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Chapter 0O

Preface

0.1 Scope of this Book

Treasury management of international corporates involves dealing with cash flows in different
currencies. Therefore the natural service of an investment bank consists of a variety of money
market and foreign exchange products. This book explains the most popular products and
strategies with a focus on everything beyond vanilla options.

It explains all the FX options, common structures and tailor-made solutions in examples with
a special focus on the application with views from traders and sales as well as from a corporate
client perspective.

It contains actually traded deals with corresponding motivations explaining why the structures
have been traded. This way the reader gets a feeling how to build new structures to suit
clients’ needs.

The exercises are meant to practice the material. Several of them are actually difficult to
solve and can serve as incentives to further research and testing. Solutions to the exercises
are not part of this book, however they will be published on the web page of the book,
www.mathfinance.com/FXOptions/.

0.2 The Readership

Prerequisite is some basic knowledge of FX markets as for example taken from the Book
Foreign Exchange Primer by Shami Shamah, Wiley 2003, see [90]. The target readers are

e Graduate students and Faculty of Financial Engineering Programs, who can use this
book as a textbook for a course named structured products or exotic currency options.
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e Traders, Trainee Structurers, Product Developers, Sales and Quants with interest in the
FX product line. For them it can serve as a source of ideas and as well as a reference
guide.

e Treasurers of corporates interested in managing their books. With this book at hand
they can structure their solutions themselves.

The readers more interested in the quantitative and modeling aspects are recommended to
read Foreign Exchange Risk by J. Hakala and U. Wystup, Risk Publications, London, 2002,
see [50]. This book explains several exotic FX options with a special focus on the underlying
models and mathematics, but does not contain any structures or corporate clients’ or investors’
view.

0.3 About the Author

Figure 1: Uwe Wystup, professor of Quan-
titative Finance at HfB Business School of
Finance and Management in Frankfurt, Ger-
many.

Uwe Wystup is also CEO of MathFinance AG, a global network of quants specializing in Quan-
titative Finance, Exotic Options advisory and Front Office Software Production. Previously he
was a Financial Engineer and Structurer in the FX Options Trading Team at Commerzbank.
Before that he worked for Deutsche Bank, Citibank, UBS and Sal. Oppenheim jr. & Cie. He is
founder and manager of the web site MathFinance.de and the MathFinance Newsletter. Uwe
holds a PhD in mathematical finance from Carnegie Mellon University. He also lectures on
mathematical finance for Goethe University Frankfurt, organizes the Frankfurt MathFinance
Colloquium and is founding director of the Frankfurt MathFinance Institute. He has given
several seminars on exotic options, computational finance and volatility modeling. His area
of specialization are the quantitative aspects and the design of structured products of foreign
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exchange markets. He published a book on Foreign Exchange Risk and articles in Finance
and Stochastics and the Journal of Derivatives. Uwe has given many presentations at both
universities and banks around the world. Further information on his curriculum vitae and a
detailed publication list is available at www.mathfinance.com/wystup/.

0.4 Acknowledgments

| would like to thank my former colleagues on the trading floor, most of all Gustave Rieu-
nier, Behnouch Mostachfi, Noel Speake, Roman Stauss, Tamas Korchmaros, Michael Braun,
Andreas Weber, Tino Senge, Jirgen Hakala, and all my colleagues and co-authors, specially
Christoph Becker, Susanne Griebsch, Christoph Kiihn, Sebastian Krug, Marion Linck, Wolf-
gang Schmidt and Robert Tompkins. Chris Swain, Rachael Wilkie and many others of Wiley
publications deserve respect as they were dealing with my rather slow speed in completing this
book. Nicole van de Locht and Choon Peng Toh deserve a medal for serious detailed proof
reading.
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Chapter 1

Foreign Exchange Options

FX Structured Products are tailor-made linear combinations of FX Options including both
vanilla and exotic options. We recommend the book by Shamah [90] as a source to learn about
FX Markets with a focus on market conventions, spot, forward and swap contracts, vanilla
options. For pricing and modeling of exotic FX options we suggest Hakala and Wystup [50]
or Lipton [71] as useful companions to this book.

The market for structured products is restricted to the market of the necessary ingredients.
Hence, typically there are mostly structured products traded the currency pairs that can be
formed between USD, JPY, EUR, CHF, GBP, CAD and AUD. In this chapter we start with
a brief history of options, followed by a technical section on vanilla options and volatility,
and deal with commonly used linear combinations of vanilla options. Then we will illustrated
the most important ingredients for FX structured products: the first and second generation
exotics.

1.1 A Journey through the History Of Options

The very first options and futures were traded in ancient Greece, when olives were sold before
they had reached ripeness. Thereafter the market evolved in the following way.

16th century Ever since the 15th century tulips, which were liked for their exotic appear-
ance, were grown in Turkey. The head of the royal medical gardens in Vienna, Austria,
was the first to cultivate those Turkish tulips successfully in Europe. When he fled to
Holland because of religious persecution, he took the bulbs along. As the new head
of the botanical gardens of Leiden, Netherlands, he cultivated several new strains. It
was from these gardens that avaricious traders stole the bulbs to commercialize them,
because tulips were a great status symbol.

17th century The first futures on tulips were traded in 1630. As of 1634, people could

13
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buy special tulip strains by the weight of their bulbs, for the bulbs the same value was
chosen as for gold. Along with the regular trading, speculators entered the market
and the prices skyrocketed. A bulb of the strain “Semper Octavian” was worth two
wagonloads of wheat, four loads of rye, four fat oxen, eight fat swine, twelve fat sheep,
two hogsheads of wine, four barrels of beer, two barrels of butter, 1,000 pounds of
cheese, one marriage bed with linen and one sizable wagon. People left their families,
sold all their belongings, and even borrowed money to become tulip traders. When in
1637, this supposedly risk-free market crashed, traders as well as private individuals went
bankrupt. The government prohibited speculative trading; the period became famous
as Tulipmania.

18th century In 1728, the Royal West-Indian and Guinea Company, the monopolist in trad-

ing with the Caribbean Islands and the African coast issued the first stock options.
Those were options on the purchase of the French Island of Ste. Croix, on which sugar
plantings were planned. The project was realized in 1733 and paper stocks were issued
in 1734. Along with the stock, people purchased a relative share of the island and the
valuables, as well as the privileges and the rights of the company.

19th century In 1848, 82 businessmen founded the Chicago Board of Trade (CBOT). Today

it is the biggest and oldest futures market in the entire world. Most written documents
were lost in the great fire of 1871, however, it is commonly believed that the first
standardized futures were traded as of 1860. CBOT now trades several futures and
forwards, not only T-bonds and treasury bonds, but also options and gold.

In 1870, the New York Cotton Exchange was founded. In 1880, the gold standard was
introduced.

20th century

e In 1914, the gold standard was abandoned because of the war.

e In 1919, the Chicago Produce Exchange, in charge of trading agricultural products
was renamed to Chicago Mercantile Exchange. Today it is the most important
futures market for Eurodollar, foreign exchange, and livestock.

e In 1944, the Bretton Woods System was implemented in an attempt to stabilize
the currency system.

e In 1970, the Bretton Woods System was abandoned for several reasons.
e In 1971, the Smithsonian Agreement on fixed exchange rates was introduced.

e In 1972, the International Monetary Market (IMM) traded futures on coins, cur-
rencies and precious metal.
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e In 1973, the CBOE (Chicago Board of Exchange) firstly traded call options; four
years later also put options. The Smithsonian Agreement was abandoned; the
currencies followed managed floating.

e |n 1975, the CBOT sold the first interest rate future, the first future with no “real”
underlying asset.

e In 1978, the Dutch stock market traded the first standardized financial derivatives.

e In 1979, the European Currency System was implemented, and the European Cur-
rency Unit (ECU) was introduced.

e In 1991, the Maastricht Treaty on a common currency and economic policy in
Europe was signed.

e In 1999, the Euro was introduced, but the countries still used cash of their old
currencies, while the exchange rates were kept fixed.

21th century

In 2002, the Euro was introduced as new money in the form of cash.

1.2 Technical Issues for Vanilla Options

We consider the model geometric Brownian motion
dSt = (Td—rf)st dt+0’St th (11)

for the underlying exchange rate quoted in FOR-DOM (foreign-domestic), which means that
one unit of the foreign currency costs FOR-DOM units of the domestic currency. In case
of EUR-USD with a spot of 1.2000, this means that the price of one EUR is 1.2000 USD.
The notion of foreign and domestic do not refer the location of the trading entity, but only
to this quotation convention. We denote the (continuous) foreign interest rate by r; and
the (continuous) domestic interest rate by 4. In an equity scenario, 7y would represent a
continuous dividend rate. The volatility is denoted by o, and W, is a standard Brownian
motion. The sample paths are displayed in Figure 1.1. We consider this standard model,
not because it reflects the statistical properties of the exchange rate (in fact, it doesn't), but
because it is widely used in practice and front office systems and mainly serves as a tool to
communicate prices in FX options. These prices are generally quoted in terms of volatility in
the sense of this model.

Applying 1td’s rule to In S; yields the following solution for the process \S;

Sy = Spexp {(rd —rp— %(72)15 + aWt} , (1.2)

which shows that S; is log-normally distributed, more precisely, In S; is normal with mean
In Sy + (rq — 7 — 302)t and variance o*t. Further model assumptions are
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share price development probability density

1.5

ﬂ.s‘ ------------------------------------------- QIE‘ ---------- 3

] f t t t i
i 0.2 0.4 0.6 0.3 | i 2 4

Figure 1.1: Simulated paths of a geometric Brownian motion. The distribution of the
spot St at time 7' is log-normal.

1. There is no arbitrage

2. Trading is frictionless, no transaction costs

3. Any position can be taken at any time, short, long, arbitrary fraction, no liquidity
constraints

The payoff for a vanilla option (European put or call) is given by
F = [¢(Sr — K)]", (1.3)

where the contractual parameters are the strike K, the expiration time 7" and the type ¢, a
binary variable which takes the value +1 in the case of a call and —1 in the case of a put.

The symbol 2 denotes the positive part of z, i.e., x" 2 max(0, x) 20V,

1.2.1 Value

In the Black-Scholes model the value of the payoff F' at time t if the spot is at x is denoted
by v(t,z) and can be computed either as the solution of the Black-Scholes partial differential
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equation

1
vy — rav + (Tg — rp)av, + §a2x2vm =0, (1.4)

(T, z) = F. (1.5)

or equivalently (Feynman-Kac-Theorem) as the discounted expected value of the payoff-
function,

v(z, K,T,t,0,rq,77,0) = e ""IE[F]. (1.6)

This is the reason why basic financial engineering is mostly concerned with solving partial
differential equations or computing expectations (numerical integration). The result is the
Black-Scholes formula

/U(:C7 K7 TJ t? o,7q, Tf, (b) = gbeirdT[fN((der) - KN<¢d*>] (17>
We abbreviate
e x: current price of the underlying
A

o 7 =T —1t1: time to maturity

fa IE[S7|S, = ] = 2e("e="1)7 : forward price of the underlying

[ ]
A rg—r
o 0=~ +3
o d éln?—&-aeif ln%i%‘r
+ = o\T o\/T

o N(z) 2 [* _n(t)dt=1—N(-z)
The Black-Scholes formula can be derived using the integral representation of Equation (1.6)

v = e "TE[F]
= e "E[[¢(Sr — K)]"]

= e "7 /+OO [ng (xe(”_’"f_%‘#)””ﬁy — K)] " n(y) dy. (1.8)

—0o0

Next one has to deal with the positive part and then complete the square to get the Black-
Scholes formula. A derivation based on the partial differential equation can be done using
results about the well-studied heat-equation.
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1.2.2 A Note on the Forward

The forward price f is the strike which makes the time zero value of the forward contract
F=Sr—f (1.9)

equal to zero. It follows that f = IE[Sy] = ze("a"1)T ie. the forward price is the expected
price of the underlying at time 7" in a risk-neutral setup (drift of the geometric Brownian
motion is equal to cost of carry r4 — rf). The situation 74 > r; is called contango, and the
situation rq < ry is called backwardation. Note that in the Black-Scholes model the class
of forward price curves is quite restricted. For example, no seasonal effects can be included.
Note that the value of the forward contract after time zero is usually different from zero, and
since one of the counterparties is always short, there may be risk of default of the short party.
A futures contract prevents this dangerous affair: it is basically a forward contract, but the
counterparties have to a margin account to ensure the amount of cash or commodity owed
does not exceed a specified limit.

1.2.3 Greeks

Greeks are derivatives of the value function with respect to model and contract parameters.
They are an important information for traders and have become standard information provided
by front-office systems. More details on Greeks and the relations among Greeks are presented
in Hakala and Wystup [50] or Reiss and Wystup [84]. For vanilla options we list some of them
now.

(Spot) Delta.

2= N () (1.10)
Forward Delta.
Gp = oA (1.11)
Driftless Delta.
N (¢d.) (1.12)
Gamma.
Ov _ mrrlds) (1.13)

oz ro\/T
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2rqg—rf)T —d_o\T

Speed.
3
@ — e TIT n(d+) d+ +1
03 2207 \o\/T
Theta.
@ — _e_Tan(d+)$0'
ot 2T
+  @lrpee TN (pdy) — raKe TN (¢d_)]
Charm.
9*v o o 20rg —ry)T —d_o\T
DU re TN (6dy) + e () 2T VT
Color.
v n(d,)
- = T AT
0x20T c 2oT0N\/T 2ryT 1+
Vega.
aU —TrfT
95 e mVrn(dy)
Volga.
821) d+d_
eI
902 ze "IT/Tn(dy) o

Volga is also sometimes called vomma or volgamma.

Vanna.
0%v _
— _,TFT -
Oodzx ¢ n{d+) o
Rho.
O = RTe N (pd)
o Te _
ov

a—rf = —prre” TN (¢dy )
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(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)
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Dual Delta.
av —TrdT
oK = ~0¢TTN(ed) (1.23)
Dual Gamma.
Pv o on(d)
Dual Theta.
v
8_T = —U (125)
1.2.4 Identities
ody _dj
P . (1.26)
ody \/_?
8_m = (1.27)
ody \/_F
a—rf = - (1.28)
ze "n(dy) = Ke "n(d-). (1.29)
N(pd_) = IPlpSr > ¢K] (1.30)
2
N(pd,) = P l¢ST < ¢?} (1.31)

The put-call-parity is the relationship
v(z, K, T,t,0,rq,7¢,+1) —v(x, K,T,t,0,1q,7f,—1) = 2”7 — Ke ", (1.32)

which is just a more complicated way to write the trivial equation z = 27 — z~.
The put-call delta parity is

ov(x, K, T,t,0,rq,rp,+1)  Ov(z,K,T,t,0,7rq,77,—1)

_ 7T
o o e "I, (1.33)

In particular, we learn that the absolute value of a put delta and a call delta are not exactly
adding up to one, but only to a positive number e™"/7. They add up to one approximately if
either the time to expiration 7 is short or if the foreign interest rate r; is close to zero.
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Whereas the choice K = f produces identical values for call and put, we seek the delta-
symmetric strike K which produces absolutely identical deltas (spot, forward or driftless).
This condition implies d; = 0 and thus

K= fe?T, (1.34)

in which case the absolute delta is ¢~"#7/2. In particular, we learn, that always K > f,

i.e., there can't be a put and a call with identical values and deltas. Note that the strike K

is usually chosen as the middle strike when trading a straddle or a butterfly. Similarly the
2

dual-delta-symmetric strike K= fe==T can be derived from the condition d_ = 0.

1.2.5 Homogeneity based Relationships

We may wish to measure the value of the underlying in a different unit. This will obviously
effect the option pricing formula as follows.

av(z, K, T t,0,rq,7¢,¢) =v(ax,aK,T,t,0,r4,7s,¢) forall a > 0. (1.35)
Differentiating both sides with respect to a and then setting a = 1 yields
v =1zv, + Kvg. (1.36)

Comparing the coefficients of x and K in Equations (1.7) and (1.36) leads to suggestive results
for the delta v, and dual delta vi. This space-homogeneity is the reason behind the simplicity
of the delta formulas, whose tedious computation can be saved this way.

We can perform a similar computation for the time-affected parameters and obtain the obvious
equation

T t
v(z, K, T,t,0,rq,7s,¢) = v(x, K, —, —,\/ao,ary, ary, ¢) for all a > 0. (1.37)
a’ a
Differentiating both sides with respect to a and then setting a = 1 yields
1
0=71v + Eavg—l—rdvm + 70, (1.38)

Of course, this can also be verified by direct computation. The overall use of such equations
is to generate double checking benchmarks when computing Greeks. These homogeneity
methods can easily be extended to other more complex options.

By put-call symmetry we understand the relationship (see [6], [7],[16] and [19])

2

K
vz, K,T,t,0,rq, 7, +1) = 71}(3:, f?, T,t,0,rq,7f —1). (1.39)
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The strike of the put and the strike of the call result in a geometric mean equal to the forward
f. The forward can be interpreted as a geometric mirror reflecting a call into a certain number
of puts. Note that for at-the-money options (K = f) the put-call symmetry coincides with
the special case of the put-call parity where the call and the put have the same value.

Direct computation shows that the rates symmetry

ov ov

ST 1.40
org * ory T (1.40)

holds for vanilla options. This relationship, in fact, holds for all European options and a wide

class of path-dependent options as shown in [84].

One can directly verify the relationship the foreign-domestic symmetry

1 11

EU(I, K, Tt o,rq,rs,¢) = KU(E, 7 T,t,o,rfTq,—@). (1.41)
This equality can be viewed as one of the faces of put-call symmetry. The reason is that the
value of an option can be computed both in a domestic as well as in a foreign scenario. We
consider the example of S; modeling the exchange rate of EUR/USD. In New York, the call op-
tion (Sp—K)* costs v(x, K, T,t,0, Tysd, Teur, 1) USD and hence v(x, K, T, t, 0, Tusds Teur, 1)/

+
EUR. This EUR-call option can also be viewed as a USD-put option with payoff K (% - é) .

This option costs KU(%, %,T,t,a, Teur, Tusd, —1) EUR in Frankfurt, because S; and Sit have

the same volatility. Of course, the New York value and the Frankfurt value must agree, which
leads to (1.41). We will also learn later, that this symmetry is just one possible result based
on change of numeraire.

1.2.6 Quotation
Quotation of the Underlying Exchange Rate

Equation (1.1) is a model for the exchange rate. The quotation is a permanently confusing
issue, so let us clarify this here. The exchange rate means how much of the domestic currency
are needed to buy one unit of foreign currency. For example, if we take EUR/USD as an
exchange rate, then the default quotation is EUR-USD, where USD is the domestic currency
and EUR is the foreign currency. The term domestic is in no way related to the location of
the trader or any country. It merely means the numeraire currency. The terms domestic,
numeraire or base currency are synonyms as are foreign and underlying . Throughout this
book we denote with the slash (/) the currency pair and with a dash (-) the quotation. The
slash (/) does not mean a division. For instance, EUR/USD can also be quoted in either
EUR-USD, which then means how many USD are needed to buy one EUR, or in USD-EUR,
which then means how many EUR are needed to buy one USD. There are certain market
standard quotations listed in Table 1.1.
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currency pair | default quotation | sample quote
GBP/USD GPB-USD 1.8000
GBP/CHF GBP-CHF 2.2500
EUR/USD EUR-USD 1.2000
EUR/GBP EUR-GBP 0.6900
EUR/JPY EUR-JPY 135.00
EUR/CHF EUR-CHF 1.5500
USD/JPY USD-JPY 108.00
USD/CHF USD-CHF 1.2800

Table 1.1: Standard market quotation of major currency pairs with sample spot prices

Trading Floor Language

We call one million a buck, one billion a yard. This is because a billion is called ‘milliarde’ in
French, German and other languages. For the British Pound one million is also often called a
quid.

Certain currency pairs have names. For instance, GBP/USD is called cable, because the ex-
change rate information used to be sent through a cable in the Atlantic ocean between America
and England. EUR/JPY is called the cross , because it is the cross rate of the more liquidly
traded USD/JPY and EUR/USD.

Certain currencies also have names, e.g. the New Zealand Dollar NZD is called a kiwi , the
Australian Dollar AUD is called Aussie, the Scandinavian currencies DKR, NOK and SEK are
called Scandies.

Exchange rates are generally quoted up to five relevant figures, e.g. in EUR-USD we could
observe a quote of 1.2375. The last digit ‘5’ is called the pip, the middle digit ‘3" is called the
big figure, as exchange rates are often displayed in trading floors and the big figure, which is
displayed in bigger size, is the most relevant information. The digits left to the big figure are
known anyway, the pips right of the big figure are often negligible. To make it clear, a rise of

USD-JPY 108.25 by 20 pips will be 108.45 and a rise by 2 big figures will be 110.25.

Quotation of Option Prices

Values and prices of vanilla options may be quoted in the six ways explained in Table 1.2.
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name symbol | value in units of example
domestic cash | d DOM 29,148 USD
foreign cash f FOR 24,290 EUR
% domestic % d DOM per unit of DOM 2.3318% USD
% foreign % f FOR per unit of FOR 2.4290% EUR
domestic pips | d pips | DOM per unit of FOR | 291.48 USD pips per EUR
foreign pips f pips | FOR per unit of DOM | 194.32 EUR pips per USD

Table 1.2: Standard market quotation types for option values. In the example we take
FOR=EUR, DOM=USD, S, = 1.2000, r4 = 3.0%, r; = 2.5%, ¢ = 10%, K = 1.2500,
T =1 year, ¢ = +1 (call), notional = 1,000,000 EUR = 1,250,000 USD. For the pips,
the quotation 291.48 USD pips per EUR is also sometimes stated as 2.9148% USD per 1
EUR. Similarly, the 194.32 EUR pips per USD can also be quoted as 1.9432% EUR per
1 USD.

The Black-Scholes formula quotes d pips. The others can be computed using the following
instruction.

x L Sg X
d pips —% %f 5 %d —% f pips X d pips (1.42)

Delta and Premium Convention

The spot delta of a European option without premium is well known. It will be called raw spot
delta 6,4, now. It can be quoted in either of the two currencies involved. The relationship is

S
greverse _ _57‘(1’!11_' 1.43
raw K ( )

The delta is used to buy or sell spot in the corresponding amount in order to hedge the option
up to first order.

For consistency the premium needs to be incorporated into the delta hedge, since a premium
in foreign currency will already hedge part of the option’s delta risk. To make this clear, let
us consider EUR-USD. In the standard arbitrage theory, v(z) denotes the value or premium
in USD of an option with 1 EUR notional, if the spot is at =, and the raw delta v, denotes
the number of EUR to buy for the delta hedge. Therefore, zv, is the number of USD to
sell. If now the premium is paid in EUR rather than in USD, then we already have 3”—6 EUR,
and the number of EUR to buy has to be reduced by this amount, i.e. if EUR is the pre-
mium currency, we need to buy v, —2 EUR for the delta hedge or equivalently sell v, —v USD.
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The entire FX quotation story becomes generally a mess, because we need to first sort out
which currency is domestic, which is foreign, what is the notional currency of the option, and
what is the premium currency. Unfortunately this is not symmetric, since the counterpart
might have another notion of domestic currency for a given currency pair. Hence in the pro-
fessional inter bank market there is one notion of delta per currency pair. Normally it is the
left hand side delta of the Fenics screen if the option is traded in left hand side premium,
which is normally the standard and right hand side delta if it is traded with right hand side
premium, e.g. EUR/USD lhs, USD/JPY |hs, EUR/JPY lhs, AUD/USD rhs, etc... Since OTM
options are traded most of time the difference is not huge and hence does not create a huge
spot risk.

Additionally the standard delta per currency pair [left hand side delta in Fenics for most cases]
is used to quote options in volatility. This has to be specified by currency.

This standard inter bank notion must be adapted to the real delta-risk of the bank for an
automated trading system. For currencies where the risk—free currency of the bank is the
base currency of the currency it is clear that the delta is the raw delta of the option and for
risky premium this premium must be included. In the opposite case the risky premium and
the market value must be taken into account for the base currency premium, such that these
offset each other. And for premium in underlying currency of the contract the market-value
needs to be taken into account. In that way the delta hedge is invariant with respect to the
risky currency notion of the bank, e.g. the delta is the same for a USD-based bank and a
EUR-based bank.

Example

We consider two examples in Table 1.3 and 1.4 to compare the various versions of deltas that
are used in practice.

delta ccy | prem ccy Fenics formula delta
% EUR | EUR lhs Oraw — P 44.72
% EUR | USD rhs Oraw 49.15
% USD | EUR rhs [flip F4] | —(0yqw — P)S/K | -44.72
% USD | USD lhs [flip F4] —(0paw)S/K | -49.15

Table 1.3: 1y EUR call USD put strike K = 0.9090 for a EUR-based bank. Market data:
spot S = 0.9090, volatility o = 12%, EUR rate r; = 3.96%, USD rate ry = 3.57%. The
raw delta is 49.15%EUR and the value is 4.427%EUR.
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delta ccy | prem ccy Fenics formula delta
% EUR | EUR lhs Oraw — P 72.94
% EUR | USD rhs Oraw 94.82
% USD | EUR rhs [flip F4] | —(6yqw — P)S/K | -94.72
% USD | USD lhs [flip F4] —OrawS | K -123.13

Table 1.4: 1y call EUR call USD put strike K = 0.7000 for a EUR-based bank. Market
data: spot S = 0.9090, volatility ¢ = 12%, EUR rate r; = 3.96%, USD rate rq = 3.57%.
The raw delta is 94.82%EUR, and the value is 21.88%EUR.

1.2.7 Strike in Terms of Delta

Since v, = A = ¢e "N (pd, ) we can retrieve the strike as

K =zexp {—¢N " (¢Ae")o\/T + 00,7} . (1.44)

1.2.8 Volatility in Terms of Delta

The mapping 0 — A = ¢e """ N (¢d, ) is not one-to-one. The two solutions are given by

1 -1 TFT —1 e ™2 — or/T
os = {anoaem £ JW s —ova r | (e

Thus using just the delta to retrieve the volatility of an option is not advisable.

1.2.9 Volatility and Delta for a Given Strike

The determination of the volatility and the delta for a given strike is an iterative process
involving the determination of the delta for the option using at-the-money volatilities in a first
step and then using the determined volatility to re-determine the delta and to continuously
iterate the delta and volatility until the volatility does not change more than ¢ = 0.001%
between iterations. More precisely, one can perform the following algorithm. Let the given
strike be K.

1. Choose oy = at-the-money volatility from the volatility matrix.
2. Calculate A, = A(Call(K, 0y,)).
3. Take 0,11 = 0(A,11) from the volatility matrix, possibly via a suitable interpolation.

4. If |01 — 04| < €, then quit, otherwise continue with step 2.
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In order to prove the convergence of this algorithm we need to establish convergence of the
recursion

Anpr = TN (d(An)) (1.46)
g (I(S/K) + (ra = 1y + 507 (An))T
o BV )

for sufficiently large o(A,,) and a sufficiently smooth volatility smile surface. We must show
that the sequence of these A,, converges to a fixed point A* € [0, 1] with a fixed volatility

o* = o(A*%).
This proof has been carried out in [15] and works like this. We consider the derivative
0N - d_(A,) 0
N e " n(di(Ay)) (A aAna(An). (1.47)
The term (A
_ T A - n
e n(d+( n)) O'(An>

converges rapidly to zero for very small and very large spots, being an argument of the standard
normal density n. For sufficiently large o(A,) and a sufficiently smooth volatility surface in
the sense that %U(An) is sufficiently small, we obtain

‘ 0

A
= 1. 1.4
8An0 q< (1.48)

(An)

Thus for any two values ASJ)FI, Affjl, a continuously differentiable smile surface we obtain

A AP | < glaD — AP, (1.49)

n

due to the mean value theorem. Hence the sequence A, is a contraction in the sense of the
fixed point theorem of Banach. This implies that the sequence converges to a unique fixed
point in [0, 1], which is given by o* = o(A*).

1.2.10 Greeks in Terms of Deltas

In Foreign Exchange markets the moneyness of vanilla options is always expressed in terms
of deltas and prices are quoted in terms of volatility. This makes a ten-delta call a financial
object as such independent of spot and strike. This method and the quotation in volatility
makes objects and prices transparent in a very intelligent and user-friendly way. At this point
we list the Greeks in terms of deltas instead of spot and strike. Let us introduce the quantities

Ay
A_

de "IN (pd, ) spot delta, (1.50)
—¢pe "N (pd_) dual delta, (1.51)

> e
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which we assume to be given. From these we can retrieve

dy = oNTH (g TTAY), (1.52)
d- = N (=g "A). (1.53)

Interpretation of Dual Delta

The dual delta introduced in (1.23) as the sensitivity with respect to strike has another - more
practical - interpretation in a foreign exchange setup. We have seen in Section 1.2.5 that the
domestic value

v(z, K, 7,0,r4,7¢,9) (1.54)
corresponds to a foreign value
o ¢) (1.55)
v(—, =, T,0,7¢,Tq, — .
ZE’ K? y O T fy I'd,y

up to an adjustment of the nominal amount by the factor x K. From a foreign viewpoint the
delta is thus given by

In(&) + (rp —rqg + %a%))

e

— —rgT hl(ﬁ) + (Td —rp— 10-27—)
= —¢e N ((b K — 2 )
- A (1.56)

which means the dual delta is the delta from the foreign viewpoint. We will see below that
foreign rho, vega and gamma do not require to know the dual delta. We will now state the
Greeks in terms of x, Ay, A_ rq, 74,7, @.

Value.
e "I n(d
vz, Ay, A rg,rp, T, 0) = xAL + J;A_e—rrﬂ—ngdj (1.57)
(Spot) Delta.
ov
-~ — A 1.58
e + (1.58)
Forward Delta.
00 _ oymnarp, (1.59)

of
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Gamma.

0*v n(d,)

52 R (1.60)

Taking a trader's gamma (change of delta if spot moves by 1%) additionally removes
the spot dependence, because

r 0% _ n(d,)
Thoder = e = g rim__00H) 1.61
rader = 100022 © 100(dy — d_) (1.61)
Speed.
v n(dy)
— = —e 7 2d, —d_ 1.62
o3 € ZL’Q(d+ - _)2 ( + ) ( 6 )
Theta.
l@ _ _efrffn(d-i-)(d-‘r B d—)
rot 2T
e "1n(dy)
A A ———= 1.63
+ [y 7A S +7rq e—TdTn(d_) ( 6 )
Charm.
0*v 20rq —rp)T —d_(dy —d-)
— _ _T’fT d _Tf’r d
OroT ¢Tf€ N(Qb +) + ¢€ n( +) 27’(d+ — d_)
(1.64)
Color.
v e " n(dy) 2(rg —rp)T—d_(dy —d-)
0207 er(d, —d) |77 27 (d, —d_) +
(1.65)
Vega.
ov _
9 = e "IT/Tn(dy) (1.66)
o
Volga.
2 dyd_
g = ze T rn(dy ) — (1.67)

d, —d_
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Vanna.

Rho.

Dual Delta.

Dual Gamma.

Dual Theta.

do0x d, —d_
dv . e "1n(dy)
orq T “eran(d-
ov
6_7“f = —.Z’TA+

ov

K~
P i
0K? Ox?
ov

o = U

As an important example we consider vega.

Vega in Terms of Delta

Wystup

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)

(1.73)

The mapping A +— v, = ze "/7\/Tn(N~1(e"#TA)) is important for trading vanilla options.
Observe that this function does not depend on 74 or o, just on 7;. Quoting vega in % foreign
will additionally remove the spot dependence. This means that for a moderately stable foreign
term structure curve, traders will be able to use a moderately stable vega matrix. For 7y = 3%
the vega matrix is presented in Table 1.5.

1.3 Volatility

Volatility is the annualized standard deviation of the log-returns. It is the crucial input pa-
rameter to determine the value of an option. Hence, the crucial question is where to derive
the volatility from. If no active option market is present, the only source of information is
estimating the historic volatility. This would give some clue about the past. In liquid currency
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Mat/A | 50% | 45% | 40% | 35% | 30% | 25% | 20% | 15% | 10% | 5%
1D 2 2 2 2 2 2 1 1 1 1
1W 6 ) 5 3 ) 4 4 3 2 1
1W 8 8 8 7 7 6 5 o 3 2
1M 11 11 11 11 10 9 8 7 5 3
2M 16 16 16 15 14 13 11 9 7 4
3M 20 20 19 18 17 16 14 12 9 )
6M 28 28 27 26 24 22 20 16 12 7
9M 34 34 33 32 30 27 24 20 15 9
1Y 39 39 38 36 34 31 28 23 17 | 10
2Y 93 93 52 20 48 44 39 32 24 | 14
3Y 63 63 62 60 o7 23 47 39 30 | 18

Table 1.5: Vega in terms of Delta for the standard maturity labels and various deltas. It
shows that one can vega hedge a long 9M 35 delta call with 4 short 1M 20 delta puts.

pairs volatility is often a traded quantity on its own, which is quoted by traders, brokers and
real-time data pages. These quotes reflect views of market participants about the future.

Since volatility normally does not stay constant, option traders are highly concerned with
hedging their volatility exposure. Hedging vanilla options’ vega is comparatively easy, because
vanilla options have convex payoffs, whence the vega is always positive, i.e. the higher the
volatility, the higher the price. Let us take for example a EUR-USD market with spot 1.2000,
USD- and EUR rate at 2.5%. A 3-month at-the-money call with 1 million EUR notional would
cost 29,000 USD at at volatility of 12%. If the volatility now drops to a value of 8%, then the
value of the call would be only 19,000 USD. This monotone dependence is not guaranteed for
non-convex payoffs as we illustrate in Figure 1.2.

1.3.1 Historic Volatility

We briefly describe how to compute the historic volatility of a time series

S0, 1, ..., Sy (1.74)
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vanilla vs. barrier option values depending on
volatility
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Figure 1.2: Dependence of a vanilla call and a reverse knock-out call on volatility. The
vanilla value is monotone in the volatility, whereas the barrier value is not. The reason is
that as the spot gets closer to the upper knock-out barrier, an increasing volatility would
increase the chance of knock-out and hence decrease the value.

of daily data. First, we create the sequence of log-returns

Si
ri =lIn , i=1,...,N. (1.75)
Si-1
Then, we compute the average log-return
N

F= NZT,-, (1.76)
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their variance

N
1
~2 2
o = mizl(rz T') s (177)
and their standard deviation
;N
6=\ w1 ;(n — )2, (1.78)
The annualized standard deviation, which is the volatility, is then given by
N
B
A )2 1.
Fa N1 ;(m r)?, (1.79)
where the annualization factor B is given by
N
B = ?d, (1.80)

and k denotes the number of calendar days within the time series and d denotes the number
of calendar days per year. The is done to press the trading days into the calendar days.

Assuming normally distributed log-returns, we know that 62 is y?-distributed. Therefore,

given a confidence level of p and a corresponding error probability & = 1 — p, the p-confidence

interval is given by
N -1 N -1
Oay| =504y | =5 ; (1.81)
XN-1;1-¢ XN-1;2

where 7., denotes the p-quantile of a x-distribution" with n degrees of freedom.

As an example let us take the 256 ECB-fixings of EUR-USD from 4 March 2003 to 3 March
2004 displayed in Figure 1.3. We get N = 255 log-returns. Taking k = d = 365, we obtain

N
. 1
Fo= N;rizo.oomma

B N
a-a = —N 1 Z(’f‘l — 77)2 = 1085%,

i=1

and a 95% confidence interval of [9.99%, 11.89%].

lvalues and quantiles of the y2-distribution and other distributions can be computed on the internet,
e.g. at http://www.wiso.uni-koeln.de/ASPSamp/eswf/html/allg/surfstat/tables.htm.
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Figure 1.3: ECB-fixings of EUR-USD from 4 March 2003 to 3 March 2004 and the line
of average growth

1.3.2 Historic Correlation

As in the preceding section we briefly describe how to compute the historic correlation of two
time series

Loy L1y TN,
Yo, Y1, -+ - YN,

of daily data. First, we create the sequences of log-returns

€

X, = n—2 i=1,...,N,
Ti—1

Y, = m-2 i=1,...,N. (1.82)
Yi—1

Then, we compute the average log-returns

Y = =)y, (1.83)
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their variances and covariance

N
1 _
~2 _ 2
ox = N_1 ;21 (Xi — X)7, (1.84)
N
1 _
~2 _ 2
o = N_-1 ;1 (Y = Y)7, (1.85)
N
. 1 _ _
oxy = o2 (- X)(Yi-Y), (1.86)
i=1
and their standard deviations
N
1 _
x = | D (Xi— X2, 1.
X \N—1“( ) (57

by = \ ﬁZ(Yi —Y)2. (1.88)

The estimate for the correlation of the log-returns is given by

OXxXy
Ox0y

(1.89)

>

This correlation estimate is often not very stable, but on the other hand, often the only
available information. More recent work by Jakel [37] treats robust estimation of correlation.
We will revisit FX correlation risk in Section 1.6.7.

1.3.3 Volatility Smile

The Black-Scholes model assumes a constant volatility throughout. However, market prices
of traded options imply different volatilities for different maturities and different deltas. We
start with some technical issues how to imply the volatility from vanilla options.

Retrieving the Volatility from Vanilla Options

Given the value of an option. Recall the Black-Scholes formula in Equation (1.7). We now
look at the function v(o), whose derivative (vega) is

V(o) = ze TV Tn(dy). (1.90)

The function o — v(0o) is
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1. strictly increasing,

2. concave up for o € [0, /2|In F — In K|/T),

3. concave down for o € (1/2|In F —In K|/T, o0)

and also satisfies

v(0) = [p(ze T — Ke ") T, (1.91)

v(co,p=1) = ze "1, (1.92)
vio=00,0=—1) = Ke ", (1.93)
v'(0) = xe " TNVT/N2ml pogy, (1.94)

In particular the mapping o — v(0o) is invertible. However, the starting guess for employing
Newton's method should be chosen with care, because the mapping o — wv(o) has a saddle
point at

(@ . {FN <¢\/@) _ KN (qb\/@) }) . (1.95)

as illustrated in Figure 1.4.

To ensure convergence of Newton's method, we are advised to use initial guesses for o on
the same side of the saddle point as the desired implied volatility. The danger is that a large
initial guess could lead to a negative successive guess for o. Therefore one should start with
small initial guesses at or below the saddle point. For at-the-money options, the saddle point
is degenerate for a zero volatility and small volatilities serve as good initial guesses.

Visual Basic Source Code

Function VanillaVolRetriever(spot As Double, rd As Double, _
rf As Double, strike As Double, T As Double, _

type As Integer, GivenValue As Double) As Double

Dim func As Double

Dim dfunc As Double

Dim maxit As Integer

Dim j As Integer

Dim s As Double

If GivenValue < Application.Max _
(0, type * (spot * Exp(-rf * T) - strike * Exp(-rd * T))) Or _
(type = 1 And GivenValue > spot * Exp(-rf x T)) Or _
(type = -1 And GivenValue > strike * Exp(-rd * T)) Then
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value in terms of volatility

value

- - - - - - T T ™ - - ™ 7™ ™™ ™ "™ ™ "™ T
oo 00000000 T T™"™r™—*™@¥—FrrT®™-+T™—-T™ ™

volatility

Figure 1.4: Value of a European call in terms of volatility with parameters x = 1, K = 0.9,
T =1, rqg =6%, ry = 5%. The saddle point is at o = 48%.

VanillaVolRetriever = 0
Else
> there exists a volatility yielding the given value,
> now use Newton’s method:
> the mapping vol to value has a saddle point.
> First compute this saddle point:
saddle = Sqr(2 / T * Abs(Log(spot / strike) + (rd - rf) x* T))
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If saddle > O Then
VanillaVolRetriever = saddle * 0.9

Else

VanillaVolRetriever = 0.1
End If
maxit = 100

For j = 1 To maxit Step 1
func = Vanilla(spot, strike, VanillaVolRetriever, _
rd, rf, T, type, value) - GivenValue
dfunc = Vanilla(spot, strike, VanillaVolRetriever, _
rd, rf, T, type, vega)
VanillaVolRetriever = VanillaVolRetriever - func / dfunc
If VanillaVolRetriever <= O Then VanillaVolRetriever = 0.01
If Abs(func / dfunc) <= 0.0000001 Then j = maxit
Next j
End If
End Function

Market Data

Now that we know how to imply the volatility from a given value, we can take a look at the
market. We take EUR/GBP at the beginning of April 2005. The at-the-money volatilities
for various maturities are listed in Table 1.6. We observe that implied volatilities are not
constant, but depend on the time to maturity of the option as well as on the current time.
This shows that the Black-Scholes assumption of a constant volatility is not fully justified
looking at market data. We have a term structure of volatility as well as a stochastic nature
of the term structure curve as time passes.

Besides the dependence on the time to maturity (term structure) we also observe different
implied volatilities for different degrees of moneyness. This effect is called the volatility smile.
The term structure and smile together are called a volatility matrix or volatility surface, if it
is graphically displayed. Various possible reasons for this empirical phenomenon are discussed
among others by Bates, e.g. in [7].

In Foreign Exchange Options markets implied volatilities are generally quoted and plotted
against the deltas of out-of-the-money call and put options. This allows market participants
to ask various partners for quotes on a 25-Delta call, which is spot independent. The actual
strike will be set depending on the spot if the trade is close to being finalized. The at-the-
money option is taken to be the one that has a strike equal to the forward, which is equivalent
to the value of the call and the put being equal. Other types of at-the-money are discussed
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Date Spot 1 Week | 1 Month | 3 Month | 6 Month | 1 Year | 2 Years
1-Apr-05 | 0.6864 4.69 4.83 5.42 5.79 6.02 6.09
4-Apr-05 | 0.6851 4.51 4.88 5.34 5.72 5.99 6.07
5-Apr-05 | 0.6840 4.66 4.95 5.34 5.70 5.97 6.03
6-Apr-05 | 0.6847 4.65 491 5.39 5.79 6.05 6.12
7-Apr-05 | 0.6875 4.78 4.97 5.39 5.79 6.01 6.10
8-Apr-05 | 0.6858 4.76 5.00 5.41 5.78 6.00 6.09

Table 1.6: EUR/GBP implied volatilities in % for at-the-money vanilla options. Source:
BBA (British Bankers Association), http://www.bba.org.uk.

in Section 1.3.6. Their delta is

ov

1
o= ¢€7rfTN(¢§O-\/F)’ (1.96)

for a small volatility o and short time to maturity 7, a number near $50%. This is no more
true for long-term vanilla options. Further market information are the implied volatilities for
puts and calls with a delta of $25%. Other or additional implied volatilities for other deltas
such as ¢10% and ¢35% are also quoted. Volatility matrices for more delta pillars are usually
interpolated.

Symmetric Decomposition

Generally in Foreign Exchange, volatilities are decomposed into a symmetric part of the smile
reflecting the convexity and a skew-symmetric part of the smile reflecting the skew. The way
this works is that the market quotes risk reversals (RR) and butterflies (BF) or strangles, see
Sections 1.4.2 and 1.4.5 for the description of the products and Figure 1.5 for the payoffs. Here
we are talking about the respective volatilities to use to price the products. Sample quotes
are listed in Tables 1.7 and 1.8. The relationship between risk reversal and strangle/butterfly
quotes and the volatility smile are graphically explained in Figure 1.6.

The relationship between risk reversal quoted in terms of volatility (RR) and butterfly/strangle
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Figure 1.5: The risk reversal (upper payoff) is a skew symmetric product, the butterfly
(lower payoff) a symmetric product.

(BF) quoted in terms of volatility and the volatilities of 25-delta calls and puts are given by

1

or = ATM +BF+ SRR, (1.97)
1

0. = ATM +BF - JRR, (1.98)

RR = oy —0_, (1.99)

BF = %_go, (1.100)

where oy denotes the at-the-money volatility of both put and call, o, the volatility of an out-
of-the-money call (usually 25 — A) and o_ the volatility of an out-of-the-money put (usually
25 — A). Our sample market data is given in terms of RR and BF. Translated into implied
volatilities of vanillas we obtain the data listed in Table 1.9 and Figure 1.7.
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Date Spot 1 Month | 3 Month | 1 Year
1-Apr-05 | 0.6864 0.18 0.23 0.30
4-Apr-05 | 0.6851 0.15 0.20 0.29
5-Apr-05 | 0.6840 0.11 0.19 0.28
6-Apr-05 | 0.6847 0.08 0.19 0.28
7-Apr-05 | 0.6875 0.13 0.19 0.28
8-Apr-05 | 0.6858 0.13 0.19 0.28

Table 1.7: EUR/GBP 25 Delta Risk Reversal in %. Source: BBA (British Bankers
Association). This means that for example on 4 April 2005, the 1-month 25-delta EUR
call was priced with a volatility of 0.15% higher than the EUR put. At that moment the
market apparently favored calls indicating a belief in an upward movement.

Date Spot 1 Month | 3 Month | 1 Year
1-Apr-05 | 0.6864 0.15 0.16 0.16
4-Apr-05 | 0.6851 0.15 0.16 0.16
5-Apr-05 | 0.6840 0.15 0.16 0.16
6-Apr-05 | 0.6847 0.15 0.16 0.16
7-Apr-05 | 0.6875 0.15 0.16 0.16
8-Apr-05 | 0.6858 0.15 0.16 0.16

Table 1.8: EUR/GBP 25 Delta Strangle in %. Source: BBA (British Bankers Associa-
tion). This means that for example on 4 April 2005, the 1-month 25-delta EUR call and
the 1-month 25-delta EUR put are on average quoted with a volatility of 0.15% higher
than the 1-month at-the-money calls and puts. The result is that the 1-month EUR call
is quoted with a volatility of 4.88% + 0.075% and the 1-month EUR put is quoted with a
volatility of 4.88% — 0.075%.

1.3.4 At-The-Money Volatility Interpolation

The interpolation takes into account the effect of reduced volatility on weekends and on days
closed in the global main trading centers London or New York and the local market, e.g. Tokyo
for JPY—trades. The change is done for the one—day forward volatility. There is a reduction
in the one—day forward variance of 25% for each London and New York closed day. For
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Figure 1.6: Risk reversal and butterfly in terms of volatility for a given FX vanilla option

smile
Maturity | 25 delta put | at-the-money | 25 delta call
1M 4.890 4.830 5.070
3M 5.465 5.420 5.695
1Y 6.030 6.020 6.330

Table 1.9: EUR/GBP implied volatilities in % of 1 April 2005. Source: BBA (British
Bankers Association). They are computed based on the market data displayed in Ta-
bles 1.6, 1.7 and 1.8 using Equations (1.97) and (1.98).

local market holidays there is a reduction of 25%, where local holidays for EUR are ignored.
Weekends are accounted by a reduction to 15% variance. The variance on trading days is
adjusted to match the volatility on the pillars of the ATM-volatility curve exactly.
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EUR-GBP Smile of 1 April 2005

S
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25 deltaput  at-the-money 25 delta call
moneyness

Figure 1.7: Implied volatilities for EUR-GBP vanilla options as of 1 April 2005. Source:
BBA (British Bankers Association).

The procedure starts from the two pillars ¢1, t5 surrounding the date ¢, in question. The ATM
forward volatility for the period is calculated based on the consistency condition

02(t1)(t1 - to) + O'JQc(tl,tQ)(tQ - tl) == Uz(tg)(tg - t0)7 (1101)

whence

of(ty,ta) = \/02(t2)<t2 —to) — *(t1)(t1 — to))

. 1.102

For each day the factor is determined and from the constraint that the sum of one-day forward
variances matches exactly the total variance the factor for the enlarged one day business
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variances «(t) with ¢ business day is determined.

128

()t —t) = > a(t)oj(t,t+1) (1.103)

t=t1

The variance for the period is the sum of variances to the start and sum of variances to the
required date.

o2(1,) = \/02(751)(151 —to) + D iy, Oz(t)a]%(t’ t+1)

1.104
Pa— (1.104)

1.3.5 Volatility Smile Conventions

The volatility smile is quoted in terms of delta and one at-the-money pillar. We recall that
there are several notions of delta

e spot delta e """ N(d,),
e forward delta e """ N(d. ),
e driftless delta N(d.),

and there is the premium which might be included in the delta. It is important to specify the
notion that is used to quote the smile. There are three different deltas concerning plain vanilla
options.

1.3.6 At-The-Money Definition

There is one specific at-the-money pillar in the middle. There are at least three notions for
the meaning of at-the-money (ATM).

Delta parity: delta call = - delta put
Value parity: call value = put value
Fifty delta: call delta = 50% and put delta = 50%

Moreover, these notions use different versions of delta, namely either spot, forward, or driftless
and premium included or excluded.

The standard for all currencies one can stick to is spot delta parity with premium included [left
hand side Fenics delta for call and put is the same] or excluded [right hand side Fenics delta]
is used.
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1.3.7 Interpolation of the Volatility on Maturity Pillars

To determine the spread to at-the-money we can take a kernel interpolation in one dimension
to compute the volatility on the delta pillars. Given N points (X,,,y,),n = 1,..., N, where
X = (24,2%) € R?* and y € R, a “smooth” interpolation of these points is given by a
“smooth” function

g : R? — R which suffices

(X)) =y (n=1, ...,N). (1.105)
The kernel approach is
. X
A
X) = girar . ant(X) 2 (X = XD, 1.106
900 = gncnt(X) £ 55 Do ants (1 = Xal) (1.106)
where
N
A
Ta(x) 2 ) KX = X)) (1.107)
n=1
and ||.|| denotes the Euclidean norm. The required smoothness may be achieved by using

2
analytic kernels K, for instance K (u) 2 e,
The idea behind this approach is as follows. The parameters which solve the interpolation
conditions (1.105) are ay,...,a,. The parameter A\ determines the “smoothness” of the
resulting interpolation g and should be fixed according to the nature of the points (X,,, y,). If
these points yield a smooth surface, a “large” A\ might yield a good fit, whereas in the opposite
case when for neighboring points X, X,, the appropriate values yy, y, vary significantly, only
a small A, that means A\ << min,, j || X — X,,||, can provide the needed flexibility.
For the set of delta pillars of 10%,25%, AT M, —25%, —10% one can use A\ = 25% for a
smooth interpolation.

1.3.8 Interpolation of the Volatility Spread between Maturity
Pillars

The interpolation of the volatility spread to ATM uses the interpolation of the spread on the
two surrounding maturity pillars for the initial Black—Scholes delta of the option. The spread
is interpolated using square root of time where & is the volatility spread,

5(t) = &, ‘/Z_\/Er 1). (1.108)

+ == (62 —
Viz— Vi

The spread is added to the interpolated ATM volatility as calculated above.
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1.3.9 Volatility Sources

1. BBA, the British Bankers Association, provides historic smile data for all major currency
pairs in spread sheet format at http://www.bba.org.uk.

2. Olsen Associates (http://www.olson.ch) can provide tic data of historic spot rates, from
which the historic volatilities can be computed.

3. Bloomberg, not really the traditional FX data source, contains both implied volatilities
and historic volatilities.

4. Reuters pages such as FXMOX, SGFXVOLO01, and others are commonly used and con-
tain mostly implied volatilities. JYSKEOPT is a common reference for volatilities of
Scandinavia (scandie-vols). NMRC has some implied volatilities for precious metals.

5. Telerate pages such as 4720, see Figure 1.8, delivers implied volatilies.

6. Cantorspeed 90 also provides implied volatilities.

,;‘ii Pages - Telerate 4720

|Telerate 4720 =] BEKDE

06/18 14:41 GMT [TFS — ICAF]
[ CURRENCY OPTIONS

8.50-10.00| 9.50-10.20) 9.00-10.75

Figure 1.8: Telerate page 4720 quoting currency option volatilities
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1.3.10 Volatility Cones

Volatility cones visualize whether current at-the-money volatility levels for various maturities
are high or low compared to a recent history of these implied volatilities. This indicates to a
trader or risk taker whether it is currently advisable to buy volatility or sell volatility, i.e. to
buy vanilla options or to sell vanilla options. We fix a time horizon of historic observations
of mid market at-the-money implied volatility and look at the maximum, the minimum that
traded over this time horizon and compare this with the current volatility level. Since long term
volatilities tend to fluctuate less than short term volatility levels, the chart of the minimum
and the maximum typically looks like a part of a cone. We illustrate this in Figure 1.9 based
on the data provided in Table 1.10.

maturity | low | high | current
1M 7.60 | 13.85 11.60
2M 7.80 | 12.40 11.10
3M 7.90 | 11.40 10.85
6M 8.00 | 11.00 10.40
12M 8.20 | 10.75 10.00

Table 1.10: Sample data of a volatility cone in USD-JPY for a 9 months time horizon
from 6 Sept 2003 to 24 Feb 2005

1.3.11 Stochastic Volatility

Stochastic volatility models are very popular in FX Options, whereas jump diffusion models can
be considered as the cherry on the cake. The most prominent reason for the popularity is very
simple: FX volatility is stochastic as is shown for instance in Figure 1.10. Treating stochastic
volatility in detail here is way beyond the scope of this book. A more recent overview can be
found in the article The Heston Model and the Smile by Weron and Wystup [23].

1.3.12 Exercises

1. For the market data in Tables 1.6, 1.7 and 1.8 determine a smile matrix for at-the-
money and the 25-deltas. Also compute the corresponding strikes for the three pillars
or moneyness.

2. Taking the smile of the previous exercise, implement the functions for interpolation to
generate a suitable implied volatility for any given time to maturity and any strike or
delta.
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Volatility cone in USD-JPY
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Figure 1.9: Example of a volatility cone in USD-JPY for a 9 months time horizon from 6
Sept 2003 to 24 Feb 2005

3. Using the historic data, generate a volatility cone for USD-JPY.

4. It is often believed that an at-the-money (in the sense that the strike is set equal to the
forward) vanilla call has a delta near 50%. What can you say about the delta of a 15
year at-the-money USD-JPY call if USD rates are at 5%, JPY rates are at 1% and the
volatility is at 11%7?

1.4 Basic Strategies containing Vanilla Options

Linear Combinations of vanillas are quite well known and have been explained in several text
books including the one by Spies [93]. Therefore, we will restrict our attention in this section
to the most basic strategies.

1.4.1 Call and Put Spread

A Call Spread is a combination of a long and a short Call option. It is also called capped
call. The motivation to do this is the fact that buying a simple call may be too expensive and
the buyer wishes to lower the premium. At the same time he does not expect the underlying
exchange rate to appreciate above the strike of the short Call option.
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digital(¢, K)

limy, o0 n[vanilla(K) — vanilla(K + ¢/n)]

knock-in vanilla — knock-out

EKO(¢, K, B) vanilla(¢, K) — vanilla(¢, B) — digital(B)¢(B — K)
EDKOCall(K,L,H) (K < L < H) | call(L) — call(H) + (L — K)[digital(L) — digital(H)]
vanilla(K) digital s, — K - digital g,

RKO(¢, K, B) KO(—¢, K, B) — KO(—¢, B, B) — (B — K)NT(B)
(D)OT e~ "T- (D)NT

DOTy,, (L, H, So,74,7f,0)

SODOTdom(%7 %7 SLO,’I"fﬂ"d,U)

DOTdom(Lv H)

[DKOCall(K = L, L, H) + DKOPut(K = H, L, H)|/[H — L]

DOTfo'r(Lv H)

[H - DKOCall(K = L, L, H) + L - DKOPut(K = H, L, H)|/[(H — L)So)

EDNT(L, H)

digital(L) — digital(H)

two-touch(L, H)

OT(L) + OT(H) — DOT(L, H)

second DNT(A < B < C < D)

DNT(A,C) + DNT(B, D) — DNT(B, C)

KIKO(L = ko, H = ki)

KO(L) — DKO(L, H)

forward(K)

call(K) — put(K)

paylater premium

vanilla/digital

spread(¢) vanilla(K, ¢) — vanilla(K + ¢ - spread, ¢)
risk reversal call(Ky) — put(K-)

straddle(K) call(K) + put(K)

strangle call(Ky) + put(K_-)

butterfly call(K4) + put(K_) —callarpar — put g4z

shark forward

forward + RKO

bonus forward

forward + DNT

butterfly forward

forward + DKO straddle

accrued forward

forward + corridor

participating forward

call — P%put

fade-in forward

forward + fade-in vanilla

ded(r > market)

deposit(r = market) — vanilla

range deposit(r > market)

deposit(r < market) + DNT

performance note(rmaz > market)

deposit(r < market) + call

Table 5.1: Common Replication Strategies and Structures
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