9

Properties of stock options

There ain't no such thing as a free lunch.

-A Libertarian Movement slogan

Overview

- Factors affecting option prices
- Assumptions and notation
- Upper and lower bounds for option prices
- Put-call parity
- Early exercise: calls on a non-dividend paying stock
- Early exercise: puts on a non-dividend paying stock

2 Ian Buckley

Effect of dividends

Factors affecting option prices

Overview

- Six factors affect the price of a stock option:
 - _____, ____
 - _____, ____

 - _____, ____
 - ______, _____, _____

Stock Price and Strike

- Calls become more valuable as the stock price increases □ decreases □ or the strike increases □ decreases □
- Puts become more valuable as the stock price increases

 decreases

 or the strike increases

 decreases

Time to Expiration

- As the time to expiration increases:
 - American options become more □ less □ valuable Why?
 - European options become more \Box less \Box more valuable. Why?

Volatility

- σ is defined so that $\sigma \sqrt{\Delta t}$ is standard deviation of stock price measured between *t* and $t + \Delta t$
- Stock owner: chance of a negative price ≈ chance of a positive move ⇒ volatility of limited interest
- Option holder: down-side protected ⇒ value of option increases □ decreases □ with volatility. Why?

Risk Free Rate

- Two effects of increase in risk-free rate:
 - Growth rate of stocks increase □ decrease □
 - PV of future cash flows higher \Box lower \Box
- Effects of risk-free rates increase on value of
 - put increases \Box decreases \Box

- call increases \Box decreases \Box
- I.e. first \square second \square effect dominates

Dividends

- Dividends reduce stock price on ex-dividend date
- Call options negatively correlated with size of anticipated dividend

Plots

Variable	Call	Put
S_0		
77		
K		
Т		
σ		
r		

Figure 9.1: Effect of changes in variables on option price (please sketch)

Summary

Table 9.1. Summary of the effect on the price of a stock option of increasing one variable, whilst keeping the others fixed

Variable	European call	European put	American call	American put
Current stock price		_		
Strike price	_	_	_	
Time to expiry		_		
Volatility		_		
Risk-free rate		_		
Future dividends				

Assumptions and notation

Assumptions

- No transaction costs
- Same tax rate on all profits
- Risk-free rate same for borrow and lend

Notation

S_0 current	stock	price
---------------	-------	-------

- K strike price
- T time to expiration
- S_T stock price at expiry
- *r* risk-free rate of interest (continuously compounded)
- C value of American call option to buy one share
- *P* value of American put option to sell one share
- c value of European call option to buy one share
- *p* value of European put option to sell one share
- D present value of dividends

• Addition of a bar above a variable will indicate a factor of e^{-rT} . E.g. $\overline{K} = K e^{-rT}$

Upper and lower bounds for option prices

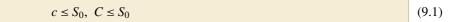
Overview

- Upper bounds
- Lower bounds for calls on non-dividend paying stocks
- Lower bounds for European puts on non-dividend paying stocks

Upper bounds

Call options

Proposition 9.1. *The stock price is an upper bound to the price of an American or European call option.*



- Call never worth more than stock
- Or else, arb opp: _____ stock, _____ option

Put options

Proposition 9.2. *The strike price is an upper bound to the price of an American call option. The discounted strike price is an upper bound to the price of a European call option.*

$$p \le \overline{K}, \ P \le K \tag{9.2}$$

- Put never worth more than strike
- Euro put, true at expiry \Rightarrow prior to expiry, never worth more than discounted strike

Lower bounds for European calls on non-dividend paying stocks

Proposition

Proposition 9.3. The expression $\max(S_0 - \overline{K}, 0)$ is a lower bound to the price of a European call option.

 $\max(S_0 - \overline{K}, 0) \le c \tag{9.3}$

Example

Example 9.1. Devise a trading strategy to exploit the arbitrage opportunity that exists if $S_0 - \overline{K} > c$

Instrument	Holding	Value at 0	Value at T
Stock	-1	$-S_0$	$-S_T$
Bank/bond	\overline{K}	\overline{K}	Κ
Call	1	С	$\max(S_T - K, 0)$
Total		$c - (S_0 - \overline{K})$	$\max(S_T - K, 0) - (S_T - K) = \max(K - S_T, 0) \ge 0$

Value at \mathcal{T} of strategy is greater than or equal to zero.

Given that $c - (S_0 - \overline{K}) < 0$, the strategy has negative cost at time 0, and yet gives positive payoff in all states of the world at expiry. This is an arbitrage opportunity.

Proof of proposition

- Using the strategy from the table
- Value at *T* of strategy is greater than or equal to zero.
- \Rightarrow must be true at earlier times also (why?)
- $\implies c (S_0 \overline{K}) \ge 0$
- Also $c \ge 0$
- Combining: $c \ge \max(S_0 \overline{K}, 0)$

Lower bounds for European puts on non-dividend paying stocks

Proposition

Proposition 9.4. The expression $\max(\overline{K} - S_0, 0)$ is a lower bound to the price of a European put option.

 $\max(\overline{K} - S_0, 0) \le p$

(9.4)

Proof

- Seek lower bound, so show if put price lower than bound \Rightarrow arb opp.
- Cheap put \Rightarrow long put

Table 9.2. Strategy to find lower bound for a European put price

Instrument	Holding	Value at 0	Value at T
Stock	1	S ₀	S_T
Bank/bond	$-\overline{K}$	$-\overline{K}$	-K
Put	1	р	$\max(K-S_T,0)$
Total		$p-(\overline{K}-S_0)$	$\max(K - S_T, 0) - (K - S_T) =$
			$\max(S_T - K, 0) \ge 0$

- Value of strategy at *T* is greater than or equal to zero.
- \Rightarrow true at earlier times
- $\bullet \ \Rightarrow p (\overline{K} S_0) \ge 0$
- Also $p \ge 0$
- Combining: $p \ge \max(\overline{K} S_0, 0)$

Put-call parity

Relates ______ values of stock, call and put

European options

Proposition

Proposition 9.5. The prices of European call and put options are related by $c + \overline{K} = p + S_0$

 $c + \overline{K} = p + S_0$

(9.5)

Proof

Table 9.3. Strategy to establish put-call parity for European options

Instrument	Holding	Value at 0	Value at T
Call	1	С	$\max(S_T - K, 0)$
Put	-1	- <i>p</i>	$-\max(K-S_T,0)$
Stock	1	S_0	S_T
Bank/bond	$-\overline{K}$	$-\overline{K}$	-K
Total		$c - p - (S_0 - \overline{K})$	0

American options

Proposition

Proposition 9.6. Bounds on the prices of American call and put options are given by $S_0 - K \le C - P \le S_0 - \overline{K}$

 $S_0 - K \le C - P \le S_0 - \overline{K} \tag{9.6}$

Proof

Upper bound

- No dividend case: American { puts more calls equally } valuable { than to below.)
- $P \ge p = c + \overline{K} S_0 = C + \overline{K} S_0 \Rightarrow C P \le S_0 \overline{K}$

Lower bound

 Consider value immediately after entering strategy, given that value of American options (call or put) is always greater or equal to value of immediate exercise

Table 9.4	. Strategy to	o establish j	put-call p	arity lower	bound for	C - P for	American	options

Instrument	Holding	Value at 0	Value at $ au$	Value at T, no early excs
Call	1	C=c	≥0	$(S_T - K)^+$
Bank/bond	K	Κ	$\hat{K} = K e^{r\tau}$	$\hat{\hat{K}} = K e^{rT}$
Subtotal		С-К	$\geq \hat{K}$	$\max(S_T, K) - K + \hat{K}$
Put	-1	- <i>P</i>	$-(K-S_{\tau})^+$	$-(K-S_T)^+$
Stock	-1	$-S_0$	$-S_{\tau}$	$-S_T$
Subtotal		$-(P+S_0)$	- <i>K</i>	$-\max(S_T,K)$
Total		$C-P-(S_0-K)$	>0	>0

- $\Rightarrow C P (S_0 K) \ge 0$
- $\implies (S_0 \overline{K}) \le C P$

Early exercise: calls on a non-dividend paying stock

Proposition

Proposition 9.7. It is never optimal to early exercise an American call option on a non-dividend paying stock.

Plausibility argument

Exercise option, keep stock

- Consider in-the-money (ITM) $S_t K > 0$ American call option with T t until expiry
- Exercise now, will pay *K* to get stock
- Wait, keeping *K* invested in bank, still get same stock at expiry
- No dividends to miss out on by delaying purchase
- If moves OTM, glad waited

Exercise option, sell stock

Always better to sell the option instead

Formal argument

• $S_0 - \overline{K} \xrightarrow{\text{Lower bound on } c} c \xrightarrow{\text{American at least as valuable as European}} C$

- Consider
 - $r > 0 \Rightarrow S_0 K < C$
 - Condition for early exercise $S_0 K = C$
- Cannot both be true, so early exercise can never be optimal

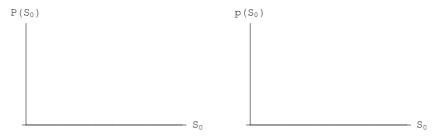
Figure

Code to plot axes

Early exercise: puts on a non-dividend paying stock

- Early exercise of American puts can be optimal
- Consider extreme case $0 \leq S_0 \ll K$
- Exercise: payoff $z = K S_0$
- Wait: *z* could get smaller, cannot get bigger (why?)
- Also z now, better than z later
- \Rightarrow Exercise *now*

Figure



Code to plot axes

Effect of dividends

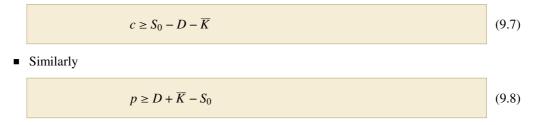
- Present value of dividends during the life of the option D
- Most arguments above require modification

Lower bounds for calls and puts

Table 9.5. Strategy to find lower bound for a European put price

Instrument	Holding	Value at 0	Value at T
Stock	-1	$-S_0$	$-S_T$
Bank/bond	$\overline{K} + D$	$\overline{K} + D$	Κ
Call	1	С	$\max(S_T - K, 0)$
Total		$c - (S_0 - \overline{K} - D)$	$\max(S_T - K, 0) -$
			$(S_T - K) =$
			$\max(K - S_T, 0) \ge 0$

Therefore:



Early exercise

- Now sometimes optimal to early exercise a call
- However, only ______ to an ______ date

Put call parity

Equality for European options

$$c + \underline{D} + \overline{K} = p + S_0 \tag{9.9}$$

Bounds for American options

$$S_0 - D + K \le C - P \le S_0 - \overline{K} \tag{9.10}$$

Summary

Factors affecting option prices

Table 9.6. Summary of the effect on the price of a stock option of increasing one variable,

 whilst keeping the others fixed

Variable	European call	European put	American call	American put
Current stock price	+	_	+	-
Strike price	_	+	-	+
Time to expiry	?	?	+	+
Volatility	+	+	+	+
Risk-free rate	+	_	+	_
Future dividends	_	+	_	+

Assumptions and notation

- No TCs, tax rate, IR spread
- $S_0, T, S_T, r, K, \sigma$

12 Ian Buckley

Upper and lower bounds for option prices

Table 9.7. Summary of option price bounds

	Call	Put
European	$\max(S_0 - \overline{K} - D, 0) \le c \le S_0$	$\max(\overline{K} + D - S_0, 0) \le p \le \overline{K}$
American	$C \leq S_0$	$P \leq K$

Put-call parity

European options

```
c + D + \overline{K} = p + S_0
```

American option: bounds on difference only

 $S_0 - D + K \leq C - P \leq S_0 - \overline{K}$

Early exercise: calls on a non-dividend paying stock

Never optimal to early exercise

Early exercise: puts on a non-dividend paying stock

• Can be optimal to early exercise — consider $0 \leq S_0 \ll K$

Effect of dividends

- Slight modifications to expressions
- Can be optimal to early exercise American call