7 Swans

Swaps

I have friends in overalls whose friendship I would not swap for the favor of the kings of the world.

-Thomas A. Edison

Overview

- Mechanics of interest rate swaps
- Day count issues
- (Confirmations skip)
- The comparative-advantage argument

- The nature of swap rates
- Determining the LIBOR/swap zero rates
- Valuation of interest rate swaps
- Currency swaps
- Valuation of currency swaps
- Credit risk
- Other types of swap
- Summary

Preamble

- First contracts 1980s
- Agreement to exchange cash flows at specified future times according to certain specified rules
- Cash flows from future value of variable: IR, FX, etc.
- Generalises a forward contract if cash settled swap forward price for market value

- Multiple dates
- Focus on swaps:
 - plain vanilla interest rate
 - fixed-for-fixed currency

Nature of Swaps

Definition 7.1. A *swap* is an agreement to exchange cash flows at specified future times according to certain specified rules.

Mechanics of interest rate swaps

■ Most common – plain vanilla interest rate swap

Definition 7.2. A *plain vanilla interest rate swap* is an agreement in which a company agrees to pay cash flows equal to interest at a predetermined fixed rate in return for interest at a floating rate, on a notional principal, for a period of time.

- Floating rate typically LIBOR (Chapter 4)
- Reference IR for loans in _____ markets (cf. *prime* in ____ markets)

An Example of a "Plain Vanilla" Interest Rate Swap

- An agreement by Microsoft to
 - receive 6-month LIBOR &
 - pay a fixed rate of 5% per annum
 - every 6 months
 - for 3 years on a
 - notional principal of \$100 million

Figure

Figure 7.1: Interest rate swap between Microsoft and Intel

Cash Flows to Microsoft

■ See Hull 2006 Table 7.1, page 151

Table 7.1. Cash flows (millions of dollars) to Microsoft, in a \$100 million, 3-year interest rate swap, when a fixed rate of 5% is paid and LIBOR is received. The net cash flow is the difference. (Ignore day count issues.)

Date	6-month LIBOR (%)	Floating received	Fixed paid	Net cash flow
Mar. 5, 2004	4.20	-	-	-
Sept. 5, 2004	4.80	+2.10	-2.50	-0.40
Mar. 5, 2005	5.30	+2.40	-2.50	-0.10
Sept. 5, 2005	5.50	+2.65	-2.50	+0.15
Mar. 5, 2006	5.60	+2.75	-2.50	+0.25
Sept. 5, 2006	5.90	+2.80	-2.50	+0.30
Mar. 5, 2007	-	+2.95	-2.50	+0.45

Cash Flows to Microsoft – with exchange of principal

Table 7.2. Cash flows (millions of dollars) to Microsoft, in a \$100 million, 3-year interest rate swap, when a fixed rate of 5% is paid and LIBOR is received. The net cash flow is the difference.

Date	6-month LIBOR (%)	Floating received	Fixed paid	Net cash flow
Mar. 5, 2004	4.20	_	-	-
Sept. 5, 2004	4.80	+2.10	-2.50	-0.40
Mar. 5, 2005	5.30	+2.40	-2.50	-0.10
Sept. 5, 2005	5.50	+2.65	-2.50	+0.15
Mar. 5, 2006	5.60	+2.75	-2.50	+0.25
Sept. 5, 2006	5.90	+2.80	-2.50	+0.30
Mar. 5, 2007	-	+102.95	-102.50	+0.45

Code

Plot

Figure 7.2: Cash flows (millions of dollars) to Microsoft, in a \$100 million, 3-year interest rate swap, when a fixed rate of 5% is paid and LIBOR is received. The **net cash flow** is the difference. Variants are (a) without and (b) with exchange of principal at the end.

Remark

- The net cash flow is the same whether or not the principal is exchanged.
- Typically the principal is *not* exchanged (hence "notional" principal)
- However, case with exchange of principal gives insight

Typical Uses of an Interest Rate Swap

- Converting a liability from
 - fixed rate to floating rate
 - floating rate to fixed rate
- Converting an investment from
 - fixed rate to floating rate
 - floating rate to fixed rate

Figure

Figure 7.3: Use of an interest rate swap to transform a liability or an asset, without a financial intermediary.

Figure 7.4: Use of an interest rate swap to transform a liability or an asset, with a financial intermediary.

Transforming a liability

- Convertion of debt payments
 - Microsoft from LIBOR + 0.1% to _____
 - Intel from 5.2% to _____

Transforming an asset

- Convertion of asset cash (in)flows
 - Microsoft from 4.7% to __
 - Intel from LIBOR 0.2% to _____

Financial intermediary

- Typically earns _____ basis points
- Has ____ contracts
- If one party defaults does □ does not □ have to honour its agreement with other

Further detail

- Musiela Rutkowski (2004)
- Usually payments are set in advance, paid/settled in arrears
- Paid/settled in advance also possible, but arrears payments require discounting
 - Conventions vary

- Discount payments
 - float by float,
 - fixed by float or fix

Day count issues

■ LIBOR (e.g. 6-mo in Table 7.1) is a money market rate, hence quoted on ______ basis

Example 7.1. The first floating payment in Table 7.1 is for a LIBOR rate of 4.2%. What is the correct interest payment if day count conventions are taken into account?

Reference period Mar 5 to Sept 5, 2004 is 184 days Interest earned is $$100\times10^6\times0.042\times\frac{184}{360}=2.1467

LIBOR-based cash flows

Notation

Λ principal

R LIBOR rate

n number of days since last payment

■ Note: Greek "L", Lambda, to save "L" for LIBOR rate, below.

Swap cash flow expression

Cash flow =
$$\frac{\Lambda R n}{360}$$
 (7.1)

Fixed rate cash flows

- Usually
 - actual/365
 - **30/360**
- Often factor 360/365 required to compare 6-mo LIBOR with fixed

The comparative-advantage argument

The Comparative Advantage Argument

- Hull Table 7.4, page 157
- AAACorp wants to borrow floating
- BBBCorp wants to borrow fixed

Table 7.3. Borrowing rates for two corporations

Company	Fixed	Floating
AAACorp	4.0%	LIBOR + 0.3%
BBBCorp	5.2%	LIBOR + 1.0%

- Key feature difference between _____ rates, greater than between _
- {AAACorp BBBCorp} has a comparative advantage in {

Financial intermediary ↓	Agreement
No	4% AAACorp EBBCorp LIBOR LIBOR
Yes	$ \stackrel{4\%}{\longleftarrow} \text{AAACorp} \stackrel{3.93\%}{\underset{\text{Libor}}{\longleftarrow}} \stackrel{\text{FI}}{\underset{\text{Libor}}{\longleftarrow}} \stackrel{3.97\%}{\underset{\text{Libor}}{\longleftarrow}} \text{BBBCorp} \underset{\text{Libor}}{\underset{\text{Libor}}{\longrightarrow}} $

Figure 7.5: Illustration of comparative advantage agreement for two corporations, without and with a financial intermediary.

Criticism of the Comparative Advantage Argument

- 4.0% and 5.2% rates available to AAACorp and BBBCorp in fixed rate markets are 5-year rates
- The LIBOR+0.3% and LIBOR+1% rates available in the floating rate market are six-month
- BBBCorp's fixed rate depends on spread above LIBOR it borrows at in the future

The Nature of Swap Rates

■ Six-month LIBOR is short-term AA borrowing rate

- 5-year swap rate has risk ~ 10 six-month loans made to AA borrowers at LIBOR
- Lender can enter into swap income from LIBOR loans exchanged for 5-year swap rate

Swap rates

Practical definition

Definition 7.3. *Swap rates* are the fixed rates at which financial institutions offer interest rate swap contracts to their clients.

■ M&R 2004, p. 328

Theoretical definition

Definition 7.4. The *swap rate* is that value of the fixed rate that makes the value of the swap zero at inception.

- M&R 2004, p. 479
- Cf. forward interest rate and value of FRA
- Institutions offer swap contracts at rates with appropriate spreads above and below the theoretical ones

Determining the LIBOR/swap zero rates

- Risk-free rates for derivative valuation purposes
 - LIBOR ≤ 12 mos
 - Eurodollar futures 1-2 yrs
 - Swaps ≥ 2 yrs
- LIBOR/swap zero curve
- Chapter 4 "par yields" now put to use!

Overview of argument

- Consider a new swap with fixed rate = swap rate
- Add principals on both sides on final payment date ⇒ swap ≡ exchange of fixed rate and floating rate bonds
- Value of bonds/swaps

•	Floating-rate rate bond –	*.
•	Swap –	

- ⇒ fixed-rate bond worth _____
- ⇒ swap rates define par yield bonds; used to bootstrap the LIBOR (or LIBOR/swap) zero curve
- * Argument below

Swap rates from bond prices

Notation

 S_n swap rate for an *n*-year agreement

Result

Proposition 7.5. The n-period swap rates S_n can be expressed in terms of prices of zero coupon bonds P_{0n} by the relationship $S_n = \frac{1 - P_{0n}}{\sum_{i=1}^{n} P_{0i}}$

$$S_n = \frac{1 - P_{0n}}{\sum_{i=1}^n P_{0i}} \tag{7.2}$$

• No surprises here; this was expression for par yield from Chapter 4

Mathematica implementation to explore terms

SwapRate[n_] :=
$$\frac{1 - P[0, n]}{\sum_{i=1}^{n} P[0, i]}$$

 ${\tt Table[\{S[n],\,SwapRate[n]\},\,\{n,\,3\}]\,//\,TableForm}$

$$S[1] = \frac{\frac{1-P[0,1]}{P[0,1]}}{P[0,1]}$$

$$S[2] = \frac{\frac{1-P[0,2]}{P[0,1]+P[0,2]}}{\frac{1-P[0,3]}{P[0,1]+P[0,3]}}$$

$$S[3] = \frac{1-P[0,3]}{P[0,1]+P[0,3]}$$

Proof

■ Consider 4-year swap

Figure 7.6: Diagram of cashflows for fixed leg of a 4-year swap agreement

- Pay 1 to get
 - 4 coupons of swap rate
 - initial investment back at 4

$$1 = S_4 P_{01} + S_4 P_{02} + S_4 P_{03} + (1 + S_4) P_{04}$$

 \blacksquare Similarly for n = 1, 2, 3, ...

Bond prices from swap rates

Result

Proposition 7.6. The prices of zero coupon bonds P_{0n} can be expressed in terms of the n-period swap rate S_n by the relationship $P_{0n} = 1 - S_n \sum_{r=0}^{n-1} \prod_{k=0}^r \frac{1}{1 + S_{n-k}}$

$$P_{0n} = 1 - S_n \sum_{r=0}^{n-1} \prod_{k=0}^{r} \frac{1}{1 + S_{n-k}}$$
 (7.3)

Mathematica implementation to explore terms

ZeroBond[n_] := 1 - S[n]
$$\sum_{r=0}^{n-1} \prod_{k=0}^{r} \frac{1}{1 + S[n-k]}$$

 $Table[{P[0, n], ZeroBond[n]}, {n, 3}] // TableForm$

Proof

- The swap rate is the level of the fixed rates such that the swap has zero value at inception
- Zero value occurs when floating rate bond equals fixed rate bond
- At inception, value of floating rate bond is unity (up to a common factor of the principal)

$$1 = (1 + S_1) P_{01}$$

$$1 = S_2 P_{01} + (1 + S_2) P_{02}$$

$$1 = S_3 P_{01} + S_3 P_{02} + (1 + S_3) P_{03}$$

$$\vdots \qquad \vdots$$

$$1 = S_n \sum_{i=1}^n P_{0i} + P_{0n}$$

$$\vdots \qquad \vdots$$

• Solve iteratively in terms of P_{0i}

$$\begin{array}{lll} P_{01} & = & \frac{1}{(1+S_1)} = 1 - \frac{S_1}{1+S_1} \\ P_{02} & = & \frac{1-S_2\,P_{01}}{1+S_2} = \frac{1}{1+S_2} - \frac{1}{1+S_2}\,\,\frac{S_2}{1+S_1} \\ & = & \frac{1+S_2-S_2}{1+S_2} - \frac{1}{1+S_2}\,\,\frac{S_2}{1+S_1} = 1 - \frac{S_2}{1+S_2} - \frac{1}{1+S_2}\,\,\frac{S_2}{1+S_1} \\ & = & 1 - S_2\Big(\frac{1}{1+S_2} + \frac{1}{1+S_1}\,\,\frac{1}{1+S_2}\Big) \\ P_{03} & = & \dots = 1 - S_3\,\Big(\frac{1}{1+S_3} + \frac{1}{(1+S_2)(1+S_3)} + \frac{1}{(1+S_1)(1+S_2)(1+S_3)}\Big) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ P_{0n} & = & 1 - S_n\,\sum_{r=0}^{n-1} \prod_{k=0}^{r}\,\frac{1}{1+S_{n-k}} \\ \vdots & \vdots & \vdots & \end{array}$$

FRNs are worth par after a coupon payment

- Not in Hull
- This argument courtesy of L.P. Hughston.

Notation

a,b start and end of time interval

 P_{ab} , P(a,b) price of zero-coupon bond at a, with unit payoff at b

Lab LIBOR interest rate

n number of days since last payment

Setup

■ Consider a 3-yr investment paying a LIBOR coupon, annually

Figure 7.7: Diagram of cashflows for 3-yr investment paying a LIBOR coupon, annually

• With a compounding frequency of $m = \frac{1}{b-a}$, the LIBOR rate and price of a zero coupon bond are related:

$$P_{ab} = \frac{1}{1 + L_{ab}(b - a)} \tag{7.4}$$

■ For our simple case, b - a = 1

$$L_{ab} = \frac{1}{P_{ab}} - 1$$

Argument

■ Each LIBOR coupon payment is discounted back to the previous payment date using a LIBOR discount rate

$$0 \xrightarrow{\qquad \longleftarrow} \underbrace{\begin{array}{c} L_{01} \\ \\ \\ \\ \\ \end{array}} \uparrow \underbrace{\begin{array}{c} \frac{1}{P_{01}} - 1 \\ \\ \\ \\ \end{array}} \xleftarrow{\begin{array}{c} L_{12} \\ \\ \\ \end{array}} \underbrace{\begin{array}{c} \frac{1}{P_{12}} - 1 \\ \\ \\ \\ \end{array}} \underbrace{\begin{array}{c} L_{23} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} \frac{1}{P_{23}} - 1 + 1 \\ \\ \\ \\ \end{array}} \uparrow \underbrace{\begin{array}{c} L_{23} \\ \\ \\ \\ \end{array}} \uparrow \underbrace{\begin{array}{c} L_{23} \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} 1 \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} 1 \\ \\ \\ \\ \\ \end{array}} \xrightarrow{\begin{array}{c} 1 \\ \\ \end{array}}$$

Figure 7.8: Diagram of cashflows for 3-yr investment with LIBOR coupons expressed in terms of bond prices

■ Value of 3rd coupon at time 2

$$\left(\frac{1}{P_{23}} - 1 + 1\right) \frac{1}{1 + L_{23}} = 1$$

■ Value of 3rd and 2nd coupons at time 1

$$\left(\frac{1}{P_{12}} - 1 + \frac{\text{previous step}}{1}\right) \frac{1}{1 + L_{12}} = 1$$

- Repeat iteratively down to t = 0
- Value of 3rd, 2nd & 1st coupons at time 0

$$\left(\frac{1}{P_{01}} - 1 + \frac{\text{previous step}}{1}\right) \frac{1}{1 + L_{12}} = 1$$

If coupon has just been paid, floating rate note is worth par

■ For an alternative proof see e.g. Cuthbertson & Nitzsche (2001) *Financial Engineering:* Derivatives and Risk Management

Example

Example 7.2. The 6, 12 & 18-month zero rates have been determined to be 4%, 5% & 4.8%, respectively. The 2-year semi-annually compounded swap rate is 5%. Find the 2-yr zero rate.

```
Bond with semi-annual coupon of 5% sells for par 0.025\times\left(e^{-0.04\times0.5}+e^{-0.05\times1.0}+e^{-0.048\times1.5}\right)+1.025\times e^{-r_2\times2.0}=1 r_2=4.953 %
```

Valuation of interest rate swaps

- Swap =
 - long position in one bond with a short position in another
 - portfolio of forward rate agreements

Valuation in terms of bond prices

- Valuation of bonds
 - fixed rate usual way
 - floating rate worth par immediately after next payment date

Notation

 V_{swap} value of swap

 $B_{\rm fix}$ value of fixed rate bond

 $B_{\rm fl}$ value of floating rate bond

 c_i cash flow at time T_i

 r_i zero coupon yield for interval $[0,T_i]$

n number of payments

Swap value

$$V_{\text{swap}} = B_{\text{fix}} - B_{\text{fl}} \tag{7.5}$$

Fixed rate bond

$$B_{\text{fix}} = \sum_{i=1}^{n} c_i \, e^{-r_i \, T_i} + \Lambda \, e^{-r_n \, T_n}$$

$$= \sum_{i=1}^{n} c_i \, P_{0i} + \Lambda \, P_{0n}$$
(7.6)

Value of floating rate bond

Notation

*k** next coupon payment time to next coupon payment zero coupon bond discount rate over $[0, t^*]$

Table 7.4. Expressions for the value of a floating rate bond

Time, relative to coupon payment	Head
Immediately after	Λ
Immediately before	$\Lambda + k^*$
Time <i>t</i> * before	$(\Lambda + k^*)e^{-r^*t^*}$

Universal swap pricing formula

- In your next course on swaps
- Value at t of forward start payer swap

$$V_{\text{swap}}(t, S) = P(t, T_0) - \sum_{i=1}^{n} S P(t, T_i) - P(t, T_n)$$
(7.7)

- M&R (2004) p. 477
- Luenberger (1998) p. 275
- Cuthbertson & Nitzsche (2001) p.380

Example

Example 7.3. Value a swap between 6-mo LIBOR and 8% fixed with semi-annual compounding, with principal of \$100mi and remaining life of 1.25 years. LIBOR rates for 3, 9 & 15 month maturities are 10%, 10.5% & 11%, resp. The 6-mo LIBOR rate at the last payment date was 10.2%.

```
K^* = 0.5 \times 0.102 \times 100 = \$5.1 \,\text{mi}
T^* = 1.25
See table for valuation of \mathcal{B}_{\text{fix}} and \mathcal{B}_{\text{fl}}
V_{\text{swap}} = \mathcal{B}_{\text{fix}} - \mathcal{B}_{\text{fl}} = \$(98.238 - \$102.505) \times 10^6 = -\$4.267 \,\text{mi}
```

Table 7.5. Table accompanying exercise

Time	B_{fix} cash flow	B_{fl} cash flow	Discount factor	PVB_{fix} cash flow	PVB_{fl} cash flow
0.25	4.0	105.100	$e^{-0.1 \times 0.25}$	3.901	102.505
0.75	4.0		$e^{-0.105 \times 0.75}$	3.697	
1.25	104.0		$e^{-0.11 \times 1.25}$	90.640	
Total				98.238	102.505

Valuation in Terms of FRAs

- Each exchange of payments in IR swap is FRA
- FRA values assume today's forward rates are realized
- Steps
 - Obtain forward rates from zero rates
 - Replace random floating rates by forward rates
 - Discount and sum

Example

Example 7.4. Value the swap from the previous example, but considering it as a portfolio of FRAs.

```
Fixed rate is 100\times0.06\times0.5=4.0

Floating payment at 3mos, already known

For remaining floating payments, replace random future rate by forward (FRA pricing trick)

R_F = \frac{R_2}{T_2-R_1} \frac{T_1}{T_2-T_1}

R_{3,9} = \frac{0.105\times0.75-0.10\times0.25}{0.5} = 0.1075 (c.c.)

i.e. 11.044% with semi annual compounding

Similarly for R_{9,15}.
```

Table 7.6. Table accompanying exercise

Time	Fixed cash flow	Float cash flow	Net	Discount factor	PV net cash flow
0.25	4.0	100 × 0.102 × 0.5= -5.100	-1.100	e ^{−0.1×0.25}	-1.073
0.75	4.0	100 × 0.11044 × 0.5=-5.522	-1.522	e ^{-0.105×0.75}	-1.407
1.25	4.0	-6.051	-2.051	$e^{-0.11 \times 1.25}$	-1.787
Total					-4.267

- Agrees ©
- At inception, and later, FRAs do not have zero value

Currency swaps

An Example of a Currency Swap

- An agreement to
 - pay 11% on a sterling principal of £10,000,000 &
 - receive 8% on a US\$ principal of \$15,000,000
 - every year for 5 years

Figure 7.9: Currency swap between IBM and BP

Exchange of principal

- In an interest rate swap the principal is not exchanged
- In a currency swap the principal is usually exchanged at the beginning and the end of the swap's life

The Cash Flows

- Hull Table 7.7, page 166
- Fixed-for-fixed

Table 7.7. Cash flows to IBM due to currency swap contract with BP

Year	\$	£	
2004	-15.00	+10.00	
2005	+0.60	-0.70	
2006	+0.60	-0.70	
2007	+0.60	-0.70	
2008	+0.60	-0.70	
2009	+15.60	-10.00	

Typical Uses of a Currency Swap

- Conversion from a liability in one currency to a liability in another currency
- Conversion from an investment in one currency to an investment in another currency

Comparative Advantage Arguments for Currency Swaps

- Hull Table 7.8, page 167
- General Motors wants to borrow AUD
- Qantas wants to borrow USD

Table 7.8. Rates for borrowing available to two companies in two currencies.

Company	USD	AUD	
GM	5 %	12.6%	
Quantas	7 %	13.0 %	

- Total gains to all parties ____ = ___

Figure

Figure 7.10: Currency swap between IBM and BP with financial intermediary.

Valuation of currency swaps

■ Like interest rate swaps, currency swaps can be valued either as the difference between 2 bonds or as a portfolio of forward contracts

Swaps & Forwards

- A swap can be regarded as a convenient way of packaging forward contracts
- The "plain vanilla" interest rate swap in our example consisted of 6 FRAs
- The "fixed for fixed" currency swap in our example consisted of a cash transaction & 5 forward contracts
- The value of the swap is the sum of the values of the forward contracts underlying the swap
- Swaps are normally "at the money" initially
- This means that it costs nothing to enter into a swap
- It does not mean that each forward contract underlying a swap is "at the money" initially

Credit risk

- A swap is worth zero to a company initially
- At a future time its value is liable to be either positive or negative
- The company has credit risk exposure only when its value is positive

Other types of swap

- Floating-for-floating interest rate swaps,
- amortizing swaps,
- step up swaps,
- forward swaps,
- constant maturity swaps,
- compounding swaps,
- LIBOR-in-arrears swaps,
- accrual swaps,
- diff swaps,
- cross currency interest rate swaps,
- equity swaps,
- extendable swaps,
- puttable swaps,
- swaptions,
- commodity swaps,
- volatility swaps
- etc.....

Summary

- Most common: IR and FX
 - IR swap: exchange fixed for floating rate on notional principal over period of time
 - FX swap: exchange fixed in one FX for fixed in other FX on principals in each FX
- Principal exchanged
 - IR swap: no
 - FX swap: yes
- Used to transform payments associated with a loan or an asset from
 - IR fixed to floating, or vice versa
 - \blacksquare FX one FX to another
- Value IR loan as
 - fixed and floating bonds
 - portfolio FRAs
- Financial institution exposed to credit risk. If one counter party defaults, with +ve value, still has to honour agreement with other.