dynamics or the underlying spot
commodity dynamics is an open empirical question.

Assumption (A4) is consistent with the assumption that the underlying spot price, S, follows the
stochastic differential equation.

dS/S = adt+ odz,

where « is the expected relative spot price change, and o is the instantaneous standard deviation if
there is (a) a constant, continuous riskless rate of interest, r, and (b) a constant, continuous
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For expositional purposes, the following notation is adopted in this study to
describe futures options and their related parameters:

F = current futures price

F7 = random futures price at expiration

C(F, T; X)[c(F, T; X)] = American [European] call option price

P(F, T; X)[p(F, T; X)] = American [European] put option price

ec(F, T; X)[ep(F, T; X)] = early exercise premium of American call [put]
option

r = riskless rate of interest

T = time to expiration of futures options

X = exercise price of futures options.

B. Solution to Futures Option Pricing Problem

Under the above-stated assumptions, Black demonstrates that, if a riskless
hedge can be formed between the futures option and its underlying futures
contract, the partial differential equation governing the movements of the futures
option price (V) through time is

Y26 F?*Vep — rV + V, = 0. 1)

This equation applies to American call (C = V) and put (P = V) options, as well
as European call (c = V) and put (p = V') options. What distinguishes the four
valuation problems is the set of boundary conditions applied to each problem.

C. European Futures Options

The boundary condition necessary to develop an analytic formula for the
European call option is that the terminal call price is equal to the maximum
value of 0 or the in-the-money amount of the option, that is, max(0, Fr — X).
Black shows that, when this terminal boundary condition is applied to Equation

proportional rate of receipt (payment), d, for holding the underlying spot commodity. To show this
result, apply Ito’s lemma to the cost-of-carry relationship, S; = Fe~ "™ where F, is defined in
(A4). The expected futures price change relative, y, is equal to the expected spot price change relative
less the difference between the riskless rate of interest and the continuous rate of receipt, o ~ (r —
d), and the standard deviation, o, is the same for both the underlying spot commodity and futures
price changes.

The interpretation of d depends on the nature of the underlying spot commodity. For example, in
the foreign currency futures market, d represents the foreign interest rate earned on the investment
in the foreign currency. For agricultural commodity futures, d is less than zero and represents the
rate of cost for holding the spot commodity (i.e., storage costs, insurance costs, etc.), and for stock
index futures, d represents the continuous proportional dividend yield on the underlying stock
portfolio.

A continuous proportional dividend yield assumption may not be appropriate for a stock index
since dividend payments are discrete and have a tendency to cluster according to the day of the week
and the month of the year. With uncertain discrete dividend payments during the futures’ life, the
cost-of-carry relationship between the prices of the stock index and stock index futures is unclear,
however, as long as (A4) holds for the futures price dynamics, the option pricing relationships
contained in the paper will hold.
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Figure 1. European and American Call Option Prices As a Function of the Underlying Futures
Contract Price.

(1) where ¢ = V, the value of a European call option on a futures contract is
¢(F, T; X) = e”""[FN(d,) — XN(dy)], (2)

where d; = [In(F/X) + O.5a2T]/a\/_’.l_", andd, =d;, — aﬁ, and where N( ) is the
cumulative univariate normal distribution. When the lower boundary condition
for the European put, max(0, X — Fy), is applied to the partial differential
Equation (1), the analytic solution is

p(F, T; X) = e"[XN(—d,) — FN(=d))], (3)

where all notation is as it was defined above.

D. American Futures Options

The European call formula (2) provides a convenient way of demonstrating
that the American call option may be exercised early. As the futures price
becomes extremely large relative to the exercise of the option, the values of N(d,)
and N(d.) approach one, and the European call value approaches (F — X)e™'T.
But, the American option may be exercised immediately for F — X, which is
higher than the European option value. Thus, the American call option may be
worth more “dead” than “alive” and will command a higher price that the
European call option.

Figure 1 illustrates the value of the American call option’s early exercise
privilege. In the figure, F'* represents the critical current futures price level where
the American call option holder is indifferent about exercising his option imme-
diately or continuing to hold it. Below F*, the value of the early exercise premium,
ec(F, T; X), is equal to the difference between the American and European call
functions, C(F, T; X) — c¢(F, T; X). Above F*, ec(F, T; X) is equal to (F — X) —
c(F, T; X). Note that as the futures price becomes large relative to the exercise
price, the European call option value approaches (F — X)e™7, and the early
exercise premium approaches (F — X)(1 — e™"7). In other words, the maximum

¢ Merton [17] demonstrates that, because the exercisable value of an American call option on a
nondividend-paying stock, S — X, is always below the lower price bound of the corresponding
European option, S — Xe™7, the American call option is always worth more alive than dead, and,
therefore, will not be exercised early.
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value the early exercise premium may attain is the present value of the interest
income which can be earned if the call option is exercised immediately.

Unlike the European option case, there are no known analytic solutions to the
partial differential Equation (1), subject to the American call option on a futures
contract boundary condition, C(F, t; X) = max(0, F;, — X) forall0 <t < T, and,
subject to the American put option on a futures contract boundary condition,
P(F, t; X) = max(0, X — F,) for all 0 < ¢ < T. Usually, the valuation of American
futures options has resorted to finite difference approximation methods.” Ra-
maswamy and Sundaresan [19] and Brenner, Courtadon, and Subrahmanyam
[9], for example, use such techniques. Unfortunately, finite difference methods
are computationally expensive because they involve enumerating every possible
path the futures option price could travel during its remaining time to expiration.

Whaley [23] adapts the Geske-Johnson [13] compound option analytic ap-
proximation method to price American futures options. In addition to being
computationally less expensive than numerical methods, the compound option
approach offers the advantages of being intuitively appealing and easily amenable
to comparative statics analysis. Unfortunately, even though the compound option
approach is about twenty times faster than numerical methods, it is still not
inexpensive because it requires the evaluation of cumulative bivariate and cu-
mulative trivariate normal density functions.

The analytic approximation of American futures option values used in this
study is that derived by Barone-Adesi and Whaley [3]. The method is based on
MacMillan’s [16] quadratic approximation of the American put option on a stock
valuation problem and is considerably faster than either the finite difference or
the compound option approximation methods.

The quadratic approximation of the American call option on a futures contract,
as provided in Barone-Adesi and Whaley [3], is

CWF, T; X)=cF, T; X) + Ay(F/F*)%, where F < F*, and
CF, T; X)=F - X, where F = F*, (4)

and where A, = (F*/q)){1 — e "N[d,(F*)]}, di\(F*) = [In(F*/X) + 0.5¢%T]/
oJT, ¢ = (1 + V1 + 4k)/2, and k = 2r/[¢%(1 — e™'T)]. F* is the critical futures
price above which the American futures option should be exercised immediately
(see Figure 1) and is determined iteratively by solving

F* — X =c(F* T; X) + {1 — e ""N[d,(F*)|}F*/q.. (4a)

Although the valuation equation may appear ominous, its intuition is simple.
For a current futures price below the critical stock price, F*, the American call
value is equal to the European value plus the early exercise premium, as approx-
imated by the term, A,(F/F*)%, Above F*, the worth of the American call is its
exercisable proceeds.

" The first applications of finite difference methods to option pricing problems were by Schwartz
[20] who valued warrants written on dividend-paying stocks and by Brennan and Schwartz [7] who
priced American put options on nondividend-paying stocks. These techniques are reviewed in Brennan
and Schwartz [8] and Geske and Shastri [15].
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The only parameter to the American option formula (4) which requires com-
putational sophistication beyond that required for the European formula (2) is
the determination of the critical futures price F*. To this end, Barone-Adesi and
Whaley [3] provide an algorithm for solving (4a) in five iterations or less.

The quadratic approximation of the American put option on a futures contract
is

P(F, T; X) =pF, T; X) + A, (F/F**)9, where F > F**, and
PF, T; X)=X—F, where F < F** 5)

and where A, = —(F**/q)){1 — e ""TN[—d:(F**)]}, ¢ = (1 — V1 + 4k)/2, and
where all other notation is as it was defined for the American call, F** is the
critical futures price below which the American futures option should be exercised
immediately and is determined iteratively by solving

X = F** = p(F**, T; X) — {1 — e""N[—dy(F**)}F**/q,. (5a)

E. Simulation of Early Exercise Premium Values

To demonstrate plausible magnitudes of the early exercise premium on Amer-
ican futures options, the European and American models prices were computed
for a range of option pricing parameters. The results are reported in Table I. It
is interesting to note that out-of-the-money futures options have negligible early
exercise premiums. For example, when the futures price (F') is 90, the riskless
rate of interest (r) is 8 percent, and the standard deviation of the futures price
relatives (¢) is 0.15, an out-of-the-money call option with an exercise price (X)
of 100 and a time to expiration (T') of 0.5 years has an early exercise premium of
0.0106, only slightly more than 1 percent of the American option price. Even at-
the-money options have small early exercise premiums which account for only a
small percentage of the option price. Only when the option is considerably in-
the-money does the early exercise premium account for a significant proportion
of the price of the option.

In summary, the theory of futures option valuation suggests that the early
exercise privilege of American futures options contributes meaningfully to the
futures option value. The simulation results, based on option pricing parameters
that are typical for S&P 500 futures option contracts, suggest that this is true,
but only for in-the-money options.

II. Empirical Tests

In this section, the performance of the American futures option pricing models
is analyzed using transaction information for S&P 500 equity futures options.
After the description of the data in the first subsection, the implied standard
deviation methodology is discussed. Volatility estimates are made using nonlinear
regression of observed futures option prices on model prices. The third subsection
presents an examination of the systematic patterns in the models prediction
errors. This analysis is motivated by the evidence reported in the stock option
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pricing tests. In the fourth subsection, the hypothesis that the standard deviation
of futures price change relatives is the same across call and put options is tested.
The final subsection presents the results of a joint test of the hypothesis that the
American futures option pricing models are correctly specified and that the S&P
500 futures option market is efficient.

A. Data

The data used in this study consist of transaction information for the S&P
500 equity futures and futures option contracts traded on the Chicago Mercantile
Exchange (CME) from the first day of trading of the S&P futures options,
January 28, 1983, through the last business day of the year, December 30, 1983.
The data were provided by the CME and are referred to as “Quote Capture”
information. Essentially, the data set contains the time and the price of every
transaction in which the price changed from the previously recorded transaction.
Bid and ask prices are also recorded if the bid price exceeds or the ask price is
below the price at the last transaction. The volume of each transaction and the
number of transactions at a particular price are not recorded.

Two exclusionary criteria were applied to the Quote Capture information.
First, bid and ask price quotes were eliminated because they do not represent
prices at which there were both a buyer and seller available to transact. Both
sides of the market transaction were necessary within the market efficiency test
design. Second, futures options with times to expiration in excess of 26 weeks
were excluded. The trading activity in these options and their underlying futures
contracts was too sparse to warrant consideration with the market efficiency
test. What remained was a sample of 28,736 transactions, 21,613 in the nearest
contract month, and 7,123 in the second nearest contract month.

The futures option pricing models require the futures price at the instant at
which the option is traded. To represent the contemporaneous futures price, the
futures price at the trade most closely preceding the futures option trade is used.
Because the S&P 500 futures market was so active during the investigation
period, the average time between the futures and the subsequent futures option
transactions was only 21 seconds.

Table II offers a summary of the characteristics of the transactions contained
in the 232-day sample period. Of the 28,736 transactions, 15,063 were call option
transactions and 13,763 were puts. The at-the-money options appear to have
been the most active, with 55 percent of the call option trades and 50 percent of
the put option trades being at futures prices *+2 percent of the exercise price.
Out-of-the-money options were more active than in-the-money options: 25 per-
cent of total trades to 20 percent of total trades for calls and 42 percent to 8
percent for puts, respectively. Over 64 percent of the transactions were on options
with maturities of less than 8 weeks, verifying that most of the trading activity
was in the nearest contract month.

The yield on the U.S. Treasury bill maturing on the contract month expiration
day® was used to proxy for the riskless rate on interest. The yields were computed

8 S&P 500 futures option contracts expired the third Thursday of the contract month until the
June 1984 contract. Beginning with the June 1984 contract, the third Friday of the month is the
expiration day.
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daily on the basis of the average of the T-bill’s bid and ask discounts reported in
the Wall Street Journal.

B. Implied Standard Deviation Methodology

The American futures option pricing models have five parameters: F, X, T, r,
and o. Of these, four are known or are easily estimated. The exercise price, X,
and the time to expiration, T, are terms of the futures option contract, and the
futures price, F, and the riskless rate of interest, r, are easily accessible market
values. The troublesome parameter to estimate is the standard deviation of the
futures price change relatives.

The methodology used to estimate the standard deviation of the futures price
change relative is described in Whaley [22, pp. 39-40]. Observed futures option
prices, V;, were regressed on their respective model prices, V;(o), that is,

V, = V(o) +¢. (6)

where ¢; is a random disturbance term,’ each day during the sample period. All
transaction prices for the day were used in each regression. The number of
transactions used to estimate o in a given day ranged from 30 to 300, with the
average number being 124. The estimates of ¢ ranged from 0.1009 to 0.2176, with
the average being approximately 0.1555.

The time series of standard deviation estimates indicates that the volatility of
the S&P 500 futures price relatives declined during 1983. During the first 116
trading days of the sample period, the average estimate of ¢ using the American
model was 0.1711, while, during the last 116 days of the period, it was 0.1399. It
is interesting to note that, during the same two subperiods, the S&P 500 Index
rose by 15.07 percent and —0.65 percent, respectively.'®

C. Tests for Systematic Biases

One way in which the performance of an option pricing model may be evaluated
is by examining its mispricing errors for systematic tendencies. Whaley [22]
demonstrates that, when the early exercise premium of the American call option
on a dividend-paying stock is accounted for in the valuation model, the exercise
price and time to expiration biases which had been documented for the European
model disappear. Geske and Roll [14] later verify this result and also attempt to
explain the variance bias. Here, the variance bias is not of concern since there is
only one underlying commodity. The ability of the American futures option
models to eliminate the first two biases, however, should be examined.

The tests for systematic biases in the futures option pricing models involved
clustering and then averaging the price deviations by the degree the option is in-

9 The relationship between observed and model prices is not exact and is affected by: (a) model
misspecification; (b) nonsimultaneity of futures and futures option price quotations; and (c) the bid-
ask spread in the futures and futures option markets. If the residuals in the nonlinear regression (6)
are independent and normally distributed, the resulting value of ¢ is the maximum likelihood estimate.

1 This evidence is consistent with the notion that the variance rate depends on the price of the
underlying asset.
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the-money of the option and by the option’s time to expiration. Table III contains
a summary of the results for the 15,063 call option and the 13,673 put option
transactions in the sample.

Both a “moneyness” bias and a “maturity” bias appear for the call option
transaction prices of the sample. The moneyness bias is just the opposite of that
reported for stock options.!! The further the call option is in-the-money, the
lower is the model price relative to the observed price (i.e., out-of-the-money
calls are overpriced by the model and the in-the-money calls are underpriced).
This is true for the American models when all maturities are clustered together
and when the intermediate-term and long-term options are considered separately.
For the short-term options, the greatest mispricing occurs for the at-the-money
calls, which appear dramatically underpriced relative to the model [e.g., for the
American call option pricing model, the average value of C — C(F, T; X) is
—0.1228].

The maturity bias for the calls is also just the opposite of that reported for call
options on stocks. Here, the model prices are higher than the observed prices for
short-term options and are lower than observed for long-term options. The
relationship is not consistent across the moneyness groupings, however. For out-
of-the-money calls, the mispricing is greatest for the intermediate term options
with the model considerably overstating observed values [e.g., the average C —
C(F, T; X) is —0.1372], and, for in-the-money options, the mispricing is still
greatest for the intermediate term options, but with the models understating
observed values [e.g., the average C — C(F, T; X) is 0.1175]. Overall, however,
the maturity bias does not appear to be as serious as the moneyness bias for the
sample of call option transaction prices.

The average price deviations for the put options appear to have a mare orderly
pattern, with the relationships between average price deviation and the money-
ness and maturity of the options monotonic. Like the call option results, the
maturity bias takes the form of short-term options being underpriced relative to
the model and long-term options being overpriced. Unlike the call option results,
however, the maturity bias is almost as serious as the moneyness bias, and the
moneyness bias takes the form of out-of-the-money options being overpriced
relative to the model and in-the-money options underpriced. (Recall the put
option is in-the-money where F/X < 1.) A possible explanation of this latter
result is that floor traders engage in conversion/reversal arbitrage using the
European put-call parity relationship,'

o(F, T; X) — p(F, T; X) = (F — X)e™™. (7)

11 See, e.g., Black [4] or Whaley [22].

2 The European put-call parity relationship can be found in a variety of papers, including Black
[56], Moriarity, Phillips, and Tosini [18], Asay [1], and Wolf [24]. In all of these studies, the futures
contract underlying the option contract is treated like a forward, but no problems arise because the
European option can be exercised only at expiration.

For American futures options, the assumption of equivalence between forward and futures contract
positions can lead to erroneous statements about futures option pricing. Some of these results are
outlined in Ramaswamy and Sundaresan [19]. Stoll and Whaley [21] derive the put-call parity
relationship for American futures options.
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If the put-call parity relationship (7) is actively arbitraged, overpricing of in-the-
money call options should result in overpricing of out-of-the-money put options,
and underpricing of out-of-the-money call options should result in underpricing
of in-the-money put options, or vice versa.

One final note about the results in Table III is worthwhile. During the period
examined, put options were overpriced on average while call options were under-
priced. Obviously, this result is sensitive to the volatility estimate used to price
the options, but, nonetheless, the difference between the average mispricing
errors of the put and call option formulas would be approximately the same even
if a different estimate of ¢ were used. This peculiarity indicates that the market’s
assessment of the volatility of the relative futures price changes may be greater
for puts than for calls and provides the motivation for the tests in the next
subsection.

D. Stationarity of Volatility Estimates Across Options

To test the hypothesis that the standard deviation of futures price change
relatives is the same in the pricing of call and put options on the S&P 500 futures
contracts, the ratio,

R = [SSEc(oc) + SSE,(a,)]/SSE(s), @)

was computed each day during the sample period. In (8), SSEc(oc¢) is the sum of
squared errors realized by estimating the nonlinear regression (6) using only the
call option transaction prices during the day, and SSE,(o,) is the sum of squared
errors using only the put option prices. SSE(o¢) is the sum of squared errors using
both the call and put option prices. If the residuals of the regressions are
independent and normally distributed, Gallant [12] shows that the test statistic,

F=(n-2)1-R), )

is approximately distributed, F;,_,.”* The results of these tests are reported in
Table IV.

The test results indicate that the null hypothesis that the volatility estimates
are equal for calls and puts is rejected in 75 percent of the cases for the American
model. The standard deviation of futures price relatives implied by call option
prices is lower, on average, than that implied by put option prices. The cause of
this anomaly is difficult to determine. One possible explanation is that the
stochastic process governing the futures price movements is ill-defined, so the
option pricing models are misspecified. Another is that perhaps two separate
clienteles trade in call options and in put options. But, this latter explanation
fails to account for the floor traders who could costlessly benefit from such a
clientele arrangement.

Regardless of the explanation, the anomaly may be only transitory. The only
fact established so far is that the futures option pricing models do not adequately
explain the observed structure of option prices. It may well be the case that the

13 Barone-Adesi [2] uses a similar maximum likelihood test to compare the structural forms of
competing option pricing models.
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Table IV
Frequency Distribution of Non-Rejection/Rejection
of the Null Hypothesis that the Standard Deviations
Implied by Option Prices Are Equal for Call-and-Put
Options Using S&P 500 Futures Option Transaction
Prices during the Period January 28, 1983 through
December 30, 1983

Hypothesis*® Frequency

Hoy: The standard deviation of the futures price 59
relatives for call options is equal to the
standard deviation for put options.

H,: The standard deviation of the futures price 173
relatives for call options is not equal to the
standard deviation for put options.

Total 232

2 The probability level used in the evaluation of the test statistics
is 5 percent.

> The test statistic for the hypothesis test is F = (n — 2)(1 — R),
where n is the number of option transactions and R = [SSE¢(o¢)
+ SSE,(0,)]/SSE(c). Assuming the residuals are independent and
normally distributed, the ratio F' is approximately distributed as
F 1,n—2-

market is mispricing S&P 500 futures options and that abnormal risk-adjusted
rates of return may be earned by trading on the basis of the models’ prices.

E. Market Efficiency Test

The systematic biases reported in Table III and the s-anomaly reported in
Table IV may result because the futures option pricing models are misspecified
or because the S&P 500 futures option market is inefficient or both. One way of
attempting to isolate the two effects is to test whether abnormal rates of return
after transaction costs may be earned by trading futures options on the basis of
the models’ prices. If abnormal returns after transaction costs can be earned, it
is likely to be the case that the market is inefficient. The price deviations,
systematic or not, signal profit opportunities. If abnormal profits cannot be
earned, there are no grounds for rejecting the null hypothesis that the model is
correctly specified and that the S&P 500 futures option market is efficient.

The market efficiency test design involved hedging mispriced futures options
against the underlying futures contract. Each day options were priced using the
American futures option pricing models and the standard deviations estimated
from all of the previous day’s transaction prices.!* Because no estimate of ¢ was
available for the transactions of the first day of the sample period, January 28,
1983, the first day’s transactions were eliminated, and only 231 days and 28,493
options remained in the sample.

4 Because both call and put option transaction prices are used in the daily regression to estimate
the o, the estimate is, in essence, an average of the estimates implied by call and puts separately.
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Each of the 28,493 option transactions was examined to see whether the option
was undervalued or overvalued relative to the futures option pricing models. The
hedge formed at that instant in time'® depended on the nature of the transaction
price:

Nature of Futures
Transaction Option Futures
Price Position Position
Undervalued call Long 1 contract Short 6C/éF contracts
Overvalued call Short 1 contract Long 6C/8F contracts
Undervalued put Long 1 contract Long —4P/éF contracts
Overvalued put Short 1 contract Short —6P/4F contracts

where the partial derivatives of the call and put option prices were computed
using valuation Equations (4) and (5).

Two types of hedge portfolios were considered in the analysis. The first was a
“buy-and-hold” hedge portfolio. Each hedge was formed according to the weights
described above and was held until the futures option/futures expiration or until
the end of the sample period, whichever came first. At such time, the futures
option/futures positions were closed, and the hedge profit was computed. The
second was the “rebalanced” hedge portfolio. Here, the initial hedge composition
was the same as the buy-and-hold strategy, but at the end of each day, the futures
position was altered to account for the change in the futures option’s hedge ratio.
The difference between the profits of these two hedge portfolio strategies was,
therefore, the net gain or loss on the intermediate futures position adjustments
within the rebalanced portfolio.!®

Note that the hedge portfolios are assumed to be held until the option’s

15 The hedge portfolio strategy assumed that the hedge is formed at the prices which signalled the
profit opportunity. This was done for two reasons. First, floor traders have the opportunity to transact
at these prices. If a sell order at a price below the model price enters the pit, the floor trader can buy
the options and then hedge his position within seconds using the futures. Second, the transaction
price for retail customers may be handled by simply adding the bid-ask spread to the price which
triggered a buy and subtracting the bid-ask spread from the price which triggered a sell.

¥ To illustrate the mechanics of the buy-and-hold and rebalanced hedge portfolio strategies,
consider the following example. A call option with an exercise price of $100 and with two days to
expiration is priced at $1, where its theoretical price is $1.50 and its hedge ratio is 0.8. The current
futures price is $100. Because the call is underpriced relative to the model, it is purchased, and 0.8
futures contracts are sold. The net investment of both the buy-and-hold and rebalanced hedge
portfolios is, therefore, $1 (i.e., one option contract times $1 per contract).

By the end of the day before expiration, the futures price rises to say, $102. At the new futures
price, the model price is $3.00 and the hedge ratio is 0.9. Since the hedge ratio has changed, 0.1 more
futures contracts must be sold in order to maintain the riskless hedge of the rebalanced portfolio.
The additional futures contracts are assumed to be bought or sold at the day’s closing price, in this
case $102.

Now, suppose that on the following day, the futures expires at $106, and the futures option at
$6.00 (i.e., the futures price $106 less the exercise price $100). The buy-and-hold hedge portfolio
profit would be computed as the option position profit, $6 — 1 = $5, plus the futures position profit,
~0.8 X ($106 — 100) = —$4.80, or $0.20 in total. The rebalanced hedge portfolio profit is computed
as the $0.20 buy-and-hold profit plus the net gain (loss) on the intermediate futures position change,
—0.1 X ($106 — 102) = —$0.40, or —$0.20 in total.
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expiration. This is unlike the empirical procedures used in the stock option
market efficiency tests which assume that an option position is opened at one
price and then closed at the next available price. If the option pricing models
have systematic mispricing tendencies, an option which is undervalued on one
day is likely to be undervalued on the next. By holding the option position open
until expiration, at which time the observed and model prices converge to the
same value, there is some assurance that the prospective option mispricing profits
are being captured.

In Table V, the average cost, profit, and rate of return of the hedge portfolios
formed on the basis of the American futures option prices are presented. When
no minimum size restriction was placed on the absolute price deviation, 28,493
hedge portfolios were formed. On an average, the number of futures contracts in
each hedge at formation was 0.442 (1.442 less one futures option contract). The
average investment cost of each hedge was —$46.75 (—0.0935 X $500),'” indicating
that, on an average, money was collected when the hedge portfolios were formed.

The average profit for the buy-and-hold hedge portfolio was $88 (0.1760 X
$500), and the average rebalanced hedge portfolio profit was $77.85. The daily
rebalancing of the futures position lowered overall hedge profits. On the other
hand, the standard deviation of the buy-and-hold profit was 1.9302 compared
with 0.8574 for the rebalanced portfolio profits.’® The daily rebalancing of the
futures position decreased the volatility of the hedge profits portfolio by more
than 55 percent.

Immediately to the right of the rebalanced portfolio profit column is a column
with break-even transaction cost rates. These numbers represent the average of
the transaction cost rate per contract sufficient to eliminate rebalanced portfolio
profit. In other words, if the transaction cost rate was less than $57.60 (0.1152 X
$500) per contract, the average portfolio profit was greater than zero. Note that
the transaction costs were assumed to be paid only on the contracts bought or
sold when the portfolio was formed. The overall net effect of the incremental
transaction costs on the intermediate daily rebalancing of the futures position of
the hedge portfolios was assumed to be equal to zero.'®

The rebalanced portfolio excess rate of return column contains the average
rate of return and the net of any interest carrying charge. If the option in the
hedge portfolio was purchased, the excess rate of return of the hedge was equal
to the rate of return on the hedge less the riskless rate of interest. If the option
was sold, interest was assumed to be earned on the proceeds from the sale, so the
excess rate of return on the hedge was equal to the rate of return on the hedge
plus the riskless rate of interest. The excess rate of return for the rebalanced

17 The value for the S&P 500 futures and futures options are index values. The dollar worth of the
contract is obtained by multiplying the index value by $500.

'® The standard deviations are not reported, but they can be inferred from the reported numbers
of observations and the t-ratios.

¥ To account for the transaction costs of the daily readjustment of the futures position within
each portfolio separately would dramatically overstate the role of transaction costs within the hedge
portfolio because, at the end of the day, some hedges will require that futures contracts be purchased
and some that futures be sold. The net overall daily adjustment in the futures position would likely
be near zero, so no intermediate transaction costs were imposed.
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portfolio using all of the transactions was 9.05 percent and is significantly greater
than zero.

Before proceeding with a description of the remaining two columns, it is
worthwhile to point out three facts about the excess rates of return for the
rebalanced hedge portfolio. First, the excess return did not fall very much if the
proceeds from the futures option sales were assumed to earn no interest. In this
case, the average excess rate of return was 8.41 percent, with a t-ratio of 33.49.
Second, the excess rate of return for the American model was only slightly higher
than it was for the European model. For the latter model, the average return was
8.91 percent, with a t-ratio of 35.03. This evidence is consistent with the
simulation results in the last section. Finally, the use of Student ¢-ratios to
evaluate the significance of the excess rates of return is appropriate since the
return distributions were symmetric and only slightly leptokurtic.

The column labelled excess rate of return after transaction costs incorporated
a $10 per contract transaction cost assumption. Such a fee is probably appropriate
for a floor trader.?’ The average excess rate of return after transaction costs was
6.96 percent, again significantly greater than zero.

The final column contains estimated slope coefficients from the regression of
rebalanced portfolio excess rates of return on the futures price change relatives
over the corresponding period. In essence, this regression is intended to evaluate
the effectiveness of the portfolio rebalancing at maintaining a riskless hedge. For
the entire sample of hedge portfolio, the relative systematic risk is significantly
positive at the 5 percent level, however its magnitude, 0.1193, is very small.

Table V also contains the hedge portfolio profit characteristics when minimum
absolute option price deviations of 0.05, 0.10, 0.15, and 0.20 were imposed.
Naturally, the higher was the demanded absolute price deviation, the fewer were
the option transactions to qualify as hedge portfolio candidates. In the case where
the minimum absolute deviation was set equal to 0.10, for example, only 17,596
hedges were formed.

With all of the price deviation strategies reported in Table V, the average
excess rates of return are significantly greater than zero. For floor traders,

20 Actually, the assumed $10 per contract overstates the transaction costs a floor trader might face.
The only transaction cost paid by floor traders is a clearing fee, which is on order of $1.50 per
contract. The $10 per contract assumption, therefore, presents a conservative view of the floor trader’s
hedge portfolio profits after transaction costs.

Two other institutional considerations are worthy of note. The transaction cost rates in this
market are quoted on a “round-turn” basis. That is, a $50 per contract commission charge covers the
cost of entering the market at the time of purchase or sale and the cost of closing the position at a
subsequent date. For futures contract positions, the broker charges all of the commission when the
position is closed, and, for futures option positions, half the commission is charged when the position
is opened and half when it is closed.

Since commission rates are negotiated between each customer and his or her broker, it is difficult
to assess what are representative commission charges for the various futures/futures option customers.
Large institutional customers such as mutual funds typically pay commissions at a rate of $20 to $30
per contract and are allowed to post margin requirement in the form of interest-bearing T-bills.
Smaller customers likely pay commissions of $50 or more, and are also allowed to the T-bill margin-
posting privilege. Some brokers quote lower rates for small customers, but demand margin money in
the form of cash.
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demanding a minimum price deviation of 0.05 is reasonable since they face only
the cost of clearing their transactions, which is considerably less than $25 per
contract. When such a minimum price deviation was imposed, the average hedge
portfolio excess rate of return was 10.26 percent before clearing costs and 8.50
percent after a $10 per contract clearing cost was applied to both the futures
option and futures transactions. Retail customers, however, not only face the
commission rates imposed by their broker, but also the bid-ask spread imposed
by the market maker. Assuming a commission rate of $50 per contract and a bid-
ask spread of $50 per option contract, demanding a minimum price deviation of
0.20 is reasonable. However, in this case, the average break-even transaction cost
rate was 0.2006, so the retail customer would have earned about $0.30 per hedge
after transaction costs.

In the previous section, systematic mispricing errors related to the moneyness
of the option were documented. For this reason, the option transactions were
categorized by the type of option and by the degree to which the option is in-the-
money. The results are reported in Table VI. Most of the abnormal profits
associated with the trading strategy appear to be concentrated in out-of-the-
money put options. The average excess rate of return after the floor trader’s
clearing costs was 16.88 percent. In comparison, none of the other option
categories had an average return greater than 3 percent after clearing costs.

One plausible explanation for this result is that more than 72 percent out-of-
the-money put options were overpriced (see Table III) and thus sold within the
trading strategy. Over the period January 31, 1983 through December 30, 1983,
the S&P 500 Index rose from 145.30 to 164.93, indicating that writing out-of-
the-money puts would have been profitable indeed. But, the put options sold
within the hedge strategy were balanced against short positions in the futures,
so what was gained on the put transactions should have been lost on the futures
transactions. Moreover, the estimated systematic risk for the hedge portfolios in
this category was significantly negative, indicating that, if anything, not enough
put options were sold to immunize the portfolio against movements in the
underlying futures price. The overall upward market movement in the equity
market during the examination period must, therefore, be discounted as a
potential explanation of the market inefficiency.

Although the results of Table VI indicate that floor traders could profit by
writing out-of-the-money puts, it is doubtful whether retail customers could
profit by such a strategy. As was noted in Table II, at-the-money options enjoyed
the greatest volume of activity and, therefore, probably experienced the lowest
bid-ask spread. Out-of-the-money S&P 500 futures options have less liquidity,
and it is not uncommon to find the bid-ask spread as high as 0.15 or 0.20.
Assuming a commission rate of $50 per contract and a bid-ask spread of $50 per
contract takes the average profit from $159.70 per hedge to an average gain after
transaction costs of $45.40.

Overall, the results reported in Tables V and VI provide evidence that the joint
hypothesis that the American futures option valuation models are correctly
specified and that the S&P 500 futures option market is efficient is refuted for
the period January 31, 1983 through December 30, 1983, at least from the
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standpoint of floor traders who stood ready to transact based on model prices.
From a retail customer’s standpoint, however, it is doubtful whether abnormal
profits after transaction costs could have been earned.

In Table VII, the option transactions in four separate subperiods are consid-
ered. In the first subperiod, the average excess rate of return on the hedge
portfolio was 0.47 percent, insignificantly different from zero. In the remaining
three subperiods, the excess rate of return was significantly greater than zero,
with the return highest in the second subperiod and second highest in the final
subperiod. In other words, there does not appear to be any indication that the
market became more efficient during 1983. Whether floor traders can continue
to earn abnormal rates of return after clearing costs by buying undervalued
and selling overvalued S&P 500 futures options must await further empirical
investigation.

III. Summary and Conclusions

The purpose of this paper is to review the theory underlying American futures
option valuation and to test the theory in one of the recently developed futures
option markets. The theoretical work begins by focusing on the partial differential
equation of Black [5] and by discussing how the boundary conditions to the
equation imply different structural forms to the pricing equations. Although no
analytic solutions to the American futures option pricing problems are provided,
efficient analytic approximations are presented. Simulations of futures option
prices using the European and American models and plausible option pricing
parameters show that the early exercise premium of the American futures option
has a significant impact on pricing if the option is in-the-money.

The empirical work focuses on transaction prices for S&P 500 equity futures
options during the first 232 trading days of the market’s existence, the period
from January 28, 1983 through December 30, 1983. The major empirical results
are as follows:

1. A moneyness bias and a maturity bias appear for the American futures
option pricing models. For calls, the moneyness bias is the opposite of that
reported for stock options—out-of-the-money options are underpriced rel-
ative to the model and in-the-money options are overpriced. For puts, just
the reverse is true—out-of-the-money puts are overpriced relative to the
model and in-the-money puts are underpriced. The maturity bias is the
same for both the calls and the puts—short time-to-expiration options are
underpriced relative to the model and long time-to-expiration are overpriced,
but the bias appears more serious for put options than for call options.

2. The standard deviation implied by call option transaction prices is lower,
on average, than that implied by put option prices.

3. Ariskless hedging strategy using the American futures option pricing models
(as well as the European futures option pricing models) generates abnormal
risk-adjusted rates of return after the transaction costs paid by floor traders
or large institutional customers. If a retail customer was to try to capture
the profits implied by the futures option mispricing, however, transaction
costs will likely eliminate the hedge portfolio profit opportunities.
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