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Abstract
The foreign exchange options market is one of the largest and most liquid 
OTC derivative markets in the world. Surprisingly, very little is known in 
the academic literature about the construction of the most important 
object in this market: The implied volatility smile. The smile construction 
procedure and the volatility quoting mechanisms are FX specific and differ 
significantly from other markets. We give a brief overview of these quoting 
mechanisms and provide a comprehensive introduction to the resulting 
smile construction problem. Furthermore, we provide a new formula which 
can be used for an efficient and robust FX smile construction. 
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1 FX Market Conventions

Introduction
It is common market practice to summarize the information of the vanilla 
options market in a volatility smile table which includes Black-Scholes 
implied volatilities for different maturities and moneyness levels. The 
degree of moneyness of an option can be represented by the strike or any lin-
ear or non-linear transformation of the strike (forward-moneyness, log-mon-
eyness, delta). The implied volatility as a function of moneyness for a single 
time to maturity is generally referred to as the smile. To be more precise, the 
volatility smile is a mapping 

X �→ σ (X) ∈ [0, ∞)

with X being the moneyness variable. The function value s (X) for a given 
moneyness X and time to maturity T  represents the implied volatility which 
is the crucial input variable for the well known Black-Scholes formula (Black 
and Scholes (1973)). The volatility smile is the crucial input into pricing 
and risk management procedures since it is used to price vanilla, as well as 
exotic option books. In the FX OTC derivative market the volatility smile is 
not directly observable, as opposed to the equity markets, where strike-price 
or strike-volatility pairs can be observed. In foreign exchange OTC derivative 

markets, the only volatility inputs are currency pair specific risk reversal 
s

RR
, quoted strangle s

S – Q
 and at-the-money volatility s

ATM
 quotes (see market 

sample in Table 1). The risk reversal and strangle quotes are assigned to a 
delta such as 0.25 which is incorporated in the notation in Table 1. These 
quotes can be used to construct a complete volatility smile, from which one 
can extract the volatility for any strike. In this section, a brief overview of 
basic FX terminology will be introduced which will be used in the remain-
ing part of the paper. In the next section, the market implied information 
for quotes such as those given in Table 1 will be explained in detail. Finally, 
a new implied volatility function will be introduced which accounts for this 
information in an efficient manner. 

FX Terminology
Before explaining the market quotes, we will briefly introduce the common 
FX terminology. For a more detailed introduction, we refer the reader to 
Beier and Renner (2010), Castagna (2010), Clark (2010), Reiswich and Wystup 
(2010), Reiswich (2010).

The FX spot rate S
t
 = FOR-DOM is the exchange rate at time t representing 

the number of units of domestic currency which are needed to buy one unit 
of foreign currency. We will refer to the “domestic” currency in the sense of a 
base (numeraire) currency in relation to which “foreign” amounts of money 
are measured, see Wystup (2006). 

The holder of an FX option obtains the right to exchange a specified 
amount of money in domestic currency for a specified amount of money 
in foreign currency at an agreed exchange rate K at maturity time T. This is 
equivalent to receiving the asset and paying a predefined amount of money 
in the equity market. Under standard Black-Scholes assumptions (see Black 

Table 1: FX Market data for a maturity of 1 month. Retrieved for January, 
20th 2009 from Bloomberg database.

EUR-USD USD-JPY

s
ATM 21.6215% 21.00%

s
25−RR –0.5% –5.3%

s
25−S−RR 0.7375% 0.184%
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The introduced deltas can be stated as Black-Scholes type of formulas 
for puts and calls. For example, the premium-adjusted spot delta can be 
deduced from 

�S,pa(K, σ , φ) = �S(K, σ , φ) − v(K, σ , φ)

St

where D
S
 is the standard Black-Scholes delta. The resulting formulas are 

summarized in Table 2. 

At-the-Money
The at-the-money definition is not as obvious as one might think. If a 
 volatility s

ATM
 is quoted, and no corresponding strike, one has to  identify 

which at-the-money quotation is used. Some common at-the-money 
 definitions are 

ATM-spot K = S
0

ATM-forward K = f

ATM-delta-neutral K such that call delta = −put delta.

In addition to that, all notions of ATM involving delta will have sub-cat-
egories depending on which delta convention is used. The at-the-money spot 
quotation is well known. ATM-forward is very common for currency pairs 
with a large interest rate differential (emerging markets) or a large time to 
maturity. Choosing the strike in the ATM-delta-neutral sense ensures that 
a straddle with this strike has a zero delta (where delta has to be specified). 
This convention is considered as the default ATM notion for short-dated FX 
options. The formulas for different at-the-money strikes can be found in 
Beier and Renner (2010), Beneder and Elkenbracht-Huizing (2003), Reiswich 
and Wystup (2010).

2 Construction of Implied Volatility Smiles
The previous section introduced FX specific delta and ATM conventions. 
This knowledge is crucial to understand the volatility construction proce-
dure in FX markets. In FX option markets it is common to use the delta to 
measure the degree of moneyness. Consequently, volatilities are assigned 
to deltas (for any delta type), rather than strikes. For example, it is common 
to quote the volatility for an option which has a premium-adjusted delta 
of 0.25. These quotes are often provided by market data vendors to their 
customers. However, the volatility-delta version of the smile is translated by 
the vendors after using the smile construction procedure discussed below. 
Other vendors do not provide delta-volatility quotes. In this case, the cus-
tomers have to employ the smile construction procedure. Related sources 
covering this subject can be found in Bossens et al. (2009), Castagna (2010), 
Clark (2010). 

Unlike in other markets, the FX smile is given implicitly as a set of restric-
tions implied by market instruments. This is FX-specific, as other markets 
quote volatility versus strike directly. A consequence is that one has to 

and Scholes (1973)) , the value of a vanilla option with strike K and expiry 
time T is given by 

 

v(K,σ ,φ) = φe−rdτ [ f (t,T ) N(φd+) − K N(φd−)] where

d± =
ln

(
f (t,T )

K

)
± 1

2 σ2τ

σ
√

τ
K : strike of the FX option,

f (t,T ) : FX forward rate,
σ : Black-Scholes volatility,

φ = +1 for a call ,φ =−1 for a put,
rd ,r f : continuously compounded domestic or foreign rate,
τ = T − t : time to maturity.

 
(1)

In the formula above v depends on the variables K, s, f  only since these will 
be the variables of interest in the rest of this work.

Deltas
This section gives a brief introduction to FX delta conventions. We follow 
the same brief summary as provided in Reiswich (2011). For a more detailed 
introduction on delta and at-the-money conventions we refer the reader to 
Beier and Renner (2010), Reiswich and Wystup (2010).

The standard Black-Scholes delta has an intuitive interpretation from 
a hedging point of view. It denotes the number of stocks an option seller 
has to buy to be hedged with respect to spot movements. Foreign exchange 
options have a nominal amount, such as 1,000,000 EUR. In this particular 
case, an option buyer of a EUR-USD option with a strike of K = 1,3500 will 
receive 1,000,000 EUR and pay 1,350,000 USD at maturity. The option value 
is by default measured in domestic currency units. In the example it is a 
dollar value such as 102,400 USD. A delta of 0.6 would imply that buying 
60% = 600,000 EUR of the foreign notional is appropriate to hedge a sold 
option position. This is the standard Black-Scholes delta and is called spot 
delta.

Alternatively, we could consider a hedge in the forward market. This 
would require to take FX forward positions, which are influenced by 
spot and interest rate movements. A forward delta of 50% would imply to 
enter a forward contract with a nominal of 500,000 EUR to hedge the sold 
option with a nominal of 1,000,000 EUR. This delta type is called forward 
delta. 

There are two more delta types, which can be explained by considering 
again the previously described spot delta hedge. The option was sold for 
102,400 USD and 600,000 EUR were bought for the hedge. One can reduce 
the quantity of the hedge by converting the 102,400 USD received as the pre-
mium to a EUR amount at a given rate of S

0
 = 1.3900 EUR-USD. This USD pre-

mium is equivalent to 73,669 EUR. Consequently, the final hedge quantity 
will be 526,331 EUR which is the original delta quantity of 600,000 reduced 
by the received premium measured in EUR. This procedure implies adjust-
ing the delta by the premium such that approximately 52.6% of the notional 
needs to be bought for the hedge (instead of 60%). The quantity 52.6% can 
also be viewed as a delta and is called the premium-adjusted spot delta. The 
same argument holds for a hedge in the forward market, the resulting delta 
is called premium-adjusted forward delta. 

Table  2: Delta Formulas. S denotes spot, f forward, pa premium-adjusted, e 
= 1 for a call and e = –1 for a put.

D
S

D
f

D
S,pa

D
f,pa

φe−rf τ N(φd+) φN(φd+) φe−rf τ K
f N(φd−) φ K

f N(φd−)
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employ a calibration procedure to construct a volatility vs. delta or volatil-
ity vs. strike smile. This section introduces the set of restrictions implied by 
market instruments. The next section proposes a new method with an effi-
cient and robust calibration. 

Suppose the mapping of a strike to the corresponding implied volatility 

K �→ σ (K)

is given. We will not specifys (K) here but assume that it represents a gener-
al, well behaving function that characterizes key aspects of volatility smiles
(positivity, continuity). Crucial in the construction of the FX volatility smile
is to builds (K) such that it matches the volatilities/prices implied by market
quotes. The general FX market convention is to use three volatility quotes for
a given delta such asΔ = ±0.251:

an at-the-money volatility s
ATM

,
a risk reversal volatility s

25 − RR
,

a quoted strangle volatility s
25 − S − Q (also called broker strangle).

A sample of market quotes for the EUR-USD and USD-JPY currency pairs
is given in Table 3. Befor e starting the smile construction it is important to
analyze the exact characteristics of the quotes in Table 3. In particular, one
has to identify first

which at-the-money convention is used,
which delta type is used.

For example, Figure 1 shows market consistent smiles based on the EUR-
USD and USD-JPY market data from Table 3, assuming that this data refers
to different deltas, a simple or premium-adjusted one. The smile functions
have significantly different shapes, in particular for out-of-the-money and

in-the-money volatilities. Therefore, it is crucial to know how the deltas are
defined when such quotes are obtained. Otherwise, option prices will be
incorrect.

The quotes in the given market sample refer to a spot delta for the cur-
rency pair EUR-USD and a premium-adjusted spot delta for the currency pair
USD-JPY. Both currency pairs use the forward delta neutral at-the-money
quotation.

At-the-Money Volatility
After identifying the at-the-money type, we can extract the at-the-money
strike K

ATM
using the formulas provided in Beier and R enner (2010), Beneder

and Elkenbracht-Huizing (2003), Reiswich and Wystup (2010). For the
market sample data in Table 3 the corresponding strikes are summarized
inTable 4. To clarify how the strikes are calculated, consider the EUR-USD
data in Table 3. As stated earlier, the at-the-money data refers to the forward
delta-neutral definition. The corresponding at-the-money strike formula is:

KATM = fe
1
2 σ2τ .

The variables corresponding to the market sample are t = 0.0849, f = 
1.3070, s = 0.216215. Consequently, one can calculate

KATM = 1.3070e
1
2 0.21621520.0849 = 1.3096,

which is the EUR-USD at-the-money strike in Table 4. Independent of t he
choice ofs (K), it has to be ensured that the volatility for the at-the-money
strike is s

ATM
. Consequently, the construction procedure for s (K) has to guar-

antee that the following Equation

σ (KATM) = σATM (2)

holds. A market consistent smile function s (K) for the EUR-USD currency
pair thus has to yield

σ (1.3096) = 21.6215%

for the market data in Table 3. We will show later how to calibrate s (K) to
retrieve s (K), so assume for the moment that the calibrated, market consist-
ent smile functions (K) is given.

Table  3: Market data for a maturity of 1 month, as of January, 20th 2009.

EUR-USD USD-JPY
S

0 1.3088 90.68
r

d 0.3525% 0.42875%
r

f 2.0113% 0.3525%

s
ATM

 21.6215% 21.00%

s
25–RR

 –0.5% –5.3%

s
25–S–Q 0.7375% 0.184%

Figure  1: Smile construction with EUR-USD (left graph) and USD-JPY (right graph) market data from Table 3, assuming different delta types.
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Table 4: At-the-money strikes for market sample.

EUR-USD USD-JPY
K

ATM 1.3096 90.86
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Risk Reversal
The risk reversal quotation s

25 − RR
 is the difference between two volatilities:

the implied volatility of a call with a delta of 0.25 and 
the implied volatility of a put with a delta of −0.25. 

It measures the skewness of the smile, the extra volatility which is added 
to the 0.25 Δ put volatility compared to a call volatility which has the same 
absolute delta. Clearly, the delta type has to be specified in advance. For 
example, the implied volatility of a USD call JPY put with a premium-adjust-
ed spot delta of 0.25 could be considered. Given s (K), it is possible to extract 
strike-volatility pairs2 for a call and a put (

K25C, σ (K25C)
) (

K25P, σ (K25P)
)

which yield a delta of 0.25 and −0.25 respectively: 

�(K25C, σ (K25C), 1) = 0.25

�(K25P, σ (K25P), −1) = −0.25

In the equation system above, Δ denotes a general delta which has to be 
specified to Δ

S
, Δ

S, pa
 or Δ

f
, Δ

f, pa
. The market consistent smile function s (K) has 

to match the information implied in the risk reversal. Consequently, it has 
to fulfill 

 σ (K25C) − σ (K25P) = σ25−RR.  (3)

Examples of such 0.25Δ strike-volatility pairs for the market data in 
Table 3 and a calibrated smile function s (K) are given in Table 5. For the cur-
rency pair EUR-USD we can calculate the difference of the 0.25Δ call and put 
volatilities as 

σ (1.3677) − σ (1.2530) = 22.1092% − 22.6092% = −0.5%

which is consistent with the risk reversal quotation in Table 3. It can also be 
verified that 

�S (1.3677, 22.1092%, 1) = 0.25 and �S(1.2530, 22.6092%, −1) = −0.25.

 The value of the actually traded instrument is 

vRR = v(K25C, σ (K25C), 1) − v(K25P, σ (K25P), −1),

see also Castagna (2010). This price can be obtained from the smile after cali-
bration. The market quotes a difference of implied volatilities rather than a 
concrete price for the risk reversal. This is different in the case of the market 
strangle discussed below.

Market Strangle
 The strangle is the third restriction on the function s (K). Its quotation pro-
cedure leads to a lot of confusion among academics and practitioners so it is 

•
•

worth spending some time explaining it. Define the market strangle volatil-
ity s 

25 − S − M as

 
σ25−S−M = σATM + σ25−S−Q .  (4)

As before, the variable s 
25 − S − Q denotes the quoted strangle volatility3. For 

the market sample from Table 3 and the USDJPY case this would correspond 
to 

σ25−S−M = 21.00% + 0.184% = 21.184%.

Given this single volatility, we can extract a call strike K 
25C − S − M and a put 

strike K 
25P − S − M which - using s 

25 − S − M as the volatility - yield a delta of 0.25 and 
−0.25 respectively. The procedure to extract a strike given a delta and volatil-
ity can be found in Reiswich (2010). The resulting strikes will then fulfill 

 

�(K25C−S−M, σ25−S−M, 1) = 0.25

�(K25P−S−M, σ25−S−M, −1) = −0.25.  (5)

 The strikes corresponding to the market sample are summarized in 
Table 6. For the USDJPY case the strike volatility combinations given in Table 
6 fulfill 

 �S,pa(94.55, 21.184%, 1) = 0.25  (6)

 �S,pa(87.00, 21.184%, −1) = −0.25  (7)

where Δ
S,pa

 (K, s, f) is the premium-adjusted spot delta. Given the strikes 
K

25C−S−M
, K

25P−S−M
 and the volatility s

25−S−M
, one can calculate the price of an 

option position of a long call with a strike of K
25C−S−M

 and a volatility of s
25−S−M

 
and a long put with a strike of K

25P−S−M
 and the same volatility. The resulting 

price v
25−S−M

 is 

 
v25−S−M = v(K25C−S−M, σ25−S−M, 1) + v(K25P−S−M, σ25−S−M, −1)  (8)

and is the final variable one is interested in. This is the third information 
implied by the market: The sum of the call option with a strike of K

25C−S−M
 and 

the put option with a strike of K
25P−S−M

 has to be v
25−S−M

. This information has 
to be incorporated by a market consistent volatility function s (K) which can 
have different volatilities at the strikes K

25C−S−M
, K

25P−S−M
 but should guarantee 

that the corresponding option prices at these strikes add up to v
25−S−M

. The 
delta of these options with the smile volatilities is not restricted to yield 0.25 
or − 0.25. To summarize, 

 
v25−S−M = v(K25C−S−M, σ (K25C−S−M), 1) + v(K25P−S−M, σ (K25P−S−M), −1)  (9)

is the last restriction on the volatility smile. Taking again the USDJPY as an 
example yields that the strangle price to be matched is 

 v25−S−M = v(94.55, 21.184%, 1) + v(87.00, 21.184%, −1) = 1.67072.  (10)

The resulting price v
25−S−M

 is in the domestic currency, JPY in this case. 
One can then extract the volatilities from a calibrated smile s (K) — as in 
Table 6 — and calculate the strangle price with volatilities given by the cali-
brated smile function s (K) 

 v(94.55, 18.5435%, 1) + v(87.00, 23.7778%, −1) = 1.67072.  (11)

This is the same price as the one implied by the market in Equation (10). 

Table 5: 0.25 D strikes.

EUR-USD USD-JPY

K
25C

1.3677 94.10

K
25P

1.2530 86.51

s (K25C) 22.1092% 18.7693%

s (K25P) 22.6092% 24.0693%
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To summarize: The market uses a single volatility (quoted strangle plus 
the at-the-money volatility) to convey information about a price of a strangle 
with certain strikes. When the smile is constructed, one must choose the 
volatilities at these strikes such that the price of the corresponding strangle 
matches the one calculated with a single volatility.

Remark 1 (A Negative Broker Strangle?). We would like to note that it is 
totally valid for the broker strangle s

25−S−Q
 to be negative. A negative strangle 

can be observed quite regularly in the market for specific currency pairs. 
The only limitation is that the absolute value of a negative broker strangle 
can not be larger than the at-the-money volatility as this would then lead to 
a negative market strangle volatility in Equation (4). 

Remark 2 (Market Strangle Intuition). The market strangle quotation often 
confuses people. A standard question is, why this type of quotation is used. 
As already stated, the smile consistent deltas are not necessarily ±0.25 lead-
ing to a potentially non delta-neutral strangle. The major driver behind 
this quotation seems to have historical reasons. In the early times of the FX 
derivative market, the smiles were more symmetric and there was no signifi-
cant skew. Consequently, it was convenient to quote a single volatility for a 
two leg option position. In todays markets smiles are often asymmetric as 
one can observe significant risk reversals. However, the quoting mechanism 
for the strangle did not change. The quoted single volatility can now be con-
sidered as an average of the implied volatility of both, the call and the put 
(as will be shown below). The single volatility allows an easier comparison of 
prices if the strikes are fixed: It is a common procedure in the market to ask 
a broker for a single strangle volatility and specify two strikes for a call and 
put (the strikes not necessarily being 25 delta strikes). This is slightly differ-
ent from the standard 25 delta strangle quote described above. The broker 
would then quote a single volatility which one could use to retrieve the total 
price. The higher the single volatility, the higher the price of the strangle 
which allows an easy price comparison. Comparing two prices would be less 
easy if two volatilities would be quoted: One broker may quote a higher call 
volatility, but a lower put volatility than some other broker and it would not 
be clear who charges the higher premium without actually calculating it.

Market Strangle as an Average of Smile Volatilities
In Bossens et al. (2009), the authors use a first order Taylor expansion 
around the at-the-money volatility to show that the market strangle can be 
represented as a vega weighted sum of smile consistent volatilities. In oppo-
site to the derivation in Bossens et al. (2009), we will expand around the mar-
ket strangle volatility s

25−S−M
 which yields4:

 

v(K25C−S−M, σ25−S−M, 1) + v(K25P−S−M, σ25−S−M, −1)

= v(K25C−S−M, σ (K25C−S−M), 1) + v(K25P−S−M, σ (K25P−S−M), −1)  (12)

≈ v(K25C−S−M, σ25−S−M, 1) + v(K25P−S−M, σ25−S−M, −1)

+ ∂v(K25C−S−M, σ25−S−M)

∂σ
(σ (K25C−S−M) − σ25−S−M)

+ ∂v(K25P−S−M, σ25−S−M)

∂σ
(σ (K25P−S−M) − σ25−S−M))

 (13)

Equaling Equation (12) and (13) yields

σ25−S−M ≈
∂v(K25C−S−M ,σ25−S−M )

∂σ
σ (K25C−S−M) + ∂v(K25P−S−M ,σ25−S−M )

∂σ
σ (K25P−S−M)

∂v(K25C−S−M ,σ25−S−M )
∂σ

+ ∂v(K25P−S−M ,σ25−S−M )
∂σ

 (14)

This shows, that the market strangle is a vega weighted sum of smile 
consistent call and put volatilities (at market strangle strikes). However, we 
can proceed a step further and use the fact that, if the absolute Black Scholes 
spot or forward delta of a call and a put is equal, so are the vegas. The fol-
lowing Lemma can be found in Reiswich (2010) (which is based on Castagna 
(2010)):
Lemma 1. Let a volatility-strike function s (K) be given and 

∂v

∂σ
(K, σ (K))

denote the Black-Scholes Vega at strike K. Given a call strike K
C
 and a put strike K

p
 such 

that 

�(KC, σ (KC), 1) = |�(KP, σ (KP), −1)|,

where D is either a spot or forward delta, implies 

 

∂v

∂σ
(KC, σ (KC)) = ∂v

∂σ
(KP, σ (KP)).

 

Remembering that the market strangle strikes are chosen such that the 
absolute delta, using a single volatility, is 0.25 (see Equation (5) ) implies that 

 

∂v(K25C−S−M, σ25−S−M)

∂σ
= ∂v(K25P−S−M, σ25−S−M)

∂σ  (15)

which we plug into Equation (14) to get 

 
σ25−S−M ≈ 1

2
[σ (K25C−S−M) + σ (K25P−S−M)] .  (16)

Note that this is only proved for spot and forward delta, and not for the 
premium adjusted equivalents. The approximation breaks down with sig-
nificant second order derivative (i.e. the Volga5 ) and for large maturities.

The Simplified Formula
 As opposed to the approach we have shown, previous research has tended 
to use a more ad hoc procedure to determine 0.25Δ volatilities. This simpli-
fied procedure is used by Malz (1997), Wang (2009), Chalamandaris and 
Tsekrekos (2010), Bakshi et al. (2008), Galati et al. (2005). We will discuss the 
potential problems with this approach if it is used as a “quick and dirty” way 
to construct the implied volatility smile. Let s

25C
 be the market consistent 

call volatility corresponding to a delta of 0.25 and s
25P

 the market consistent 
−0.25 delta put volatility. Let K

25C
 and K

25P
 denote the corresponding strikes. 

The simplified formula states that 

Table  6: Market Strangle data.

EUR-USD USD-JPY 

K
25C-S-M

1.3685 94.55

K
25P-S-M

1.2535 87.00

s (K25C-S-M) 22.1216% 18.5435%

s (K25P-S-M) 22.5953% 23.7778%

v
25-S-M

0.0254782 1.67072
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σ25C = σATM + 1

2
σ25−RR + σ25−S−Q

σ25P = σATM − 1

2
σ25−RR + σ25−S−Q .

 (17)

This would allow a simple calculation of the 0.25Δ volatilities s
25C

, s
25P

 with 
market quotes as given in Table 3. Including the at-the-money volatility would 
result in a smile with three anchor points which can then be interpolated in 
the usual way. In this case, no calibration procedure is needed. Note, that 

 σ25C − σ25P = σ25−RR  (18)

such that the 0.25Δ volatility difference automatically matches the quoted 
risk reversal volatility. The simplified formula can be reformulated to calcu-
late s 

25 − S − Q, given s
25C

, s
25P

 and s
ATM

 quotes. This yields 

 
σ25−S−Q = σ25C + σ25P

2
− σATM,  (19)

which presents the strangle as a convexity parameter. Unfortunately, this 
approach can fail to match the market strangle given in Equation (8), which 
is repeated here for convenience 

v25−S−M = v(K25C−S−M, σ25−S−M, 1) + v(K25P−S−M, σ25−S−M, −1).

Interpolating the smile from the three anchor points given by the simpli-
fied formula and calculating the market strangle with the corresponding 
volatilities at K

25P−S−M
 and K

25C−S−M
 does not necessarily lead to the matching of 

v
25−S−M

. For example, consider the USD-JPY data from Table 3. In the previous 
section we have shown that the USD-JPY market strangle price v

25−S−M
 implied 

by the market is 1.67072. However, when the simplified approach in Malz 
(1997) is used, the resulting market strangle price is 1.62801. The prices 
differ significantly. The reason why the formula is used often is that the cor-
responding procedure significantly simplifies the smile construction. The 
market strangle matching in the simplified approach works for small risk 
reversal volatilities s

25−RR
. To be more precise, assume that s

25−RR
 is zero. The 

simplified formula (17) then reduces to 

σ25C = σATM + σ25−S−Q ,

σ25P = σATM + σ25−S−Q .

This implies, that the volatility corresponding to a delta of 0.25 is the 
same as the volatility corresponding to a delta of −0.25, which is the same as 
the market strangle volatility s

25−S−M
 introduced in Equation (4). Assume that 

in case of a zero risk reversal the smile is built using three anchor points 
given by the simplified formula and a strangle is priced with strikes K

25C−S−M
 

and K
25P−S−M

. Given the volatility s
25C

 = s
ATM

 + s
25−S−Q 

and a delta of 0.25 would 
result in K

25C−S−M
 as the corresponding strike. Consequently, we would assign 

s
ATM

 + s
25−S−Q

 to the strike K
25C−S−M

 if we move from delta to the strike space. 
Similarly, a volatility of s

ATM
 + s

25−S−Q
 would be assigned to K

25P−S−M
. The result-

ing strangle from the three anchor smile would be 

v(K25C−S−M, σATM + σ25−S−Q , 1) + v(K25P−S−M, σATM + σ25−S−Q , −1)

which is exactly the market strangle price v
25−S−M

. In this particular case, we 
have 

K25C−S−M = K25C,

K25P−S−M = K25P.

Using the simplified smile construction procedure yields a market 
strangle consistent smile setup in case of a zero risk reversal (or a small 
absolute risk reversal <1%, see Bossens et al. (2009)). The other market match-
ing requirements are met by default. For example, consider the EUR-USD 
market strangle price in Table 6, which is 0.0254782. Table 3 shows that the 
EUR-USD risk reversal is −0.5%, which is less than 1%. The market strangle 
price with the approach in Malz (1997) can be calculated as 0.0254778. In 
this case, the difference between the prices is small. In any other case, the 
strangle price might not be matched which leads to a non market consistent 
setup of the volatility smile. Note that in the special case where the formula 
can be used there is still an issue which has to be taken care of: One has to 
carefully consider the delta type when switching to the strike-volatility 
space. This is a common misconception in the literature when the FX smile 
is constructed. 

The simplified formula can still yield accurate results, even for large 
risk reversals, if s

25−S−Q
 is replaced by an alternative strangle definition. This 

parameter can be extracted after finishing the market consistent smile 
construction and is calculated in a similar manner to Equation (19). Assume 
that the 0.25 delta volatilities s

25C
 = s  (K

25C
) and s

25P
 = s  (K

25P
) are given by the 

calibrated smile function s  (K). We can then calculate another strangle, 
called the smile strangle via 

 
σ25−S−S = σ (K25C) + σ (K25P)

2
− σATM.  (20)

The smile strangle measures the convexity of the calibrated smile func-
tion and is plotted in Figure 2. It is approximately the difference between 
a straight line between the ±25 Δ put and call volatilities and the at-the-
money volatility, evaluated at Δ

ATM
6. This is equivalent to Equation (19), but 

in this case we are using out-of-the-money volatilities obtained from the 
calibrated smile and not from the simplified formula. Given s

25−S−S
, the sim-

plified Equation (17) can still be used if the quoted strangle volatility s
25−S−Q

 
is replaced by the smile strangle volatility s

25−S−S
. Clearly, s

25−S−S
 is not known 

a priori but is obtained after calibration7. Thus, one obtains a correct simpli-
fied formula as 

Figure  2: Smile strangle for random market data. Filled circles indicate K
25P

, 
K

25C 
strikes. Rectangle indicates K

ATM
. r

R
 denotes the risk reversal, r

S
 the smile 

strangle.
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σ25C = σATM + 1

2
σ25−RR + σ25−S−S,

σ25P = σATM − 1

2
σ25−RR + σ25−S−S.

 (21)

In general, the smile strangle is not observable in the market. However, 
some FX option market participants are moving towards a quotation of the 
smile strangle in their systems. In this case, Equation (21) is appropriate and 
the simple smile construction procedure can be employed. Confusion arises 
when one observes a strangle quotation and it is not said explicitly whether 
it is the smile strangle or market strangle. 

The market strangle is still the standard quoting convention amongst 
market participants and the simplified procedure can produce non market-
consistent smiles. This is the most often occurring misconception regarding 
FX volatility data. 

Consider the following numerical example. Sample data is summarized 
in Table 7 where we have used the calibrated smile function s  (K) to calculate 
the smile strangles s

25−S−S
. Given s

25−S−S
, s

ATM
 and s

25−RR
, one can calculate the 

EUR-USD out-of-the-money volatilities of the call and put via the simplified 
Formula (21) as 

σ25C = 21.6215% − 1

2
0.5% + 0.7377% = 22.1092%,

σ25P = 21.6215% + 1

2
0.5% + 0.7377% = 22.6092%,

which is consistent with the volatilities s (K
25C

) and s (K
25P

) in Table 7. Note 
that the market strangle volatility is very close to the smile strangle volatili-
ty in the EUR-USD case. This is due to the risk reversal of the EUR-USD smile 

having a value close to zero. Calculating the 25Δ volatilities via the original 
simplified Formula (17) would yield a call volatility of 22.109% and a put vola-

tility of 22.609% which are approximately the 25Δ volatilities of Table 7. This 
confirms that the difference between the simplified and market consistent 
setup is not significant in the case of a small risk reversal (i.e. a risk reversal 
<1%). However, the smile strangle and quoted strangle volatilities differ sig-
nificantly for the skewed USD-JPY smile. Using the original Formula (17) in 

this case would result in 18.534% and 23.834% for the ±25Δ call and put vola-

tilities. These volatilities differ from the market consistent 25Δ volatilities 
given in Table 7.

Remark 3 (A Negative Smile Strangle?). As with the broker strangle, a smile 
strangle can be negative too. Firstly, a volatility smile can be non convex even 
if standard no-arbitrage conditions are not violated. As the smile strangle 
reflects the smile convexity, it can be negative. However, a more common 
cause for a negative smile strangle occurs when the zero delta straddle 

 at-the-money volatility is used. For example, the at-the-money strike for a 
zero spot or forward delta straddle is 

 KATM = fe
1
2 σATMτ2

.  (22)

The larger the time to maturity, the larger is the strike8. For some maturi-
ties and currency pairs this can imply that the at-the-money strike is located 
to the right of the 25 delta call strike and not between the call and the put 
strike (see also Beier and Renner (2010)). Depending on the shape of the vola-
tility smile this can also mean that the at-the-money volatility is larger than 
the average of the 25 delta call and put volatility which means that the term 

σ25−S−S = σ (K25C) + σ (K25P)

2
− σATM.

is negative. 

Remark 4 (A Market Risk Reversal?). After writing a previous working ver-
sion of this paper, we were contacted by some practitioners which raised the 
question of the existence of a market risk reversal. In this case, the risk revers-
al volatility would be used in a similar way to the strangle volatility and a 
concrete price for the risk reversal option position could be calculated (with-
out even calibrating the smile). This would be contradictory to our previous 
statement that the risk reversal is a difference of two volatilities and that the 
risk reversal option position (long call, short put) can only be valued after the 
calibration to the at-the-money volatility, market strangle and risk reversal 
volatility. However, we claim that our definition is the market convention 
and that potential confusion arises because market participants confuse 
smile and market strangles. If it is standard within the company to work with 
smile strangles, one could indeed use a simplified way to calculate the risk 
reversal price. If the market strangle is the standard, this can not be done.

3 Simplified Parabolic Interpolation
 Various different interpolation methods can be considered as basic tools 
for the calibration procedure. Potential candidates are the SABR model 
introduced by Hagan et al. (2002), or the Vanna Volga method introduced by 
Castagna and Mercurio (2006). It is crucial to find a model which calibrates 
quickly and robustly for a wide range of currency pairs. Models with closed 
form solutions (or approximations thereof) are beneficial. In this work, we 
introduce a new method for the smile construction. In Reiswich (2011), the 
empirical calibration robustness of this method is compared with other 
methods. 

In Malz (1997), the mapping forward delta against volatility is con-
structed as a polynomial of degree two. This polynomial is constructed such 
that the at-the-money and risk reversal delta volatilities are matched. Malz 
derives the following functional relationship 

 σ (�f ) = σATM − 2σ25−RR(�f − 0.5) + 16σ25−S−Q (�f − 0.5)2  (23)

where Δ
f
 is a call forward delta9. This is a parabola centered at 0.5. The use of 

this functional relationship can be problematic due to the following set of 
problems:

the interpolation is not a well defined volatility function since it is not 
always positive, 
the representation is only valid for forward deltas, although the 
author incorrectly uses the spot delta in his derivation (see Equation 
(7) and Equation (18) in Malz [1997]), 

•

•

Table  7: Smile strangle data.

EUR-USD USD-JPY

s (K25C) 22.1092% 18.7693%

s (K25P) 22.6092% 24.0693%

s
ATM 21.6215% 21.00%

s
25-RR

–0.5% –5.3%

s
25-S-S

0.7377% 0.419%

s
25-S-Q

0.7375% 0.184%
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the formula is only valid for the forward delta neutral at-the-money 
quotation, 
the formula is only valid for risk reversal and strangle quotes associ-
ated with a delta of 0.25, 
the matching of the market strangle restriction(9) is guaranteed for 
small risk reversals only. 

 The last point is crucial! If the risk reversal s
25 − RR

 is close to zero, the for-
mula will yield s

ATM 
+ s

25 − S− Q 
as the volatility for the ±0.25 call and put delta. 

This is consistent with restriction (9). However, a significant risk reversal will 
lead to a failure of the formula. We will fix most of the problems by deriving 
a new, more generalized formula with a similar structure. The problem that 
the formula is restricted to a specific delta and at-the-money convention can 
be fixed easily. The matching of the market strangle will be employed by a 
suitable calibration procedure. The resulting equation will be denoted as 
the simplified parabolic formula. 

The simplified parabolic formula is constructed in delta space. Let a 
general delta function Δ (K,s, f) be given and K

ATM
 be the at-the-money strike 

associated with the given at-the-money volatility s
ATM

. Let the risk reversal 
volatility quote corresponding to a general delta of ∼Δ > 0 be given bys

 
∼Δ  − RR

. 
For the sake of a compact notation of the formula we will use s

R 
instead of 

s∼Δ − RR
. Furthermore, we parametrize the smile by using a convexity param-

eter called smile strangle which is denoted as s
S
. This parameter has been 

discussed before in the simplified formula section. The following theorem 
can be stated.

Theorem 1. Let Δ
ATM

 denote the call delta implied by the at-the-money strike 

�ATM = �(KATM, σATM, 1).

Furthermore, we define a variable a which is the difference of a call delta, corre-
sponding to a − ∼D  put delta, and the − ∼D  put delta for any delta type and is given by 

a := �(K�̃P, σ , 1) − �(K�̃P, σ , −1).

Given a call delta ∼Δ, the parabolic mapping 

(�, σS) �→ σ (�, σS)

which matches s
ATM

 and the s
 
∼D  − RR

 risk reversal quote by default is 

 σ (�, σS) = σATM + c1(� − �ATM) + c2(� − �ATM)2  (24)

with 

c1 = a2(2σS + σR) − 2a(2σS + σR)(�̃ + �ATM) + 2(�̃2σR + 4σS�̃�ATM + σR�
2
ATM)

2(2�̃ − a)(�̃ − �ATM)(�̃ − a + �ATM)  

•

•

•

 
c2 = 4�̃σS − a(2σS + σR) + 2σR�ATM

2(2�̃ − a)(�̃ − �ATM)(�̃ − a + �ATM)  (25)

assuming that the denominator of c
1
 (and thus c

2
) is not zero. A volatility for a put delta 

can be calculated via the transformation of the put delta to a call delta.
Proof: See Appendix. 
We will present s (Δ, s

s
) as a function depending on two parameters only, 

although of course more parameters are needed for the input. We consider 
s

s
 explicitly, since this is the only parameter not observable in the market. 

This parameter will be the crucial object in the calibration procedure. 
Setting  ∼Δ  = 0.25, Δ

ATM
 = 0.5 and a = 1 as in the forward delta case, yields the 

original Malz formula if s
s
 = s

25−S−Q
. The generalized formula can handle any 

delta (e.g.,  ∼Δ  = 0.10), any delta type and any at-the-money convention. The for-
mula automatically matches the at-the-money volatility, since 

σ (�ATM, σS) = σATM

Furthermore, the risk reversal is matched since 

σ (�̃C, σS) − σ (a + �̃P, σS) = σ�̃−RR

where ∼Δ
C
 denotes the call delta and ∼Δ

P
 the put delta10. 

We have plotted the calibrated strike vs. volatility function in Figure 3 
to show the influence of the parameters s

ATM
, s

R
, s

S
 on the simplified para-

bolic volatility smile in the strike space. We will explain later how to move 
from the delta to the strike space. Increasing s

ATM
 shifts the smile curve up 

parallelly. Increasing s
25RR

 yields a more skewed curve. A risk reversal of zero 
implies a symmetric smile. Increasing the strangle s

S
 increases the at-the-

money smile convexity. Our final goal will be the adjustment of the smile 
convexity by changing s

S
 until condition (9) is met. The other conditions are 

fulfilled by construction, independent of the choice of s
S
. 

We note that the simplified parabolic formula follows the sticky-delta 
rule. This implies, that the smile does not move in the delta space, if the 
spot changes (see Balland (2002), Daglish et al. (2007), Derman (1999)). In the 
strike space, the smile performs a move to the right in case of an increasing 
spot, see Figure 4 .

Remark 5 (The parameter a in the Simplified Parabolic Formula). The 
implementation of the formula has a subtle issue regarding the parameter a 
which is defined as 

a = �(K�̃P, σ , 1) − �(K�̃P, σ , −1).

 In case of the non-premium adjusted versions, the implementation is 
straightforward as this parameter is either the foreign discount factor or 1.0. 
However, for the premium adjusted spot version the parameter a is 

Figure  3: Simplified Parabolic s
ATM

, r
R
, r

S 
,spot delta scenarios with s =   35

 ___ 365  , S
0
 = 1.2, r

d
 = 0.03, r

f
 = 0.07, }D = 0.25. Initial parameters s

ATM
 = 10.0%, r

R
 = 0.6%, 

r
s
 = 1.0%.

1.10 1.15 1.20 1.25 1.30
K K K0.00

0.05

0.10

0.15

0.20

0.25

s s s

sATM=0.14

sATM=0.12

sATM=0.10

1.10 1.15 1.20 1.25 1.30
0.00

0.05

0.10

0.15

0.20

0.25

sR=-0.04
sR=0.0
sR=0.04

1.10 1.15 1.20 1.25 1.30
0.00

0.05

0.10

0.15

0.20

0.25

sS=0.05
sS=0.03
sS=0.01

58-69_Wystup_TP_July_2012_Final.65   6558-69_Wystup_TP_July_2012_Final.65   65 8/17/12   11:47:48 AM8/17/12   11:47:48 AM



66  Wilmott magazine

a = e−rf τ
K�̃P

f
.

There seems to be a circular argumentation in this:

the volatility for the strike K∼ΔP
 is not known until the calibration is 

 finished, 
the volatility is needed for the calculation of the strike, 
without the strike one can not determine the parameter a. 

 However, recall that the volatility for a put delta of −∼Δ  according to 
Equation (21) is 

σ�̃P = σATM − 1

2
σR + σS.

 Given the smile strangle at each step of the calibration (starting with 
some initial value), we can calculate the volatility at any time and conse-
quently the strike K∼ΔP

 and the parameter a. 

Market Calibration
The advantage of Formula (24) is that it matches the at-the-money and risk 
reversal conditions of Equations (2) and (3) by construction. The only remain-
ing challenge is matching the market strangle. The simplified parabolic 
function can be transformed from a delta-volatility to a strike-volatility 
space (which will be discussed later) such that a function 

σ (K, σS)

 is available. Using the variable s
S
 as the free parameter, the calibration prob-

lem can be reduced to a search for a variable x such that the following holds 

 
v�̃−S−M = v(K�̃C−S−M, σ (K�̃C−S−M, x), 1)

 + v(K�̃P−S−M, σ (K�̃P−S−M, x), −1).  (26)

This leads to the following root search problem: 

Problem Type: Root search.
Given parameters: v�̃−S−M, K�̃C−S−M, K�̃P−S−M and market data.
Target parameter: x (set x initially to σ�̃−S−Q )

Objective function:

f (x) = v(K�̃C−S−M, σ (K�̃C−S−M, x), 1) + v(K�̃P−S−M, σ (K�̃P−S−M, x), −1) − v�̃−S−M

The procedure will yield a smile strangle which can be used in the sim-
plified parabolic formula to construct a full smile in the delta space. It is 
natural to ask, how well defined the problem above is and whether a solu-
tion exists and we refer the reader to Reiswich (2011) and Reiswich (2010) for 
relevant analyses. Does a solution always exist? No, one may observe a mar-
ket situation where the smile can not be calibrated successfully. Some mod-
els are more robust than others, but all models will have a limitation with 
respect to admissible parameters. In this case, traders are required to adjust 
one of the market parameters such that the model can calibrate to the new 
set. For example, given an extreme risk reversal which leads to a failure of 
the calibration may force a trader to adjust the strangle volatility until the 

•

•
•

Figure  4: Moving spot scenario for calibrated simplified parabolic formula in 
strike space. Based on market data in Table 3.

1.1 1.2 1.3 1.4 1.5 1.6 1.7
K0.20

0.21

0.22

0.23

0.24

0.25

0.26
s

Spot=1.3588

Spot=1.3088

Table 8: Simplifi ed Parabolic Calibration Results.

EUR-USD Sample USD-JPY Sample

s
S 0.007377 0.00419

model calibrates successfully. The marking to market is then driven by the 
model. 

Performing the calibration on the currency data in Table 3 yields the 
parameters summarized in Table 5 for the root search problem. The final 
calibrated smile for the USD-JPY case is illustrated in Figure 5. One can use 
the procedure for every time to maturity slice separately and interpolate in 
the time space (i.e. linear in total variance). The result is a market consistent 
volatility surface as shown in Figure 6 for the EUR-USD and USD-JPY market 
data.

Retrieving a Volatility for a Given Strike
Formula (24) returns the volatility for a given delta. However, the calibration 
procedure requires a mapping 

Figure  5: USD-JPY smile for the market data in Exhibit 3. Filled circles indi-
cate K

25P
, K

25C
 strikes. Unfilled circles indicate market strangle strikes K

25P–S–M
, 

K
25C–S–M

. Rectangle indicates K
ATM

.
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theorem. In the following discussion we will avoid the explicit dependence 
of all variables on (K, s  (K, s

s
)). For example, we write 

∂�

∂K
instead of

∂�

∂K
(x, y)|x=K,y=σ (K,σS )

With this compact notation, we can state the following.

Theorem 2. Given the volatility vs. delta mapping (24), assume that the following 
holds 

c1
∂�

∂σ
(KATM, σATM) �= 1

Then there exists a function s : U → W with open sets U, W ⊆ IR+ such that K
ATM

 ∈U and 
s

ATM
 ∈W which maps the strike implicit in D against the corresponding volatility. The 

function is differentiable and has the following first- and second-order derivatives on U 

 

∂σ

∂K
=

∂�
∂K A

1 − ∂�
∂σ

A  (28)

 

∂2σ

∂K2
=

[(
∂2�

∂K2 + ∂2�
∂K∂σ

∂σ
∂K

)
A + ∂�

∂K
∂A
∂K

](
1 − ∂�

∂σ
A
)

(
1 − ∂�

∂σ
A
)2

+
∂�
∂K A

(
( ∂�
∂σ∂K + ∂2�

∂σ2
∂σ
∂K )A + ∂�

∂σ
∂A
∂K

)

(
1 − ∂�

∂σ
A
)2

 (29)

with 

 
A := c1 + 2c2(� − �ATM) and

∂A

∂K
= 2c2

(∂�

∂K
+ ∂�

∂σ

∂σ

∂K

)

Proof. See Appendix. 
Note that Equations (28) and (29) require the values s  (K, s

s
). In fact, 

Equation (28) can be seen as an non-autonomous non-linear ordinary dif-
ferential equation for s  (K, s

s
). However, given s  (K, s

s
) as a root of Equation 

(27), we can analytically calculate both derivatives. Differentiability is 
very important for calibration procedures of the well known local volatil-
ity models (see Dupire (1994), Derman and Kani (1994), Lee (2001)), which 
need a smooth volatility vs. strike function. The derivatives with respect 
to the strike can be very problematic if calculated numerically from an 
interpolation function. In our case, the derivatives can be stated explicitly, 
similar to [Hakala and Wystup, 2002, page 254] for the kernel interpola-
tion case. In addition, the formulas are very useful to test for arbitrage, 
where restrictions on the slope and convexity of s  (K) are imposed (see for 
example Lee (2005)). 

We summarize explicit formulas for all derivatives occurring in 
Equations (28) and (29) in Tables 6 and 7 in the Appendix. They can be used 
for derivations of analytical formulas for the strike derivatives for all delta 
types.

Calibration Robustness and No-Arbitrage Conditions

In Reiswich (2011), the calibration robustness of the simplified parabolic 
function is compared against other methods. In addition, the violation of 
no-arbitrage conditions is analyzed. Both analysis are based on empirical 
market data and show that the simplified parabolic function is robust with 
respect to both criteria.

Figure  6: EUR-USD (left chart) and USD-JPY (right chart) volatility surfaces 
on January, 20th 2009. Time to maturity shown in months.

K �→ σ (K, σS)

since it needs a volatility corresponding to the market strangle strikes. The 
transformation to s (K, s

s
) can be deduced by recalling that s = s (∼Δ, s

s
) is 

the volatility corresponding to the delta ∼D. To be more precise, given that 
s is assigned to a fixed delta ∼Δ implies that ∼Δ = Δ (K, s, f ) for some strike K. 
Consequently, Formula (24) can be stated as 

 σ = σATM + c1(�(K, σ , 1) − �ATM) + c2(�(K, σ , 1) − �ATM)2.  (27)

Given a strike K, it is thus possible to retrieve the corresponding volatil-
ity by searching for a s  which fulfills Equation (27). This can be achieved 
by using a root searcher. We recommend the method introduced by Brent 
(2002). The question arises, if such a volatility vs. strike function exists and 
how smooth it is. The answer can be given by using the implicit function 
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4 Conclusion
We have introduced various delta and at-the-money quotations commonly 
used in FX option markets. The delta types are FX-specific, since the option 
can be traded in both currencies. The various at-the-money quotations have 
been designed to account for large interest rate differentials or to enforce an 
efficient trading of positions with a pure vega exposure. We have then intro-
duced the liquid market instruments that parametrize the market and have 
shown which information they imply. Finally, we derived a new formula 
that accounts for FX specific market information and can be used to employ 
an efficient market calibration. 
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5 Appendix
To reduce the notation, we will drop the dependence of s (Δ, s

s
) on s

s
 in the 

following proofs and write s (Δ) instead. 

Proof (Simplified Parabolic Formula). We will construct a parabola in the call 
delta space such that the following restrictions are met 

 

σ (�ATM) = σATM,

σ (�̃) = σATM + 1

2
σR + σS,

σ (a − �̃) = σATM − 1

2
σR + σS.

 (30)

For example, in the forward delta case we would have a = 1. Given  
∼D  = 0.25, 

the call delta corresponding to a put delta of −0.25 would be 1 − 0.25 = 0.75. 
The equation system is set up such that 

σS = σ (�̃) + σ (a − �̃)

2
− σATM.

One can see that s
s
 measures the smile convexity, as it is the difference of 

the average of the out-of-the-money and in-the-money volatilities compared 
to the at-the-money volatility. The restriction set (30) ensures that 

 σ (�̃) − σ (a − �̃) = σR  (31)

is fulfilled by construction. Given the parabolic setup 

σ (�) = σATM + c1(� − �ATM) + c2(� − �ATM)2,

one can solve for c
1
,c

2
 such that Equation system (30) is fulfilled. This is a well 

defined problem: a system of two linear equations in two unknowns. 

Proof (Existence of a Volatility vs Strike Function). The simplified parabolic func-
tion has the following form 

 σ (�, σS) = σATM + c1(� − �ATM) + c2(� − �ATM)2.  (32)

First of all, note that Δ (K, s) is continuously differentiable with respect 
to both variables for all delta types. Define F : IR+ × IR+ → IR to be 

 F(K, σ ) = σATM + c1(�(K, σ ) − �ATM) + c2(�(K, σ ) − �ATM)2 − σ  (33)

with Δ (K, s) being one of the four deltas introduced before. The proof is a 
straightforward application of the implicit function theorem. Note that 
F(K

ATM
, s

ATM
) = 0 is given by default. As already stated, the function F is dif-

ferentiable with respect to the strike and volatility. Deriving with respect to 
volatility yields 

 

∂F

∂σ
= c1

∂�

∂σ
+ 2c2(� − �ATM)

∂�

∂σ
− 1.

 (34)

From this derivation we have 

 

∂F

∂σ
(KATM, σATM) = c1

∂�

∂σ
(KATM, σATM) − 1,

 (35)

which is different from zero by assumption of the theorem. Consequently, 
the implicit function theorem implies the existence of a differentiable func-
tion f and an open neighborhood U × W ⊆ IR+ × IR+ with K

ATM
 ∈ U, s

ATM
 ∈ W such 

that 

F(K, σ ) = 0 ⇔ σ = f (K) for (K, σ ) ∈ U × W .

The first derivative is defined on U and given by 

∂f

∂K
= −

∂F
∂K
∂F
∂σ

for K ∈ U,

which can be calculated in a straightforward way. The function f(K) is denot-
ed as s (K) in the theorem. The second derivative can be derived in a straight-
forward way by remembering, that the volatility depends on the strike. This 
completes the proof. 
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modeling and implementing Foreign Exchange Exotics. He has been working as Financial 

Table  9: Partial Delta Derivatives I.

ìK ìr ìK2

�S − e
−rf τ
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σ
√

τK
− e

−rf τ
n(d+)d−
σ

e
−rf τ

n(d+)
σ
√

τK2 − e
−rf τ

n(d+)d+
σ2τK2

�S,pa
φe
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fσ
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− e

−rf τ
Kn(d−)d+
fσ − e
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fσ
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τK
− e

−rf τ
n(d−)d−

fKσ2τ

�f − n(d+)
σ
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τK
− n(d+)d−

σ

n(d+)
σ
√

τK2 − n(d+)d+
σ2τK2

�f ,pa
φN(φd−)

f − n(d−)
fσ

√
τ

− Kn(d−)d+
fσ − n(d−)

fσ
√

τK
− n(d−)d−

fKσ2τ

Table  10: Partial Delta Derivatives II.

ìK ìr ìr2

�S

�S,pa

�f

�f ,pa

e
−rf τ

n(d+)
(
1−d+d−

)
σ2√

τK

e
−rf τ

n(d− )
(
−d+σ

√
τ+1−d−d+

)
fσ2√

τ

n(d+)
(
1−d+d−

)
σ2√

τK

n(d−)
(
−d+σ

√
τ+1−d−d+

)
fσ2√

τ

e
−rf τ

n(d+)(d−−d+d−d−+d+)
σ2

e
−rf τ

Kn(d−)(d+−d−d+d++d−)
fσ2
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ENDNOTES 
1. We will take a delta of 0.25 as an example, although any choice is possible, e.g. 0.10.
2. This can be achieved by using a standard root search algorithm.
3. Sometimes the quoted strangle is also referred to as the broker strangle as in Bossens 
et al. (2009), or as the vega weighted butterfly as in Castagna (2010). In addition, the term 
butterfly is commonly used instead of the term strangle despite the difference of the option 
positions.
4. The expansion uses some simplifications and approximations. For example, we neglect 
the derivative of the calibrated smile function σ (K) with respect to σ25−S−M.
5. The volga is the derivative of the vega with respect to volatility.
6. Here, �ATM  is the at-the-money delta. The description is exact if we consider the for-
ward delta case with the delta-neutral at-the-money quotation. In other cases, this is an 
approximation.
7. The smile strangle is denoted as σBF25(2vol)  in Bossens et al. (2009) and as the equivalent 
vega weighted butterfly vwbe in Castagna (2010).
8. Here we assume, that the at-the-money and forward term structure is ‘’regular”.
9. A put volatility can be calculated by transforming the put to a call delta using the put call 
parity.
10. a + �̃P is the call delta corresponding to a put delta of �̃P. In the forward delta case a = 
1. If �̃P = −0.25, the equivalent call delta which enters the simplified parabolic formula is 
a + �̃P = 0.75. 
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